
Universidade de Aveiro 
2016  

Departamento de Eletrónica, Telecomunicações e 
Informática 

PURNACHAND 
NALLURI 
 

ALGORITMO DE ESTIMAÇÃO DE MOVIMENTO E 
SUA ARQUITETURA DE HARDWARE PARA HEVC 
 
 
 
A FAST MOTION ESTIMATION ALGORITHM AND  
ITS VLSI ARCHITECTURE FOR HIGH EFFICIENCY 
VIDEO CODING 
 

   



 

Universidade de Aveiro 
2016  

Departamento de Eletrónica, Telecomunicações e 
Informática 

PURNACHAND 
NALLURI 
 
 

ALGORITMO DE ESTIMAÇÃO DE MOVIMENTO E 
SUA ARQUITETURA DE HARDWARE PARA HEVC  
 
 
 
A FAST MOTION ESTIMATION ALGORITHM AND ITS 
VLSI ARCHITECTURE FOR HIGH EFFICIENCY VIDEO 
CODING 
 

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos 
necessários à obtenção do grau de Doutor em Engenharia Eletrotécnica, 
realizada sob a orientação científica do Doutor António José Nunes Navarro 
Rodrigues, Professor Auxiliar do Departamento de Eletrónica, Telecomuni-
cações e Informática da Universidade de Aveiro e do Doutor Luis Filipe 
Mesquita Nero Moreira Alves, Professor Auxiliar do Departamento de 
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.  
 

 

  This PhD thesis was supported by FCT 
(Fundação para a Ciência e a 
Tecnologia), Portugal. Grant ref. 
:SFRH/BD/73266/2010 
 



 

  

  
 

 
 

dedicated to my family 

my brother late Govind Nalluri 

my dad and mom 

and my wife 

 

 



 

  
 

 
 
 

 
 

O Júri   
 

Presidente: Doutor Fernando Manuel dos Santos Ramos, Professor Catedrático, 
Universidade de Aveiro  

  

  
Vogais: Doutor Luciano Volcan Agostini, Pró-Reitor de Pesquisa e Pós-Graduação, 

Universidade Federal de Pelotas, Brasil 
 
Doutor Marco Mattavelli, Maître D’enseignement et de Recherche, École 
Polytechnique Fédérale de Lausanne, Suiça 
 
Doutor Leonel Augusto Pires Seabra de Sousa, Professor Catedrático, Instituto 
Superior Técnico, Universidade de Lisboa 
 
Doutor Dinis Gomes de Magalhães dos Santos, Professor Catedrático, 
Universidade de Aveiro 
 
Doutor António José Nunes Navarro Rodrigues, Professor Auxiliar, 
Universidade de Aveiro (supervisor/orientador) 
 

  
  
  

  
  

  
  

  

  
  

  
  
  

 
 
 



 

  

  
 

agradecimentos 
 

The research work for this thesis was carried at Institudo de Telecomunicações (IT) and 

Departamento de Electrónica, Telecomunicações e Informática (DETI), Universidade 

de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal, during the years 2010-

2015. 

I would like to express my gratitude to my supervisors Prof. Luis Nero Alves and Prof. 

Antonio Navarro for their guidance, motivation and every possible effort to carry out 

my research work. Prof. Luis Nero taught me how to approach towards a problem 

(especially in VLSI circuits and systems) in research work, and motivated at many 

points.  Prof. Navarro’s experience in video coding helped how to solve the critical 

problems without which this thesis could not have been accomplished.  

I would like to thank Prof. Manuel Almeida Valente for his great help and support 

given to me in the initial days of my arrival to Portugal, and because of whom I came to 

know about Aveiro and FCT scholarship.  

I would like to thank all my colleagues in CSI lab of IT, Aveiro for their technical 

support and friendship, Nuno Lourenço, Domingos Terra, Miguel Bergano, Nelson 

Silva and Mónica Figueiredo all made the lab a comfortable place to work. I would also 

like to express my thankfulness to IT administrative, HR and security staff for their 

cooperation throughout my stay in IT. 

I would like to thank my family, my wife Sirisha and my parents (dad Prof. Dr. N. 

Veeraiah and mom N.V. Kumari) for their wonderful support and love that helped me 

survive in difficult times. I would also like to thank my uncles Dr. V. Ravikumar, Dr. 

G. Sahaya Bhaskaran, Dr. Y. Gandhi, Dr. K.S.V. Sudhakar, Dr. G. Nagaraju and to my 

cousin Valluri Ravikumar for their support throughout my PhD period. 

I would like to express my gratefulness to my loving brother late Govind Nalluri, 

whose very thoughts are foundation to my conscience.  

Finally, I would like to thank and acknowledge my funding agency FCT (Fundação 

para a Ciência e a Tecnologia). This research work was supported by FCT grant 

reference SFRH/BD/73266/2010. 

 
 



 

  
 
 
 
 
 
 
 
 
 
 

  

palavras-chave 
 

Codificação de vídeo, Norma HEVC, Estimação de movimento, Arquitetura de 
hardware, FPGA. 
 

resumo 
 
 

A codificação de vídeo tem sido usada em aplicações tais como, vídeo-
vigilância, vídeo-conferência, video streaming e armazenamento de vídeo. 
Numa norma de codificação de vídeo, diversos algoritmos são combinados 
para comprimir o vídeo. Contudo, um desses algoritmos, a estimação de 
movimento é a tarefa mais complexa. Por isso, é necessário implementar esta 
tarefa em tempo real usando arquiteturas de hardware apropriadas. Esta tese 
propõe um algoritmo de estimação de movimento rápido bem como a sua 
implementação em tempo real. Os resultados mostram que o algoritmo e a 
arquitetura de hardware propostos têm melhor desempenho que os existentes. 
A arquitetura proposta opera a uma frequência máxima de 241.6 MHz e é 
capaz de processar imagens de resolução 1080p@60Hz, com todos os 
tamanhos de blocos especificados na norma HEVC, bem como um domínio de 
pesquisa de vetores de movimento até ±64 pixels.  
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abstract 
 

Video coding has been used in applications like video surveillance, video 
conferencing, video streaming, video broadcasting and video storage. In a 
typical video coding standard, many algorithms are combined to compress a 
video. However, one of those algorithms, the motion estimation is the most 
complex task. Hence, it is necessary to implement this task in real time by 
using appropriate VLSI architectures. This thesis proposes a new fast motion 
estimation algorithm and its implementation in real time. The results show that 
the proposed algorithm and its motion estimation hardware architecture out 
performs the state of the art. The proposed architecture operates at a 
maximum operating frequency of 241.6 MHz and is able to process 
1080p@60Hz with all possible variables block sizes specified in HEVC 
standard as well as with motion vector search range of up to ±64 pixels. 
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1 INTRODUCTION 

1.1 PROBLEM DEFINITION AND MOTIVATION 

With the advent of digital revolution, there is a huge change from analog and 

mechanical technology to digital technology. This revolution created a huge impact on 

almost all types of industries in the areas of arts, entertainment, communications, 

marketing, media etc. and has marked the beginning of information age. With more and 

more advances in computational speed of digital computing devices, there is an ever 

growing increase in generation and demand for digital information including data, audio 

and video. Amongst all these multimedia data, the digital video is more complicated and 

challenging to process (which is the used in many applications including storage, 

surveillance, web streaming, broadcasting, video communications and conferencing) as 

the amount of data required for video is huge compared to data and audio information. 

Hence, there is an endless research actively going on from the past three decades to 

compress the digital video. 

1.1.1 The Need of Video Compression 

Compression of video is always necessary in streaming, broadcasting and storage 

applications. With the growing demand for mobile and fixed line internet video, the 

demand for compressing the video is also growing by including more sophisticated 

compression algorithms. Fig. 1.1 shows the trend and forecast of future IP (Internet 

Protocol) video, which includes internet streamed video, IP VoD (Video on Demand), 

video file sharing, video-streamed gaming and videoconferencing [1]. According to 

 

Fig. 1.1 Forecast of Global IP Traffic in Future by Application Category (Source Cisco 

VNI, 2014) 
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Cisco, this trend continues to grow and the expected internet video traffic by 2018 will 

be about 79% of total internet traffic. In the figure, the percentage values in the 

parenthesis next to the legend shows the relative traffic shares in the year 2013 and 

2018 respectively. CAGR represents compound annual growth rate. From the figure it is 

clear that there is a growth in the rate for internet video (internet video + managed IP 

video) from 63% to 79% from the year 2013 to 2018, with a CAGR of 21%. The 

highlights of some of the predictions and forecasts about video service demands 

according to Cisco [1] are: 

• Global IP video traffic will increase to 79% (of total IP traffic) by 2018 

compared to 66% in 2013 

• There is a rapid pace in the usage of Internet video to TV (via set top boxes). 

• By 2018, the amount of VoD traffic will be equivalent to 6 billion DVDs per 

month. 

• The number of consumers with 4k television sets will increase to 200 million by 

2018 compared to 1 million in 2013 and 28 million in 2015, with a CAGR of 

190%, as shown in Fig. 1.2.  

From the above highlights, it is clear that there is always a growing trend in the 

video content generation and usage. Due to increase in 4k TV sets, there is also an 

increase in demand for compressing the video in broadcast services for providing video 

services at HD (High Definition) and UHD (Ultra HD). Further, the video content that is 

generated, need to be stored at data centers and cloud servers using hard disks or solid-

 

Fig. 1.2 Illustration of Increased trend in the usage of HD and UHD TVs (Source: Cisco 

VNI, 2014) 
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state drives or using any other storage devices. The higher the compression of video, the 

lesser is the amount of memory used at these storage devices. Hence, there is always a 

growing demand for compressing the video.   

1.1.2 Block-based Video Encoder System 

Block based video coding is one of the mostly used compression technique for video. In 

block based video coding, each video frame is split into coding blocks. Each coding 

block is predicted, transformed. quantized and entropy encoded. The block diagram of a 

typical video encoder is shown in Fig. 1.3. Each frame is split into various coding 

blocks and then the blocks of first frame in a video frame sequence is intra predicted 

and encoded (prediction of image blocks within the frame) and the rest of the frames’ 

blocks are either intra predicted or inter predicted (prediction between frames using 

Motion Estimation (ME) and motion compensation blocks). Nevertheless, in inter-

prediction, in every frame the first block of slice (group of blocks) can be intra-coded 

and depends on the mode-decision algorithm. The ME block predicts and estimates 

motion between frames and generate the Motion Vectors (MVs). The MVs are entropy 

encoded and also sent to motion compensation block. The motion compensation block 

uses these MVs to generate motion compensated frames. These motion compensated 

frames are subtracted from the original frames (current frames) to generate residual 

frame blocks. This residual information is transformed, quantized and then entropy 

encoded. To generate identical predicted information in the decoder side, the encoder 

 

Fig. 1.3 Block Diagram of Block-based Video Encoder 
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typically includes a decoding loop to reconstruct the original frames using predicted 

information. The decoding blocks are shown in dark color in Fig. 1.3. To do this, the 

decoder takes the quantized information and passes it through inverse quantization and 

inverse transformation blocks. Then, the obtained data is added to the predicted data to 

reconstruct the subsequent video frames. 

1.1.3 The Motion Estimation Problem 

Motion Estimation (ME) is the essential task in block based video encoders. It 

contributes to reduce the overall bitrate of a video signal by predicting and estimating 

the Motion Vectors (MVs) for each block in every frame. A good estimate of motion in 

a frame generates less entropy information (for residual frame blocks) and fewer bits to 

encode it and hence the compression ratio will be increased. So, for each block in every 

frame, the main task of ME is to estimate the motion content by finding the best 

matched block in the previously encoded frame (reference frame) region of interest 

(also called search window). The process of ME is shown in Fig. 1.4. For every block of 

the current frame, a new Search Window (SW) is defined and the ME algorithm 

searches for the best matched block using a predefined cost function. The final output of 

the ME are the coordinates of the optimal MV and its cost. 

The ME problem can be formulated using (1.1) and (1.2), where MV(x,y) 

represents the optimal motion vector, SW represents the search window, J represents the 

Lagrangian cost function, D represents the distortion and R represents the bitrate 

required to encode the motion vector MV and λMV is the lagrangian multiplier. The 

distortion function usually employed is either SAD (Sum of Absolute Difference) or 

SSD (Sum of Squared difference). The SAD is widely used distortion function that can 

 

Fig. 1.4 Illustration of Motion Estimation Process 



INTRODUCTION 

 

 

 
5 

 

be defined using (1.3), where C represents the current block, R represents the reference 

block and MxN represents size of the block in pixels. 

Block based video encoders typically use Block Matching Algorithms (BMAs) to 

perform ME. In case, the ME algorithm searches each and every block in the SW, called 

Full Search (FS) algorithm. Searching every block in the entire SW increases the 

complexity of the encoder. Hence video encoders employ fast ME algorithms which 

skip most of the blocks that are unlikely to be the optimum MV. But by using fast 

search algorithms we may experience some degradation in the also decrease the output 

video quality as the estimated optimum MVs may not be accurate enough. Hence a 

good fast ME algorithm is necessary to decrease the ME complexity but with negligible 

loss in compression ratio and output video quality. 

1.1.4 The Demand for Video Core Complexity 

Although the fast ME algorithms reduce the ME complexity when compared to 

FS algorithm, they have higher complexity when compared with the other operations of 

the video encoder. Hence a good hardware architecture is necessary to reduce the 

complexity and exploit parallelism and pipelining at various levels of ME operation. 

On the other hand, designing hardware for ME operation is challenging task as the 

architecture is constrained by many real time parameters like hardware resources usage, 

critical path delay, off-chip to on-chip memory bandwidth, on-chip memory buffer size, 

power consumption etc. Due to the increase in the complexity of advanced video coding 

standards (like the latest standard HEVC [2]), the hardware complexity of video core 

also increases. Fig. 1.5 shows the trend in relative complexity requirement of video 

encoder in mobile application processors, plotted over the years 2004 through 2020 [3]. 

The figure shows that the complexity of video core by 2020 is expected to increase 

 
����� , ��	 = min�,� �������� + �, � + ��� �� + �, � + ��	�	�� 
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almost exponentially compared to that of video core complexity in 2014. Hence it is 

very crucial and essential to design a dedicated hardware that meets the performance 

requirements as well as considering the hardware design costs like area, memory size, 

memory bandwidth etc.  

1.2 OBJECTIVES OF THESIS 

The problem of motion estimation is always challenging as the motion of objects in a 

video move randomly in both direction and magnitude. Many algorithms exist in the 

literature [62-104], where the origin of this problem dates back as old as 1981 [77]. 

When the video coding projects started standardizing and getting evolved to newer 

standards, the problem of ME was also getting more and more complicated. The latest 

video coding standard is the HEVC developed by JCT-VC which is a joint collaboration 

ITU-T and ISO/IEC [2, 4]. Compared to its prior standard H.264/AVC [5, 6], the coding 

block size increased from 16x16 to 64x64 pixels. Therefore the number of block modes 

also increased and so as the complexity of ME. Hence, the present thesis focused on 

reducing the computational complexity of ME through the proposal of novel hybrid ME 

algorithm. The algorithm is called hybrid because it comprises of various tools to reduce 

the computational complexity problem of ME. The algorithm is designed and verified 

using HEVC reference software [7, 8], which is the software for the latest video coding 

standard.  

Although at the search window level, the algorithm for ME is independent of 

the block size, the hardware implementation of the architecture depends on the current 

 

Fig. 1.5 Trend in Increase of Relative Hardware Complexity for a Mobile Video 

Processor from Years 2004 to 2020 
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block size of the search process. Hence implementation of ME that is compatible with 

the coding sizes standardized in HEVC is another objective of this thesis. Hence, after 

designing and verifying the algorithm in software, a hardware architecture was designed 

at RTL (Register Transfer Level) using Verilog HDL (Hardware Description Language) 

[9]. The architecture is verified and synthesized using an FPGA (Xilinx Virtex-6 FPGA) 

[10]. 

The summary of objectives of this thesis are listed below: 

� To design and verify a novel hybrid fast ME algorithm which outperforms 

the fast ME algorithm present in HEVC reference software. 

� To implement the proposed ME algorithm in HDL that is compatible with 

the HEVC coding standard and to verify it using an FPGA. 

1.3 SUMMARY OF ORIGINAL CONTRIBUTIONS 

The summary of publications are listed below: 

1. Nalluri, P; Alves, L. N.; Navarro, A.; "Complexity Reduction Methods for Fast 

Motion Estimation in HEVC", Elsevier Journal of Signal Processing: Image 

Communication (EURASIP), Vol. 39, Part A, pp. 280 - 292, November 2015. 

2. Nalluri, P; Alves, L. N.; Navarro, A.; "High Speed Sad Architectures For 

Variable Block Size Motion Estimation In HEVC Video Coding", Proc. IEEE 

International Conf. on Image Processing – ICIP-2014, Paris, France, , Oct. 2014. 

3. Nalluri, P; Alves, L. N.; Navarro, A.; “A novel SAD architecture for variable 

block size motion estimation in HEVC video coding”, Proc. IEEE International 

Symposium on System on Chip (SoC), 2013, pp.1-4, 23-24 Oct. 2013 

4. Nalluri, P; Alves, L. N.; Navarro, A.; "Fast Motion Estimation Algorithm for 

HEVC Video Encoder", Proc Conf. on Telecommunications - ConfTele, Castelo 

Branco, Portugal, Vol. 1, pp. 1 - 4, May, 2013. 

5. Nalluri, P; Alves, L. N.; Navarro, A.; "FPGA Based Synchronous Multi-Port 

SRAM Architecture for Motion Estimation", Proc Jornadas sobre Sistemas 

Reconfiguráveis - REC, Coimbra, Portugal, Vol. 9, pp. 89 - 92, February, 2013. 

6. Nalluri, P; Alves, L. N.; Navarro, A.; "Fast Motion Estimation Algorithm for 

HEVC", Proc IEEE International Conf. on Consumer Electronics - ICCE, Berlin, 

Germany, Vol. 3, pp. 34 - 37, September, 2012. 
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7. Nalluri, P; Alves, L. N.; Navarro, A.; "Improvements to TZSearch Motion 

Estimation Algorithm for Multiview Video Coding", Proc. IEEE International 

Conf. on Systems, Signals and Image Processing - IWSSIP, Vienna, Austria, 

Vol. 19, pp. 388 - 391, April, 2012. 

8. Nalluri, P; Alves, L. N.; Navarro, A.; "A Fast Motion Estimation Algorithm and 

its FPGA based hardware architecture for HEVC" (Submitted). 

1.4 SUMMARY OF THESIS 

The rest of the chapters in the thesis is organized as follows. 

Chapter 2 describes the fundamentals and concepts of digital video coding. The chapter 

outlines a history of video coding standards, encoder block diagram of the latest video 

coding standard HEVC and describes the function of each block in the encoder. Further, 

this chapter explores various features and techniques involved in motion estimation. 

Chapter 3 explains the state-of-the-art of ME algorithms. The chapter also explains ME 

hardware architecture and explains the state-of-the-art of ME hardware architectures. 

Chapter 4 explains in detail each of the proposed ME method implemented and verified 

using HEVC reference software. The chapter explains in detail, each method that is 

used to design the algorithms and shows the results simulated in HEVC reference 

software. 

Chapter 5 explains the proposed ME hardware architecture which is designed using 

HDL. This chapter explains in detail, the design methodology used in FPGA, state-

diagrams and the simulated results and compares the synthesis results with recent 

works. 

Chapter 6 concludes the thesis by summarizing the achieved results and presents future 

research directions. 
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2 FUNDAMENTALS OF DIGITAL VIDEO CODING AND 

MOTION ESTIMATION 

2.1 INTRODUCTION 

A video is a sequence of still images displayed at a fixed frame rate. The net after-effect 

is a video with objects moving in a background.  If all the pictures (frames) in the video 

are encoded individually, then the size of the complete video will be equal to the sum of 

the bits obtained from each frame. This is practically not possible for large videos either 

in storage or communication applications. Hence there is a huge necessity to remove the 

redundant information in a video [11].  

2.2 DIGITAL VIDEO CODING TERMINOLOGY 

 Block Based Video Coding 

As explained in Chapter 1, in block based video coding, the sequence of images is 

compressed by dividing each frame into blocks. Each block is then motion compensated 

(predicted using previously coded neighboring blocks), transform coded, quantized and 

finally entropy coded (removes statistical redundant information). Each of these 

techniques is explained in the subsequent sections. The decoder receives these coded 

blocks and generates frames which are displayed at a fixed frame rate [12], [13].  

Besides block based coding there are many other types of video coding like 

pixel-based video coding, content based video coding, fractal based video coding etc. 

but the block based video coding is the most widely used and efficient way of 

implementing a video codec either in software or in real-time due to its regularity in the 

coding structure. Some of examples of block based codecs include MPEG based codecs 

like MPEG-1, MPEG-2, MPEG-4, VCEG based codecs H.261, H.263 and their joint 

collaborated codecs like H.264, HEVC, etc.  

 Group of Pictures (GOP) 

In block based video coding, the entire video is divided into a group of picture 

sequences so that the video encoder can further make the encoding process easy. Each 

Group of Pictures (GOP) contains a fixed number of frames [14]. Each frame is either 

intra coded or inter predicted depending upon the GOP pattern.  
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Fig. 2.1 Frames in a GOP with M=3 and N=10  

A GOP typically contains three types of frames – Intra frame (or I-frame), 

Predictive frame (or P-frame) and Bi-predictive frame (or B-frame). The intra frame is 

coded independent of other frames and is coded just like a still image. The blocks in P-

frame are coded using past frames that are already encoded. The blocks in a B-frame 

can use both past and future frames (stored in a frame buffer) for prediction. The GOP 

structure is typically represented by the order of these three types of frames I, P and B. 

The GOP structure is typically represented by two parameters, the GOP size and the 

maximum prediction depth. In MPEG based codecs, these values are represented by 

letters M (maximum prediction depth) and N (GOP size) [15]. For example M = 3 and 

N = 12 represents the GOP structure IBBPBBPBBPBBIBBP… and so on, which shows 

that the distance between two successive I frames is 12 (GOP size or N=12) and the 

distance between two successive P frames is 3 (M =3). The value N represents the 

number of frames in GOP in which the entire video is repeated with same pattern of 

frames with the first frame being Intra frame. The value M represent the maximum 

value of a reference frame index from a current frame. Fig. 2.1 represents the GOP 

structure of above example (IBBPBBPBBPI…, N=10). The arrow marks in the figure 

indicate the reference frames used to predict the corresponding frame. 

 Pictures, Frames and Fields 

In digital videos, the next level of hierarchy after GOP are frames or fields. As 

mentioned in the above section, the frames can be either of types I, B or P. Depending 

on the type of sampling, the pictures can be called either frames or fields. If the 

scanning lines are progressive, then the picture is termed as a frame [16]. If the picture 

is scanned in interlaced order, then it is called a field. Each field is either odd-field or 

even-field depending on the line numbers index of scanned picture. Fig. 2.2 shows a 

QCIF size picture, top field and bottom field of foreman test sequence (2nd frame) [17]. 



FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION 

 

 

 
11 

 

   

2nd frame 2nd frame Top field 2nd frame Bottom field 

Fig. 2.2 Illustration of frame and fields in foreman video sequence 

 Slices and Coding Blocks 

Each frame of video consists of two dimensional array of picture elements (or 

pixels). The pixel is the fundamental element of video frames. In block based video 

codecs each frame is divided into blocks of these pixels, and the maximum size of block 

depends on the video coding standard. For example in MPEG-2, H.264/AVC and 

HEVC the block sizes are 8x8, 16x16 and 64x64 respectively. Further, all the coding 

blocks in a frame need not be of same type (I/P/B type). Depending on the prediction 

requirement, some blocks may be of I-type, some may be P-type and some may be of B-

type. I-frame contains all intra-predicted blocks (I-blocks). A P-frame contains both I-

type and P-type blocks. A B-frame contains all the types of blocks (I, P and B blocks) 

[18].  

A sequence of coding blocks can be grouped together and are called slices. A frame 

may contain one or more slices. The slice can be decoded independently from other 

slices in the same frame and hence useful for resynchronization of frame after data 

losses.  Further slices can be encoded using I or P or B types. I-slice contains all I-type 

coding blocks. A P-slice can be encoded using coding blocks of P-type, in addition to I-

  

(a) (b) 

Fig. 2.3 Subdivision of picture into (a) slices (b) tiles 
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type. A B-slice can be encoded using coding blocks of B-type, in addition to coding 

types available in P-slice. Fig. 2.3 (a) shows a frame that is divided into slices [19]. To 

enable parallelism in encoder and decoder architectures, HEVC defines another type of 

abstraction similar to slices which is termed as tiles. Tiles are typically rectangular 

blocks (but not necessarily) as shown in Fig. 2.3 (b). The entire frame can be partitioned 

into tiles, which further contain coding blocks. Each tile may contain slices and coding 

blocks. Further a group of tiles may also be ordered together to from slices [2]. 

 Pixel Color space and Sampling Techniques 

Each pixel in a video frame can be represented into luma component and chroma 

component. The luma component represents brightness and the chroma component 

represents color information. There are many color models such as RGB, CMYK, 

YCbCr, HSL (Hue Saturation and Lightness), HSV (Hue Saturation and Value), YPbPr, 

YIQ, YUV etc., each is used in a specific application, but broadly classifying, all these 

models can be categorized into two types. First type is to encode each value of primary 

colors (red, green, blue) or secondary colors (Cyan, Magenta, Yellow) separately and 

added to form various composite colors (like RGB model). The second type is to 

separate brightness (luminance) information from color (chrominance) information and 

to be encoded separately to get various combinations of luma-chroma values. The 

second type of color model is chosen in many video coding systems, since it has a 

flexibility to exploit the amount of chrominance information from luminance 

information. In principle, the Human Visual System (HVS) is more sensitive to 

luminance than to the color information. Hence, in color models like YCbCr, YUV etc, 

the color information is sub-sampled to reduce the bitrate or to save the memory 

required to store the pixel. In YCbCr model, the luminance value Y, chrominance-red 

(Cr) value and chrominance-blue (Cb) value can represented from basic RGB value as 

shown in (2.1). 

 Y = 0.299R + 0.587G + 0.114B 

2.1  Cb = 0.564(B-Y) 

 Cr = 0.713(R-Y) 

The sub-sampling scheme is usually notated in three part ratio R:H:V (like 4:2:2) to 

describe number of luminance and chrominance samples in a grid of R pixels wide and 
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2 pixels height. The first value (R) represents width of sampling reference pixels grid. 

Typically R is taken as 4. The next digit (H) indicates the number of chroma samples in 

the top row of Rx2 sample grid. The third digit represents number of chroma samples in 

the bottom row of Rx2 sample grid. For example 4:4:4 in YCbCr means for every 4x2 

luma samples, it has four chroma samples in top and bottom row each. Similarly, 4:2:2 

has two chroma samples in top row and two chroma samples in bottom row. The 4:2:0 

format means it has only two chroma samples (Cb and Cr) in the top row but has no 

color samples in the bottom row of 4x2 sample grid [20]. Fig. 2.3 illustrates various 

chroma sub-sampling formats. H.264 and HEVC employs YCbCr color space model 

with 4:2:0 chroma sub-sampling technique.  

 Video Formats 

A video format defines the number of horizontal and vertical pixels (resolution) that 

are encoded or decoded. A video compression algorithm can compress many types of 

video formats. Depending upon the applications, the formats standardized by ITU and 

ISO/IEC can be categorized to three types – Intermediate formats, Standard Definition 

format, High Definition formats. The intermediate formats like CIF (Common 

Intermediate Format), and QCIF (Quarter CIF) are used in streaming applications like 

internet video and video conferencing. The Standard Definition (SD) Format was 

widely used in the older digital video televisions. The HD (High Definition) video 

formats are used in high-end display applications where high resolution is required. 

TABLE 2.1 shows various display formats with their resolution [16]. HEVC standard 

supports decoding and encoding upto 8k resolution [21]. 

 Video Quality Measurement 

To evaluate and compare the quality of video communication systems or codec, a 

good quality metric is essential. The most widely used quality measuring metric is 

PSNR (Peak Signal to Noise Ratio). The PSNR gives the relative measure for the error 

    

(a) 4:4:4 (b) 4:2:2 (c) 4:1:1 (d) 4:2:0 

Fig. 2.3 Illustration of various Pixel sub-sampling techniques 
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TABLE 2.1  LIST OF VARIOUS DIGITAL VIDEO FORMATS WITH ITS 

RESOLUTION 

Format Resolution 
QCIF 176 x 144 

CIF 352 x 288 

SD (PAL) 720 x 576 

SD (NTSC) 720 x 480 

HD – 720p 1280 x 720 

HD – 1080i 1920 x 1080 (50 fields) 

HD – 1080p 1920 x 1080 (25 frames) 

2K (DCI-Digital Cinema Initiative) 2048 x 1080 

UHD (Ultra High Definition) 3840 x 2160 

4K (DCI) 4096 x 2160 

8K 7680 x 4320 

 
between original video and decoded video. PSNR is measured in logarithmic scale and 

it depends on the MSE (Mean Squared Error) between original and decoded video 

frames, relative to highest possible signal value in the image (2n-1)2, where n is the 

number of bits per image sample. The equation for PSNR is shown in (2.2) [22]. 

 +�,"-. = 10 log*4 �26 − 1�7��8 = 209:;*4 <26 − 1√��8> 2.2

PSNR is measured individually for luminance and chrominance components. For 

YUV format, there will be three PSNR values, PSNR-Y, PSNR-U, and PSNR-V. But 

for comparison, typically PSNR-Y (luminance) is only considered. For a 32-bit color 

video, there will be 8 bits allocated for luminance components. So, in (2.2) ‘n’ will be 8, 

making the numerator value equal to 255. Higher value of PSNR indicates high quality 

of video. Typically, a PSNR of 30-50 dB indicates that the quality of video is very 

good, 25-30 dB indicates an average quality, and below 25 dB indicates poor quality.  

Apart from this objective quality measurement metrics, there are also subjective 

measurements, where the video quality is measured using the survey of viewers 

opinions on the decoded videos [23]. In HEVC, the objective measurement using PSNR 

is widely used. 

 Video Bitrate 

The amount of bits at which the video encoder streams the compressed video (to a 

file or a communication channel) is measured in bits per second (bps) and is termed as 

bitrate. High bitrate video usually accommodates higher quality video (measured using 
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TABLE 2.2 COMMONLY USED BITRATES FOR VARIOUS STORAGE, 

STREAMING AND BROADCASTING STANDARDS 

Target Bit rate Application 

16 kbps videophone quality 

1.15 Mbps (max) VCD quality (using MPEG 1) 

2.5 Mbps 480p (SD) Youtube video (using H.264/AVC) 

3.5 Mbps (max) SDTV (using MPEG 2) 

5 Mbps 720p (Half HD) Youtube video (using H.264/AVC) 

8 Mbps 1080p (Full HD) Youtube video (using H.264/AVC) 

9.8 Mbps (max) DVD (using MPEG 2) 

8-15 Mbps HDTV (using H.264/AVC) 

29 Mbps HD DVD 

40 Mbps 1080p Blu-ray Disc (using MPEG4 AVC) 

 

PSNR). Further, for a given bitrate constraint, a good encoder (like HEVC) can have 

better quality video compared to older codecs like H.264/AVC. Similarly, for a given 

video quality constraint, the new codec HEVC will use less bitrate compared to its 

predecessor H.264/AVC [2]. Some of the commonly used bitrates in various storage and 

streaming standards are listed in TABLE 2.2. 

 There are two types of bit rate schemes that a video encoder can use for video 

coding – Constant Bit Rate (CBR) and Variable Bit Rate (VBR). The CBR maintains a 

bit rate (set by user) over the entire video clip but limits the video quality over complex 

video segments. Live broadcasting media that are used via cable, satellite and terrestrial 

broadcasting require constant bitrate for their transmission. To achieve CBR the 

complex video frames are compressed either in real time or pre-encoded before they are 

transmitted.  

The second type of coding scheme uses variable bit rate. In VBR scheme, all the 

video frames can have the same or targeted quality (PSNR), although the bitrate for 

each frame may vary (depending on the scene complexity). For more complex frame 

segments (blocks or slices), the VBR scheme allocates higher bitrate and for low 

complex frame segments it allocates less bitrate. The final average bitrate of encoded 

video is calculated by adding all the bitrates of individual frames and dividing it by the 

frames duration. 
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 Rate Distortion Performance for Video Encoder 

The Rate-Distortion (RD) performance is one of the methods that is used to evaluate the 

performance of different video (or image) encoders considering both the video quality 

(PSNR) and compression rate (bitrate). RD performance is usually depicted using 

graphs termed as RD curves as shown in Fig. 2.4 [24].  

The figure shows RD curves simulated for test sequence Johnny (720p) using 

reference softwares of various video coding standards – H.262/MPEG-2 Main Profile, 

MPEG-4 Advanced Simple Profile, H.263, H.264/AVC High Profile and HEVC Main 

Profile. On x-axis, the bitrate in kbps is taken and on y-axis the PSNR (video quality) in 

dB is taken. The nearer the curve is towards the y-axis, the better is the RD performance 

for the corresponding standard. This is because, for a constant PSNR, the curve towards 

the y-axis takes lesser bitrate (better compression) compared to other curves. Further, 

for the same bitrate, the curve towards the y-axis achieve higher video quality. From the 

plots shown in Fig. 2.4, the highest RD performance is achieved by HEVC, followed by 

H.264/AVC, H.264, MPEG-4 and then the last, H.262/MPEG-2. 

 Bjontegaard Delta Metrics for RD Performance Measurement 

The RD performance difference between two curves can be measured using 

Bjontegaard Delta (BD) metrics [25, 26]. While taking one RD curve as a reference, the 

BD metrics (for the second curve) denotes the overall bitrate savings and the overall 

PSNR savings. There are two types BD measurements – BD-bitrate (or BD-rate) and 

 

Fig. 2.4 Illustration of RD curves of test sequence Johnny (720p) using various video 

coding standards 
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BD-PSNR. The BD-bitrate provides a number that denotes the overall bitrate savings, 

while the BD-PSNR denotes the overall PSNR difference between the two curves.  

To calculate BD-bitrate and BD-PSNR, the RD performance of two encoder 

configurations for four different QP settings are taken and plotted with logarithmic scale 

of bitrate in x-axis and PSNR on y-axis. An example RD plots of two curves with their 

logarithmically scaled version of x-axis (bitrate values) is shown in Fig. 2.5. The curves 

are interpolated over the measured points using either (2.3) or (2.4), and then integrated 

over the x and y-axis respectively. The interpolation of PSNR as a function of bitrate is 

shown in (2.3) and (2.4) shows interpolation of bitrate as a function of PSNR. The 

difference over the integrated value over x-axis is taken as BD-bitrate value and the 

difference over y-axis is taken as BD-PSNR. In this way, the average PSNR difference 

in DB over the whole range of bitrates is calculated and similarly, the average bitrate 

difference in % over the whole range of PSNR is calculated.  

 +�," = ? + �@ A @�BC?BD� + �E A @�BC?BD7� + �F A @�BC?BDG� 2.3 

 @�BC?BD = ? + �@ A PSNR� + �E A PSNR7� + �F A PSNRG� 2.4 

2.3 TYPES OF REDUNDANCIES IN DIGITAL VIDEO 

Broadly classifying, there are two types of redundant information, one is the 

duplicate data and the other is irrelevant data. Duplication of data in videos mostly 

occurs due to correlation of objects within frames and between frames. There are three 

types of redundancies that occur due to duplicate data - spatial redundancy, temporal 

redundancy, and statistical coding redundancy. Irrelevant data is the information that the 

  

(a) (b) 

Fig. 2.5 Illustration of RD curves used to calculate BD metrics. (a) Normal RD 

Plots (b) Logarithmically scaled plots 
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Human Visual System (HVS) cannot perceive. This is usually termed as psycho-visual 

redundancy. Each of the redundancy type is explained briefly in the following sub-

sections [16], [19]. 

(a) Spatial Redundancy 

Neighboring pixels are highly correlated amongst themselves in a frame of video 

sequence. This redundant information can be exploited to achieve video compression. In 

block based video encoders like H.264/AVC, HEVC intra-prediction method is used to 

exploit this spatial redundancy which predicts the neighboring pixel blocks within the 

frame. 

(b) Temporal Redundancy 

Successive frames in a video are highly correlated since most of the video sequences 

consist of objects moving on a still background. This redundancy can be exploited using 

motion compensated coding technique. 

(c) Psycho-Visual and Spectral Redundancy 

This redundancy occurs due sensitivity variations of Human-Visual-System (HVS) for 

luminance and chrominance components in a video frame. Human visual system is less 

sensitive to details of pixel differences in an image. Hence the finer details of an image 

are quantized to achieve compression. The quantization based coding is a lossy coding. 

Further, the human eye is more sensitive to luminance component than chrominance 

component. Hence, video frames are typically encoded using chroma sub-sampling 

techniques (like 4:2:0) to remove the redundant color information. 

(d) Statistical Coding Redundancy 

The statistical redundancy occurs due to redundancy in neighboring bits of video 

information. After transforming the video frames (using transforms like Discrete Cosine 

Transform), the frame pixels information are arranged in according to their frequencies 

and hence the redundant data is easily removed. The statistical redundant data is 

exploited using entropy encoder. 
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2.4 DIGITAL VIDEO COMPRESSION TECHNIQUES 

For exploiting the aforementioned redundancies, the digital video encoders use 

many algorithms and techniques. Altogether, these techniques can be classified into four 

types. Each of these types of coding techniques is explained in the following 

subsections [19]. 

 Intra Frame Coding 

Intra frame coding technique reduces the spatial redundant information (redundant 

information that occurs between pixels in the same frame). Typically for doing temporal 

coding in a video coding process, there should be at least one reference frame that 

should not be encoded by using blocks of neighboring frames. Hence, the first frame out 

of n frames is always intra-coded. The rest of the frames are coded using temporal 

prediction (exploiting temporal redundant information). The number 'n' is the GOP 

(Group of Pictures) size and denotes the number of frames in a sequence.  

Although there is only one frame (intra-frame) in a GOP, the number of bits that are 

produced by intra-frames is significantly larger. Hence to compress this information, 

spatial prediction techniques were used. This is similar to still image coding, but used as 

part of video coding. Some standards like H.264/AVC and HEVC have a direct intra 

coding extensions (profiles) which use only intra frame coding and without any 

temporal (or inter-frame) coding. 

 Inter Frame Coding 

To exploit the temporal redundant information, motion compensated coding (inter frame 

coding) technique is used. In motion compensated coding, each block of a video frame 

is predicted with neighboring blocks in past frames using block matching algorithms. 

This process is called Motion Estimation (ME). The output of the ME process is the 

Motion Vector (MV) of the predicted block, which is sent to the decoder. 

     After the prediction process, the motion compensated (or predicted) frames are 

generated using these predicted blocks. The MC frames are subtracted from the current 

frames to get the residual frames. Typically, the subsequent stages after motion 

compensation (MC) coding are the transformation stage, quantization stage and entropy 

coding stage. The final output of entropy coding are the bits that represent the motion 

compensated residual frames. The output of the motion compensated coding is not just 
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MC residual frames, but also Motion Vectors (MVs) that represent predicted blocks 

obtained from Motion Estimation (ME). These MVs are also entropy encoded. Hence 

the necessary condition that should be satisfied in MC coding is that the output entropy 

coded bits of MVs and MC residuals (after transformation and quantization) is less than 

the entropy coded bits of difference images without MC coding (also after 

transformation and quantization). This is shown in (2.5), where J represents entropy 

coded bits and difference image represents residual frame without MC. 

 ���&LM��-NOP� + ����� Q 	��F�RRDCDSED_RC?UD�   2.5 

 Transform Coding and Quantization 

The transform coding is a method to exploit irrelevant information in video frames. This 

is typically a lossy compression technique. In transform coding, the image or video 

frame (motion compensated residual frame) is transformed into frequency domain 

which represents distribution of frequencies of pixel values within block. Technically, 

the transformed blocks indicate low to high frequencies in original residual frame 

blocks. After the transformation, the transformed blocks are quantized to remove 

irrelevant information that cannot be visualized in detail by human eye. The 

quantization process leads to a lossy data. 

Broadly classifying, there are two types of transforms - block-based and image 

based. Block based transforms operate on block of pixels and are suitable for block 

based video coding standards. They have low memory requirements and have low 

complexity compared to image based transforms. Image based transforms apply on an 

entire image or a large portion of image. Hence, they require high memory and are 

computationally expensive. Block based transforms suffer from blocking artifacts and 

hence require de-blocking filtering. Some of the examples for block based transforms 

are KL-transforms, Singular Value Decomposition, Discrete Cosine Transform (DCT), 

integer transforms, Hadamard transforms, etc. The most widely used block transform is 

Discrete Cosine Transform. The most commonly used image transform is the Discrete 

Wavelet Transform (DWT). 

 Entropy Coding 

The entropy coders exploit the statistical redundancy in the quantized transform 

coefficients of residual information and in other information like motion vector 
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differences, frame headers, block headers etc. The entropy encoder encodes the input 

information into minimum number of bits by allocating more bits to low frequent data 

and less number of bits to high frequent data. The most widely used entropy coding 

schemes in block based video encoders are Context Adaptive Variable Length Coder 

(CAVLC) [27] which is based on variable length coding and Context Adaptive Binary 

Arithmetic Coder (CABAC) [28] which is based on arithmetic coding. 

2.5 DIGITAL VIDEO CODING STANDARDS 

A video coding standard is a language that contains syntaxes and other elements so 

that the decoder can understand and decode it, besides achieving a goal of compressing 

the video.  A video coding standard, gives some flexibility in the implementation of the 

encoder but constraints it to follow a common format that every other decoder 

complying with the specified standard can understand the encoded bitstream. There are 

mainly two major working groups that standardize video codecs.  One is the VCEG 

(Video Coding Experts Group) led by ITU-T (International Telecommunications Union 

- Telecommunication Standardization Sector) and the other is the MPEG (Moving 

Pictures Experts Group) led by ISO/IEC - JTC 1 (International Organization for 

Standardization / International Electrotechnical Commission - Joint Technical 

Committee 1) [19]. 

VCEG is more focused on conventional (esp. low-delay) video coding goals (e.g. 

good compression and packet-loss/error resilience). The VCEG standardized (and 

maintain) the H.26x line of video coding standards. MPEG is larger and takes on more 

ambitious goals (e.g. “object oriented video”, “synthetic-natural hybrid coding”, and 

digital cinema). The MPEG standardized (and maintain) MPEG-x line of video coding 

standards. Sometimes these major organizations team up and create a standard (e.g. 

ISO, IEC and ITU teamed up for both MPEG-2, JPEG, H.264/AVC and HEVC) [29]. 

 History of video coding standards 

The first video coding standard was H.120 published by CCITT (Comité 

Consultatif International Téléphonique et Télégraphique) which was renamed to ITU-T 

in 1984. There were very few implementations with very low quality, but it then gave a 

good initiative to its successors like H.261. The first practical coding standard from 
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VCEG group was H.261 standardized in 1988 and from MPEG it was MPEG-1 

standardized in 1993. After these two standards, there are many successor individual 

standards and collaborative standards within (and in between) these groups. The 

timeline of these standards are shown in Fig. 2.6.  

 ITU/VCEG standards 

Video Coding Expert Group (VCEG) has been handling the responsibility of 

standardizing and maintaining the video compression formats, and corresponding 

standards. 

H.120: It is the first standard in digital video compression techniques [30] standardized 

in 1984 but like most firsts in many fields of study, is not matured enough and had poor 

quality and fewer implementations. It featured conditional replenishment, variable-

length coding, scalar quantization, and differential PCM. Although its encoder offered 

good spatial resolution, it had very poor temporal quality, and thus could not be of much 

practical use. 

H.261: Although H.120 preceded H.261 in late 1990, the latter is clearly the first video 

coding standard to be of practical use, in view of the conforming implementations, and 

the subsequent coding standards that emerged with H.261 as their base design [31]. 

H.261 is the first video coding standard that pioneered the concept of a basic processing 

unit, titled macroblock. H.261 only specifies the guidelines for decoding a video, the 

encoding process can employ any algorithm as long as the output can be decoded 

 

 

Fig. 2.6 Progression of ITU-T and MPEG works 
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according this standard. H.261 is published by ITU-T VCEG. The popular MPEG-1 

video coding standard was derived from H.261 and JPEG standards. 

H.262:  An enhancement of MPEG-1 (based on H.261 & JPEG) video coding standard, 

and jointly developed by VCEG and MPEG groups (process completed in late 1994), 

H.262/MPEG-2 offers support for interlaced video and is optimized for high bit rates 

above 3 Mbits/sec [32], [33]. H.262/MPEG-2 allows the tools to implement only a 

subset of the standard by defining various profiles and levels within the specification to 

accommodate diverse needs of the applications. 

H.263: H.263 was an evolutionary development based on the learnings from the 

previous video coding standards H261, MPEG-1, and MPEG-2 (standardized in late 

1995). It was originally intended for H324 communications (PSTN, video conferencing 

and video telephony), but found applicable even for H320 (ISDN based video 

conferencing), H323 (RTP/IP based video conferencing), SIP (IP based video 

conferencing) and RTSP (streaming media) solutions [34]. 

H.263V2 : H.263V2/H.263+ is the enhanced version of H.263 video coding standard 

that provides additional features as appendices to the original H.263 standard, thus 

retaining every aspect of the parent yet improving encoding efficiency and reducing 

data loss in transmission channels. 

H.264: H.264/MPEG-4 is often called "Advanced Video Coding" (AVC) standard, and 

is by far the most widely used one in the industry. It was collectively developed by a 

committee of experts from VCEG and MPEG groups, titled Joint Video Team (JVT). 

The first version of its draft is released in May 2003 [5]. H.264 is lossy, motion 

compensated, and block-oriented video compression standard that offers good quality 

and high compression ratio at low bit rates. H.264 offers several advancements in video 

compression techniques such as Scalable Video Coding (SVC), Multiview Video 

Coding (MVC), Entropy Coding Design including binary arithmetic coding (CABAC) 

and variable length coding (CAVLC), loss resilience features such as Network 

Abstraction Layer (NAL), Flexible Macroblock Ordering (FMO), Data Partitioning 

(DP), etc [6], [35]. 
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H.265: H.265 or High Efficiency Video Coding (HEVC) is a successor to the 

H.264/MPEG-4 AVC standard and was developed by a Joint Collaborative Team on 

Video Coding (JCT-VC), a collaboration effort by MPEG, and VCEG groups. Its first 

version of draft was completed and released in January 2013 [4]. H.265 takes advantage 

of the advancements in computational power of the hardware devices in recent times to 

achieve higher compression at lower bit rates without compromising much on quality, 

offering at least 50% improvement over H.264/MPEG-4 [2]. 

 ISO/MPEG Standards 

The Moving Picture Experts Group (MPEG) is a standards body setup by ISO and IEC 

to standardize the compression and transmission techniques for Digital Audio and 

Video. MPEG team actively collaborates with other such expert groups to formulate 

worldwide standards in digital video compression. The most notable outcomes of such 

collaboration are with the VCEG team that culminated in the specification of 

H.264/MPEG-4 AVC, and H.265/HEVC video coding standards. MPEG standards are 

segregated into several parts, each part describing a certain aspect of the whole 

specification. MPEG team has formulated the following digital video coding standards:  

MPEG-1 (1993): It specified the compression mechanism for moving pictures, and 

accompanying audio at bit rates lesser than 1.5 Mbits/sec [36] [37]. This specification 

also includes the MPEG-1 Audio Layer III (MP3) audio compression format. MPEG-1 

decimates images to meet the low bit rate requirement, and thus results in comparatively 

poor quality. MPEG-1 was primarily used to store videos in CD until MPEG-2 has 

arrived on stage. 

MPEG-3: MPEG-3 was intended for high definition television with features like 

scalable and multi-resolution compression but was found redundant, and was merged 

with MPEG-2 [15]. There is no MPEG-3 standard now. 

MPEG-4 (1998): MPEG-4 achieves higher compression ratios at lower bit rates without 

compromising on the quality, and advances in depicting computer graphics with three 

dimensional shapes and surface texture. MPEG-4 also supports intellectual property 

management and protection (IPMP). There were several parts included in MPEG-4, of 

which two are highly used – MPEG-4 part 2 and MPEG-4 part 10. The MPEG-4 part 10 
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is just another name for H.264/AVC Joint Video Team (JVT). The MPEG-4 part 2, also 

known as MPEG-4 visual is developed and maintained by MPEG [38]. 

MPEG-7 (2002): Multimedia Content Description Interface, a mechanism to allow 

additional information such as the composer, lyrics, author, publisher, and other such 

details along with the compressed content to facilitate easier lookup of such metadata, 

once the content is in hand. MPEG-7 is not another standard like MPEG-1 or MPEG-4 

but a mechanism to standardize sharing of such metadata along with the content 

compressed with any of the above standards [39]. 

 Other standards 

Apart from MPEG and VCEG based standards, there are many other video codec 

standards of which Microsoft’s VC-1 and Google VP9 based codecs are most widely 

used in both web and physical devices.  

VC-1: VC-1 is a proprietary video standard which was initially released by Microsoft in 

2006 as SMPTE video codec (Society of Motion Picture and Television Engineers) 

[40]. It is described as alternative to H.264/AVC. VC-1 supports both interlaced and 

progressive encoding. VC-1 is an attractive codec for video broadcasting industry 

because it supports direct interlaced video coding without converting the video first to 

progressive format. VC-1 is supported in windows media, Microsoft Silverlight 

framework, Blu-ray discs, Slingbox [41]. 

VP9: VP9 is an open standard developed by Google with the aim to reduce bitrate by 

50% compared to its predecessor VP-8 [42]. Web browsers like Firefox, Opera, and 

Chrome, uses VP9 with HTML5 video tag. VP9 is being used in smart TVs with 4k 

resolution and in some YouTube web streaming videos with 4k resolution. 

AVS: Audio Video Standard (AVS) is a compression standard for digital audio and 

digital video, which was meant to compete with AAC audio and H.264/MPEG-4 AVC 

video to potentially replace MP3 audio and MPEG-2 video. The audio and video files 

have an .avs extension as a container format. From the year 2013, its working group set 

a new target to compete with H.265/HEVC. Some of the open-source implementations 

of an AVS video decoder were found in the OpenAVS project and in the libavcodec 

library [29]. 
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Fig. 2.7 Illustration of Macroblock and its sub-block sizes in H.264/AVC 

 

2.6 H.264/AVC CODING STRUCTURE 

H.264/AVC is the most widely used standard prior to the latest video coding 

standard HEVC. H.264/AVC is developed by JVT (Joint Video Team) which is a 

collaboration team formed by ISO/IEC MPEG and ITU-T VCEG [6]. In H.264/AVC 

each frame is divided into 16x16 size coding blocks termed as macroblocks. Each 

macroblock can be again subdivided into blocks of size 16x8, 8x16, 8x8, 8x4, 4x8 and 

4x4 as shown in Fig. 2.7. In H.264/AVC, new features like multiple reference frames 

and variable block size motion estimation were introduced. With multiple reference 

frames, more than one reference frame is used for estimating the motion vector. In prior 

standards like MPEG-2 only one reference frame is used for ME. H.264/AVC allows up 

to 16 reference frames (or 32 reference fields for interlaced scanning). With variable 

block size motion estimation, the motion estimation is performed on all block sizes of 

coding block from 4x4 to 16x16 as shown in Fig. 2.7. 

2.7 HEVC CODING STRUCTURE 

In HEVC, the block size for coding is increased to 64x64, in-order to increase the 

coding efficiency at the cost of increase in coding complexity. The structure of HEVC 

block coding hierarchy is generalized into quadtree-based coding tree units (CTUs) or 

coding units (CUs). The maximum size of each CTU is 64x64 and each CTU is further 

sub-divided recursively into square blocks down to 8x8 sizes [2]. Each CTU is a 

generalized structure of block coding hierarchy, where it is assigned quadtree-based 

prediction units (PUs) of different types, either intra or inter or skip. Each PU is further 

assigned into quadtree-based Transform Units (TUs) with a specific transform size. The 

representation of quadtree-based CTU with their PU types is shown in Fig. 2.8.  
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2.8 REFERENCE SOFTWARES FOR VIDEO CODING STANDARDS 

To verify and test the performance of various encoding and decoding algorithms for the 

specified standard, reference software is usually implemented for some of the standards 

including H2.64/AVC and HEVC. The reference software is normative and any decoder 

implementation should be able to decode the bitstream encoded using reference 

software encoder. The reference software also includes a decoder software which is 

used to decode the bitstream encoded using the complying standard encoder. One of the 

main goals of the reference software is to provide a platform to conduct experiments in 

order to determine which coding tools provide the desired coding performance. 

 H.264/AVC Reference Software JM 

A reference software was implemented for H.264/AVC by JVT of ISO/IEC MPEG and 

ITU-T VCEG that complies with the standard. The software is technically termed as 

Joint Model (JM), which was initially released in August 2004 [43] and the latest 

version is JM 18.0 released in March 2011. JM consists of both encoder and decoder 

softwares. JM software is supported in MS Visual studio .NET platform (for Windows 

operating system) and gcc (GNU Compiler Collection) platform (for UNIX and 

Windows operating system) [44].  

 HEVC Reference Software HM 

Like JM for H.264/AVC, reference software for HEVC was implemented by JCT-VC 

regrouping experts from ITU-T SG 16 and ISO/IEC SC29 WG11, known as HM 

(HEVC Model) [7]. The initial version of HM (HM 1.0) was released in 2010 and the 

 
Fig. 2.8 Quadtree coding structure in HEVC 
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current version of HM is HM 16.2 [8]. Like JM, HM also consist of both encoder 

software and decoder software. The supported environments for HM are MS Visual 

Studio 8, MS Visual Studio 9, Xcode and Linux GCC compiler. 

 Various Configurations in HM 

There are eight default configurations provided with HM reference software out of 

which four configurations belong to 10-bit internal bit depth (bit depth for luma and 

chroma both set to 10 bit) and the remaining four belong to 8-bit internal bit depth. The 

internal bit depth here specifies the number of bits used to represent a pixel sample with 

4:2:0 chroma sub-sampling. The four modes provided are intra-mode, low-delay mode, 

low-delay P mode and random access mode. Each mode had two types of configurations 

– one with 8-bit internal bit depth and the other with 10-bit internal bit depth making a 

total of eight configurations. The 8-bit mode is technically termed as main mode and 

10-bit mode is termed as High Efficiency (HE or HE10 or Main10) mode. In each 

mode, the first frame in a GOP sequence is encoded as I-frame or IDR (Instantaneous 

Decoder Refresh) picture. In IDR picture all the slices are encoded as I-slices. TABLE 

2.3 lists out the summary of various configurations available for HM encoder [45, 46]. 

       Intra-only Configuration: 

In intra-mode, all the frames are encoded as IDR pictures (encoded using intra-

prediction) only. There are no temporal reference pictures and there is no motion 

compensated coding. The quantization parameter (QP) does not change between and 

within each picture. This mode has lowest coding efficiency and coding complexity 

compared to other modes. The graphical representation of this configuration is shown in 

TABLE 2.3 VARIOUS CONFIGURATIONS FOR HEVC HM ENCODER 

Configuration 

Internal Bit Depth 

Main 

High 

Efficiency 

(HE) 

Intra (I) 8 10 

Low Delay-B (LB) 8 10 

Low Delay-P (LP) 8 10 

Random Access (RA) 8 10 
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Fig. 2.9. The number associated for each picture represents the encoding order. The QPI 

represents QP for IDR picture which is same for all pictures. 

     Low-delay Configurations: 

In low-delay configuration, only the first frame is encoded as IDR picture. There 

are two low-delay configurations that are supported by HEVC. One is low-delay 

configuration (or low-delay B configuration) and the other is low-delay-P configuration, 

which is treated as optional configuration. The difference between low-delay 

configuration and low-delay P configuration is, in low-delay P mode all the frames in a 

GOP are taken as P-pictures only while in low-delay mode all the frames in a GOP are 

taken as Generalized P and B pictures (GPB) only. In both these configurations the first 

frame is encoded as IDR picture. A graphical representation for low-delay B 

configuration is shown in Fig. 2.10. The number shown for each picture represents 

encoding order. The QP for each inter coded picture is derived by adding an offset to 

 

Fig. 2.9 Illustration of encoding order of pictures in HEVC Intra-only configuration 

 

Fig. 2.10 Illustration of encoding order of pictures in HEVC low-delay B 

configuration 
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the QP of intra-coded picture. The QP offset depends on temporal layer of inter coded 

picture.  

     Random Access Configuration: 

In random access configuration, a hierarchical B-structure is used for encoding as 

shown in Fig. 2.11. As shown in the figure the frames are divided into different layers – 

L1 to L4. The first picture is encoded as IDR picture. The second picture in the 

following first pictures is encoded as GPB picture, that can refer (for inter prediction) to 

I-frames or any other GPB pictures.  The pictures in the rest of the layers are B-pictures. 

The pictures in the last layer are non-referenced B-pictures (that are not used as 

reference frames for any other frames). Depending on the temporal layer, the offset of 

QP is derived and added to the QP of IDR picture, to get the final QP for the 

corresponding inter picture.  

 Reference Test Sequences for HM 

For testing the HM encoder software, standard test sequences were recommended by 

JCT-VC. These test-sequences are available in [47].  The test sequences are grouped 

into classes from A through F, depending on their frame size or format. TABLE 2.4 

shows the names of these test sequences with their frame size, frame count, frame rate 

and supported configurations in the subsequent columns of the table [45]. All the 

 

Fig. 2.11 Illustration of picture encoding order in HEVC Random Access 

configuration 



FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION 

 

 

 
31 

 

sequences are not recommended for all modes – class-A sequences do no support low-

delay modes and class-E sequences are not recommended for random access modes.  

2.9 BLOCK DIAGRAM OF HEVC ENCODER 

A brief outlook of HEVC encoder with individual blocks is shown in Fig. 2.12 [48], 

[49]. Each frame is first split into Coding Tree Units (CTUs) conforming HEVC 

 

TABLE 2.4: SUMMARY OF TEST SEQUENCES RECOMMENDED FOR HEVC 

HM ENCODER 

Class Sequence name Frame size 
Frame 

count 

Frame 

rate 

Bit 

depth 

Intra 

mode 

Random 

Access 

mode 

Low-delay 

mode 

A 

Traffic 

4k (2560x 

1600) 

150 30fps 8 Main/HE10 Main/HE10 NA 

PeopleOnStreet 150 30fps 8 Main/HE10 Main/HE10 NA 

Nebuta 300 60fps 10 Main/HE10 Main/HE10 NA 

SteamLocomotive 300 60fps 10 Main/HE10 Main/HE10 NA 

B 

Kimono 

1080p 

(1920x 

1080) 

240 24fps 8 Main/HE10 Main/HE10 Main/HE10 

ParkScene 240 24fps 8 Main/HE10 Main/HE10 Main/HE10 

Cactus 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

BQTerrace 600 60fps 8 Main/HE10 Main/HE10 Main/HE10 

BasketballDrive 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

C 

RaceHorses 

WVGA 

(832x480) 

300 30fps 8 Main/HE10 Main/HE10 Main/HE10 

BQMall 600 60fps 8 Main/HE10 Main/HE10 Main/HE10 

PartyScene 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

BasketballDrill 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

D 

RaceHorses 

WQVGA 

(416x240) 

300 30fps 8 Main/HE10 Main/HE10 Main/HE10 

BQSquare 600 60fps 8 Main/HE10 Main/HE10 Main/HE10 

BlowingBubbles 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

BasketballPass 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

E 

FourPeople 
720p 

(1280x720)

600 60fps 8 Main/HE10 NA Main/HE10 

Johnny 600 60fps 8 Main/HE10 NA Main/HE10 

KristenAndSara 600 60fps 8 Main/HE10 NA Main/HE10 

F 

BaskeballDrillText 832x480 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

ChinaSpeed 1024x768 500 30fps 8 Main/HE10 Main/HE10 Main/HE10 

SlideEditing 1280x720 300 30fps 8 Main/HE10 Main/HE10 Main/HE10 

SlideShow 1280x720 500 20fps 8 Main/HE10 Main/HE10 Main/HE10 
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standard. Each CTU is converted into motion vectors (or intra prediction information) 

and predicted blocks. Then the predicted information is subtracted from original frame 

data to get residual information. The residual information is transformed and quantized. 

The quantized information along with prediction information is entropy encoded using 

arithmetic encoder CABAC (Context Adaptive Binary Arithmetic Coder).  

The encoder also includes a decoder processing loop (shown in blue color) to 

ensure that it will generate identical prediction information for the subsequent processed 

data. Hence the quantized transform coefficients are inverse-scaled and then inverse-

transformed to generate a decoded approximation of residual data. This residual will 

then be added to the predicted information to get a decoded approximation of original 

frame data. The block-wise processing and quantization process usually introduces 

some artifacts in the reconstructed frame and hence it is fed to loop filters – deblocking 

filter, Sample Adaptive Offset (SAO) filter and Adaptive Loop Filters (ALF) to smooth 

these artifacts. The output of these filters are passed through a memory buffer called 

Decoded Picture Buffer (DPB) which stores the decoded frames which are later used for 

prediction of subsequent pictures.  

 

Fig. 2.12 Block Diagram of HEVC Encoder 
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Intra-Prediction Unit: The first picture in each GOP sequence is encoded using the 

intra prediction unit, apart from the first CTU in each slice of other frames. If the 

encoding mode is of intra type, all blocks are encoded in intra prediction mode. HEVC 

supports 35 luma directional modes (including DC intra prediction and planar prediction 

modes) compared to H.264/AVC with 8 directional modes and hence the complexity of 

intra-prediction is increased while achieving a huge intra-coding efficiency. The intra-

prediction modes for HEVC and H.264/AVC are shown in Fig. 2.13. In planar 

prediction mode, the predicted block is generated by averaging the horizontal and 

vertical interpolated blocks [50]. The intra-prediction can be performed at different 

block sizes ranging from 4x4 to 64x64.  

Apart from luma intra-prediction, there are also chroma intra-prediction modes. 

In HEVC, the chroma intra-prediction modes are increased to six compared to four 

intra-prediction modes in H.264/AVC. The various chroma intra-prediction modes in 

HEVC are direct mode (DM), linear mode (LM), vertical (mode 0), horizontal (mode 

1), DC (mode 2), and planar (mode 3). The modes DM and LM are used to exploit 

correlation between luma and chroma components [51]. The DM and LM modes are 

frequently used in intra-coding of chroma component due to existing correlation 

between luma and chroma components of an image [52]. 

Motion Estimation and Motion Compensation: The motion estimation unit together 

with motion compensation unit performs inter-picture prediction by converting the 

frames into motion vectors and motion predicted blocks. The motion estimation unit 

estimates the motion vectors of each block in a frame (except in intra frames) while the 

motion compensation unit uses these motion vectors and generates motion compensated 

(predicted) frames. These motion compensated frames are then subtracted from the 

original video frames to get the residual frames and processed further. Typically, the 

motion estimation block uses block matching algorithms to find the motion vector of 

each block in a frame. The motion compensation unit performs interpolation (using 

functions like weighted-prediction) on reference picture to form motion compensated 

frame for every current frame. 

The ME is performed on various block sizes called Variable Block Size ME 

(VBSME). In H.264/AVC, there are 7 modes (4x4 to 16x16) for inter-prediction with an 

output of 41 MVs (in maximum) for each macroblock. Since the block size in HEVC is 
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increased until 64x64, there are 13 modes for inter-prediction. The details of various 

modes in HEVC are explained in section 2.10.2. Further, the ME is performed in sub-

pixel accuracy (details explained section 2.10.5) using interpolation filters. Like in 

H.264/AVC, the HEVC performs ME and MC up to quarter pixel accuracy, but with 

improved interpolation filters [53], [54]. 

Transform: The transform unit transforms the residual information using integer 

transforms. In HEVC, the transform size is increased until 32x32 (compared to 8x8 in 

H.264/AVC). Just like DCT (Discrete Cosine Transform), the integer basis functions are 

defined and can be applied on various transform block sizes ranging from 4x4 to 32x32 

pixels (4x4, 8x8, 16x16 and 32x32) [55]. As mentioned above, the TU is the basic unit 

for transforms and quantization in HEVC with its tree structure having root at CU level. 

The size and shape of TU depends on PU size. Further, HEVC supports rectangular 

transforms (for non-square PUs) with row and column transforms having different sizes. 

For 4x4 luma intra-prediction modes, integer transform derived from Discrete Sine 

Transform (DST) is alternatively used in HEVC. The DST is used (for some 4x4 intra-

mode sample) because they fit better for residual samples near boundaries (which tend 

be of large in amplitude for pixels away from boundaries) [56]. The DST contribute up 

to 1% reduction in bitrate for intra prediction data with almost same computationally 

complex compared to DCT - based integer transforms [2]. 

Scaling and Quantization: The transformed coefficients of the residual data are scaled 

and passed through quantizer which make the coefficients to select from a limited set of 

 

Fig. 2.13 Comparison of various luma intra-prediction modes in (a) HEVC (b) H.264/AVC 
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discrete finite values. This is one of the lossy compression technique, where the number 

of transform coefficients are reduced and any insignificant coefficients are reduced to 

zero. Hence the quantizer is considered as one of the primary sources of compression in 

a video encoder [57]. HEVC supports quantization scaling matrices for different 

transform block sizes. 

To control a tradeoff between compression ratio and video quality, a parameter 

called Quantization Parameter (QP) is used and is set before the HEVC encoder starts 

encoding. Larger QP value increases step size and increases the quantization step size 

and increases the compression ratio but decrease the output video quality. On the other 

hand, smaller QP can be set and increase the output video quality but it increases the 

encoded video stream bitrate (or reduces the compression ratio). Hence the QP is set 

depending on the bandwidth constraints and video quality requirements. Like in 

H.264/AVC the QP values can be set ranging from 0 to 51 and the mapping of QP 

values to step size is logarithmic. Hence for every increment in QP by 6 almost doubles 

the quantization step size.  

Inverse Transform and Rescaling: As explained above, the quantized coefficients are 

rescaled (or inverse quantized) and inverse transformed to get a decoded approximation 

of residual data. Each quantized coefficient is multiplied by an integer value to restore it 

to its original scale. The inverse transform apply inverse DCT operation which is a 

weighted coefficient matrix applied to a rescaled information. The reconstruct residual 

data will be similar but not identical to the original residual data, due to the loss of 

information in forward quantization process. A larger quantization step value (due to 

larger QP) will produce a larger difference between original and reconstructed data. 

Loop Filters: As explained above, the loop filters are applied after the picture is 

reconstructed and before they are used for motion compensated prediction. Apart from 

deblocking filter (which is also used in H.264/AVC), HEVC includes one in-loop 

processing filters - SAO filter. These in-loop filters are used to compensate the 

distortion introduced by the encoding steps – prediction, transformation and mostly by 

quantization. The more these in-loop filters are used the better is the quality of the 

reconstructed frame which are used as reference pictures for motion compensated 

prediction unit.  
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The deblocking filters in HEVC is similar to that of in H.264/AVC. The blocking 

artifacts in HEVC is due to several kinds of block boundaries such s CUs, PUs and TUs. 

For each block boundary and based on the artifact introduced, the encoder applies a 

decision to turn the filter on or off and to apply a weak filter or strong filter [48]. The 

SAO filter classifies the reconstructed pixels into either intensity or edge properties. It 

then adds offset value - either Band Offset (BO) or Edge Offset (EO) to these classified 

pixels to reduce the distortion [58], [59]. 

Entropy Coding Unit: The entropy encoder encodes the data by exploiting any 

statistical redundant data if exist. The entropy encoder is applied to quantized 

transformed coefficient data, MV data, and loop-filter coefficients data and to various 

high level syntax elements of HEVC. In H.264/AVC, only CAVLC is used in base 

profile and CABAC is optionally used in main and high profiles. In HEVC CABAC is 

used as it is more efficient than CAVLC due to its arithmetic coding engine and more 

sophisticated context modeling [60].  The CABAC increases the coding efficiency but 

at the cost of increase in coding complexity. Hence, to increase the throughput in HEVC 

an alternative mode called High Throughput Binarization (HTB) mode is used which 

utilizes the best features of both CAVLC and CABAC [61]. The first mode which uses 

only CABAC is termed as High Efficiency Binarization (HEB) mode. In HTB, the 

quantized transformed residual coefficients are encoded using CAVLC while the rest of 

the data like syntax elements, MV data, filter coefficients etc. are encoded using 

CABAC. 

2.10 MOTION ESTIMATION FEATURES 

  Motion Estimation Objective 

As explained in Chapter 1, the objective of the ME is to find the best matched block in 

past (or buffered future frame) frame’s search window for each block of current frame. 

First, the current block is defined after the frame is divided into blocks of size specified 

by the standard (maximum of 64x64 pixels in HEVC). Then the reference frame is 

defined using neighboring frames. The reference frame may also be a future frame, 

where the current frame is virtually a current frame and in reality a buffered past frame. 

The next stage is to identify the region of interest where search has to be performed.  

This region is called Search Window (SW). If the ME performs search on all the blocks 
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in the reference frame then the search complexity will be very high. Hence the search 

window is defined around the best predicted search point.  

After defining the SW, the search has to be done, based on the ME algorithm. This 

is shown in Fig. 1.4. Within the search window, if the search operation is done on all the 

search points, then it is called Full Search (FS) algorithm. The full search gives the best 

compression efficiency with best output video quality at the cost of highest coding 

complexity. To reduce the search complexity, most of the blocks are skipped which are 

less likely to be the final MV. These algorithms are called fast search algorithms. 

  Variable Block Size Motion Estimation 

To achieve higher compression efficiency, the motion estimation is performed in many 

dimensions, one of them being the variation in block size. This is done by splitting 

current block into smaller sized sub-blocks and performing ME for each sub-block. This 

feature is called Variable Block Size ME (VBSME).  Hence the output of ME operation 

for one current block will be a MV for each of the sub-blocks. In the motion 

compensation stage, the motion compensated frame is generated by considering all the 

modes (block sizes) of the current block, and choosing the best mode.  

As explained in Section 2.6, Fig. 2.7 shows the variable block sizes in H.264. As 

seen from the figure, the maximum block size in H.264 is 16x16. Each block can be 

partitioned into seven modes which are 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4. The 

number of blocks in modes 16x8, 8x16, 8x8 is 2, 2, and 4 respectively. Each 8x8 block 

is again subdivided in two 8x4, two 4x8 and four 4x4 sized blocks. For each 16x16 

block (also called macroblock in H.264), there are 41 sub-blocks (including 16x16 

mode). The search operation of ME has to be performed for each of all these 41 blocks 

giving an output of 41 MVs. Thus the complexity is increased dramatically when 

VBSME feature is added. Due to VBSME, the compression efficiency will be increased 

as the encoder can select the best mode that gives the lowest bitrate. Hence at the cost of 

increase in computational complexity, the compression efficiency is increased. 

Furthermore, this complexity can also be reduced using fast mode-decision algorithms 

[62]- [63]. The fast mode-decision algorithm skips some modes for ME operation that 

are unlikely to be the best mode. 



FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION 

 

 

 
38 

 

          The VBSME feature in HEVC is much more complex. In HEVC, the maximum 

block size is 64x64. Each current frame is divided into blocks of Coding Tree Units 

(CTUs) or Coding Units (CUs) of maximum size 64x64. As explained in section 2.7 - 

Fig. 2.8, each CTU is sub-divided into Prediction Units (PUs) for inter-prediction. 

There are three variables that a PU can have - partition depth (d), partition size (s) and 

partition index (idx). The partition depth takes values from 0 to 3 corresponding to each 

CU size as shown in TABLE 2.5. Each CTU has different PU partition sizes with values 

2Nx2N, 2NxN, Nx2N, NxN. The value N can have values 32, 16, 8 and 4 which 

corresponds to half of the CTU. For example, the CTU with partition size 32x32 (N=16) 

can have PU sizes 32x32, 32x16, 16x32 and 16x16. These modes are called symmetric 

partition modes. Apart from these, HEVC supports motion estimation for Asymmetric 

Partition Modes (AMPs) with PU sizes 3N/2 x 2N, N/2 x 2N, 2N x 3N/2 and 2N x N/2. 

Hence the CU size 32x32 can also have PU sizes 32x8, 32x24, 8x32 and 24x32.  

Further each PU sub-partition is denominated by partition indices starting from 

0. The various PU sizes that each CU can have are shown in TABLE 2.5, 3rd column. 

This is also illustrated in Fig. 2.14. The figure also indicates the partition index values 

for each PU sub-partition. The total number of MVs that each 64x64 PU (including its 

sub-partitions) can have are shown in TABLE 2.5 last column. For 8x8 CU size, the PU 

modes 8x6, 8x2, 6x8, 2x8 and 4x4 are usually not used in HEVC reference software [7], 

as the additional computational cost that has to be spent on encoder is huge even after 

considering their improved RD performance. Hence, the total number of variable block 

 

Fig. 2.14 Sub-partition sizes of each PU for variable block size ME in HEVC 
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size MVs that are to be calculated in HEVC are 593 (as shown in the TABLE 2.5), 

which is huge in number compared to 41 MVs in H.264/AVC. 

 Multiple Reference Frames for Motion Estimation 

The reference frame used for motion estimation can be more than one. Each PU (or 

macroblock in H.264/AVC) searches for MV in more than one previous frame, as 

illustrated in Fig. 2.15. As a result, the PU can choose the best matched block from 

more than one reference frame (in its corresponding SW) and hence the final 

compression efficiency can be improved but at the cost of increase in computational 

complexity.  

          In H.264/AVC, the maximum number of reference frames allowed is 16 [44] 

while in the latest standard HEVC, it is 4 [7]. Different PUs in the same current frame 

can have MV from different reference frames. Furthermore, different partition sizes in 

the same PU can have MV from different reference frames. To reduce the complexity, 

some of the reference frames are skipped using heuristic approaches. These are called 

reference frame skip algorithms [64].   

TABLE 2.5: LIST OF VARIOUS PU PARTITIONS AND ITS SUB-PARTIONS 

IN A 64X64 CTU 

CU 

depth (d) 

CU 

Size 

PU and its Sub-block 

sizes 

Number of PU 

partitions at each CU 

size 

Total MVs for a 64x64 PU 

0 64x64 

64x64, 64x16, 64x32, 

64x24, 16x64, 32x64, 

48x64, 32x32 

32x32 – 4 partitions, 

rest of the sizes – 2 

partitions each 

64x64 – 1 MV, 32x32 – 4 MVs, 

rest of the sizes – 2 MVs each 

1 32x32 

32x8, 32x16, 32x24, 

8x32, 16x32, 24x32, 

16x16 

16x16 – 4 partitions, 

rest of the sizes – 2 

partitions each 

16x16 – 16 MVs, 

rest of the sizes – 8 MVs each 

2 16x16 
16x4, 16x8, 16x12, 

4x16, 8x16, 12x16, 8x8 

8x8 – 4 partitions, 

rest of the sizes – 2 

partitions each 

8x8 – 64 MVs, 

rest of the sizes – 32 MVs each 

3 8x8 8x4, 4x8 
8x4 – 2 partitions, 

4x8 – 2 partitions. 

8x4 – 128 MVs, 

4x8 – 128 MVs. 

Total MVs 593 
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During decoding process, the reference frames are stored in temporary reference 

frame buffers. The usage of more reference frames demands increase in memory buffer 

size and its usage. Hence apart from increase in reference frame buffer size, the memory 

bandwidth also increases. Furthermore, due to increase in number of reference frames 

there is also more possibility of same reference memory locations being accesses 

multiple times. This problem is known as locality of reference which impacts speed of 

decoder. Efficient data reuse algorithms need to be designed as the number of reference 

frames increase. 

  Bi-directional Motion Estimation 

As explained in section 2.2.2, the motion estimation and prediction can be done using 

both past and/or future reference frames. Prediction using past reference frames is called 

forward prediction, while the one using future reference frames is called backward 

prediction. This is illustrated in Fig. 2.15. Both the forward or backward prediction is 

done by storing the reference frames (past or future frames) in reference frame buffers. 

Using bi-directional ME, the compression efficiency can be increased at the cost of 

increase in complexity.  

Technically the list of reference frames corresponding to forward prediction is 

called forward list, and corresponding to backward prediction is called backward list. 

Each frame (and block) that is being encoded is categorized as either of type I, P or B, 

which stands for Intra-type, Prediction type (forwarded only) or Bi-directional type 

(both forward and backward prediction). In an I-frame, all the coding blocks are only 

intra coded. A P-frame can have coding blocks of type P apart from I-type. A B-frame 

 

Fig. 2.15 Illustration or multiple reference frames and bi-directional ME 
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can have all the types of coding blocks – I, P, and B type. A P-type coding block uses 

reference frames only from the forward list. A B-type coding block combines the 

reference frame indices from forward and backward list (technically called combined 

list) and uses this list for ME operation [7]. 

  Fractional Motion Estimation 

As explained in section 2.9, the motion estimation can be carried with sub-pixel 

accuracy. Just like in H.264/AVC, the accuracy of motion estimation in HEVC is 

carried out until ¼ pixel for luma samples. To obtain the subpixel samples, interpolation 

filters are used. These interpolated samples are later used to estimate the MVs using full 

search or fast search algorithms. In HEVC, the interpolation is usually done using 8-tap 

digital filter for half-pixel luma samples and 7-tap filters for quarter-pixel luma samples 

(horizontally and vertically) [53], [48].  

An illustration of half-pixel and quarter-pixel samples around integer pixels is 

shown in Fig. 2.16. The letters with uppercase (A) in the figure shows integer sample 

locations, whereas the lower case letters represent fractional sample locations that will 

be generated using interpolation. The filter coefficients that are used in half-pixel and 

quarter-pixel interpolation for luma samples are shown in TABLE 2.6 [48]. 

  Rate Distortion Optimized Motion Estimation 

The cost function that is associated in the search process of motion estimation involves 

both distortion metric and the bitrate of the Motion Vector Difference (MVD). This is 

shown in (2.6). Hence, the final encoded output is optimized with video quality loss and 

the amount of data bits required by the final video (bitrate). Further it is easy to control 

the ME process if the encoding process is of constant bitrate type or constant quality 

type. 

 � ! = � + �. " 2.6 

As shown in (2.6), the Rate Distortion Optimization (RDO) works by including 

Lagrange multiplier (λ) in the cost function. For a given target bitrate and QP 

(Quantization Parameter), the λ can be calculated using empirical relationship shown 

(2.7), where λMODE is the Lagrange multiplier when the distortion function is the SSD 

(Sum of Squared Difference).  
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          If the distortion function used is SAD then the Lagrange multiplier can be 

denoted by λMotion and can be calculated using empirical relationship shown in (2.8). The 

value ‘α’ in (2.7) is equal to 1 for a non-referenced hierarchical B-picture. But for a 

referenced B-picture, the value depends on number of referenced B pictures 

(num_of_B_Pictures) used for that picture and can be calculated using (2.9), where 

clip3(a,b,v) function clips the value ‘v’ between ‘a’ and ‘b’. The value ‘Wk’ in (2.7) is a 

weighting factor and depends on QP offset hierarchy level of the current picture within 

a GOP. Various values of ‘Wk’ with its corresponding QP offset, hierarchical level and 

slice type is shown in TABLE 2.7 [46].  

 � �-M = α A�X A 0.85 A 2[\]^_`  2.7

 � ����6 = a� �-M 2.8

 α = b1.0 − clip3�0.0, 0.5,0.05 A SfU_:R_g_+�EBfCDh�, R:C	CDRDCDSEDF	i�EBfCD1.0, R:C	S:S − CDRDCDSEDF	i�EBfCD 2.9

 

Fig. 2.16 Illustration of luma fractional interpolated samples around integer samples. 

TABLE 2.6 SUB-PIXEL INTERPOLATION FILTER COEFFICIENTS IN HEVC 

FOR LUMA SAMPLES 

Index i -3 -2 -1 0 1 2 3 4 

¼ position -1 4 -11 40 40 -11 4 1 

½ position -1 4 -10 58 17 -5 1 0 

¾ position 1 -5 17 58 -10 4 -1 0 
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  Distortion Metrics for Motion Estimation 

There are many distortion functions that can be used in the cost function shown in (2.6) 

like SAD (Sum of Absolute Difference), SSD (Sum of Squared Difference), SATD 

(Sum of Transformed Difference), MSE (Mean Squared Error) etc. The distortion 

functions trade-off between search accuracy and complexity. The most commonly used 

functions are SAD and SSD. For a given current and reference blocks of pixels with 

equal size MxN, the SAD and SSD can be calculated using (2.10) and (2.11), where ‘C’ 

and ‘R’ are current and reference pixel blocks respectively, (x, y) are MV coordinates of 

reference block. 

 

 

 �#���, �� = $ $|&��, �� − "�� + �, � + ��|(k*
�)4

 k*
�)4  2.10 

 �����, �� = $ $�&��, �� − "�� + �, � + ��	7(k*
�)4

 k*
�)4  2.11 

 

TABLE 2.7: DERIVATION OF ‘WK’ VALUES USED FOR CALCULATING λ 

Number 

of 

referenced 

Pictures, 

k 

QP offset 

Hierarchical 

Level  

Slice 

type 
Referenced kW  

0 0 I - 0.57 

1 0 GPB 1 
RA: 0.442 

LD: 0.578 

2 1, 2 
B or 

GPB 
1 

RA: 0.3536 x Clip3( 2.0, 4.0, (QP-

12)/6.0 ) 

LD: 0.4624 x Clip3( 2.0, 4.0, (QP-

12)/6.0 ) 

4 3 B 0 RA: 0.68 * Clip3( 2.0, 4.0, (QP-12)/6.0 ) 
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The SSD metric has high prediction accuracy but has high computational complexity. 

For a given MxN current and reference blocks of pixels, the SAD has 3MN operations 

(subtract, absolute and add) whereas SSD requires MN additions and MN 

multiplications. Since multiplications require huge complexity over subtract and 

absolute operations, SAD is more often used than SSD. 
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3 MOTION ESTIMATION ALGORITHMS AND THEIR 

VLSI ARCHITECTURES 

 INTRODUCTION 

As explained in Chapter 2, motion estimation is the most time consuming task in a 

video encoder. The main objective of the motion estimation is to find the optimized 

motion vector for each of the current encoding block. The brute way to do this is to 

search each point in the entire search window and find the motion vector of the block 

that gives a global minimum error. This is called Full-Search method. Full search 

method is very time consuming, however it gives the best video quality and the lowest 

bitrate (highest compression ratio). Instead of searching all the blocks in the search 

window, the motion estimation algorithms can be designed to choose a certain fixed or 

varying pattern of blocks which gives the closest matching block, or sometimes the best 

block. As mentioned earlier, these types of methods are called fast search methods. The 

fast search methods are usually very fast compared to full search, with only a slight 

reduction in encoded video quality (PSNR) and slight increase of bitrate.  

The ME problem explained so far is a block based technique. But there are many 

other types of ME methods (or algorithms) which are used in various applications apart 

from video compression. Various types of ME methods and their classification are 

explained in the following section. 

 CLASSIFICATION OF MOTION ESTIMATION ALGORITHMS 

There are many ways to classify ME algorithms. Broadly classifying, they can 

be categorized into two types - direct methods and indirect methods. In direct methods, 

the MVs are estimated directly from measurable image quantities at each pixel in the 

image (such as image brightness, brightness based cross correlation) [65]. In indirect 

methods (also called feature-based methods), distinct features (based on corners of the 

image, geometry of the objects such as epi-polar and focal geometry, photometric 

invariance of the image) from each image are extracted separately and then 

reconstructed and examined for their resemblances to find the motion and shape of 

objects [66]. Indirect methods typically match correspondence by using a statistical 

function applied over a local or global area in the image. In summary, feature-based 
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methods minimize the error surface based on the distances between some corresponding 

features while the direct methods minimize an error measurement based on direct image 

information from all pixels in the image. 

Direct methods can be further classified into two types – time domain methods 

and frequency domain methods [67]. Frequency domain techniques are based on 

relationship between transformed coefficients of shifted images, and they are not widely 

used for image sequence coding. In these methods, the motion estimation is done by 

taking the transform of the block in frequency domain. Some of the methods in 

frequency domain are phase correlation using DFT, matching in DCT and wavelet 

domain. Time domain methods match the correspondences in the spatial domain of two 

different frames of a video. Time domain methods can be again classified into two types 

– pixel based methods and block based methods. 

The pixels based methods (also called optical flow methods) determine MVs for 

each pixel in the image. They are designed with an assumption that the brightness or 

intensity of a pixel remains constant when they are shifted. They also add additional 

constraints like smoothness for the displaced motion vectors to make the algorithms 

interactive. Optical flow methods are used in many applications like object detection 

and tracking, image dominant plane extraction, movement detection and robot 

navigation. The optical flow methods require huge computation time which make this 

impractical for video compression applications. Hence, an alternative approach for 

video compression are the block based methods. In block based methods, the entire 

frame is divided into non-overlapping blocks (of sizes such 64x64, 16x16, 8x8) and for 

each block the optimal MV (MV of block which has least distortion) is searched in the 

reference frame. Although this is done with an assumption that the entire block 

undergoes a translational motion, it is practically valid except for introduction of 

blocking artefacts, which can be removed through de-blocking filters [16]. Because of 

its low complexity in implementation (compared to optical flow methods), block based 

methods are used in most of the video coding standards including MPEG-2, 

H.264/AVC and the latest standard, HEVC. 

Further, there are two approaches in estimating the MVs using block based 

methods. The first type is full search and the others are fast ME methods (or algorithms) 
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as explained in Section 3.1. The fast search algorithms can be of many types. Broadly 

classifying, they can be categorized into two types: basic and hybrid algorithms. The 

basic algorithms are based on a single idea or concept. The hybrid algorithms combine 

two or more basic algorithms with a mixture of concepts. Some of the basic and hybrid 

fast ME algorithms are explained in Section 3.4 and Section 3.6, respectively. 

 THE FULL SEARCH ALGORITHM 

The full search method searches every possible location in the entire search window. As 

a result the algorithm finds the best matching block for every block in all the frames of 

video and gives the highest PSNR. But the computational time is very high. Let R be 

the search range set for the ME algorithm. Then the maximum possible number of 

search points for the SW are (2R+1)2. Let WCB x HCB be the width and height of the 

current block and let Wf x Hf be the frame width and height. Then there will be NCB 

coding blocks for each frame that can be calculated using (3.1). Let Np be the number of 

sub-partitions for each current block CTU. Let Nf be the number of reference frames for 

each block that the ME has to be performed. Then the total number of search points per 

CTU NSP-CTU can be calculated using (3.2).  

 ,l. = �m A nm�l. A nl. (3.1)

 ,opklqr = ,m A ,s A,l. A �2" + 1�7 (3.2)

For example, in H.264/AVC, the default maximum coding block size 16x16, with 

seven variable block size modes varying from 16x16 to 4x4 (one 16x16, two 16x8, two 

8x16, four 8x8, eight 8x4, eight 4x8, sixteen 4x4 blocks). The total Np is equal to 41, the 

default Nf is equal to 5. For an HD frame (1280x720), there are 3600 coding blocks 

(NCB). Hence the Nsp-CTU is equal to 738k blocks/frame. For a five minutes video with 

30fps frame rate, the total number of frames is equal to 9k, and hence the total search 

points will be 6.642x109. For HEVC the number is even higher, since the coding block 

size is 64x64. While this number is very huge, the fast search algorithm rely on 

reducing the Nf and/or Np and/or NCB. Algorithms that reduce NCB are called block skip 

algorithms, and that reduce Nf are called reference-frame skip algorithms. Algorithms 

that reduce search points Np which is at SW level are typically called fast ME 

algorithms. The present thesis proposes a fast ME algorithm for HEVC. 
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 TYPES OF FAST MOTION ESTIMATION ALGORITHMS 

The fast ME algorithms can be classified into many types. Based on the loss of output 

video quality, the algorithms can be classified into lossless fast ME algorithms and 

lossy fast ME algorithms. In lossless fast ME algorithms, the ME algorithms achieve 

gain in speed with same PSNR (video quality) and bitrate (compression ratio) compared 

to FS algorithm. The Successive Elimination Algorithm (SEA), MLSEA (Multi level 

Successive Elimination Algorithm), PDE (Partial Distortion Elimination) etc. are some 

examples. In lossy fast ME algorithms, there will be huge gain in speed but slight 

decrease in PSNR and bitrate compared to FS algorithm. Some of the examples are 

search area sampling techniques, pixel decimation techniques, hybrid algorithms 

(include more than one fast ME algorithms) etc. Each of these techniques is explained 

briefly in the following sub-sections. 

3.4.1 Successive Elimination Algorithms 

The Successive Elimination Algorithm (SEA) is a two stage algorithm [68]. In the first 

stage, the algorithm calculates the absolute difference between sum of intensities of all 

pixels between current and reference blocks as shown in (3.3), where ADS represents 

Absolute Difference between Sums, C represents current frame block, R represents 

Reference frame block and with MxN taken as the size of the block. In the second stage, 

the algorithm eliminates the search points based on an inequality equation shown in 

(3.4).  

 #�� =	 t$$&��, ��(
�

 
� −	$$"��, ��(

�
 
� t (3.3) 

 #�� u �#� = 	$$|&��, �� − "��, ��|(
�

 
�  (3.4) 

For any two blocks of equal size MxN, the ADS is always less than or equal to 

their SAD. Based on this inequation, the search blocks which has larger ADS then the 

current minimum distorted search point, can be omitted from the search process (and 

SAD calculation is not done). Though there is an additional cost of adding the intensity 

values, the omitted search points account more for reduction in total complexity. By 
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using SEA in [68], the computational complexity of ME is reduced by 75% to 85% 

compared to full-search algorithm.  

In [69], the MSEA (Multilevel SEA) algorithm was proposed which extends the 

concept of SEA in a multilevel hierarchical way. Each level is a subsampled version of 

original current/reference block, as illustrated in Fig. 3.1. In each level l, the pixel 

values are calculated by adding all the values of corresponding neighbouring pixels at 

level l+1. Then, the Subsampled-SAD (SSAD) at each level between current and 

reference blocks is calculated. Based on the inequality shown in (3.5), the complete 

SAD is calculated only if the corresponding block satisfies the criteria in all the levels. 

The MSEA is stated to reduce the computational complexity up to 95% compared to FS 

algorithm. 

 ��#�4 u ��#�* u ��#�7 u ⋯ u ��#�P⋯ u �#� (3.5) 

Another important lossless technique is PDE (Partial Distortion Elimination) 

[70, 71]. The PDE algorithm eliminates the non-possible candidates before the complete 

calculation of matching error. Here the calculation of matching error is considered as 

sequential calculation and accumulation of partial distortions. Hence, the non-possible 

candidate can be judged if the accumulated partial distortion for the candidate exceeds 

minimum distortion or minimum cost value. Like SEA algorithms, the PDE algorithms 

also reduce huge computation time compared to FS algorithm. 

3.4.2 Hierarchical and Multiresolution Algorithms 

In hierarchical search algorithms (also called search area sampling algorithms), the 

given frame or SW is down-sampled to lower resolution. Typically this is done by 

 

Fig. 3.1 Hierarchical pyramid structure for ME 
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forming a multi-level pyramidal structure, with each higher level containing a down-

sampled version of SW (or frame) for previous level, as shown in Fig. 3.1. Usually, 

these multiresolution levels are formed using sampling filters like low-pass filters [72, 

73]. In the hierarchical SW technique [74], the ME is first coarse performed at higher 

level of pyramid hierarchy and for fine-refinement the ME is performed in the lower 

levels (high resolution level).  

The hierarchical motion estimation algorithms are not only used in video 

compression, but also widely used in in frame interpolation for frame rate up conversion 

applications [72, 75]. In [73], a hierarchical stochastic fast ME algorithm was proposed 

which uses Kalman filter to get the low resolution hierarchical levels, and then the final 

MVs are obtained by using block matching ME algorithm. The total computational gain 

is about 5% of the computations taken for full-search algorithm. In [76], a hierarchical 

motion estimation method using adaptive image down-sampling method was proposed. 

Based on the motion analysis in the frames the sampling position of the pixel in the 

  

(a) ½ Down-Sampled Pattern (b) ¼ Down-Sampled Pattern 

  

(c) 4-Queen Tiles in 8x8 Block (d) 8-Queen Pattern 

Fig. 3.2 Pixel-decimation Pattern for Motion Estimation 
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frame is changed adaptively. The proposed algorithm achieves more accurate MVs than 

that of traditional hierarchical ME methods. 

3.4.3 Pixel Decimation Block Matching Algorithms 

The block matching algorithms uses matching criteria on all pixels of a block with an 

assumption that all the pixels in the block are moved by the same amount of 

displacement (and direction). But, if only few pixels in the block are used, then the 

accuracy of estimated MV will be degraded.  However, if some pre-defined pattern of 

pixels in the blocks is used, the degradation in the accuracy of MV estimate may be 

controlled and reduced. Hence by reducing the complexity for each search point, there 

will be a huge savings in the computational time of the total ME algorithm. Some of 

these patterns are shown in Fig. 3.2. Fig. 3.2 (a) shows the ½ down-sampled version and 

Fig. 3.2 (b) shows ¼ down-sampled version of a 16x16 block originally proposed in 

[77] and the ¼ down-sampled version is analysed and improved in [74].  

There are many other approaches like hexagonal pattern, spiral patterns etc. and 

one of the efficient and successful approach was by using N-Queen pattern proposed in 

[78], as shown in Fig. 3.2 (c) and (d). The name is derived from a famous problem in 

chess with an objective of placing ‘N’ queens in an NxN chessboard such that no two 

queens threaten each other. Fig. 3.2 (c) shows the lattice structure for 4-Queen pattern 

of pixels tiled in an 8x8 block, while Fig. 3.2 (d) shows 8-Queen pattern. To evaluate 

the efficiency of the patterns objectively, the spatial homogeneity and directional 

coverage are calculated. The spatial homogeneity is measured using average (µ) and 

variance (σ2) of spatial distances from each skipped pixel to its nearest skipped pixel as 

shown in (3.6) and (3.7), where S(x,y) represent co-ordinates of pixels selected nearest 

to the position P(x,y), K represents number of selected pixels and N represents the 

dimension of the block. For calculating the directional coverage, an edge is defined 

which a line is passing through the pixel point taken in any of the directions horizontal 

(00), vertical (900) and diagonal (450 and 1350). The directional coverage is measured as 

percentage of edges with at least one of the selected points exist on the edge, 

 w = 1�,7 − x� $‖+��, �� − ���, ��‖(
�z,{�  (3.6)
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 |7 = 1�,7 −x� $�‖+��, �� − ���, ��‖ − w-�7(
�z,{�  (3.7)

In [78], a comparison for sampling lattices for an 8x8 block is performed and 

showed that the 8-Queen pixel-decimation pattern has highest spatial coverage 

compared to other patterns. The directional coverage of 8-Queen pattern has full 

directional coverage which is equivalent to non-decimated block’s directional coverage. 

In [79], a new pixel decimation algorithm for ME was proposed based on boundary 

region matching and genetic algorithms for finding the optimal length pattern in an NxN 

block. The algorithm improved coding efficiency almost similar video quality compared 

to existing pixel-decimation patterns.  

3.4.4 Search Points Reduction Algorithms 

The search point reduction algorithms aim to reduce the complexity of ME process by 

reducing the number of search points in the search window. Some of these algorithms 

are explained in the following sub-section.  

3.4.4.1 Three Step Search (TSS) Algorithm 

The TSS algorithm was one of the oldest algorithm that was proposed (1981) for ME 

[77]. Later, many modifications were proposed to improve the performance and 

efficiency of the algorithm. The general idea of the algorithm is shown in Fig. 3.4. The 

three step search starts with searching the centre point, which is the collocated point of 

current block in reference frame. Then, with step size 4, it starts searching the 

surrounding eight locations, shown in circles. The point which has the minimum error 

(minimum SAD or SSD), is taken as reference centre point to the next step. If the lowest 

cost is at the centre, then the motion search is stopped and the centre point is taken as 

the motion vector. Otherwise, the algorithm proceeds to second step. In the second 

stage, the step size is reduced to 2, and the search is performed around the surrounding 

eight positions, as shown in triangles in the figure. The best matching point is again 

taken as reference, to the third step and the search is performed with step size one, as 

shown with square dots in the figure. The step is the final step, since there is no further 

search possible with step size less than one. The best matched point in the third step is 

the final best matching motion vector. 
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3.4.4.2 Block Based Gradient Descent (BBGDS) Algorithm 

The Block Based Gradient Descent Search algorithm applies the gradient descent 

algorithm (or steepest descent algorithm) that is widely used in optimization theory 

[80]. The steepest descent algorithm basically optimizes a function for minima, in the 

steepest direction. A similar approach is followed for block matching algorithm, where 

the search is performed based on the minimal point obtained in previous steps. This is 

similar to the TSS algorithm with a step size of one at each stage of algorithm. The 

search pattern used in BBGDS algorithm is also a square pattern with step size one. 

Initially, the search is performed for the eight points around the centre point, along with 

the centre point location. The minimal point is taken as the origin for the next step and 

the pattern checked in the next step is also square pattern with step size one. Depending 

on the location of the minimal point, the number of search points in the next step will be 

either three or five points. If the location is at the corner of the square pattern, the 

number of search points will be five in the next step, otherwise the number of search 

points will be three. If the minimal point is at the centre point, the algorithm stops, and 

the centre point is taken as the final motion vector location. The algorithm continues in 

unlimited steps, until the minimal point is found to be at the centre point location. The 

algorithm is illustrated graphically in Fig. 3.4.  

The example shown in Fig. 3.4 has a solution in eight steps. The centre point 

location for the eight step, which is taken from the optimal point obtained in the seventh 

 

Fig. 3.3 Illustration of Three-Step Search Algorithm for Motion Estimation 
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step (indicated by *) is the final optimal motion vector. The BBGDS algorithm gives the 

fastest and the most optimal motion vector since the minimal distorted blocks are 

continuously converging towards the minima. The main disadvantage is that this 

algorithm gets trapped in the local minima point, just like the gradient descent algorithm 

in optimization theory. A conjunction of this algorithm with another global search 

algorithm, will give the most optimal motion vector in fewer search locations. 

3.4.4.3 Diamond Search (DS) Algorithm 

The Diamond Search algorithm [81] is similar to BBGDS algorithm except that the 

search is performed in diamond shaped pattern instead of square pattern. In principle, 

the algorithm takes two types of fixed patterns, one is Large Diamond Search Pattern 

(LDSP), and the other is Small Diamond Search Pattern (SDSP), shown in Fig. 3.5 (b) 

and (c) respectively. The first steps of the algorithm are initiated with the LDSP and the 

last step uses the SDSP, as illustrated in Fig. 3.5(a). If the least cost point is at the origin 

in the initial steps, the algorithm jumps to last step. The algorithm continues using 

LDSP, until the minimal point comes out to be at the origin of the LDSP. If the least 

weight is not at the origin, then in the algorithm checks three or five locations 

depending on the location of the minimal point in the previous step. If the minimal point 

is at the corner of the LDSP, then the next step needs to be checked 5 locations and if 

the minimal point is at the side of the diamond, then the next step needs to be checked 

 

Fig. 3.4 Illustration of Block Based Gradient Descent Algorithm 
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only 3 locations. Since there is no limitation to the number of steps, the algorithm gives 

a good PSNR which is close to that of Full Search algorithm [81]. 

3.4.4.4 2D-Logarithmic Search Algorithm 

The Two Dimensional Logarithmic Search is designed by extending the TSS 

Algorithm [82]. It starts searching with five locations along the centre of the edges of 

the search window, and the centre point. The minimal point is taken as the reference 

point for the next step and the search area is reduced by a factor of two. The algorithm 

continues to search until the search area is reduced to 3x3, and in the last step the search 

is performed in the entire nine locations. The algorithm is illustrated graphically in Fig. 

3.6. 

 
 

 

 

(a) (b)  (c ) 

Fig. 3.5 Illustration of (a) Diamond Search Algorithm (b) Large Diamond Search 

Pattern (LDSP) (c) Small Diamond Search Pattern (SDSP) 

 

Fig. 3.6 Illustration of 2D Logarithmic Search Algorithm 
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3.4.4.5 Cross Search (CS) Algorithm 

The cross search algorithm [11] is similar to Logarithmic search, except that the search 

is performed in cross (‘X’) pattern instead of diamond (plus ‘+’) pattern. The algorithm 

starts with the corners of the search window, along with the centre point. The minimal 

point obtained is taken as the reference centre to the next step, with search window size 

reduced by a factor of two. The algorithm continues until the search window size is 

reduced to 3x3. In the last step with search window size 3x3, the pattern is either cross 

pattern or SDSP (Small Diamond Search Pattern), depending upon the location of the 

minimal point obtained in the previous step. If the location of the minimal point 

obtained in the previous of the last step is at the bottom left or top right, then the search 

is performed in a SDSP pattern in the last step, otherwise it is performed in a cross 

pattern in the last step also. The algorithm is illustrated graphically in Fig. 3.7. 

3.4.4.6 Hexagonal Search (HS) Algorithm 

The hexagonal Search is one of the most efficient fast-block-matching-algorithms [83]. 

The algorithm searches for the minimal point by considering a hexagonal pattern. The 

algorithm can be explained by classifying into three stages: Starting, Searching and 

Ending. 

Starting: The large hexagon (shown in Fig. 3.8(a)) along with centre point (0,0) making 

seven points are checked initially. If the minimal point is found to be at the centre, then 

the algorithm skips to final stage, the ending step. 

 

Fig. 3.7 Illustration of Cross Search Algorithm 
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Searching: The minimal point (minimal distorted block), obtained in the starting step is 

taken as centre, and a large hexagon is again formed by adding only three new search 

locations. With the obtained hexagonal pattern, the minimal point is again searched. If 

the minimal point is found to be at the centre, then the algorithm skips to the third step 

’ending’, otherwise this step is repeated continuously. 

Ending: In this final step, the search pattern is switched from large hexagon to small 

hexagon that needs to be covered only four points, as shown in Fig. 3.8 (a). The 

minimal point obtained in this small hexagon is taken as the final motion vector block. 

An example based on Hexagonal search is shown in Fig. 3.8 (b), which converges 

towards the minima in five steps. The hexagon search is similar to BBGDS algorithm, 

except that the search is performed in hexagonal pattern instead of square pattern. 

Changing the pattern to hexagon makes the convergence towards the optimal point more 

fast, since in every successive step (except initial and final steps), the number of new 

search points added is only three, while in the BBGDS algorithm the number of points 

added are three or five based on the location obtained in the previous step. On the other 

hand, the 2DLGS and Cross Search Algorithms also have three locations added in every 

subsequent step, but the probability of converging towards the local minima is more 

compared to Hexagonal Search Algorithm. 

The aforementioned algorithms search for MV with an assumption that the 

optimal point in monotonically converging. But the objects in videos move randomly in 

  

(a) (b) 

Fig. 3.8 Illustration of (a) Hexagonal Search Pattern (b) Hexagonal Search 

Algorithm 
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directions and the same block may contain more than one object that move in different 

directions. Hence these algorithms are to be pre-processed with one or more techniques 

for searching an efficient MV while the search is performed to minimum number of 

points. These are called hybrid ME algorithms. The Hybrid ME algorithms embed more 

than one technique to reduce the complexity of the ME process and to maintain almost 

similar video quality and bitrate compared to FS ME algorithm. The details of some of 

the techniques used in hybrid ME algorithms are explained in the following section. 

 COMPLEXITY REDUCTION TECHNIQUES IN SEARCH POINT 

REDUCTION ALGORITHMS 

There are many ways to reduce the complexity of SW points. But the complexity 

reduction should not decrease the output video quality and compression efficiency 

compared to full search algorithm. Hence all the complexity reduction techniques are 

typically compared against the results of Full Search algorithm. 

3.5.1 Dynamic Search Range for Motion Estimation 

Before starting the search operation, the Search Window (SW) size or its range 

(distance from search centre to outer edge of SW) has to be defined. The search window 

size depends on search range and search block size as shown in (3.8), where SWW and 

SWH represents SW width and SW height respectively, SBW, SBH represents search 

 

Fig. 3.9 Relation of Search Range with Search Window Size 
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block width and search block height respectively, SRx and SRy denotes the search range 

in horizontal and search range in vertical direction respectively. This is also illustrated 

in Fig. 3.9. The number of search points only depends on search range in horizontal 

(SRx) and vertical directions (SRy) as shown in (3.10). The search range is typically 

same in horizontal and vertical directions and is equal to maximum block size defined in 

the codec. For H.264 its default value is equal to 16 [44], and for HEVC it is equal to 64 

[8]. 

 ��},~ = �2 × �"z,{	 + �g},~ (3.8) 

 �+ = ��2 × �"z� + 1	 × ��2 × �"{	 + 1� (3.9) 

For reducing the complexity of ME operation, the SW size can be reduced 

dynamically based on statistics of previously coded neighbouring MVs. There are many 

dynamic search algorithms that were proposed in the literature [9]-[12]. HEVC 

reference software [4] uses an adaptive search range algorithm, which changes SW size 

in according to temporal difference between current and reference frames as shown in 

(3.10), where POC represents Picture Order Count or corresponding current and 

reference frames, ‘Round’ represents rounding function, SRMax denotes the maximum 

search range configured initially for ME, ASR_SCALE denotes adaptive search range 

scaling factor with default value 1 and ‘GOP_Size’ denotes the GOP size. According to 

(3.10), for near reference frames, the search range increases and for farther reference 

frames the search range decreases 

 �" = ":fSF��" Oz × #�"_�&#�8 × %+�&lNL − +�&�Mm%��+_���D  (3.10) 

In [84, 85], the authors use Cauchy and Laplace distribution functions to model 

previously encoded neighbouring motion vector differences (MVDs) and vary the 

search range according to their probabilities. Compared with full search algorithm, the 

achieved reduction in complexity was more than 90%. In [86], an adaptive search range 

algorithm working at block level based on quantization parameter was proposed. The 

ME computational time reduction achieved was about 16% on average compared to 

H.264/AVC fast ME algorithm [87]. In [88], the authors describe an adaptive search 
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range algorithm working at block level based on motion vector differences (MVDs). 

The algorithm increases the search range by one pixel and performs ME for the new 

search points, if the MVD (after motion estimation) lies on the edge of search window. 

The achieved reduction in computation load is about 97% compared with full search 

algorithm. 

3.5.2 Predictive Based Motion Estimation 

One of the simplest techniques to reduce the ME complexities is to start the search 

process with initial point at nearest possible position from final MV. This is achieved by 

predicting the MV using prediction algorithms and terminating the ME algorithm using 

early termination algorithm. A good prediction algorithm provides a good initial search 

point close to the optimal MV and reduces the number of iterations in ME, thus 

reducing the complexity. To do this, a ME algorithm can incorporate more than one 

prediction algorithm and take the least cost point as the initial search point. One of the 

earliest and efficient prediction algorithms is the median predictor, which is the median 

of left, right and up-right (or up-left) block’s MV. Fig. 3.10 shows the position of 

candidate blocks left, up, up-right and up-left and their MVs are used for spatial 

prediction. Since these blocks are already encoded, their MVs are used for predicting 

the current block MV. The MVs of these blocks are called predictors - left predictor for 

MV of left block, up predictor for MV of up block and up-right predictor for MV of up-

right block. The median predictor is defined using (3.11), where MVL, MVU and MVUR 

are left predictor, up predictor and up-right predictors. If the up-right predictor is not 

available (for blocks in right side border of the frame) then up-left (MVUL) predictor is 

used in (3.11). 

 ��pLM- = UDF�?S���� ,��r, ��r�� (3.11) 

Some of the prediction algorithms used in H.264/AVC ME algorithms are 

median prediction, up-layer prediction, co-located block prediction and neighbouring 

reference frame prediction [87, 43]. The co-located block predictor is the MV of the co-

located (same position block in the previous frame) block, as shown in Fig. 3.10 (b). 

The up-layer predictor (or upper-mode predictors) is the MV of upper-mode variable-

size block of the same block (macroblock in H.264/AVC) which is already encoded. 
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Fig. 3.10 (c) shows the upper mode blocks for various block sizes in H.264/AVC. Since 

the ME is performed from higher block size to lower block sizes, the MVs of its 

immediate higher size blocks (or upper mode blocks) can be used to predict the MV of 

the current block. HEVC uses left, up, up-right, up-left, down left and median predictors 

for ME [8]. The down-left predictor is the MV of the block located left down-side of the 

current block as shown in Fig. 3.10.  

In [89, 90], the authors proposed Simulated Annealing Adaptive Search (SAAS) 

algorithm which predicts initial search point based on statistical analysis of previous 

frame's Motion Vector Correlation. The search pattern is adjusted for each block 

according to Predicted Motion Vector and the search region is adaptively divided and 

  

(a) Spatial Predictors (UL = Up-

Left, ER = Up-Right, L = Left 

and LD = Left-Down) 

(b) Co-located Block Predictor 

 

(c) Upper Mode Predictors 

Fig. 3.10 Various Positions of Blocks for Prediction in Motion Estimation 
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Simulated Annealing (SA) mechanism is adopted to select search power for each region 

to avoid trapping into local minima. It was reported that the algorithm offers 

considerable improvement in computing time and motion search points at the same rate-

distortion performance compared to the conventional fast motion estimation algorithms. 

In [91], the initial search point is predicted based on directional asymmetry search, by 

taking a small diamond pattern with five points as the initial predictors. It was reported 

that method significantly reduces the number of search points for locating a motion 

vector and contribute to speed up the search process with reasonable PSNR values. 

3.5.3 Early Termination Algorithms for Motion Estimation 

After the prediction step, some of the prediction blocks may get the optimal 

motion vectors without the necessity to perform further searches. For this reason, fast 

ME algorithms use early termination algorithms, defining a threshold to terminate the 

search process. If the threshold value is fixed to a constant, the encoded video may lose 

quality because some of the MVs may have better MV than the threshold limit. On the 

other hand if the threshold is too lower, the algorithm may lose performance in terms of 

speed. Hence early termination (ET) algorithms uses adaptive threshold, which changes 

threshold value dynamically depending on parameters such as SADs or MVDs of 

previously encoded neighboring blocks. 

Adaptive ET algorithms for ME can be applied at frame level and block level. In 

our work, for determining the threshold in ME algorithm for HEVC, the average of all 

costs in the first frame of GOP after intra-frame is taken since there is a close 

relationship between average costs of each frame of GOP. This is shown in (3.12), 

where ‘N(d,p)’ represents the total number of coding units in the first frame of GOP for 

the depth ‘d’ and partition size ‘p’, and cost is the distortion cost used in the algorithm. 

 �ℎ�F, i� = 		 $ E:hB���,�F, i�
(�-,s�

�)*
 (3.12) 

In H.264/AVC, fast ME algorithms - UMHexS, SUMHexS [92], the threshold is 

defined at block level using SADs of previously encoded spatial neighbouring blocks, 

upper mode SAD, collocated block SAD. In [93], the authors proposed an early-level 
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termination method suitable for hierarchical ME structure which terminates high-level 

redundant motion searches by establishing thresholds based on current block mode and 

motion search level. It also applies the early refinement termination in order to avoid 

unnecessary refinement for high levels of hierarchical block structure. In [94], an 

adaptive early termination strategy was developed based on statistical characteristics of 

rate-distortion (RD) cost regarding current block and previously processed blocks and 

modes. It was reported that by using their method, most motion searches can be stopped 

early, with a large number of search points saved.  

3.5.4 Grid Patterns for Finding Motion Vector 

If the motion vector does not satisfy the early termination condition, the ME algorithm 

starts searching for the best matched block. In the searching process, there is a 

possibility that the MV gets trapped into local minima. To avoid this, the ME process 

uses a global optimization algorithm. The global search patterns are usually grids 

(diamond or square or hexagon grids) with stride-lengths (length from start point to grid 

pattern) smaller near initial search point and with stride-lengths large as the grid moves 

away from start point. Fig. 5.5 shows some of the most commonly used grid patterns. 

Fig. 3.11(a) shows square patterns, Fig. 3.11 (b) shows diamond patterns and Fig. 3.11 

(c) shows hexagon patterns. These patterns are evaluated based on the number of search 

points used in a given search window and based on the directional coverage. A good 

pattern must have highest directional coverage with lowest number of search points 

used. From the patterns in Fig. 5.5 the hexagon has better directional coverage and 

lower number of search points compared to others, and hence many fast algorithms use 

hexagon patterns to find the coarse refined MV [87, 92]. The minimum cost block in 

  

(a) Diamond Pattern (b) Square Pattern (c) Hexagonal Pattern 

Fig. 3.11 Search Patterns for Motion Estimation with stride length 8 
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these grids can be taken as the initial MV for further processing steps in ME algorithm. 

After finding the minimum point, the ME algorithm can check with a threshold value 

for early termination again.  

Some hybrid ME algorithms like EPZS [95] and PMVFast [96] skip this global 

search stage since they rely on several prediction algorithms to predict the initial search 

point (explained in detail in Section 3.6.1). Fast ME algorithms in H.264/AVC reference 

software like UMHexS and SUMHexS [92, 87, 43] use hexagonal grids to find the 

coarse optimum point (explained in detail in Section 3.6.2 and Section 3.6.3). TZSearch 

fast ME algorithm in H.264 JMVC (Joint Multi-view Video coding) [97] and HEVC [7, 

8] use diamond and square patterns to find the global optimum (explained in detail in 

Section 3.6.4). In [98], a new fast ME algorithm was proposed by replacing multi-

hexagonal grids with multi octagonal grids in UMHexS algorithm [87]. It was reported 

that the algorithm can reduce five to ten percent of the computational complexity of the 

UMHexS algorithm without loss of its accuracy. In [99], a new ME algorithm based on 

multi-octagonal grids was proposed. The algorithm takes adaptive search strategies by 

using the distribution characteristics of motion vector. The reported improvement in 

speed is 91% compared to FS algorithm with little negligible loss in PSNR and 

compression ratio. 

3.5.5 Fine Refinement Patterns for Finding Optimal Motion Vector 

After finding the global minima, the ME algorithm can be designed to use early 

termination algorithm. If the threshold for MV cost is not met by global minima, then 

the ME algorithm refines the MV obtained from the previous step using one of the 

gradient descent based algorithms explained in Section 3.4.4. As explained, the gradient 

descent based ME algorithm starts with an initial search point and finds the cost of the 

search points of the pattern formed around the search center. 

The fast ME algorithms in H.264/AVC like UMHexS, SUMHexS [92, 87, 43] 

use hexagonal patterns for fine refinement. The EPZS algorithm uses LDSP and SDSP 

patterns for fine refinement [95]. In [100, 101], the authors propose a pattern switching 

mechanism that adaptively switches between 3-step search and block-based gradient 

descent search algorithms. The algorithm classifies the motion content of a block using 

a simple and efficient motion content classifier called error descent rate where the 
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classifier requires only the searching of a few points in the search window and then a 

division operation. It was reported and verified that the algorithm is very robust. In 

[102], a new Hybrid Hexagon Kite Cross Diamond Search (HYBHKS) algorithm based 

on adaptive switching of the Hexagon Search (HEXS) and Kite Cross Diamond Search 

(KCDS) patterns was proposed. It was reported that that HYBHKS performed better 

than KCDS and HEXS in terms of number of search points while maintaining similar 

compression ratio and PSNR. 

 H.264/AVC AND HEVC HYBRID MOTION ESTIMATION ALGORITHMS 

The encoder in reference software for H.264/AVC (JM) and for HEVC (HM) uses 

hybrid ME algorithms, which combines more than one technique (as mentioned in 

Section 3.2). Some of these hybrid ME algorithms are explained in detail in the 

following sub-sections. 

3.6.1 EPZS (ENHANCED PREDICTIVE ZONAL SEARCH) Algorithm 

The Enhanced Predictive Zonal Search (EPZS) algorithm [95, 103] is a prediction based 

hybrid algorithm and mainly comprises of 3 steps. The first step is the initial predictor 

selection which selects the best MV predictor from a set of potentially likely predictors. 

The second step is the adaptive early termination which terminates the motion 

estimation process if some predefined conditions are satisfied. The last step is the 

prediction refinement stage which employs a refinement pattern around the best 

predictor to essentially improve the final prediction. All these features add up to 

improve the performance of the algorithm. 

3.6.1.1 Predictor Selection 

The predictor selection stage is the key feature in EPZS algorithm, as the accuracy and 

speed of converging optimal MV depends on how best the predicted MVs are. The 

prediction algorithms used here are, spatial predictors (left, top, top-right), median 

predictor, co-located block predictor and temporal predictors. The spatial, median and 

collocated predictors are explained in Section 3.5.2. In temporal predictors, the MVs of 

neighbouring blocks of collocated block are taken, as shown in Fig. 3.12. If there is 

more than one reference frame, then for the new reference frame which is at temporal 

distance TDN from current frame, the new motion vector (MVN) can be predicted using 



MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES 

 

 

 
66 

 

previous coded MV information using other reference frames as shown in (3.13). MVC 

in (3.13) denotes already coded MV for current block in a reference frame which is at 

temporal distance TDC from the current frame.   

 ��( = ��( ×��l��l  (3.13) 

3.6.1.2 Adaptive Early Termination 

The threshold cost value for early termination used in EPZS algorithm is adaptive to the 

costs obtained for previously encoded neighbouring blocks (of same block size) of 

current block. Initially, a threshold value T1 (which is equal to number of pixels of the 

current block type) is used. Then for sub-sequent blocks, the threshold T2 is changed 

according to (3.14), where ‘a’ and ‘b’ are constants (with a=1.1 and b=T1) and minJ1, 

minJ2… minJn are minimum cost values obtained for previous blocks. 

 �7 = ? ×U�S�U�S�*, U�S�7, …U�S�6� + @ (3.14) 

3.6.1.3 Motion Vector Refinement 

If the early termination condition is satisfied for any predicted point, then the predicted 

point is taken as final MV. Otherwise, the algorithm searches for optimal MV around 

the least cost point in predictors set, using LDSP pattern explained in Section 3.4.4.3, 

Fig. 3.5 (b). If block size is smaller than 8x8, then the algorithm searches using square 

patterns shown in Fig. 3.13. Further, to get a better MV even after the termination 

condition is met, the algorithm searches using a SDSP pattern shown in Fig. 3.13 (c). 

 

Fig. 3.12 Various Predictors Used in EPZS Algorithm  
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3.6.2 UMHEXS (UNSYMMETRICAL-CROSS MULTI HEXAGON-GRID 

SEARCH) Algorithm 

The UMHexS [87, 44] Search algorithm aims to use efficient search pattern schemes 

and reduce the complexity. The algorithm starts with a prediction step for finding the 

best predicted search point. The prediction algorithms used are median predictor, up-

layer predictor and collocated block predictors. In the second step, the UMHexS 

algorithm uses two advanced pattern schemes – unsymmetrical cross search and uneven 

multi hexagon grid search, shown in Fig. 3.13 (a) and (b). These patterns are found very 

efficient in searching the least cost point without getting trapped in local minima [87], 

and hence is the name of the algorithm. Though the UMHexS is mainly based on these 

advanced search patterns, it also employs early termination criteria after the prediction 

stage. Hence, if the early termination criterion is not met, then the algorithm uses the 

search patterns and if it is met, the algorithm terminates. The threshold values taken to 

terminate the algorithm are based on the costs of neighboring blocks (of same size) for 

current block. Further the threshold for early termination is multiplied by modulating 

factor β which depends on QP. In the final stage, the algorithm goes for a final 

  

(a) Unsymmetrical-cross Pattern (b) Uneven Multi-hexagon Grid Pattern 

  

(c) Extended Hexagon Pattern (d) Small Diamond Search Pattern 

Fig. 3.13 Various Search Patterns used in UMHexS Algorithm 
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refinement based on two patterns extended hexagon based search and Small Diamond 

Search (SDSP) as shown in Fig. 3.13 (c) and Fig. 3.13 (d) respectively. 

3.6.3 SUMHEXS (SIMPLE UMHEXS) Algorithm 

The SUMHexS algorithm is similar to UMHexS, except for a few modifications [104, 

92], to make the algorithm simple. The temporal predictors in UMHexS algorithm 

consume much memory due to variable block sizes and multiple reference frames. 

Hence the temporal predictors are removed and only spatial median and up-layer 

predictors are used in SUMHexS algorithm. The complicated early termination 

 

Fig. 3.14 Flowchart of SUMHexS Algorithm 
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condition in UMHexS algorithm is replaced with simple convergence and intensive 

search conditions. The detailed flowchart of the algorithm is shown in Fig. 3.14. 

3.6.4 TZSearch (TEST ZONE SEARCH) Algorithm 

The TZSearch algorithm is used in encoder of HEVC reference software HM [7, 8]. It 

combines the concept of grid patterns (used in UMHexS and SUMHexS algorithms) 

and search area sampling technique (explained in Section 3.4.2) which is also termed as 

raster search. It consists of four stages: 

1. Motion Vector Prediction: TZS algorithm employs median predictor, left 

predictor, up predictor and upper right predictor. The minimum of these 

predictors is selected as a starting location for further search steps. 

2. Initial Grid Search: In this step, the algorithm searches the search window in 

diamond or square patterns with different stride lengths ranging from 1 through 

64, in multiples of 2. Each grid pattern contains 8 search points. The patterns 

used are either 8-point diamond search or 8-point square search that can be 

selected. A sample diamond grid pattern with stride length 8 is shown in Fig. 

3.15 (a). The motion vector with minimum cost is taken as the centre search 

point for further steps. The stride length for this minimum distortion point is 

stored in variable ‘uiBestDistance’. 

  

(a) (b) 

Fig. 3.15 Search Patterns used in TZSearch Algorithm (a) Diamond Grid Patterns 

(b) Raster Search Pattern 
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3. Raster Search: As mentioned, the raster search is a simple full-search on a 

down-sampled version of the search window. A predefined value ‘iRaster’ for 

raster scan is set (with default value ‘5’) before compilation of the code [7]. This 

value is used as a sampling factor for search window. The search window (for 

16x16 search window) for raster scan with iRaster value ‘5’ is shown in Fig. 

3.15 (b). As shown in flowchart of Fig. 3.16, the condition for performing this 

raster search is that uiBestDistance (obtained from previous step) must be 

greater than iRaster. If this condition is not satisfied, the algorithm will skip this 

step. If this step is processed, then uiBestDistance is changed to iRaster value. 

4. Raster/Star Refinement: This step is a fine refinement of the motion vectors 

obtained from the previous step. As shown in flowchart in Fig. 3.16, either raster 

 

Fig. 3.16 Flowchart of TZSearch Motion Estimation Algorithm 
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refinement or the square/diamond (star refinement) pattern refinement can be 

enabled. In general, only one of the refinement methods is enabled for fast 

computation. In both of these refinements, either 8-point square pattern or 8-

point diamond pattern is used. The two refinement methods differ in their search 

operation. The raster-refinement will search by down-scaling the uiBestDistance 

value (obtained from raster search) by 2 in every step of the loop, till 

uiBestDistance equals to zero. The star refinement is similar to step 2 except for 

change in starting search location. The whole refinement process will only start 

if uiBestDistance is greater than zero. After every loop, the new stride length is 

stored in variable uiBestDistance. The loop breaks (or the search stops) when 

uiBestDistance equals to zero, which means that the obtained search point is the 

optimal MV. 

 MOTION ESTIMATION ARCHITECTURES 

The design metrics used to evaluate performance of a system in software applications 

are different from that of hardware implementation. Typically, the complexity analysis 

in software is measured in terms of number of search  operations  (for  motion  

estimation)  or  total  motion  estimation  time  taken.  But in hardware, this design 

metric is defined considering the I/O bandwidth and silicon area also, apart from 

processing speed. So,  the algorithm  verified  in  software  is  only  for  functionality  

and  the algorithm  should  be  properly modified with these design considerations for 

designing the suitable architecture of the motion estimation accelerator module. 

Fig. 3.17 shows a basic video encoder unit with motion estimation accelerator 

interfacing with the system buses. Either the motion estimation unit can be embedded 

into total encoder system, with encoder being as  a  single  module,  or  the  motion  

estimation  module  can  be  separated  as  a  single  unit  with  advanced configurations. 

The present proposal considers designing the motion estimation accelerator as a 

separate module with its interfaces to the SOC buses.  

 

3.7.1 Classification of Motion Estimation Architectures 
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There are many ways of designing architecture for ME module. Broadly classifying 

there are two type of architectures, one is to design a state machine that is suitable for 

only one algorithm (algorithm specific architecture explained in Section 3.7.4) and the 

other type is to add some programmability to the architecture (programmable 

architectures explained in Section 3.7.6), so that the end user can configure the 

algorithm and architecture based on the video coding requirements. Some architectures 

are designed for more than one pre-defined algorithm without much programmability 

and the end user can select/configure one from these pre-defined algorithms. These are 

 

Fig. 3.17 System-on-Chip Architecture of Video Encoder with Motion Estimation 

Accelerator 

 

Fig. 3.18 General Classification of Motion Estimation Architectures 
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called flexible or configurable architectures (explained in Section 3.7.5).  

          Another important type for accelerating the ME process is by adding ME specific 

instructions to the general purpose CPUs (explained in Section 3.7.6). The processor 

extensions may accelerate the ME process but are not much efficient compared to real 

time encoding. Each of these techniques with some of the recent works are explained in 

the following sub-sections. As we observe from algorithm specific architectures to 

programmable architectures, the flexibility of handling more rates of video data (like 

fast motion, intermediate motion and slow motion videos) increases, but at the cost of 

reduced performance and increased complexity and hardware costs (like power 

consumed, area occupied etc.). Fig. 3.18 shows the general classification of ME 

architectures with their performance and cost comparisons. In the figure, the tip of the 

triangle indicates the lowest value while the base of the triangle indicates the highest 

value. 

3.7.2 Design Considerations of Motion Estimation 

In the hardware implementation stage the main limitations is the amount of memory 

required to process and the clock speed of the embedded processor that executes the 

motion estimation core. The maximum clock speed constraint can be met, by using a 

highly parallel architecture, which can reduce the total motion estimation time. Due to 

high requirement of the memory, the data that is required to travel from the motion 

estimation core and the processor also increases. This is a main limitation of the 

hardware bus architecture, which cannot be increased arbitrarily. To reduce the data 

traffic in the data bus, the ME architecture design employs data-reuse schemes, since 

there are lot of overlapping pixels between consecutive search windows and reference 

blocks. The Variable Block Size Motion Estimation (VBSME) for H.264/AVC and 

HEVC standard impels the motion estimation process to compute the motion vectors in 

various different modes for each coding macro block (4x4 to 16x16 in H.264/AVC and 

4x4 to 64x64 in HEVC). By using this VBSME, there is a huge improvement in Rate-

Distortion Performance, but it makes motion estimation implementation highly 

computational intensive and hardware expensive. Hence, for real time applications, the 

ME architectures are composed of PE (Processing Element) arrays, where each PE is 

responsible for calculating the SAD between one current block pixel and candidate 

block pixel. 
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3.7.3 Internal Architecture of Motion Estimation Accelerator 

Fig. 3.19 shows a typical internal architecture of motion estimation module. The 

structure consists of a search area buffer, and the current area buffer, a data path unit 

(DPU) module (for implementing Processing element array and optimization logic), and 

an address generation unit (AGU) and control unit. The entire ME module is controlled 

using a state machine in control unit, with addresses of search points in the search 

window stored in AGU using a program counter. When the control unit triggers the 

AGU, the AGU sends the address to the SW RAM which in turn sends the reference 

block data to the DPU. The DPU receives the reference block data along with the 

current block data (from current block RAM) and calculates the SAD and rate-distortion 

cost. The costs are compared using a comparator module, and the least distortion cost 

along with its MV address is stored in final register 

3.7.4 Algorithm Specific Architectures 

As mentioned, algorithm  specific  architectures  are  optimized  for  one  single  

algorithm  and  usually  provide  high throughput  and  low  VLSI  costs (in terms of 

area, power etc.).  But  these  kind  of  architectures  are  not  flexible  enough  to  adapt  

the architectures to the changing VLSI demands. 

 

Fig. 3.19 Internal Architecture of Motion Estimation Module 
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3.7.4.1 Full Search Algorithm Architectures 

Full  search  algorithm  has  many  advantages  over  fast  search  in  VLSI  

implementations  like  regular structures,  simple  control  overhead,  and  highest  

PSNR  over  fast  search  algorithms.  As mentioned, the  basic  element  of  a  motion  

estimation  architecture  is  the  Processing  Element  (PE)  block,  which  is responsible 

for calculating the SAD between one current and one reference pixel. There  are  many 

architectures  implemented  for  full  search  algorithm  in  the  video  coding  history,  

and  can  be  broadly classified into two categories based on their topology of PE arrays: 

1D array architectures and 2D architectures. These architecture implementations has 

two basic requirements, one is to reduce computational overhead by designing an 

appropriate parallel architecture and the other is to reduce data traffic by reusing the 

overlapping pixels in the consecutive reference blocks of search window (and in 

between consecutive search windows).  

In [105], the authors Huang et. al. proposed a 2D Motion Estimation 

architecture. It consists of 4x4 arrays of 4x4PEs with 1D data broadcasting and 1D 

partial data reuse scheme. The reference pixels are sent simultaneously to PEs through 

multiplexers, and the initial reference pixels in a 4x4 block are propagated through 

delay elements.  Totally it takes 4 clock cycles to calculate one SAD. 

In [106], the authors propose data reuse schemes for full search ME architecture 

which are categorized into 4 levels of schemes – level-A, level-B, level-C and level-D. 

The level-A scheme reuses the overlapped reference pixels between adjacent reference 

 

Fig. 3.20 Data Reuse schemes for Full Search Motion Estimation Architectures 
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blocks of one current macro block. The level-B scheme reuses overlapped reference 

pixels of adjacent horizontal block strips of one current macroblock. The level-C reuses 

for adjacent search windows of one current macroblock and level-D for entire adjacent 

search window strips. Fig. 3.20 shows these four level data reuse schemes, where N 

denotes macroblock size, W denotes frame width, SRV denotes the vertical search range 

and SRH denotes horizontal search range.  The level-A scheme has the smallest local 

memory requirement but highest off-chip memory traffic, while the level-D has the 

smallest off-chip memory and largest local memory. Level-C has a balance between the 

local memory and off chip memory data traffic and hence recommended in most 

designs. 

In [107], the authors Chen et. al. proposed 2D array architecture for motion 

estimation. The architecture is a multiple 8-candidate parallel architecture and uses a 

shared reference buffer. Each array consists of a 16x16 PE and computes 41 SADs of a 

reference block in every cycle.  In the architecture, eight horizontally adjacent reference 

blocks are processed in parallel. By using this multiple candidate data reuse scheme, the 

design considerably reduced on-chip memory traffic and power-consumption. 

In [108], the authors Kao et. al. proposed a memory efficient and highly parallel 

variable block size ME architecture for full search. The architecture consists of 16 2-D 

arrays and each array consists of 16x16 processing elements (PEs). In the architecture 

four groups of 2D array PEs perform block matching for four current blocks in a 

pipelined fashion. To reduce memory access the architecture uses memory data reuse 

scheme by taking advantage of overlapping pixels and saves 98% of on-chip memory 

access compared to level-C data reuse scheme proposed in [106] and with only 25% of 

local memory overhead. The architecture was synthesized into a TSMC 180-nm CMOS 

cell library and is capable of processing full HD at 30 fps video when running at 130 

MHz.  

3.7.4.2 Fast Search Algorithm Architectures 

There are many architectures that were proposed for fast ME algorithms [109]-[129]. 

Each of the fast architectures typically modifies the basic search pattern in the algorithm 

according to the hardware constraints. For instance, if the search points in the search 
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pattern are irregular, some of them are removed to make memory access simple and the 

obtained algorithm is designed and verified for RD performance [109, 110].  

In [111], the authors Porto et. al. proposed architecture for diamond search 

algorithm. In the architecture, the nine candidate blocks of the LDSP pattern are sent to 

nine processing units in parallel where computation for SADs is done and then a 

comparator compares the SADs. If the minimum cost point obtained is at the centre of 

the pattern, then a final search with SDSP is performed. The architecture can perform 

ME for blocks of size 16x16 in a maximum search range of ±100. On an average, the 

architecture was reported to process 120 full HD frames per second at a maximum clock 

frequency of 185.7 MHz.  

In [110, 112, 109], the authors Ndili et.al proposed an architecture for hardware 

oriented, modified diamond search algorithm. The algorithm had a better RD 

performance and is comparable to full search algorithm and has high speed up gain 

compared to full search algorithm. The architecture is verified and prototyped on an 

FPGA, and supports encoding of QCIF to HD (720p) sized frames in all variable block 

sizes of H.264/AVC (4x4 to 16x16) and with a search range of ±16. The architecture 

can process four 16x16 blocks in parallel and uses SAD adder tress architecture to 

compute variable block size SADs. The maximum operating clock frequency of the 

architecture obtained was 246.5 MHz. 

In [113], the authors Ndili et.al proposed architecture for modified SUMHexS 

algorithm. The SUMHexS algorithm was changed with hardware oriented 

modifications. The architecture uses SAD adder tress architecture to compute variable 

block size SADs (from 4x4 to 16x16). The architecture can process at maximum 

frequency of 145.2 MHz and can support full HD frames. 

In [114], the authors Rahman et. al. proposed VLSI architecture based on 

UMHexagonS algorithm. The architecture emphasizes on providing a trade-off between 

gate count and throughput. It uses dual port SRAMs to store current and previous frame 

outside the chip and uses 6 processing units to compute SADs of six 16x16 blocks in 

parallel. The architecture also uses six buffers to store. The architecture required 32 

bytes of memory bandwidth, and approximately 30 MHz of minimal clock speed for 

calculating ME with 5 reference frames and 16 pixels search range. 
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In [115], the authors Juri et. al. compared and proposed and improvement in the 

throughput of UMHexS based architectures proposed in [114, 112, 116]. The 

architecture uses 256 processing elements (PEs) where each PE calculates SAD for one 

current block pixel and one reference block pixel. The architecture uses adder tree 

architecture to calculate variable block size SADs from 4x4 to 16x16. The architecture 

improved throughput of about 91% compared to full search architecture and about 20% 

improvement in throughput compared to UMHexS algorithm based architecture [116]. 

3.7.5 Flexible and Configurable Architectures 

Flexible architectures are designed to perform motion estimation using more than one 

single algorithm. Flexibility  in  the  designed  architecture  reduces  the  efficiency,  

since  they  require  additional  logic  for memory  management,  setting  up  of  data  

paths  and  address  generation  units  (AGUs).  But  the  flexible architectures has the 

advantage of providing high quality and high processing speed for a mixture of slow, 

medium and fast moving videos. 

Lee. et. al. [117] proposed an integer ME algorithm that can realize more than 

one fast ME algorithm and including FS algorithm. The algorithm consists of 

customizable search centres that can be more than one. Then the local search is 

performed using either full-search or gradient-descent based fast search algorithms. The 

architecture consists of 5 parallel search units, each able to perform for one search point. 

Each search unit consists of a 16x16 PE (Processing Element) array and adder trees to 

support variable block size ranging from 16x16 to 4x4. The authors showed that in real-

time, the architecture can perform ME for a full HD frame (with 2 reference frames) at 

60fps at a maximum clock frequency of 266 MHz. 

In [118], the authors Xiong et. al. proposed a flexible architecture that can 

support full-search and three fast search algorithms – 4-step search algorithm, diamond 

search algorithm and hexagonal search algorithm. The architecture uses 2-D RAMs and 

2-D PE array to support the fast ME algorithms. The architecture increased system 

throughput by up to 85.47% and decreased power consumption by up to 13.83% 

compared to conventional baseline ME architecture, with an area increase of up to 

65.53% in worst case scenario. 
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In [119], the authors Verma et. al. proposed a reconfigurable ME architecture 

that supports full-search and fast search algorithms that use patterns including diamond, 

hexagon, big-hexagon and spiral. The architecture uses a 2-D hybrid PEs which can 

reuse reference frame blocks and the routing architecture is designed using NOC 

routers. The architecture also reduced the gate count up to 7x compared to its ASIC 

counterpart. 

In [120], the authors Vanne et. al. proposed a configurable ME architecture that 

can support wide range of block matching algorithms including – BBGDS (Block Based 

Gradient Descent Search), DS (Diamond Search), CDS (Cross Diamond Search), 

Hexagonal Based Search (HEXBS) and TSS (Three Step Search). The architecture by 

maps the memory blocks to SAD unit in accordance to the search path generated from 

the input parameters. The architecture provided high performance than the conventional 

ME architecture in real time for full HD videos. 

3.7.6 Programmable Architectures and Processor Extensions 

Programmable ME architectures has application specific instruction sets to program any 

of the fast ME algorithms. Depending on the application of video compression, the fast 

ME algorithm parameters like search range, search pattern shapes early termination 

criteria and others can be programmed. The application specific instructions can also be 

used to exploit parallelism at search point level like computing matching criteria (SADs 

or SSDs).  

In [121] the authors Drolapas et. al. proposed a programmable ME architecture 

with low hardware cost. The architecture uses a speculative execution technique which 

compares the current SAD value with the best SAD value discovered so far, instead of 

waiting for the new SAD value itself. Hence using the speculation calculator, the 

partially accumulated SADs are forwarded to control module which continues the 

program execution in parallel with SAD module. Hence the total number of effective 

clock cycles for search process is decreased. The architecture is programmable with an 

instruction set common to most of the block matching algorithms like MVFAST and 

PMVFAST algorithms. The architecture is implemented in an FPGA.  

In [122], the authors Nunez-Yanez et. al. proposed a programmable ME 

processor that can process HD videos of H.264/AVC standard. The processor can be 
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programmed using c-like syntaxes in the developed tools to describe almost all the fast 

ME algorithms. These syntaxes are later compiled into custom instruction set which can 

then be executed by the ME processor. Further the processor architecture is scalable and 

configurable which is able to select the desired number of execution units and which is 

determined by algorithm and throughput requirements. The architecture was 

implemented and verified in an FPGA. 

The processor extensions are architecture/assembly-language level extensions to 

an existing general purpose CPU ISAs (Instruction Set Architectures) for accelerating 

the execution of a required application. For multimedia applications, there are two types 

of processor extensions – Sub-word parallelism and arithmetic instruction extensions. 

Sub-word parallelism is typically referred as Single Instruction Multiple Data (SIMD) 

which exploits the parallel processing of data by splitting a high precision ALU to a 

number of low precision ALUs and by controlling them together. For example, a 64 bit 

addition is performed by adding eight 8-bit additions, and adding them again with the 

carry bits. There are many SIMD ISAs implemented and traded under various 

companies like INTEL’s MMX and SSIE-2, AMD’s 3DNow!, Apple’s AltiVec etc 

[123]. Though these processor extensions perform the required instruction in parallel, 

the output data bytes should be consecutively addressable in the memory for every 

search position. Typically for the motion estimation task, the required operation is the 

distortion measure criteria operation like SAD (Sum of Absolute Differences) or MAD 

(Mean of Absolute Differences). Some ISAs like SPARC’s VIS (Visual Instruction 

Set), DEC’s Alpha MVI (Motion Video Instructions) etc. has special instruction for 

performing SADs [67]. 

In [124], the authors S.Kim et. al. proposed a Motion Estimation Specific 

Instruction Set (MESIP) Processor with has high data reusability. The authors 

introduced a novel search scan order called center biased search scan which exploits the  

symmetry of the search pattern and reduce redundant data loading on MESIP  by about 

26.9% and 16.1% compared with raster scan and snake scan. The authors report that 

their architecture is suitable for low power and high performance ME implementations. 

3.7.7 Motion Estimation Architectures for HEVC Standard 



MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES 

 

 

 
81 

 

There are very few number of ME architectures complying HEVC standard [125]-[129], 

that were implemented and published, as of now. Though, for HEVC ME algorithm at 

search window level has the same logic with H.264/AVC at functional level, it will have 

a huge difference in implementation level. This is because the SAD calculation and the 

memory access have to perform for 64x64 blocks. Further complexity lies when the 

architecture supports variable block size ME with all the block sizes present in HEVC 

standard (from 8x4/4x8 to 64x64).  

In [125], the authors Sinangil et. al. proposed a cost and coding efficient ME 

engine for HEVC standard. The authors analyse 11 different configurations of the ME 

engine by quantifying coding efficiency and hardware costs including on-chip 

bandwidth, off-chip bandwidth, core area and on-chip memory area. Based on their 

analysis one configuration is chosen and algorithm improvements are presented to 

further reduce hardware implementation cost of the selected configuration. The search 

algorithm used for the architecture is a two stage search strategy, where the first stage 

consists of a coarse search process performed by sub-sampling the SW and in second 

the stage, the algorithm performs a localised 3-step search by using TSS algorithm 

(explained in Section 3.4.4). It is reported, that in overall, the architecture provided 56x 

on-chip bandwidth, 151x off-chip bandwidth, 4.3x core area and 4.5x on-chip memory 

area savings when compared to the hardware implementation of the HM-3.0 encoder 

design. 

In [126], the authors Jou et. al. proposed an architecture for fast ME algorithm 

complying HEVC. To reduce complexity of ME process, the authors proposed a joint 

algorithm and architecture optimization, with a predictive integer ME (IME) algorithm 

to select the most probable search directions and steps through a statistical analysis 

which reduced the number of search points by 90.5%. The architecture uses a 16x16 

processing unit to compute the partial matching cost of all PUs with the same 16x16 

current block in an interlaced order and share their common reference block to reduce 

the on-chip buffer size and off-chip memory bandwidth. The bandwidth is further 

reduced by a cache with double Z-scan indexed addressing to simplify the cache 

controller. The architecture was reported with implementation in TSMC 90-nm CMOS 

process and to support real-time encoding of 4Kx2K (QFHD) at 60 frames per second 

operated at 270 MHz with 778.7K logic gates and 17.4 KB of on-chip memory. 
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In [127], the authors Byun et. al. proposes a full search ME architecture for 

HEVC standard which supports asymmetric motion-partitioning (AMP) mode. In the 

architecture, two new structures, one for a memory read controller and the other for sum 

of absolute difference (SAD) summation block were proposed. The memory read 

controller reduces the internal memory read time, and the SAD summation block 

structure supports the recursive quad-tree coding unit structure and the asymmetric 

motion-partitioning mode. It is reported that the proposed design was implemented in 

Verilog HDL and synthesised using the 65 nm CMOS technology and the obtained gate 

count is 3.56 M with an internal static random access memory of about 20 kbyte. The 

maximum operation frequency obtained was 250 MHz for a 4K-Ultra high definition 

(UHD) (3840 × 2160P at 30 Hz) sized video. 

In [128], the authors Sanchez et. al. proposed a hardware friendly Multi Point 

Diamond Search (MPDS) ME algorithm for HEVC with its low power hardware 

architecture. The MPDS algorithm was implemented in HEVC reference software and 

its efficiency is compared with the standard HEVC fast algorithm. The evaluation result, 

in average, shows loses of only 1.7% in the compression rate and 0.05% in PSNR. The 

main advantage of the MPDS algorithm is its hardware friendly aspect and hence the 

authors present its hardware design with focus on real time processing HD 1080p 

videos. It was reported that the designed architecture is synthesized for TSCM 90nm 

technology and is capable to process HD 1080p videos in real time at 30 frames per 

second with an operational frequency of only 41.3 MHz and maintains a good trade-off 

among quality, compression rate and hardware costs. 

In [129], the authors Xu et. al. proposed a high performance VLSI architecture for 

integer motion estimation in HEVC. The architecture supports coding tree block (CTB) 

structure with the AMP mode. The architecture contains two parallel sub-architectures 

to meet 1080p at 30fps real-time video coding. The size CTB in the architecture is set to 

32x32 pixels by default, and it can be extended 64x64 pixels. A serial mode decision 

module to find optimal partition mode for the architecture was also implemented. The 

architecture was designed for full search algorithm with level-D data reuse scheme 

(explained in Section 3.7.4) [106]. 

 



PROPOSED MOTION ESTIMATION ALGORITHM 

 

 

 
83 

 

4 PROPOSED MOTION ESTIMATION ALGORITHM 

4.1 INTRODUCTION 

The proposed algorithm in the thesis consists of novel techniques for each of the motion 

estimation tools explained in Section 3.5 of Chapter 3. The enhanced tools are then 

integrated to form a hybrid fast ME algorithm. This algorithm is then compared with the 

fast search algorithm (TZSearch) included in the HEVC reference software HM [130]. 

Each of these enhanced techniques is explained in the following sections. 

4.2 PROPOSED DYNAMIC SEARCH RANGE ALGORITHM 

The proposed algorithm reduces search window size using the search range of the 

previously coded blocks. This is done by calculating the Euclidean distance between the 

search center and the collocated MV as shown in (4.1). The actual search center for the 

SW is the Predicted MV (PMV) and the coordinates of PMV and the final MV are taken 

with the co-located block as origin (with coordinates (0,0)). This is illustrated in Fig. 

4.1. The difference between PMV and MVopt is the Motion Vector Difference (MVD) 

which is shown in (4.2). The new origin of the MVD is shifted to the PMV from the co-

located block resembling the actual search range of the previously coded neighboring 

blocks. Hence the euclidean length of the MVDs of previously coded blocks is taken for 

SW size prediction. For predicting the search range, three sets of prediction points are 

taken into consideration - spatial predictors, up-layer predictors and temporal predictors. 

 C = ���s	7 + ��s	7 (4.1) 

 �����, �� = +����s, �s	 − ���s����, ��� (4.2) 

4.2.1 Spatial Predictors 

The MV of the current block has a probability to be near to the MVs of already encoded 

spatially neighboring blocks. This is due to fact that the moving object in the current 

block could be shared with one or many of the encoded neighboring blocks. This means 

the search range and direction for the current block can be predicted using the MVDs of 
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these predictors. The spatial predictors considered for search range prediction are left 

predictor, up, up-right and up-left predictors. The maximum value of these MVDs is 

calculated and used for SR prediction as formulated in (4.3), where L, Up, UR, 

represents the MVD co-ordinates of the spatial left-down, up-left and up-right blocks. 

 ��"�sO� = U?� ����7 + ��7�* 7⁄ , ��rs7 + �rs7 	* 7⁄ , ��r�7 + �r�7 �* 7⁄ � (4.3) 

4.2.2 Upper Mode Block Predictors 

For any current block in HEVC, the ME starts from the upper mode block size to the 

lower mode block sizes. Since the upper mode is already encoded, its MVD can be used 

to predict the search range of the current block. In HEVC there are seven inter-

prediction mode block sizes for each partition depth as shown in TABLE 4.1. For a 

Co-located 

block point

PMV

(Search center)

MVopt

MVD=MV - PMV

 

Fig. 4.1 Illustration of Relation between Predicted Motion Vector, Co-located Motion 

Vector and Optimal Motion Vector. 

TABLE 4.1: PROPOSED UP-LAYER PREDICTION MODES 

FOR HEVC (d = 0,1,2,3; N = 32,16,8,4; n=N/2; ) 

Current 

depth 

Current 

partition 

size 

Sub-partition 

Size and Mode 

Upper mode 

depth 

Upper mode partition 

size 

d 2Nx2N 

2Nx2N d-1, d>0 min(2NxN, Nx2N), d>0 
2NxnD 

D 2Nx2N 
2NxN 

2NxnU 
nRx2N 
Nx2N 
nLx2N 
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block with maximum size of 64x64 there are four depths (d=0 to 3) and for the last 

partition depth (d=4 and block size 4x4) there is no further splitting. For rectangular 

blocks, their immediate upper mode square block MVD is taken for SR prediction. For 

square blocks, the MVDs of two immediate upper mode rectangular blocks are 

considered. The maximum value of these two MVDs is taken and used for predicting 

the SR of the current block. 

4.2.3 Temporal Predictors 

The accuracy of spatial predictors may decrease for sequences with fast moving objects. 

The spatial predictors are also erroneous if the moving objects in the neighboring blocks 

share different boundaries from that of the current block. In such cases, the correlation 

of objects in the temporal domain can be taken into account. Unlike spatial predictors, 

the temporal predictors depend on search window reference frame index. Furthermore, 

the MV gives better information about the search range than the MVD (of co-located 

block), as the MVD itself depends on spatial predictors of the collocated block. Hence, 

the proposed approach takes the MV of collocated block and uses its reference frame 

index to predict the search range. 

4.2.4 Dynamic Search Range Prediction Algorithm 

The present paper uses the aforementioned predictors and defines the search range. The 

maximum value of the Euclidean radius of all the predicted points is taken as the new 

Search Range (SR). The detailed steps of the proposed algorithm are: 

 

Step 1: Take the MVDs of the spatial neighboring blocks and calculate their euclidean 

radius. The maximum value is taken as the predicted search range due to spatial 

predictors as shown in (4.4). 

 ��"�sO� = U?� ����7 + ��7�* 7⁄ , ��rs7 + �rs7 	* 7⁄ , ��r�7 + �r�7 �* 7⁄ � (4.4) 

Step 2: Take the MVD of upper mode block and calculate its Euclidean radius. This is 

taken as the predicted search range due to upper mode block as shown in (4.5). 
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 ��"r = ��r 7 + �r 7 �* 7⁄  (4.5) 

Step 3: Take the MV of the collocated block and calculate its euclidean radius. Divide 

it by the reference frame number as shown in (4.6).  

 ��"�M�s = ����P7 + ���P7 �* 7⁄CDR_RC?UD_SfU@DC (4.6) 

 Step 5: Take the maximum of all the above predicted DSR values as shown in (4.7). 

 ��"sLM- = U?����"�sO�, ��"r , ��"�M�s� (4.7) 

Step 6: Multiply the obtained search range obtained with (4.7) by the factor 2 to get 

the DSR value. The final DSR value is the clipped version of the previous result as 

shown in (4.8) 

 ��" = 2 × ��"pLM- �≥ �SifB_hD?CEℎ_C?S;D4≤ �SifB_hD?CEℎ_C?S;D (4.8) 

The proposed DSR algorithm was compared with the TZSearch algorithm of the 

HEVC reference software HM. TABLE 4.2 shows the summary of simulation results. 

The test conditions for the simulation are shown in Table 2.3 of Section 2.7. The results 

show that on an average, there is 47.2% decrease in ME time (∆T) or 48.5% reduction 

in search points (∆N), when compared to TZSearch algorithm, with negligible reduction 

in PSNR (0.004 dB average) and negligible increase in bitrate (0.12 %). The variation 

(in time savings and complexity) between various test sequences is due to the fact that 

some sequences have high motion content while some have low.  
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4.3 PROPOSED INITIAL SEARCH POINT PREDICTION ALGORITHM 

The proposed algorithm uses a median predictor and the aforementioned spatial, 

temporal, upper-mode predictors for finding the initial search point. The median 

predictor is calculated by taking the average of the spatial left, up and upper right 

coordinates. The cost of each predictor is calculated. The predictor with least cost is 

taken as the best starting point for ME process. 

A set of predicted MV points called Initial Search Points set (ISP set) is used to 

store the initial search points. Initially, the least cost point is added to this set. Though 

the least cost point can lead to fast convergence when compared with other predictors, 

there is also a possibility that the other predictors may finally converge to a better MV. 

Hence, for each of the predicted points, the Euclidean distance from the least cost point 

is calculated. If this distance is greater than a threshold value (taken as 16) then the local 

minima of the predicted point is calculated and added to the ISP set. The least cost point 

in the ISP set is taken as the final ISP (Initial Search Point) for the ME process. The 

complete ISP algorithm is depicted in Fig. 4.2. 

TABLE 4.2: SIMULATION RESULTS FOR PROPOSED DSR ALGORITHM 

Class Sequence ∆∆∆∆T (%) ∆∆∆∆N (%) 
∆∆∆∆PSNR 

(dB) 

∆∆∆∆bit-

rate 

(%) 

B 

(1920x1080) 

Kimono 60.4 62.8 0.005 -0.13 

ParkScene 43.7 47.1 0.001 -0.08 

Cactus 56.5 57.5 0.003 -0.31 

BasktbalDrve 32.7 33.6 0.002 -0.05 

BQTerrace 65.1 68.7 0.003 -0.09 

C 

(832x480) 

RaceHorses 63.4 69.8 0.001 -0.14 

BQMall 51.3 53.8 0.003 -0.11 

PartyScene 48.8 50.0 0.006 -0.02 

BasktbalDril 61.4 64.2 0.012 -0.36 

D 

(416x240) 

RaceHorses 64.3 67.6 0.007 -0.25 

BQSquare 17.6 17.8 0.001 -0.19 

BlwngBubles 38.5 38.5 0.006 -0.04 

BasktbalPass 62.5 65.5 0.007 -0.04 

E 

(1280x720) 

FourPeople 32.8 30.9 0.002 -0.07 

Johnny 20.0 17.0 0.004 -0.05 

KristnAndSar 37.5 32.4 0.002 -0.06 

Average 47.2 48.5 0.004 -0.12 
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TABLE 4.3 shows the summary of simulation results after adding the proposed 

ISP algorithm to the TZSearch algorithm. The simulation results show that there is on 

average 13.9% reduction in ME time or 14.1% reduction in search points compared 

with original TZSearch algorithm. The PSNR loss is 0.001 dB (average) and bitrate 

increase is 0.02% (average) which is negligible. 

4.4 PROPOSED EARLY TERMINATION ALGORITHM 

For the aforementioned spatial neighboring blocks and temporally co-located block the 

previous cost values are stored and the least cost in these values is taken as the threshold 

for early termination. If the cost between the current block and ISP is less than this 

threshold then this point is skipped. This is possible due to the correlation of the cost of 

spatial neighbors and temporal blocks (of same size) with the cost of current block. This 

step can reduce the complexity. Even after skipping the global search stage, fine 

refinement stage is carried out and hence the quality loss can be compensated. TABLE 

4.4 shows the summary of simulation results after adding this algorithm to the 

TZSearch algorithm. The simulation results show that there is on average 8.2% 

 

TABLE 4.3: SIMULATION RESULTS FOR 

PROPOSED ISP ALGORITHM 

Class Sequence 
∆∆∆∆T 

(%) 

∆∆∆∆N 

(%) 

∆∆∆∆PSNR 

(dB) 

∆∆∆∆bit-

rate 

(%) 

B 

(1920x1080) 

Kimono 18.2 18.6 0.000 -0.07 

ParkScene 15.9 15.4 -0.001 0.01 

Cactus 14.1 15.0 0.000 -0.01 

BasktbalDrve 8.3 8.3 0.000 0.00 

BQTerrace 15.6 15.9 0.001 -0.03 

C 

(832x480) 

RaceHorses 17.6 18.3 0.001 -0.01 

BQMall 14.8 15.2 -0.002 -0.09 

PartyScene 14.2 15.3 0.001 0.03 

BasktbalDril 17.3 17.5 0.003 -0.07 

D 

(416x240) 

RaceHorses 20.7 20.8 0.005 -0.07 

BQSquare 2.8 4.4 0.000 0.02 

BlwngBubles 14.9 14.4 -0.005 -0.06 

BasktbalPass 17.1 17.2 0.003 0.00 

E 

(1280x720) 

FourPeople 10.8 11.0 -0.002 -0.07 

Johnny 7.5 7.2 0.000 0.08 

KristnAndSar 12.3 11.8 -0.003 0.02 

Average 13.9 14.1 0.001 -0.02 
 

Fig. 4.2 Flowchart of proposed 

ISP algorithm 
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reduction in ME time or 5.8% 

reduction in search points compared 

with TZSearch algorithm without 

early termination. There is negligible 

PSNR loss - 0.001 dB and negligible 

bitrate increase is 0.03%. 

4.5 PROPOSED GRID PATTERN ALGORITHM 

After the early termination stage, if the threshold condition is not satisfied, the 

algorithm searches for the global minimum point. This step is used in order to prevent 

the MV from getting trapped into local minimum. Once the coarse point is found, it can 

be later refined to get final the optimal MV. The parameters that affect the convergence 

speed and accuracy of the global search point stage are the search pattern shape and the 

step size. The search pattern shape is the grid pattern shape taken and the step size is the 

distance between successive grids. In our published work [P5], it was demonstrated that 

rotating hexagonal grids provide better performance than square or diamond patterns. 

The proposed algorithm improves the results by advancing a variable step-size for the 

rotating-hexagonal search pattern. 

As explained in chapter 3, the fast ME algorithm used in HEVC has two types of 

grids, diamond and square. Both of these types of grids have 8 search points per grid. If 

these grids are replaced with hexagonal grids, computational time can be saved as the 

TABLE 4.4:  SIMULATION RESULTS FOR 

PROPOSED GLOBAL SEARCH SKIP 

ALGORITHM 

Class Sequence 
∆∆∆∆T 

(%) 

∆∆∆∆N 

(%) 

∆∆∆∆PSNR 

(dB) 

∆∆∆∆bit-

rate 

(%) 

B 

(1920x1080) 

Kimono 2.1 4.3 0.001 -0.07 

ParkScene 5.4 5.1 0.000 -0.08 

Cactus 7.3 6.0 0.002 -0.04 

BasktbalDrve 5.1 4.3 0.000 -0.04 

BQTerrace 8.7 6.6 0.001 -0.02 

C 

(832x480) 

RaceHorses 20.3 6.9 0.000 -0.05 

BQMall 10.5 7.7 0.000 -0.06 

PartyScene 9.4 7.3 0.001 0.01 

BasktbalDril 8.8 7.1 0.003 -0.09 

D 

(416x240) 

RaceHorses 9.3 7.0 0.003 -0.06 

BQSquare 7.8 5.7 0.002 0.02 

BlwngBubles 8.6 6.4 -0.003 -0.06 

BasktbalPass 9.1 7.4 0.004 -0.03 

E 

(1280x720) 

FourPeople 6.8 4.5 0.000 -0.01 

Johnny 4.7 2.3 0.000 0.02 

KristnAndSar 7.7 3.7 -0.003 0.08 

Average 8.2 5.8 0.001 -0.03 

 

Fig. 4.3 Illustration of Rotating-

hexagonal search pattern 
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hexagonal grids have only 6 points per grid. Although hexagonal grids save 

computation time, they might lose output video quality for vertical motion estimation as 

the pattern orientation favor horizontal motion. This is due to the fact that the horizontal 

hexagons have more horizontal search points and thus provide better estimates for 

horizontal moving objects. On the other hand, vertical hexagons have more vertical 

search points and provide better estimates for vertically moving objects, losing 

performance for horizontal motion. Hence, the proposed algorithm adopts a rotating 

hexagonal pattern for balancing performance between horizontal and vertical motion as 

shown in Fig. 4.3. The total number of search points for each pattern for a given search 

range can be computed with (4.9) and (4.10), where ND, NS, NH, NRH represents the 

number of search points for diamond, square, hexagon and rotating-hexagon patterns 

respectively ( floor rounds to the least integer). 

 ,� = ,o = 8 × R9::C�9:;7"� (4.9) 

 ,~ = ,�~ = 6 × R9::C�9:;7"� (4.10) 

The proposed algorithm uses variable step size for the search pattern to increase the 

accuracy of the global search point. Since the MV probability density is high until the 

stride length (radius of the search pattern) value reaches 16, the proposed algorithm uses 

a constant step-size of 2. After this stride length, the proposed algorithm uses a 

logarithmic step size with initial value 2 and proceeding to values 4, 8, 16 and so on. 

This is due to the center-biased nature of MVs, whose distribution is concentrated more 

near the origin and decreases as it moves away [131]. 

Though the global minimum search point algorithm is actually used to solve 

local minima problems, a single minimum search point may not be always enough. 

Some search points which have cost slightly higher than the minimum point may 

converge to a better optimum in a fine refinement stage. Hence, all the points in the 

global search stage with a cost less than a threshold cost value are identified and added 

to GSP (Global Search Point) set in sorted order. The cost threshold value that is 

considered is the minimum cost value of previously coded spatial neighboring blocks 

and co-located block. Then, for each point in GSP set, the Euclidean distance (∆r) and 

the cost difference (∆J) to the least cost point are calculated. Points with ∆r less than 16 



PROPOSED MOTION ESTIMATION ALGORITHM 

 

 

 
91 

 

are deleted from the GSP set. The value 16 is taken since, the fine-refinement stage in 

the proposed ME algorithm is performed in the reduced SW size of 16 and thus any 

point with a distance less than 16 from least cost point will be searched in the fine 

refinement stage.  

Furthermore, if the number of points (N) in GSP set is too large, the complexity 

of the total ME algorithm increases, as the fine refinement has to be performed for each 

point in the GSP set. Hence, a tolerance limits for the cost difference and the total 

number of points are set, and the redundant points are removed from the GSP set to get 

a better trade-off between complexity and PSNR loss. The tolerance limit for ∆J is set to 

20% and for ‘N’, it is set to 5 points. Any point which has ∆J less than 20% is first 

removed and then checked for the total number of remaining points in the GSP set. If 

there are more than 5 points, than these points are sorted in descending cost (∆J) order. 

All the points above the fifth position are removed from the GSP set. The detailed 

flowchart of the proposed algorithm is shown in Fig. 4.4. 

Yes

Perform search using 

rotating hexagon pattern

Take least cost point in 

GSP set as reference point

Add each point with cost 

below reference cost to 

GSP set in the order of 

their cost

Calculate ∆r and ∆J from 

reference point to each of 

the points in GSP set

Skip the GSP points with 

∆r < 16 and ∆J < 20%

Final GSP set for fine 

refinement stage

N > 5

Take the next four least 

cost points after reference 

point

No

 

Fig. 4.4 Flowchart of the proposed grid pattern algorithm 
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The proposed algorithm is implemented with the TZSearch fast ME algorithm 

present in the HEVC reference software. TABLE 4.5 shows the summary of simulation 

results. The results show that there is 15.6% decrease in ME time or 16.9% decrease in 

ME search points, with negligible loss in PSNR (0.002 dB) and bitrate (0.09%). 

4.6 PROPOSED FINE REFINEMENT ALGORITHM 

After searching the global minimum point, the next task is to find the final optimal MV. 

Most often, the SAD error function does not decrease monotonically from the global 

minimum point. This is illustrated in Fig. 4.5, for class C RaceHorses sequence for a 

search window in 7th frame. The graph illustrates that there are many local minimum 

points. Hence, to find the optimal point, first the local search window is constructed 

with search range 16. Then the rotating hexagon search pattern (with constant step-size 

two) is used again within this local SW to find a local sub-optimal search point. After 

finding the local sub-optimal point, the ME algorithm starts refining monotonically 

using a gradient descent search based hexagonal pattern shown in Fig 4.6. In each step 

of the refinement, the minimum point is taken as the center point of the new hexagonal 

search pattern. Hence for a hexagon, there are only three new points to be searched in 

TABLE 4.5: SIMULATION RESULTS FOR PROPOSED MMVSSP 

ALGORITHM 

Class Sequence ∆∆∆∆T (%) ∆∆∆∆N (%) 
∆∆∆∆PSNR 

(dB) 

∆∆∆∆bit-

rate 

(%) 

B 

(1920x1080) 

Kimono 12.8 15.0 0.003 -0.13 

ParkScene 16.3 17.9 0.001 -0.13 

Cactus 14.2 15.9 0.002 -0.04 

BasktbalDrve 17.7 19.6 0.000 -0.01 

BQTerrace 15.3 17.1 0.002 -0.08 

C 

(832x480) 

RaceHorses 11.9 13.7 0.003 -0.11 

BQMall 16.0 17.1 0.001 -0.10 

PartyScene 15.6 17.0 0.004 -0.08 

BasktbalDril 12.1 12.8 0.006 -0.08 

D 

(416x240) 

RaceHorses 13.2 14.2 0.010 -0.20 

BQSquare 22.6 24.1 0.001 -0.02 

BlwngBubles 17.2 17.0 0.002 -0.14 

BasktbalPass 14.4 15.5 0.003 -0.19 

E 

(1280x720) 

FourPeople 16.1 17.0 0.000 -0.09 

Johnny 16.9 18.0 0.002 -0.01 

KristnAndSar 16.9 18.3 -0.002 -0.03 

Average 15.6 16.9 0.002 -0.09 
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each step, unlike in a square pattern which has either three or five new points in each 

step. The diamond pattern also has three new points in each step. The hexagon pattern is 

however able to cover wider search area than the diamond and hence it converges 

accurately. The fine refinement stops when the minimum cost point is the center point. 

Then, there are ten points that were not covered by the convergence process. The 

proposed ME algorithm checks these last ten points around that search point, as shown 

by the grey points in Fig. 4.6. 

The native fine refinement algorithm embedded in the TZSearch ME Algorithm 

was replaced by the proposed algorithm, in order to verify its performance. The 

summary of the simulation results are shown in TABLE 4.6.  The results show that 

there is 15.9% reduction in ME time or 13.7% reduction with negligible loss in PSNR 

(0.003 dB) and negligible increase in bitrate (0.05 %), when compared to the TZSearch 

 

Fig. 4.5 Surface plot of ME cost for class C RaceHorses sequence 

 

Fig. 4.6 Fine refinement patterns using hexagons 
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ME Algorithm. 

4.7 SIMULATION RESULTS OF OVERALL PROPOSED ALGORITHM 

The proposed algorithms were integrated to form a hybrid ME algorithm. This 

algorithm was implemented and tested with the HEVC reference software HM [130]. 

TABLE 4.7 to TABLE 4.20 show the simulation results for full search, TZSearch 

algorithm, and the proposed complete algorithm. TABLE 4.21 to TABLE 4.24 show the 

comparison results of proposed algorithm with full search and TZSearch algorithm. In 

each experiment, the average results of all sequences for each class are shown. ∆T, ∆N, 

and ∆E represents the percentage difference of total ME time, number of search points 

and total encoding time between the original TZSearch algorithm and the proposed 

algorithm, respectively. BD-PSNR and BD-Bitrate denotes the Bjontegard-Delta PSNR 

and Bjontegard-Delta bitrate [25] between TZSearch and the proposed algorithm. The 

results show that there is a 48.3% to 66.1% reduction in ME complexity or 50.3% to 

TABLE 4.6: SIMULATION RESULTS FOR PROPOSED FINE REFINEMENT 

ALGORITHM 

Class Sequence ∆∆∆∆T (%) ∆∆∆∆N (%) 
∆∆∆∆PSNR 

(dB) 

∆∆∆∆bit-

rate 

(%) 

B 

(1920x1080) 

Kimono 14.4 15.0 0.001 0.08 

ParkScene 19.2 16.8 0.001 0.06 

Cactus 14.5 13.1 0.002 0.01 

BasktbalDrve 15.8 13.6 0.002 0.08 

BQTerrace 15.6 14.2 0.002 0.02 

C 

(832x480) 

RaceHorses 24.1 14.5 0.001 0.04 

BQMall 17.4 15.4 0.003 0.05 

PartyScene 14.4 13.5 0.002 0.02 

BasktbalDril 13.8 12.8 0.006 0.10 

D 

(416x240) 

RaceHorses 17.7 16.0 0.003 0.01 

BQSquare 12.3 10.6 0.003 0.01 

BlwngBubles 17.4 15.6 0.002 0.08 

BasktbalPass 16.0 15.3 0.005 0.06 

E 

(1280x720) 

FourPeople 12.2 10.2 0.003 0.05 

Johnny 13.2 10.5 0.005 0.07 

KristnAndSar 15.6 12.4 0.008 0.12 

Average 15.9 13.7 0.003 0.05 
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65.6% reduction in ME time with negligible loss in bitrate (0.12 to 0.85 BD-bitrate) and 

PSNR (0.004 to 0.03 dB BD-PSNR). 

TABLE 4.25 shows the summary of the comparison results with the full search 

algorithm and the TZSearch algorithm for all configurations. The results show that on 

an average there is 98.6 to 99.4% decrease in complexity or 97.1 to 98.8% reduction in 

ME time compared to FS algorithm. Similarly, compared to TZSearch algorithm the 

decrease in complexity and ME time are 34.5 to 55.7% and 32.4 to 55.1% respectively. 

The decrease in total encoding time compared to FS and TZSearch algorithm ranges 

from 78.7 to 92.1% and 10.3 to 33.9% respectively. The BD-PSNR loss and BD-bitrate 

compared to FS range from -0.023 to -0.055 dB and 0.53 to 0.84 % respectively. 

Similarly, the BD-PSNR loss and BD-bitrate compared to TZSearch range from -0.015 

to -0.048 dB and 0.39 to 0.51 % respectively. Hence the results show that in any given 

configuration the overall gains in complexity and encoding speeds are significant with 

negligible loss in PSNR and bitrate. Annex A shows the RD curves of each sequence for 

the full search, TZSearch and the proposed algorithm. These RD curves demonstrate 

that the complexity reduction is achieved with negligible loss in bitrate and output video 

quality (PSNR).   

The proposed algorithm is compared with some of the latest works of HEVC 

motion estimation in the literature [132] and [133]. When comparing to other papers, 

our proposed algorithm outperforms the related results. For instance, for BasketballPass 

video sequence, the proposed algorithm reached ∆T = 81.75% (QP = 27) and ∆T = 

80.29% (QP = 32) whereas in [132], ∆T = 76.81% (QP = 27) and ∆T = 74.70% (QP = 

32) and in [133], ∆T = 21.37% (QP = 27) and ∆T = 18.08% (QP = 32) were reached. 
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TABLE 4.7: SIMULATION RESULTS OF FULL SEARCH ALGORITHM FOR 

CLASS B AND CLASS C SEQUENCES IN LOW DELAY P MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Kimono 

(class B) 

1920x1080 

22 7363.0976 42.0089 30703 3.18029E+11 29036 

27 3562.88 40.0787 29929 3.16192E+11 28584 

32 1771.616 37.3917 29352 3.15173E+11 28230 

37 892.864 34.6794 28843 3.13112E+11 27870 

Park Scene (class 

B) 

1920x1080 

22 9616.864 39.9021 15603 1.55357E+11 14063 

27 3920.5888 37.19 14663 1.50695E+11 13512 

32 1710.4064 34.5179 14184 1.48398E+11 13227 

37 756.544 32.0279 13406 1.40301E+11 12548 

Cactus (class B) 

1920x1080 

22 26892.1867 38.5293 9469 85704110312 7800 

27 7668.12 36.5113 8520 81706099384 7377 

32 3471.1067 34.4457 8117 79868816982 7179 

37 1724.1067 32.1464 8172 80965171300 7317 

Basketball Drive 

(class B) 

1920x1080 

22 67358.704 39.0987 17181 1.66816E+11 15145 

27 15127.344 35.3152 14176 1.43992E+11 12943 

32 4595.856 33.1709 11104 1.1423E+11 10183 

37 1827.104 30.913 8772 88491644009 7951 

BQ Terrace 

(class B) 

1920x1080 

22 14950.6667 39.8842 37039 3.92948E+11 35430 

27 5354.2133 38.4426 35882 3.88643E+11 34669 

32 2603.1733 36.7536 35123 3.84485E+11 34092 

37 1375.0267 34.7734 34806 3.78846E+11 33862 

Race Horses (class 

C) 832x480 

22 7089.584 39.5332 6309 63737199410 5854 

27 2901.288 35.5399 6256 64375362098 5913 

32 1320.352 32.2388 6153 64241037765 5880 

37 621.656 29.3896 6030 63845471709 5803 

BQ Mall  (class C) 

832x480 

22 5527.728 39.7072 1491 13130164079 1196 

27 2541.024 36.7977 1402 12873734814 1173 

32 1271.12 33.7717 1386 13156620907 1195 

37 656.48 30.7793 1340 12992349959 1171 

Party Scene (class 

C) 

832x480 

22 13861.8267 38.2909 1500 11377168059 1048 

27 6313.2 34.0909 1417 11764317384 1086 

32 2902.0267 30.49 1415 12638747206 1160 

37 1330.2 27.313 1395 13022545748 1188 

Basketball Drill 

(class C) 

832x480 

22 3945.8933 40.4765 2018 18637282920 1704 

27 1831 37.3603 2090 20232013917 1843 

32 884.3467 34.4784 2181 21810973597 1979 

37 458.3733 31.9658 2350 24052779670 2175 
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TABLE 4.8: SIMULATION RESULTS OF FULL SEARCH ALGORITHM FOR 

CLASS D AND CLASS E SEQUENCES IN LOW DELAY P MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Race Horses 

(class D) 

416x240 

22 1700.08 39.5203 1062 10319522416 949 

27 830.52 35.3431 1065 10554651413 975 

32 404.872 31.7321 1039 10405557275 966 

37 203.112 28.7918 1009 10575393851 951 

BQ Square 

(class D) 

416x240 

22 2921.136 38.8745 218 1389023841 124 

27 1138.736 34.6021 191 1391405615 125 

32 514.24 31.4292 177 1362340327 125 

37 244.032 28.4483 167 1431340558 126 

Blowing 

Bubbles  (class 

D) 

416x240 

22 2226.7867 38.399 282 2040904656 184 

27 952.08 34.8528 284 2342016121 211 

32 426.28 31.7578 254 2169090209 198 

37 194.4933 29.0058 248 2288982356 202 

Basketball Pass      

(class D) 

416x240 

22 921.1467 41.3041 184 1442628035 126 

27 462.64 37.6572 191 1602193844 141 

32 232.2667 34.3564 196 1700333098 152 

37 119.4267 31.4207 191 1750457401 152 

Four People 

(class E) 

1280x720 

22 3047.056 42.484 1681 14109467777 1260 

27 1311.264 40.377 1519 13066090000 1166 

32 710.704 37.8422 1462 12758729494 1135 

37 403.504 34.9432 1483 13144551438 1167 

Johnny (class E)

1280x720 

22 2976.176 42.7202 2147 18940012850 1697 

27 916.896 40.9513 1870 16920269420 1511 

32 420.496 39.0079 1649 14858222257 1320 

37 230.992 36.6697 1553 13952985209 1240 

Kristen And 

Sara 

(class E) 

1280x720 

22 2842.112 43.1495 1857 15796594631 1418 

27 1136.272 41.0986 1645 14256984642 1273 

32 576.064 38.7833 1693 15133389627 1353 

37 315.408 36.1355 1739 15922624158 1416 
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TABLE 4.9: SIMULATION RESULTS OF FULL SEARCH ALGORITHM FOR 

CLASS B AND CLASS C SEQUENCES IN LOW DELAY B MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Kimono 

(class B) 

1920x1080 

22 6989.7 42.1573 32125 3.29E+11 29969 

27 3459.3 40.2322 30933 3.23E+11 29117 

32 1704.5 37.5649 30061 3.18E+11 28500 

37 851.56 34.8612 29292 3.14E+11 27901 

Park Scene (class 

B) 

1920x1080 

22 9193.2 39.9779 17748 1.73E+11 15733 

27 3826.3 37.237 16289 1.63E+11 14687 

32 1680.1 34.5439 15304 1.56E+11 13919 

37 741.39 32.0333 14596 1.5E+11 13343 

Cactus (class B) 

1920x1080 

22 24399 38.6072 11436 1.02E+11 9352 

27 7398.9 36.5712 9886 9.21E+10 8354 

32 3408.6 34.4943 9524 9.1E+10 8205 

37 1700.5 32.1786 9401 9.12E+10 8188 

Basketball Drive 

(class B) 

1920x1080 

22 56327 39.0548 19214 1.84E+11 16767 

27 12453 35.6032 15077 1.5E+11 13470 

32 3944.1 33.3929 12521 1.25E+11 11208 

37 1680.1 31.0729 10273 1.02E+11 9068 

BQ Terrace 

(class B) 

1920x1080 

22 13976 39.9553 37575 3.94E+11 35523 

27 5141.2 38.5337 36468 3.89E+11 34811 

32 2513.5 36.8806 35691 3.85E+11 34241 

37 1340.7 34.9053 34934 3.79E+11 33600 

Race Horses (class 

C) 832x480 

22 6691 39.5571 6762 6.74E+10 6212 

27 2824.9 35.6457 6585 6.68E+10 6147 

32 1300.2 32.303 6383 6.56E+10 6017 

37 614.69 29.4174 6138 6.49E+10 5823 

BQ Mall  (class C) 

832x480 

22 5198.6 39.8052 1711 1.45E+10 1339 

27 2429.9 36.8791 1593 1.41E+10 1291 

32 1231.4 33.8592 1525 1.38E+10 1261 

37 643.52 30.8433 1475 1.38E+10 1237 

Party Scene (class 

C) 

832x480 

22 12504 38.4023 1792 1.36E+10 1262 

27 5999.5 34.2471 1746 1.41E+10 1322 

32 2823 30.5495 1701 1.46E+10 1354 

37 1305.9 27.3367 1670 1.53E+10 1383 

Basketball Drill 

(class C) 

832x480 

22 3688.5 40.5948 2250 2.02E+10 1857 

27 1753.9 37.4717 2343 2.21E+10 2016 

32 852.24 34.5658 2367 2.33E+10 2091 

37 443.17 32.0506 2428 2.44E+10 2182 
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TABLE 4.10: SIMULATION RESULTS OF FULL SEARCH ALGORITHM FOR 

CLASS D AND CLASS E SEQUENCES IN LOW DELAY B MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Race Horses 

(class D) 

416x240 

22 1660 39.6077 1165 1.14E+10 1030 

27 824.81 35.4252 1134 1.13E+10 1022 

32 401.78 31.7454 1085 1.1E+10 991 

37 201.15 28.8194 1091 1.12E+10 1011 

BQ Square 

(class D) 

416x240 

22 2244.9 38.9145 247 1.52E+09 137 

27 970.02 34.9272 217 1.47E+09 133 

32 472.48 31.6392 196 1.41E+09 127 

37 232.64 28.5271 184 1.4E+09 124 

Blowing 

Bubbles  (class 

D) 

416x240 

22 2106.5 38.479 353 2.56E+09 233 

27 924.49 34.9171 356 2.93E+09 263 

32 421.92 31.7923 340 2.95E+09 264 

37 194.92 29.0344 299 2.63E+09 234 

Basketball Pass      

(class D) 

416x240 

22 900.19 41.3494 213 1.57E+09 138 

27 456.36 37.7131 209 1.61E+09 142 

32 230.33 34.398 203 1.64E+09 143 

37 118.79 31.398 208 1.74E+09 152 

Four People 

(class E) 

1280x720 

22 2896.3 42.5569 1899 1.49E+10 1323 

27 1289.5 40.4316 1760 1.42E+10 1257 

32 706.13 37.8646 1676 1.37E+10 1204 

37 402.67 34.9589 1717 1.43E+10 1263 

Johnny (class E)

1280x720 

22 2587.9 42.8426 2586 2.22E+10 1977 

27 856.02 41.0844 2224 1.93E+10 1709 

32 413.2 39.1141 1972 1.69E+10 1493 

37 228.82 36.7544 1921 1.66E+10 1456 

Kristen And 

Sara 

(class E) 

1280x720 

22 2701.8 43.2114 2218 1.8E+10 1609 

27 1113.3 41.1433 2066 1.73E+10 1537 

32 565.6 38.8118 2096 1.81E+10 1605 

37 314.4 36.1756 2128 1.83E+10 1643 
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TABLE 4.11: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR 

CLASS B AND CLASS C SEQUENCES IN LOW DELAY P MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Kimono 

(class B) 

1920x1080 

22 7357.53 42.0075 2375 6.196E+09 736 

27 3561.786 40.076 1944 5.017E+09 624 

32 1777.504 37.3727 1607 3.86E+09 512 

37 889.792 34.6967 1350 2.824E+09 409 

Park Scene (class 

B) 

1920x1080 

22 9622.176 39.8995 1778 2.142E+09 263 

27 3922.08 37.1851 1361 1.769E+09 228 

32 1710.906 34.5171 1130 1.446E+09 196 

37 757.9264 32.0245 996 1.188E+09 168 

Cactus (class B) 

1920x1080 

22 26935.2 38.5296 1964 2.826E+09 325 

27 7678.147 36.5099 1397 2.315E+09 276 

32 3475.613 34.4353 1161 1.872E+09 236 

37 1731.107 32.1414 1029 1.493E+09 201 

Basketball Drive 

(class B) 

1920x1080 

22 67392.53 39.0977 2267 2.321E+09 277 

27 15129.17 35.3067 1421 1.677E+09 212 

32 4596.88 33.1538 1080 1.267E+09 174 

37 1828.016 30.8963 937 997718451 142 

BQ Terrace 

(class B) 

1920x1080 

22 14929.88 39.8812 2259 5.622E+09 688 

27 5356.493 38.4422 1739 4.263E+09 554 

32 2603.987 36.7461 1441 3.164E+09 445 

37 1376.947 34.759 1250 2.358E+09 358 

Race Horses (class 

C) 832x480 

22 7118.28 39.5403 632 1.554E+09 182 

27 2917.112 35.5395 496 1.31E+09 160 

32 1326.4 32.2238 403 1.038E+09 135 

37 623.6 29.3662 336 794031692 112 

BQ Mall  (class C) 

832x480 

22 5543.456 39.7067 341 446815190 50 

27 2549.552 36.7953 269 388602040 45 

32 1273.392 33.771 227 326834209 39 

37 656.944 30.7602 200 272688700 34 

Party Scene (class 

C) 

832x480 

22 13890.95 38.2977 513 620446227 68 

27 6329.373 34.0949 388 545585109 62 

32 2914.333 30.4886 306 450311595 54 

37 1333.107 27.3043 250 358812891 45 

Basketball Drill 

(class C) 

832x480 

22 3956.667 40.4824 387 670078838 75 

27 1837.333 37.3527 312 569456541 67 

32 886.6267 34.4763 257 461882086 58 

37 458.0533 31.9501 222 368540515 49 
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TABLE 4.12: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR 

CLASS D AND CLASS E SEQUENCES IN LOW DELAY P MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Race Horses 

(class D) 

416x240 

22 1702.336 39.5124 147 326350758 36 

27 835.904 35.3394 120 287298379 33 

32 407.816 31.7276 99 235870365 29 

37 203.92 28.7732 81 184092883 24 

BQ Square 

(class D) 

416x240 

22 2914.464 38.866 98 44107053 4 

27 1136.672 34.6002 69 41073161 4 

32 513.744 31.4165 53 38747966 4 

37 243.584 28.444 45 36576430 4 

Blowing 

Bubbles  (class 

D) 

416x240 

22 2233.107 38.4098 109 129333066 14 

27 953.9333 34.8495 84 111632416 12 

32 428.28 31.7539 65 90117509 10 

37 195.92 28.9916 54 72658664 9 

Basketball Pass      

(class D) 

416x240 

22 924.1067 41.3012 65 74604633 8 

27 462.8667 37.6504 56 66739132 7 

32 231.1867 34.345 49 57244446 7 

37 119.2267 31.4102 44 49413123 6 

Four People 

(class E) 

1280x720 

22 3033.488 42.4883 466 425547001 49 

27 1312.496 40.3803 389 382700843 42 

32 710.848 37.8325 361 348783802 40 

37 401.12 34.9331 345 321518005 38 

Johnny (class E)

1280x720 

22 2983.616 42.7226 497 458236419 56 

27 915.168 40.9506 398 380403494 45 

32 422.976 38.9891 362 333470300 40 

37 230.08 36.6498 345 304617434 38 

Kristen And 

Sara 

(class E) 

1280x720 

22 2845.248 43.1457 501 583931233 71 

27 1133.344 41.0897 422 479206214 58 

32 574.688 38.7774 385 405412172 51 

37 316.448 36.1441 364 357662162 49 
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TABLE 4.13: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR 

CLASS B AND CLASS C SEQUENCES IN LOW DELAY B MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Kimono 

(class B) 

1920x1080 

22 6987.44 42.157 2983 6.52E+09 884 

27 3455.96 40.237 2521 5.42E+09 763 

32 1701.70 37.564 2165 4.24E+09 649 

37 851.30 34.860 1907 3.14E+09 548 

Park Scene (class 

B) 

1920x1080 

22 9197.84 39.979 2341 2.26E+09 389 

27 3833.63 37.236 1904 1.88E+09 350 

32 1682.75 34.545 1645 1.55E+09 308 

37 741.00 32.033 1525 1.29E+09 284 

Cactus (class B) 

1920x1080 

22 24394.92 38.608 2474 2.97E+09 447 

27 7418.97 36.575 1877 2.41E+09 384 

32 3415.41 34.496 1624 1.95E+09 342 

37 1698.83 32.176 1509 1.55E+09 308 

Basketball Drive 

(class B) 

1920x1080 

22 56350.30 39.051 2771 2.45E+09 404 

27 12499.15 35.592 1876 1.72E+09 318 

32 3959.44 33.369 1548 1.29E+09 276 

37 1677.97 31.045 1433 1.04E+09 247 

BQ Terrace 

(class B) 

1920x1080 

22 13979.64 39.955 2797 5.81E+09 809 

27 5162.84 38.535 2265 4.39E+09 668 

32 2516.11 36.866 1944 3.27E+09 552 

37 1335.71 34.898 1766 2.42E+09 470 

Race Horses (class 

C) 832x480 

22 6703.48 39.558 736 1.54E+09 204 

27 2841.68 35.654 606 1.31E+09 182 

32 1303.71 32.283 512 1.04E+09 157 

37 615.05 29.396 439 7.94E+08 131 

BQ Mall  (class C) 

832x480 

22 5195.76 39.804 434 4.62E+08 73 

27 2431.76 36.884 362 4.02E+08 64 

32 1237.78 33.856 317 3.35E+08 60 

37 644.85 30.838 289 2.79E+08 54 

Party Scene (class 

C) 

832x480 

22 12502.95 38.392 609 6.3E+08 93 

27 6012.80 34.251 495 5.53E+08 86 

32 2831.73 30.547 413 4.6E+08 74 

37 1305.48 27.324 352 3.68E+08 67 

Basketball Drill 

(class C) 

832x480 

22 3696.37 40.595 480 6.7E+08 95 

27 1759.20 37.460 407 5.73E+08 88 

32 850.25 34.558 350 4.63E+08 78 

37 441.77 32.036 312 3.72E+08 70 
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TABLE 4.14: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR 

CLASS D AND CLASS E SEQUENCES IN LOW DELAY B MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Race Horses 

(class D) 

416x240 

22 1665.18 39.605 175 3.28E+08 43 

27 830.34 35.416 147 2.89E+08 38 

32 405.15 31.749 125 2.37E+08 34 

37 200.94 28.786 107 1.86E+08 28 

BQ Square 

(class D) 

416x240 

22 2242.69 38.912 116 44997116 10 

27 971.47 34.933 90 41624063 10 

32 472.83 31.636 76 38992282 9 

37 234.45 28.529 67 36967461 9 

Blowing 

Bubbles  (class 

D) 

416x240 

22 2107.79 38.479 136 1.34E+08 19 

27 930.53 34.915 110 1.15E+08 18 

32 419.92 31.767 90 93907847 15 

37 193.20 29.017 77 75976792 14 

Basketball Pass      

(class D) 

416x240 

22 898.49 41.326 87 76637077 13 

27 458.37 37.724 77 68235827 12 

32 229.64 34.392 70 58349909 11 

37 117.92 31.409 65 50987854 11 

Four People 

(class E) 

1280x720 

22 2894.26 42.561 663 4.45E+08 94 

27 1290.13 40.431 586 3.98E+08 89 

32 707.02 37.868 553 3.61E+08 84 

37 402.58 34.964 535 3.3E+08 81 

Johnny (class E)

1280x720 

22 2576.40 42.833 705 4.76E+08 103 

27 857.47 41.083 603 3.99E+08 93 

32 412.08 39.105 563 3.49E+08 87 

37 228.21 36.733 541 3.13E+08 82 

Kristen And 

Sara 

(class E) 

1280x720 

22 2693.94 43.208 730 6.52E+08 127 

27 1111.31 41.148 635 5.17E+08 107 

32 566.00 38.810 591 4.31E+08 100 

37 315.28 36.177 562 3.72E+08 92 
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TABLE 4.15: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR 

CLASS B AND CLASS C SEQUENCES IN LOW DELAY P MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Kimono 

(class B) 

1920x1080 

22 7362.57 42.008 1814 1.36E+09 177 

27 3570.14 40.073 1485 1.21E+09 162 

32 1766.65 37.390 1240 1.07E+09 142 

37 890.80 34.685 1076 9.33E+08 131 

Park Scene (class 

B) 

1920x1080 

22 9644.87 39.896 1639 9.31E+08 122 

27 3928.15 37.181 1245 8.53E+08 112 

32 1710.71 34.510 1043 7.86E+08 103 

37 756.33 32.020 933 7.28E+08 97 

Cactus (class B) 

1920x1080 

22 26987.25 38.521 1766 9.07E+08 115 

27 7723.00 36.503 1240 8.24E+08 105 

32 3487.80 34.429 1035 7.69E+08 101 

37 1733.76 32.137 936 7.24E+08 92 

Basketball Drive 

(class B) 

1920x1080 

22 67531.95 39.094 2131 9.39E+08 120 

27 15153.23 35.302 1323 8.2E+08 106 

32 4582.14 33.148 1005 7.4E+08 97 

37 1830.91 30.892 888 6.9E+08 90 

BQ Terrace 

(class B) 

1920x1080 

22 14946.49 39.881 1734 1.22E+09 164 

27 5368.09 38.441 1330 1.05E+09 145 

32 2610.72 36.741 1128 9.17E+08 128 

37 1378.71 34.752 1010 8.18E+08 117 

Race Horses (class 

C) 832x480 

22 7142.51 39.541 487 2.98E+08 38 

27 2924.09 35.522 373 2.71E+08 35 

32 1330.76 32.211 300 2.39E+08 32 

37 625.83 29.357 252 2.09E+08 29 

BQ Mall  (class C) 

832x480 

22 5587.98 39.698 315 1.66E+08 19 

27 2560.99 36.776 248 1.56E+08 20 

32 1287.86 33.754 210 1.46E+08 17 

37 661.01 30.761 188 1.37E+08 17 

Party Scene (class 

C) 

832x480 

22 13962.89 38.289 473 1.91E+08 24 

27 6373.64 34.083 351 1.82E+08 23 

32 2921.97 30.472 275 1.69E+08 21 

37 1333.68 27.299 225 1.54E+08 19 

Basketball Drill 

(class C) 

832x480 

22 3978.64 40.463 337 1.94E+08 24 

27 1849.56 37.345 269 1.77E+08 22 

32 887.52 34.453 222 1.61E+08 20 

37 459.39 31.937 194 1.48E+08 19 
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TABLE 4.16: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR 

CLASS D AND CLASS E SEQUENCES IN LOW DELAY P MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Race Horses 

(class D) 

416x240 

22 1713.21 39.513 119 70639388 8 

27 840.52 35.316 95 66144311 7 

32 409.26 31.698 76 59863410 7 

37 204.69 28.772 63 52756039 7 

BQ Square 

(class D) 

416x240 

22 2941.01 38.867 97 35786878 4 

27 1145.90 34.576 68 33813930 4 

32 512.88 31.402 53 32123884 4 

37 243.54 28.416 45 30889806 4 

Blowing 

Bubbles  (class 

D) 

416x240 

22 2243.16 38.393 102 48990277 6 

27 959.33 34.840 77 45924563 5 

32 428.41 31.741 60 41833241 5 

37 198.04 28.994 50 37782697 4 

Basketball Pass      

(class D) 

416x240 

22 929.28 41.289 62 34984216 4 

27 467.71 37.656 53 34061723 4 

32 233.73 34.348 47 32925241 3 

37 119.32 31.388 43 31780297 3 

Four People 

(class E) 

1280x720 

22 3041.50 42.478 462 3E+08 37 

27 1317.97 40.369 392 2.85E+08 35 

32 712.26 37.837 365 2.76E+08 34 

37 404.38 34.945 350 2.69E+08 33 

Johnny (class E)

1280x720 

22 2994.13 42.712 490 3.23E+08 39 

27 920.90 40.934 398 2.99E+08 38 

32 419.76 38.980 365 2.82E+08 34 

37 227.81 36.650 350 2.72E+08 33 

Kristen And 

Sara 

(class E) 

1280x720 

22 2850.56 43.141 484 3.31E+08 42 

27 1134.75 41.086 411 3.08E+08 39 

32 573.78 38.777 379 2.92E+08 36 

37 318.50 36.143 361 2.81E+08 36 
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TABLE 4.17: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR 

CLASS B AND CLASS C SEQUENCES IN LOW DELAY B MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Kimono 

(class B) 

1920x1080 

22 6992.24 42.159 2406 2.27E+09 303 

27 3458.41 40.235 2062 2.08E+09 283 

32 1703.93 37.567 1796 1.9E+09 259 

37 850.44 34.851 1606 1.74E+09 242 

Park Scene (class 

B) 

1920x1080 

22 9210.20 39.978 2229 1.86E+09 247 

27 3834.25 37.232 1817 1.72E+09 233 

32 1685.58 34.539 1580 1.6E+09 217 

37 741.36 32.027 1449 1.52E+09 207 

Cactus (class B) 

1920x1080 

22 24442.68 38.609 2268 1.58E+09 207 

27 7432.48 36.570 1699 1.35E+09 177 

32 3427.24 34.486 1483 1.27E+09 170 

37 1708.80 32.166 1368 1.2E+09 158 

Basketball Drive 

(class B) 

1920x1080 

22 56401.20 39.050 2649 1.86E+09 247 

27 12488.70 35.592 1801 1.64E+09 219 

32 3951.87 33.369 1496 1.52E+09 202 

37 1677.86 31.038 1382 1.44E+09 193 

BQ Terrace 

(class B) 

1920x1080 

22 13987.25 39.956 2288 2.07E+09 278 

27 5164.25 38.528 1879 1.87E+09 258 

32 2523.69 36.867 1656 1.71E+09 241 

37 1337.80 34.911 1525 1.6E+09 226 

Race Horses (class 

C) 832x480 

22 6733.18 39.560 606 5.01E+08 66 

27 2851.66 35.653 491 4.64E+08 63 

32 1307.35 32.267 416 4.22E+08 57 

37 618.74 29.390 364 3.82E+08 54 

BQ Mall  (class C) 

832x480 

22 5200.86 39.800 402 2.63E+08 34 

27 2441.06 36.873 333 2.46E+08 32 

32 1245.17 33.847 293 2.31E+08 30 

37 647.79 30.830 269 2.16E+08 27 

Party Scene (class 

C) 

832x480 

22 12526.59 38.399 573 3.75E+08 48 

27 6037.48 34.252 463 3.55E+08 46 

32 2839.31 30.544 385 3.27E+08 42 

37 1309.99 27.327 329 2.97E+08 39 

Basketball Drill 

(class C) 

832x480 

22 3714.40 40.597 429 2.96E+08 37 

27 1761.31 37.453 363 2.79E+08 36 

32 854.89 34.551 312 2.61E+08 34 

37 444.31 32.033 282 2.47E+08 33 
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TABLE 4.18: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR 

CLASS D AND CLASS E SEQUENCES IN LOW DELAY B MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Race Horses 

(class D) 

416x240 

22 1670.08 39.594 150 1.23E+08 15 

27 831.42 35.386 125 1.17E+08 15 

32 405.57 31.724 106 1.08E+08 14 

37 201.94 28.761 91 97015348 13 

BQ Square 

(class D) 

416x240 

22 2244.66 38.913 116 74235128 9 

27 972.18 34.922 91 71254287 9 

32 472.74 31.630 77 66801454 8 

37 233.81 28.531 68 62261607 8 

Blowing 

Bubbles  (class 

D) 

416x240 

22 2114.56 38.475 131 95485714 11 

27 930.63 34.925 104 89160582 11 

32 418.61 31.746 85 81078083 10 

37 194.04 28.992 73 73230996 9 

Basketball Pass      

(class D) 

416x240 

22 903.89 41.325 80 51936540 7 

27 459.79 37.709 72 51108934 6 

32 230.33 34.368 66 51162345 6 

37 118.53 31.412 62 52260397 6 

Four People 

(class E) 

1280x720 

22 2901.89 42.554 640 4.44E+08 57 

27 1291.89 40.427 563 4.08E+08 53 

32 707.81 37.863 532 3.85E+08 49 

37 403.62 34.959 513 3.72E+08 48 

Johnny (class E)

1280x720 

22 2582.30 42.837 684 5.34E+08 70 

27 858.90 41.076 585 4.85E+08 64 

32 415.46 39.100 546 4.5E+08 57 

37 227.52 36.732 526 4.24E+08 54 

Kristen And 

Sara 

(class E) 

1280x720 

22 2694.29 43.205 688 5.63E+08 74 

27 1115.47 41.143 606 5.22E+08 69 

32 568.18 38.802 567 4.96E+08 63 

37 316.00 36.170 542 4.75E+08 64 
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TABLE 4.19: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR 

CLASS A SEQUENCES IN RANDOM ACCESS MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Traffic (class A)

2560x1600 

22 13628.03 41.620 3006.014 1.84E+09 342 

27 5461.34 39.057 2471.496 1.6E+09 309 

32 2607.24 36.481 2180.01 1.41E+09 281 

37 1350.86 33.814 2041 1.28E+09 265 

People on Street 

(class A) 

2560x1600 

22 32858.05 40.193 4614 6.8E+09 980 

27 15824.14 37.165 3842 5.72E+09 865 

32 8313.78 34.184 3318 4.7E+09 749 

37 4678.12 31.429 2994 3.91E+09 667 

Nebuta (class 

A) 

2560x1600 

22 917165.90 38.832 11532 1.91E+10 2358 

27 679629.39 32.511 10587 1.7E+10 2120 

32 472875.45 26.790 9721 1.35E+10 1863 

37 298457.71 21.120 8646 9.46E+09 1531 

Stream 

Locomotive      

(class A) 

2560x1600 

22 778091.58 38.500 10629 1.38E+10 1668 

27 561708.59 32.570 9763 1.16E+10 1453 

32 373970.14 27.070 8809 8.88E+09 1241 

37 270132.99 22.840 7759 6.36E+09 1036 
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TABLE 4.20: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR 

CLASS A SEQUENCES IN RANDOM ACCESS MODE 

Sequence QP Bitrate (Kbps) 
Y-PSNR 

(dB) 

Total 

encoding time 

(sec) 

Total ME Search 

Points 

Total ME 

Time (sec) 

Traffic (class A)

2560x1600 

22 13823.15 41.610 2925 2.06E+09 274 

27 5584.13 39.040 2430 1.95E+09 257 

32 2692.29 36.460 2197 1.88E+09 249 

37 1406.48 33.790 2071 1.83E+09 239 

People on Street 

(class A) 

2560x1600 

22 33109.93 40.190 3980 2.79E+09 372 

27 15960.13 37.150 3330 2.62E+09 354 

32 8397.89 34.160 2920 2.47E+09 329 

37 4722.05 31.400 2649 2.33E+09 317 

Nebuta (class 

A) 

2560x1600 

22 920653.80 38.820 9380 3.25E+09 419 

27 683683.20 32.562 9069 3.25E+09 424 

32 477046.04 26.838 8385 3.24E+09 432 

37 301275.70 21.140 7508 3.12E+09 420 

Stream 

Locomotive      

(class A) 

2560x1600 

22 780416.40 38.540 9247 3.21E+09 408 

27 564626.37 32.612 8913 3.15E+09 411 

32 377392.85 27.031 8141 3.06E+09 403 

37 271941.98 22.777 7122 2.89E+09 387 
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TABLE 4.21: COMPARISON OF RESULTS OF PROPOSED ALGORITHM 

WITH FULL SEARCH ALGORITHM FOR CLASS B SEQUENCES 

Sequence Name QP 
Num of srch points ∆∆∆∆N 

(%) 

ME time T 

(∆∆∆∆T %) 
Total Enc Time (∆∆∆∆E %) BD-PSNR BD-bitrate 

Kimono (class B) 

1920x1080 

22 99.571 99.390 94.092 

3.53E-05 -0.03952 
27 99.617 99.433 95.038 

32 99.662 99.497 95.775 

37 99.702 99.530 96.269 

ParkScene (class B) 

1920x1080 

22 99.401 99.132 89.496 

-0.01158 0.374027 
27 99.434 99.171 91.509 

32 99.471 99.221 92.647 

37 99.481 99.227 93.040 

Cactus (class B) 

1920x1080 

22 98.942 98.526 81.350 

-0.02384 1.025484 
27 98.991 98.577 85.446 

32 99.037 98.593 87.249 

37 99.106 98.743 88.546 

Basketball_Drive  

(class B) 

1920x1080 

22 99.437 99.208 87.597 

-0.01745 0.786849 
27 99.431 99.181 90.667 

32 99.352 99.047 90.949 

37 99.220 98.868 89.877 

BQTerrace (class 

B) 

1920x1080 

22 99.689 99.537 95.318 

-0.01216 0.604316 27 99.729 99.582 96.293 

32 99.762 99.625 96.788 

37 99.784 99.654 97.098 

Average      
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TABLE 4.22: COMPARISON OF RESULTS OF PROPOSED ALGORITHM 

WITH TZSEARCH ALGORITHM FOR CLASS B SEQUENCES 

Sequence Name QP Num of srch points ∆∆∆∆N 

(%) 

ME time T 

(∆∆∆∆T %) 

Total Enc Time (∆∆∆∆E %) BD-PSNR BD-bitrate 

Kimono (class B) 

1920x1080 

22 56.56 53.61 23.62 

-0.007 0.223 
27 51.76 50.88 23.61 

32 45.67 47.45 22.84 

37 38.74 42.26 20.30 

ParkScene (class B) 

1920x1080 

22 67.91 64.62 7.82 

-0.017 0.677 
27 64.39 61.96 8.52 

32 58.91 57.20 7.70 

37 51.53 54.23 6.33 

Cactus (class B) 

1920x1080 

22 59.54 56.68 10.08 

-0.006 0.315 
27 51.13 50.00 11.24 

32 41.59 44.25 10.85 

37 30.84 36.62 9.04 

Basketball_Drive  

(class B) 

1920x1080 

22 78.24 76.16 6.00 

-0.007 0.349 
27 75.34 73.83 6.90 

32 71.03 71.24 6.94 

37 65.29 67.32 5.23 

BQTerrace (class 

B) 

1920x1080 

22 56.56 53.61 23.24 

-0.007 0.223 
27 51.76 50.88 23.52 

32 45.67 47.45 21.72 

37 38.74 42.26 19.20 

Average 60.08 59.93 13.73 -0.006 0.25 
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TABLE 4.23: COMPARISON OF RESULTS OF PROPOSED ALGORITHM 

WITH TZSEARCH ALGORITHM FOR CLASS C SEQUENCES 

Sequence Name QP 
Num of srch points 

∆∆∆∆N (%) 

ME time 

∆∆∆∆T (%) 

Total Enc Time 

∆∆∆∆E (%) 
BD-PSNR BD-bitrate 

Race Horses 

(class C) 

832x480 

22 80.81 79.12 22.94 

-0.025 0.594 

27 79.34 78.13 24.80 

32 76.94 76.30 25.56 

37 73.68 74.11 25.00 

BQ Mall 

(class C) 

832x480 

22 62.90 62.00 7.62 

-0.046 1.125 

27 59.90 55.56 7.81 

32 55.36 56.41 7.49 

37 49.62 50.00 6.00 

Party Scene 

(class C) 

832x480 

22 69.15 64.71 7.80 

-0.034 0.733 

27 66.68 62.90 9.54 

32 62.47 61.11 10.13 

37 57.08 57.78 10.00 

Basketball Drill 

(class C) 

832x480 

22 71.05 68.00 12.92 

-0.032 0.808 

27 68.99 67.16 13.78 

32 65.13 65.52 13.62 

37 59.82 61.22 12.61 

Average 66.18 65.00 13.60 -0.034 0.815 
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TABLE 4.24: COMPARISON OF RESULTS OF PROPOSED ALGORITHM 

WITH TZSEARCH ALGORITHM FOR CLASS D AND CLASS E SEQUENCES 

Sequence Name QP 
Num of srch points ∆∆∆∆N 

(%) 

ME time T 

(∆∆∆∆T %) 

Total Enc Time (∆∆∆∆E %) BD-PSNR BD-bitrate 

RaceHorses (class 

D) 

416x240 

22 78.35 84.85 77.78 

-0.044 0.872 
27 76.98 83.80 78.79 

32 74.62 82.17 75.86 

37 71.34 79.86 70.83 

BQSquare (class D) 

416x240 

22 18.86 46.77 0.00 

-0.037 0.941 
27 17.67 42.37 0.00 

32 17.10 39.12 0.00 

37 15.55 37.37 0.00 

BlowingBubbles   

(class D) 

416x240 

22 62.12 60.18 57.14 

-0.027 0.707 
27 58.86 59.82 58.33 

32 53.58 57.63 50.00 

37 48.00 53.43 55.56 

BasketballPass      

(class D) 

416x240 

22 53.11 82.38 50.00 

-0.044 0.902 
27 48.96 81.75 42.86 

32 42.48 80.29 57.14 

37 35.68 78.60 50.00 

Average 48.33 65.65 45.27 -0.038 0.856 

FourPeople (class 

E) 

1280x720 

22 57.20 54.26 4.87 

-0.007 0.08 
27 53.26 52.06 2.83 

32 48.71 50.86 4.49 

37 44.06 47.79 3.71 

Johnny (class E) 

1280x720 

22 48.12 47.34 3.18 

-0.003 0.27 
27 42.37 42.34 2.70 

32 37.25 40.66 2.33 

37 32.55 36.59 2.27 

KristenAndSara 

(class E) 

1280x720 

22 63.48 64.78 10.69 

-0.002 0.02 
27 57.57 58.29 14.81 

32 51.14 55.93 7.04 

37 44.87 53.62 7.41 

Average 48.38 50.38 5.53 -0.004 0.12 

 

 

 

4.8 SOFTWARE TOOLS AND TEST CONDITIONS 

The reference software HM version 16.0 is used for all the simulations  [130]. The test 

sequences that were used in each class are listed in Table 2.4, Section 2.9.4 of Chapter 
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2. The test conditions for various configurations LDP, LDB and RA are shown in Table 

4.26.  

     In LDB (also called as main configuration) and LDP the hierarchical coding 

structure was disabled and the GOP size limited to 4. In RA configuration, hierarchical 

coding structure was enabled and the GOP size is taken as 8. In LDP configuration, bi-

TABLE 4.25: SUMMARY OF COMPARISON OF PROPOSED VS FULL SEARCH 

AND TZSEARCH ALGORITHMS FOR VARIOUS CONFIGURATIONS 

Sequence 

LDP 

Total_encoding_

time (%) 

Total ME 

Search Points 

(%) 

Total_ME_Tim

e (%) 
BD-PSNR BD-bitrate 

FS TZS FS TZS FS TZS FS TZS FS TZS 

B 91.752 13.735 99.441 60.081 99.187 59.926 -0.013 -0.006 0.550 0.253 

C 85.587 13.601 99.047 66.182 98.703 65.001 -0.051 -0.034 1.225 0.815 

D 75.895 8.374 98.241 48.330 97.755 45.268 -0.051 -0.038 1.154 0.856 

E 76.264 5.530 98.017 48.380 97.247 50.380 -0.014 -0.004 0.445 0.120 

Total 

Average 
82.375 10.310 98.686 55.743 98.223 55.144 -0.033 -0.020 0.843 0.511 

 
LDB 

B 89.595 36.657 99.487 46.584 98.586 46.330 -0.011 -0.006 0.473 0.207 

C 83.069 33.931 99.141 54.267 97.896 52.986 -0.035 -0.021 0.809 0.493 

D 71.424 31.352 98.383 38.585 95.894 35.424 -0.034 -0.020 0.711 0.415 

E 70.999 33.965 98.250 36.563 95.990 34.434 -0.013 -0.012 0.481 0.444 

Total 

Average 
78.772 33.976 98.815 44.000 97.092 42.293 -0.023 -0.015 0.619 0.390 

 
RA 

B 93.887 23.601 99.526 43.229 98.932 41.255 -0.041 -0.049 0.848 0.365 

C 91.353 20.836 99.371 49.587 98.715 48.189 -0.088 -0.079 0.506 0.325 

D 91.101 29.887 99.341 31.582 98.666 29.919 -0.066 -0.052 0.701 0.535 

E 92.355 29.286 99.371 13.638 98.923 10.549 -0.011 -0.011 0.394 0.323 

Total 

Average 
92.174 25.903 99.402 34.509 98.809 32.478 -0.055 -0.048 0.534 0.394 

Total 

Average 
84.440 23.396 98.968 44.751 98.041 43.305 -0.037 -0.028 0.665 0.432 
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directional prediction was disabled and only P-frames were used. The intra period 

(frequency of I frames) of RA mode was 32. For LDP and LDB modes only the first 

frame can be I frame.  

     The internal bit depth, that is the number of bits used to indicate the color of each 

pixel, was taken 8 for all modes, which is the default value. The rate control algorithm 

was disabled. The AMP was enabled so that ME is performed for all block sizes. 

4.9 SUMMARY OF PROPOSED ALGORITHM 

The proposed fast motion estimation (ME) algorithm is composed of five ME tools, 

dynamic search range, initial search point prediction, early termination, rotating 

hexagonal pattern and hexagonal fine refinement. Each of these tools contributes to 

reduce the ME complexity. The overall reduction in the ME complexity compared to 

TABLE 4.26: CONFIGURATION SETTINGS USED IN HM 

CODING OPTIONS 
 PARAMETER 

LDP LDB RA 

Encoder Version  HM 16.0 

Reference Frames 4 

R/D Optimization Enabled 

Motion Estimation  TZSearch/Proposed 

Search Range 64 

GOP Size 4 8 

Hierarchical Encoding Disabled Enabled 

Bi-directional Prediction Disabled Enabled 

Intra Period -1 (only first frame) 32 

Coding Unit Size 64 

Coding Unit Depth 4 

Min. Transform Unit Size 4 

Max. Transform Unit Size 32 

Rate Control  Disabled 

Internal Bit Depth 8 

Hadamard ME Enabled 

Asymmetric Motion 

Partitioning (AMP) 
Enabled 
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full search and fast ME algorithm (TZSearch) implemented in HEVC is significant with 

negligible loss in the PSNR and bitrate, as it was further supported using the 

Bjontegaard metric results. 
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5 PROPOSED VLSI ARCHITECTURE 

5.1 INTRODUCTION 

Motion estimation is usually performed sequentially in software based encoders. The 

CPU calculates the RD cost for each point in SW sequentially. Furthermore the whole 

ME operation is conducted for each block size of the current block sequentially, from 

higher block size to lower block sizes. This is computationally very expensive and 

particularly inefficient for HEVC, as the number of block modes and block sizes is very 

large. Some of the complexity can be reduced using the preprocessing steps such as 

DSR algorithm, motion vector prediction algorithm and early termination algorithm 

(explained in Chapter 4). But, once the SW is fixed and an optimal MV has to be found 

in the SW, the complexity will be too high with CPU as the cost calculation is 

sequential. A good solution to this problem is to accelerate this process by designing a 

suitable hardware architecture and exploit parallelism and pipelining. The present thesis 

proposed a ME architecture which was able to comply with all the variable block sizes 

of HEVC standard. 

The architecture is based on a FPGA and uses block RAMs to store SW pixels 

data. The top level block diagram of the overall system is shown in Fig. 5.1. The control 

unit controls all the ME process using a state machine. The current PU (Prediction Unit) 

and the SW pixels data are stored in their corresponding local memory units which are 

addressed through an external bus from the external memory unit. The address 

generation unit sends the address locations of the candidate reference block to the SW 

memory unit depending on the algorithm. Then the reference candidate block data is 

sent to the SW buffer for SAD calculation. The SAD unit calculates the SAD between 

the current PU and reference blocks. The cost calculation unit calculates the RD cost by 

adding the SAD value (calculated by SAD unit) to the bitrate of the MVD (explained in 

Section 2.11.6 of Chapter 2). The comparator compares the RD cost of the current and 

the previous minimum stored value. The final MV (along with its RD cost) of the block 

which has least RD cost is stored in the register memory and sent to the output. The 

details of each subsystem and their functional description are explained in the following 

sections. 
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5.2 ALGORITHM ADAPTION TO HARDWARE 

The proposed algorithm (explained in Chapter 4) is modified to suit the hardware design 

requirements. The proposed architecture takes one 64x64 current block (prediction unit) 

and a SW with 192x192 pixels data (search range=64) and outputs a set of variable 

block size MVs. The coarse refinement step using rotating hexagonal patterns is 

performed once the SW data is defined. After obtaining the minimum cost MV (from 

coarse search) the fine refinement is performed using the hexagonal based gradient 

descent method. In the last stage, the search is performed for the remaining 10 search 

points in the hexagon (explained in Section 4.5, Fig. 4.3, of Chapter 4).  A graphical 

representation of these steps is depicted in the flowchart of Fig. 5.2.  

  

Fig. 5.1 Top Level Block Diagram of 

Proposed Motion Estimation 

Architecture 

Fig. 5.2 Flowchart of the Proposed 

Algorithm 
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As shown in Fig.4.3 of Section 4.2.5, there will be 6 rotating hexagonal grids 

resulting in 36 search points. Apart from hexagons, there is a small diamond search 

pattern near the co-located point, making a total of five additional search points, as 

shown in (5.1), where ‘R’ is the search range value. After finding the coarse minimal 

point, the algorithm refines it using small hexagons (shown in Fig. 4.6 of Chapter 4). In 

each iteration there will be three new search points. For simplicity in hardware 

implementation, the maximum number of iterations for fine refinement is limited to 10. 

The number of total search points which takes fine refinement iterations more than 10 is 

less than 0.001% (with negligible RD loss) and further the fixed number of maximum 

iterations value would be easy to calculate the maximum throughput instead of having a 

variation in number of iterations between various current blocks. Hence the number 10 

is chosen. The 10-point square pattern has 10 search points. The total fine refinement 

points are given by (5.2), where ‘i’ represents the number of iterations in the fine 

refinement stage. In the worst case there will be 43 (= 6+3x9+10) search points in the 

fine refinement stage and hence the total number of search points is 84 (= 

36+5+33+10). The total number of search points is given by (5.3). 

 S�� = 5 + �6 × log7 "� (5.1)

 SmL = �6 + 3�� − 1�	 + 10 (5.2)

 S���OP = �5 + �6 × log7 "�� + �6 + 3�� − 1�	 + 10 (5.3)

5.3 CONTROL UNIT AND ADDRESS GENERATION UNIT 

The control unit controls the entire ME process using a finite state machine described in 

the following sub-section. The control unit also controls the operations of all the other 

sub systems by transmitting and receiving input and output signals.  

5.3.1 State Machine of the System 

The state machine is designed using Moore FSM (Finite State Machine) design logic 

[132], which is safer to use as the outputs change synchronously at every clock edge. A 

graphical representation of the proposed FSM is shown in Fig. 5.3. The FSM contains 7 

states – IDLE, LOAD_DATA, GET_ADDR, UPDATE_BUFFER, SAD, RD_COST, 

COMPARE. Initially after reset the system goes into IDLE state. Then after the ‘start’ 

signal is given, it goes to the LOAD_DATA state. Here, the SW and current block data 
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are updated from the external memory. After the data is loaded, the system goes into 

state GET_ADDR. In this state, the AGU (Address Generation Unit) sends the new 

address to the SW memory for which the cost has to be calculated. Then in the next 

state (UPDATE_BUFFER), the SW buffer is updated with the new reference PU block 

data. After the buffer is updated, the system calculates the SAD and RD cost in the 

states SAD and RD_COST respectively.  

In the final state COMPARE, the RD cost is compared using a comparator. The 

MV and SAD registers are updated with the final results. The states GET_ADDR, SAD, 

RD_COST and COMPARE continue to loop until all the total search points are checked, 

from global search stage to fine refinement. If the search points are finished, the 

COMPARE state goes to IDLE state. 

5.3.2 Address Generation Unit 

The Address Generation Unit (AGU) sends addresses for the search window memory 

and the current PU memory units so that they can send the corresponding data to the 

SAD unit for calculation. The address sequences are generated according to the ME 

!compare_finished

IDLE/

000000

!start

LOAD_DATA/

000001

SAD/

001000

start

!load_finished

load_finished

RD_COST/

010000

!sad_finished

sad_finished

!cost_finished

COMPARE/

100000
compare_finished 

& !search_finished

compare_finished 

& search_finished

GET_ADDR/

000010

!addr_sent

UPDATE_BUFFER/

000100

!update_finished

addr_sent

update_

finished

cost_finished

reset

 

Fig. 5.3 State Machine for the Proposed Architecture 
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algorithm. As explained, initially there are 41 search points (six hexagons, one small 

diamond and co-located point) for finding the coarse minimum point. As the addresses 

of these points are fixed for every current block, these values are stored in a ROM 

(Read Only Memory) with width 14-bit and depth 41. The width is taken as 14 because 

each co-ordinate (x and y) requires 7-bit with MV ranging from -64 to 63. After the 

minimum point is calculated, the offset address is sent back from the comparator to the 

AGU. Then the AGU generates offset addresses for small hexagon  patterns to do fine 

refinement. 

5.4 PROPOSED MEMORY ARCHITECTURE 

5.4.1 Search Window Memory Architecture 

One of the critical design considerations for ME is the search window memory 

architecture. Broadly classifying, there are two types of search window memories that 

can be considered for the proposed fast ME architecture. The first type (Type-I memory 

architecture) operates by sending only the required reference candidate block (or some 

blocks) from the external memory to the on-chip search window memory. The second 

type (Type-II memory architecture) reads the entire search window memory from the 

external memory to the on-chip search window memory. Type-I memory architecture 

increases the memory traffic because all pixels of each candidate block have to be 

transmitted to the local memory even though some parts were transmitted previously. 

Even with data reuse schemes to send only the part of candidate block which was not 

sent previously, the pixels in the local memory have to be shifted arbitrarily each time to 

meet the SAD calculation requirements. The Type-II memory architecture decreases the 

memory traffic, but increases the on-chip memory size compared to Type-I. 

Furthermore, the candidate reference block memory in Type-I has to be updated every 

time (after SAD operation is finished) from the external memory via a limited width 

external bus. This will introduce a latency in the entire ME operation. Hence, the 

proposed ME architecture uses Type-II memory architecture to store the entire search 

window memory. 

To store the entire SW memory, the number of hardware resources (registers) will 

be too high. One of the major advantages in using modern FPGAs is the availability of 

embedded memory blocks (block RAMs or BRAMs). A comparison between hardware 
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costs for SW memory (with search range 64) between BRAMs and distributed RAM in 

a Xilinx Virtex-6 FPGA [135] is shown in TABLE 5.1. The distributed RAM uses 

register memory (flip flops) available from slice LUTs (Look Up Tables) of the FPGA. 

As seen from the results, the distributed RAM uses 13% of the available FPGA LUTs. 

On contrary the BRAM based architecture uses only 2% of slice LUTs and use the 

available BRAMs for memory (5% of total BRAMs available). Hence, the present work 

uses BRAMs to design the SW memory architecture for the proposed ME engine. The 

number of BRAMs required depends on the required SW size and maximum memory 

size of each available BRAM. The BRAM data and address bus width is designed based 

on the number of pixel bytes needed concurrently for SAD operation. 

The proposed memory architecture uses simple dual port BRAM which has two 

data ports, (one for writing data and other for reading data) and with 36k memory as 

shown in the diagram of Fig. 5.4. When writing the SW pixels from external memory to 

the on-chip BRAM, the proposed architecture uses a 64-bit data bus. The read data bus 

width is also taken 64, so as to read 8 pixels concurrently.  

For the proposed ME algorithm, the maximum Search Range (SR) is taken as 64 

and the maximum default size of the current PU (Prediction Unit) block in HEVC is 

64x64. Hence the SW size will be 192x192 pixels, calculated using (5.4), where WSW, 

HSW represents width and height of SW, WPU, HPU represent width and height of PU 

block. Hence the depth of each BRAM is taken as 192 which is equivalent to the height 

of the SW memory. The number of BRAMs required is calculated using (5.5), where 

nBRAM represents number of BRAM units, WSW represents width of SW and WreadBus 

represents required width of read data bus. 

TABLE 5.1: COMPARISON BETWEEN DISTRIBUTED RAM ARCHITECTURE 

AND BRAM BASED ARCHITECTURE 

 
Distributed RAM 

Architecture 

BRAM based 

Architecture 

Slice LUTs 19986 (13%) 3441 (2%) 

Slice Registers 4608 (1%) 64 (<1%) 

BRAMs NA 24 (5%) 
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The search window width WSW is 1536 bits (= 192 × 8 bits/pixel). The read data 

bus width should be considered based on the maximum allowable read data bits in the 

BRAM specification. The proposed memory architecture uses Xilinx Virtex-6 BRAM36 

[135] embedded memory, that has maximum allowable concurrent read bits 72 (with 64 

data bits and 8 error correction bits). Hence the proposed memory architecture uses 64 

 �o} × no} = ��2 A �"� +�pr	 A ��2 A �"� + npr	 (5.4)

 S.�� = �o}�LMO-.N� (5.5)

 
Fig. 5.4 BRAM used for search window memory architecture 

 

Fig. 5.5 Proposed BRAM based search window memory architecture 
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bits wide read data bus (which is equivalent to 8 pixels) for each BRAM. Hence from 

(5.5), nBRAM is equivalent to 24 (=1536/64).  

In a similar manner, for any BRAM specification, the number of BRAMs can be 

calculated using (5.5). The complete memory architecture is shown in Fig. 5.5, which 

consists of 24 BRAMs, a write data bus (with width 64) to store SW pixels from the 

external to the on-chip memory, address and control signals. The read data bus width is 

512 bits (or 64 pixels). 

5.4.2 Current Block and Search Window Buffer Memory Architecture 

For each search operation, the current PU memory is fixed and hence the current PU 

pixels data is stored into the on-chip memory. The data from the PU memory needs to 

be accessed according to the input requirements of the SAD unit. The SAD unit 

accesses each row from four 4x4 pixel blocks in one clock cycle. Accessing these 

memory locations is easy if implemented in distributed RAM architectures. Furthermore 

the memory required for 64x64 PU block is less when compared to SW memory. Hence 

the PU memory is stored using distributed RAM. In order to make the memory access 

regular, the candidate block from SW is stored in a 64x64 buffer (SWB or SW Buffer).  

The synthesis results of the current PU memory block and SW buffer blocks are 

shown in TABLE 5.2. Both the memory blocks operate at same frequency (500.95 

MHz) and occupy almost the same number of slice registers (3.8k and 3.9k) and slice 

LUTs (4.3k and 4.5k). 

TABLE 5.2: SYNTHESIS RESULTS OF CURRENT PU MEMORY AND SW 

BUFFER BLOCKS 

 Slice 

LUTs 

Slice 

Registers

Max freq. 

(MHz) 

Cur. PU Mem. 4390 3846 500.95 

SWB 4519 3974 500.95 
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5.5 PROPOSED SAD ARCHITECTURE 

The proposed SAD architecture is shown in Fig. 5.6. The architecture consists of four 

8x8 SAD calculation units, one 16x16 SAD calculation unit and two Quad-tree Adders 

(QAs) of size 32x32 and 64x64 for calculating variable block size SADs. Each 4x4 

SAD block contains 16 PE (Processing Elements) and calculates one 4x4, two 4x2 and 

two 2x4 partial SADs. In each clock cycle, one set of four 4x4 pixel blocks (or one 8x8 

pixel blocks) of current PU and search window PU block is sent to the 4x4 SAD units. 

64x64 
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Fig. 5.6 Architecture of Proposed SAD Calculation Unit 
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Fig. 5.7 Internal Architecture of 8x8 SAD Unit 
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All the partial SADs (four 4x4, eight 4x2 and eight 2x4) are stored in temporary 

registers along with offset addresses and sent to the 8x8 SAD unit.  

The internal architecture of the 8x8 SAD unit is shown in Fig. 5.7, which consists 

of four 4x4 block size SAD units. Each 8x8 SAD then calculates one 8x8, two 8x4 and 

two 4x8 partial SADs. These values are stored in registers (along with their MV offset 

addresses) and then sent to upper depth PU (16x16) SAD unit. The process repeats until 

64x64 SAD unit. The 32x32 QA and 64x64 QAs add and accumulate their lower mode 

partial SAD while the 8x8 and 16x16 SAD units calculate the partial SADs in parallel.  

5.5.1 Adder Tree Architecture for 4x4 SAD Unit 

The internal architecture of the 4x4 SAD blocks is shown in Fig. 5.8. It consists of 

sixteen absolute difference (AD) circuits and twenty-one 32-bit carry select adders. 

Each AD (Absolute Difference) block takes one current pixel input and one search 

window PU block pixel input and calculates absolute difference using the circuit shown 

in Fig 5.10. After the absolute difference operation, the 4x4 SAD-block adds all the 

sixteen AD values using an adder tree architecture and produces 4x4 partial SAD along 

with its variable block size SADs – (4x2)0, (4x2)1, (2x4)0, (2x4)1. Although the 4x4 

SAD and its variable size SADs are not used for the calculation of RD costs and finding 
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MVs, they are used to calculate upper mode 8x8 partial SADs and its variable block size 

SADs – 8x4, 4x8. 

5.5.2 Quad-tree Adders 

The Quad-tree Adder (QA) calculates variable block size SADs by adding and 

accumulating lower size PU SADs. The schematic block diagram is shown in Fig. 5.11. 

Each QA takes 5 variable block size inputs and outputs 13 upper mode variable block 

size outputs, which includes Asymmetric Mode Partitions (AMPs). The internal 

architecture of each output is shown in Fig. 5.12. In each clock cycle, one new input of 

the quad-tree SAD is added to the previously stored SAD. There will be 13 adder-

register pairs corresponding to each variable block size. The proposed architecture has 

two QAs corresponding to the 32x32 and 64x64 SAD units. 

 

 

Fig. 5.9 Internal Architecture of Absolute Difference Circuit 

 

Fig. 5.10 Internal Architecture of Carry Select Adder 
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5.5.3 Latency Calculations 

The first set of sixteen 4x4 SADs are received at the end of 5 clock cycles (as illustrated 

in Fig. 5.8). After that, for each clock cycle there will be a new set of sixteen 4x4 SAD 

units. Similarly for the 16x16 SAD unit there will be two cycles delay (using adder tree 

architecture) with a total delay of 7 clock cycles. After that, for every clock cycle there 

will be one 16x16 SAD and its variable block size SADs (16x12, 16x8, 16x4, 12x16, 

8x16, 4x16). Hence, the first set of four 16x16 SAD outputs is registered at the end of 

10th clock cycle and afterwards each set of four 16x16 SADs take four additional clock 

cycles. The 32x32 SAD takes each set of four 16x16 SADs and outputs one 32x32 SAD 

(and its variable block size SADs) to the 64x64 SAD unit. Altogether there will be 

sixteen 16x16 SAD units that has to be processed for one 64x64 SAD unit, each taking 

one clock cycle, except the first 16x16 SAD that take 7 cycles. Hence, the total number 

of clock cycles will be 23 (= 7+16).  
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Fig. 5.11 Schematic Diagram of Quad-Tree Adders 

 

Fig. 5.12  Internal architecture of each Quad Tree Adder 
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5.5.4 Area Calculations 

There are four 8x8 SADs and each 8x8 SAD unit contain four 4x4 SAD units. Each 4x4 

SAD unit contain 16 Absolute Difference (AD) circuits and 21 Carry Select Adders 

(CSAs) while each 8x8 SAD unit contain three CSAs to add the four 4x4 partial SADs. 

After that the 32x32 and 64x64 SAD units are designed using Quad-tree Adders (QAs). 

Hence, altogether there are 256 ADs, 336 CSAs (21x16) and 2 QAs. 

5.5.5 Intra-parallelism 

The aforementioned SAD architecture in Fig. 5.6, has parallelism at the CU depth three 

and four (8x8 and 4x4 PU). This is two-stage (2-stage) intra-parallelism. The total 

 

Fig. 5.13  Quad-core 1-stage (Type-I) SAD Architecture 
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Fig. 5.14  Comparator Tree Architecture for Type-II SAD Unit 
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number of clock cycles can be formulated using (5.6), where ‘p’ represents the number 

of parallel stages (p ≤ 4). In 2-stage parallel architecture, putting ‘p’ equal to 2 gives a 

total of 23 clock cycles. Similarly the number of adder circuits and other logic can also 

be estimated using (5.7), (5.8) and (5.9) where nAD, nCSA, nQA represents the number of 

ADs, CSAs and QAs, respectively. Substituting p=2 gives 256 ADs, 336 CSAs and 2 

QAs. 

The intra-parallelism can be extended to the next CU depth level (d=2 or 16x16 

PU unit and p = 3) to further reduce the delay. Substituting p=3 in (5.6) reduces the 

latency to 11 clock cycles but at huge expense of ADs and CSAs - 1024 ADs and 1344 

CSAs. Although the QA is reduced to 1 QA, the adder circuits increase the total 

hardware resources. On the other hand, if we reduce the total number of parallel stages 

to 1 (p=1), the hardware resources will be reduced but the delay will be increased to 69 

clock cycles. Hence, 2-stage parallelism was selected to balance the trade-off between 

latency and hardware resources. 

 S�PX = �3 + 2i� + 2�k7s (5.6)

 S�� = 4s�7 (5.7)

 Slo� = 21 × 4s (5.8)

 S�� = 4 − i (5.9)

5.5.6 Inter-parallelism 

Apart from intra-parallelism, the SAD processing unit can also exploit parallelism at 

inter-level. In an n-level inter-parallel SAD architecture, the SAD unit can compute 

SADs for ‘n’ ME search points in parallel. This is similar to multicore architectures in 

general purpose CPUs. The SAD architecture with 4-level inter parallelism (quad-core 

SAD unit with 1-stage intra-parallelism) is shown in Fig. 5.13. Since the intra-

parallelism is only up to 8x8 SAD stage (1-stage), each set of four search points takes 

69 clock cycles (calculated using (5.6) without considering the comparator delays). But 

the hardware cost is quadrupled compared to single-core 1-stage intra-parallel SAD. 

The quad-core 1-stage (Type-II) SAD architecture is compared with single-core 2-stage 

intra-parallel (Type-I) SAD architecture.  
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Input = n Decimal 

eqvlnt. 

Output = ����� �  
0000_0000_0000_0001 1 0 

0000_0000_0000_001x [2-3] 1 

0000_0000_0000_01xx [4-7] 2 

0000_0000_0000_1xxx [8-15] 3 

0000_0000_0001_xxxx [16-31] 4 

0000_0000_001x_xxxx [32-63] 5 

0000_0000_01xx_xxxx [64-127] 6 

0000_0000_1xxx_xxxx [128-255] 7 

0000_0001_xxxx_xxxx [256-511] 8 

0000_001x_xxxx_xxxx [512-1023] 9 

0000_01xx_xxxx_xxxx [1024-2047] 10 

0000_1xxx_xxxx_xxxx [2048-4095] 11 

0001_xxxx_xxxx_xxxx [4096-8191] 12 

001x_xxxx_xxxx_xxxx [8192-16383] 13 

01xx_xxxx_xxxx_xxxx [16384-32767] 14 

1xxx_xxxx_xxxx_xxxx [32768-65535] 15 

 

TABLE 5.3 lists the comparison results. The results show that the maximum 

clock frequency is almost the same for both the architectures. The number of clock 

cycles in Type-II architecture is relatively less compared to Type-I architecture, as the 

Type-II architecture computes four SADs in parallel. But the number of CSAs, QAs, 

ADs and comparators is higher in Type-II architecture compared to that of Type-I. Each 

core uses 24 comparators corresponding to 24 modes of the SAD – 7 modes for 64x64 

TABLE 5.3: COMPARISON BETWEEN TYPE-I SAD AND TYPE-II SAD 

ARCHITECTURES 

 

Type-I (Single-core 

2-stage intra-

parallel SAD) 

Type-II (Quad-core 

1-stage  intra-

parallel SAD) 

�¡¢£ 
23 (for 1 SAD) or 92 

(for 4 SADs) 

69 (for 4 64x64 

SADs) 

�¤¥ 256 1024 

�¦§¤ 336 1344 

�¨¤ 2 12 

�¦©ª« 24 (1x) 168 (4x+3x) 

max freq. 250.7 MHz 251.3 MHz 

Slice LUTs 20416 36388 

Slice Registers 20361 28284 

 

Fig. 5.15  RD Cost Calculation and 

Comparator Unit Architecture 

 

TABLE 5.4: TRUTH TABLE OF 4-BIT 

PRIORITY ENCODER 
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(64x64, 64x32, 32x64, 64x16, 64x48, 16x64, 48x64), 7 modes for 32x32, 7 modes for 

16x16 and 3 modes for 8x8 (8x8, 8x4, 4x8). The comparators have to be used for each 

core in Type-II architecture and hence they are quadrupled and for each mode the 

comparator tree has to be formed which adds an extra three comparators for each mode 

(3x) as shown in Fig. 5.14. Due to this, the hardware resources including slice LUTs 

and slice registers are higher in Type-II SAD architecture. Furthermore, Type-II SAD 

architecture requires parallel accessing of multiple candidate reference blocks and due 

to this, the SW buffer and current block memories have to be replicated, which 

increases the FPGA slices. Hence, the proposed architecture uses Type-I SAD 

architecture. 

5.6 COMPARATOR AND RD COST CALCULATION UNIT 

There are 24 modes corresponding to each block size in HEVC. For each PU block size, 

the corresponding RD cost calculation and its comparator is designed. The architecture 

is shown in Fig. 5.15, where the new SAD values come from the SAD unit and the 

lagrangian cost is calculated using (1.2).  

For each current block (and for its sub-blocks), the predicted MV and its 

lagrangian parameter are sent from the encoder. The AGU sends the MV of the 

reference block. Then the MVD (Motion Vector Difference) is calculated using (5.10), 

where MV is the reference block MV and PMV represent the predicted MV. The total 

number of bits occupied by MVD is calculated by the bitrate calculator using (5.11) and 

(5.12) (deducted from reference software HM [7]). The log2 operation is implemented 

using a priority encoder. The truth table of 4-bit priority encoder which is used to 

calculate logarithmic operation is shown in TABLE 5.4. The second column in the table 

represents the equivalent decimal value range. The output column represents the floor 

function of	log7 S.  

 �����, �� = ����, �� − +����, �� (5.10)

 @�Bh�S� = ¬2 × R9::C�9:;7�1 − 2S�	 + 1, 	S ≤ 02 × R9::C�9:;7�2S�	 + 1, S > 0  (5.11)

 @�Bh = @�Bh��� + @�Bh��� (5.12)



PROPOSED VLSI ARCHITECTURE 

 

 

 
133 

 

After the bitrate calculation, the obtained number of bits is multiplied by 

lagrangian cost and then added to the SAD value. If the new cost value is less than 

previously stored cost (obtained from the cost register), then the value is updated to the 

same cost register in the next clock cycle and the corresponding MV value is also 

updated to the MV register. This is done using a control signal ‘update’ coming from 

the comparator (as shown in the figure). 

5.7 RESULTS AND ANALYSIS 

 Synthesis Results 

The proposed architecture was designed using Verilog HDL and implemented in Xilinx 

Virtex-6 XC6VLX240T FPGA [135]. The architecture can process full HD frames at 

the rate of 60fps with a maximum operating frequency of 241.6 MHz for HEVC based 

64x64 blocks, with search range ±64. The FPGA has 150720 slice LUTs, 301440 slice 

registers and 416 BRAMs (of each 36Kb size). The total FPGA slice LUTs occupancy 

of the design is 27998, the slice registers occupancy is 29571 and the total BRAMs 

occupancy is 24. In percentages, the total slice LUTs occupancy is 18%, the slice 

registers occupancy is 9% and the total BRAMs occupancy is 5% approximately. The 

total memory size is calculated assuming 100% BRAM occupancy. Each BRAM size is 

36 Kbits and there are 24 BRAMs used. Hence the total memory usage is 108 Kbytes. 

 Data Schedule, Total Delay and Throughput 

The data schedule diagram for the proposed architecture is shown in Fig. 5.16. Initially, 

just after the SW and current block data are loaded, the AGU generates and sends the 

MV row and column addresses to the search window memory (SWM) in the first clock 

cycle. Then the data is loaded to the SWB, row by row in total of 64 clock cycles. After 

the first 16 rows of data are loaded in SWB, they are processed by SAD unit in order to 

reduce the pipeline delay. In each clock cycle, 16 4x4 blocks of reference block and 

current block are accessed. Each 4x4 SAD takes 5 clock cycles to compute the 4x4 

partial SAD (as explained using Fig. 5.6). During each of the subsequent clock cycle, 

the calculated 4x4 partial SADs are added in pipeline to get variable block size SADs. 

As explained earlier, altogether it takes 23 clock cycles to process one 64x64 reference 

block in the SAD unit. The RD cost calculator takes 3 clock cycles (1 for bitrate 
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calculation, 1 for multiplication and 1 for addition). Finally, the comparator takes 1 

clock cycles to compare the RD costs. Altogether it takes 92 (1 for AGU, 64 for SWB, 

23 for SAD, 3 for RD cost and 1 for comparator) clock cycles to calculate costs of one 

reference block (and its variable size blocks).  

Altogether there are 84 search points (as explained in Section 5.2) and it takes 

7728 (=84x92) clock cycles to process one current block. For the full search 

architecture using any systolic array, it takes 4096 clock cycles to process the first 

64x64 block. After that, each search point takes one clock cycle as the memory 

accessing is regular (in the best case scenario, without considering line refresh delay). 

But the total number of search points are equal to 16384 (=128x128) for a search range 

of 64. Hence the total number of clock cycles is 20479 (=4096+16384-1) which is 

higher compared to that of the proposed architecture. Further, the hardware resources 

(processing elements) required in FS algorithm based architecture will be more as the 

partial SADs have to be calculated and pipelined for each clock cycle.  

The throughput (Trp) of the architecture can be calculated using (5.13), where 

coding tree block (CTB) represents coded tree blocks or current blocks. For the current 

architecture, full HD (1920x1080) resolution is used and hence the number of 64x64 

CTBs is found to be 506 (1920x1080/64x64). For our proposed architecture, each CTB 

takes 7728 clock cycles to process one CTB and we consider one reference frame. The 

maximum clock frequency achieved was 241.6 MHz. Substituting all these in (5.13), we 

AGU

SWB

SAD

RD_COST

COMPARE

64

92

23

27

26

65

t (clk cycles)

 

Fig. 5.16  Data Schedule for the Proposed ME Architecture 
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achieve a throughput of 61 frames/sec. Thus our proposed architecture supports ME for 

full HD frames at 60 fps frame rate.   

 Comparison with other FPGA based Design 

TABLE 5.5 shows the synthesis results of the proposed architecture along with 

comparison of some recent works. Compared to the architecture in [136], the proposed 

architecture supports more block modes including AMP modes. Due to this, the RD 

performance in the proposed architecture is higher, with a BD-rate decrease of only 

0.84% compared to that of [136] which has BD-rate decrease of 12%. The architecture 

in [127] supports all block sizes but it is based on full-search algorithm with more 

circuit area requirements. When converted to effective gate count, the proposed 

architecture occupies 0.87M gates (with a maximum of 24 gates per slice LUT and 7 

gates per slice register [135]) whereas the gate count in [127] is 3.56M gates. The 

architectures in [112] and [128] support block sizes only up to 16x16. The architecture 

in [126] has a higher operating frequency (270 MHz), but does not support AMP modes.  

The architectures [129] and [137] are FPGA based architecture supporting 

HEVC block modes. Both the architectures operates with less frequency (110 MHz and 

125 MHz) compared to the proposed architecture. Compared to [129], the proposed 

architecture use less number of slice LUTs (27.9k vs 55.3k) and BRAMs (24 vs 33) and 

slightly higher number of slice registers (29.5k vs 19.7k). But the architecture in [129] 

used block sizes only until 32x32 and with search range 24. The architecture in [137] 

supports all block sizes until 64x64 (including AMP modes) and with search range 64. 

But it occupies more FPGA resources – 85.01k slice LUTs, 141k slice registers and 298 

BRAMs. 

 �Ci = U?�	_RCD®�6N�_�{�PM�lq. 	 A �6N�_lq.�mLO�M � A SfU_CDR_RCUh (5.13)
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TABLE 5.5: SYNTHESIS RESULTS AND COMPARISON OF PROPOSED 

ARCHITECTURE WITH OTHER ARCHITECTURES 

 

Sinangil 

et. al.  

[136] 

Byun et. al 

[127] 

Sanchez. 

et. al. 

[128] 

Jou et. al 

[126] 

Ndili et. al. 

[112] 

Xu. et. al. 

[129] 

Thomas 

et. al. 

[137] 

Proposed 

Process 
ASIC 65 nm 

CMOS 

ASIC 65 nm 

CMOS 

ASIC TSMC 

90 nm 

ASIC TSMC 

90nm 

Xilinx Virtex-

2 Pro 

Xilinx Virtex-

6 XC6VLX-

550T (40nm) 

Xilinx Virtex-

5 LX 330T  

FPGA (65 

nm) 

Xilinx Virtex-

6  LX 220T 

FPGA (40 

nm) 

Slice 

LUTs 

1830 K  gates 3.56 M gates 50 K gates 787.7 K gates 

10.8 K 55346 (16%) 85017 (41%) 27998 (18%) 

Slice 

Registers 
11.3 K 19744 (2.9%) 141004 (68%) 29571 (9%) 

BRAMs 10 33 (5.2%) 298 (92%) 24 (5%) 

Memory 

Size 
208 KB 

20.23 KB 

(SRAM) 
82 Kb 17.4 KB 2.5 KB 148 KB 1.34 MB 108 KB 

Max 

Operating 

frequency 

200 MHz 250 MHz 41.3 MHz 270 MHz 246.5 MHz 110 MHz 125 MHz 241.6 MHz 

Search 

Range 
±64 ±64 ±44 ±64 ±16 ±24 ±64 ±64 

Max. 

Block 

Sizes 

64x64 64x64 16x16 64x64 16x16 32x32 64x64 64x64 

Support

ed 

Block 

Sizes 

16×16, 

32×32, 

64×64 

All 
All until 

16x16 

8×8, 8×4, 

4×8, 16×16, 

16×8, 8×16, 

32×32, 

64×64 

All until 

16x16 

All up to 

32x32 
All All 

Max. 

Resoluti

on 

3840×2160 

(4kx2k) 

@30fps 

3840 × 2160P 

(4k UHD) 

@30fps 

1080p 

@30fps 

4096×2048 

(4kx2k QFHD) 

@60fps 

CIF 

@30fps 

1080p 

@30fps 

1080p 

@27fps 

1080p 

@60fps 

Algorith

m 

8-pixel 

SW 

subsamplin

g + Three 

Step 

Search 

Full Search 

Multi Point 

Diamond 

Search 

(MPDS) 

TZSearch 

(used in HM) 

HW. 

Modified 

Diamond 

Srch. 

(HMDS) 

Full 

Search 

Full 

Search 

Rotating 

Hexagon 

based Fast 

Search + 

Hexagon 

Refinement 

Supporte

d Tools 
IME, FME IME IME IME, FME IME IME IME IME 

BD-rate 

decrease 
12 % - 

1.7% bitrate 

increase 

compared to 

EPZS 

algorithm 

5.14 % 

0.16% to 

1.85% 

bitrate 

increase  

compare to 

FS 

- - 0.84 % 

Num. Ref. 

Frames 
1 ±1 1 1 5 1 1 1 

AMP 

Support 
No Yes No No No Yes Yes Yes 
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 Verification Setup and Results 

The proposed design was verified using the testbench shown in Fig. 5.17. The test 

stimuli (search window pixels and current block pixels) was applied to the software 

model for the proposed algorithm.  The same test inputs are converted to 64 bit data 

values and sent to ME IP core through data bus and address bus interfaces. The output 

MVs from software are compared against the output values of ME IP core.  

A sample values of inputs and outputs are shown below. The inputs from the test 

stimuli are the current block pixels and the search window block pixels which are 

shown as pictures in Fig.5.18 (a) and 5.18 (b) respectively. The output MV for these 

inputs (for 64x64 current block size) is (14,-1) which was obtained with ME algorithm 

software model. The same value is matched with that of the result obtained hardware 

architecture model, shown in Fig. 5.19 (a) and its zoomed version in fig 5.19 (b). The 

MV output in Fig 5.19 (b) is 7-bit unsigned decimal number. Hence MVx is seen as 14, 

while MVy is seen as 65 which is equal ‘1 000001’ in binary. The first bit represents 

sign (1 for -ve and 0 for +ve) and the rest 6 digits represents magnitude. Hence value 65 

 

 

Fig. 5.17   Verification Setup Used to Validate the Proposed Design 

 



PROPOSED VLSI ARCHITECTURE 

 

 

 
138 

 

is equivalent to ‘-1’. For the rest of block sizes, the MVs and their hardware verification 

results are shown in Table 5.6. Each CTU block is divided into four partition blocks, 

from 64x64 until 8x8, which results in many portioned CTUs. For simplicity, only the 

first CTU size and their MVs are shown for CTUs 32x32, 16x16, 8x8. For each PU 

(prediction unit) its corresponding MV is obtained from software and compared with 

hardware MV result. For all the block sizes, the MV results from software and hardware 

matches, as shown in the table.  

 

 

 

 

 

(a) (b) 

Fig. 5.18  Current Block and Search window Pixels used for Verification 
 

 

(a) 

 

(b) 

Fig. 5.19  Hardware Simulation Output for the Current Block and SW Pixels 
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TABLE 5.6: HARDWARE VERIFICATION RESULTS FOR ALL THE 

BLOCK SIZES 

CTU size CTU index PU size PU index S/W MV Test Pass/Fail 

64x64 0 

64x64 0 (14,-1) pass 

64x32 0 (6,0) pass 

1 (14,29) pass 

64x48 0 (6,0) pass 

1 (13,47) pass 

64x16 0 (5,0) pass 

1 (14,15) pass 

32x64 0 (14,-3) pass 

1 (38,1) pass 

48x64 0 (13,-2) pass 

1 (25,6) pass 

16x64 0 (3,0) pass 
1 (32,-1) pass 

32x32 (0,0) 

32x32 0 (-64,-32) pass 

32x16 0 (-64,-32) pass 

1 (-63,32) pass 

32x24 0 (-64,-32) pass 

1 (-63,32) pass 

32x8 0 (-64,-32) pass 
1 (-63,21) pass 

16x32 0 (-64,-32) pass 
1 (-62,20) pass 

24x32 0 (-64,-32) pass 

1 (-64,24) pass 

8x32 0 (-64,-32) pass 

1 (-61,16) pass 

16x16 (0,0,0) 

16x16 0 (-64,33) pass 

16x8 0 (-19,-7) pass 

1 (-62,31) pass 

16x12 0 (-17,-8) pass 

1 (-64,29) pass 

16x4 0 (-63,-33) pass 

1 (-64,27) pass 
8x16 0 (-56,40) pass 

 1 (-61,31) pass 

12x16 0 (-56,38) pass 

 1 (-16,6) pass 

4x16 0 (-16,-8) Pass 
 1 (-61,28) Pass 

8x8 (0,0,0,0) 

8x8 0 (-10,5) Pass 

8x4 0 (-1,-16) Pass 
1 (-10,4) Pass 

4x8 0 (-9,3) Pass 

1 (-9,3) Pass 
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5.8 SUMMARY OF OVERALL DESIGN 

A fast search ME algorithm for HEVC and its FPGA hardware architecture was 

proposed and implemented. The architecture can perform ME for all the block sizes 

until 64x64 including asymmetric mode partitions and with search range of ±64.  The 

synthesis results show that the proposed architecture outperforms in terms of area and 

operating frequency compared to recent works in the literature. Further research is being 

carried out to implement and embed a fractional ME architecture. 
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6 CONCLUSIONS AND FUTURE RESEARCH 

6.1 SUMMARY OF RESEARCH 

Motion estimation is one of the most complex tasks in block based video encoders. 

Especially in the encoder of the latest video coding standard HEVC, the complexity of 

ME is further increased due to increase in the block size to 64x64 pixels. The ME has to 

perform the operation in all variable block sizes including AMP modes. At the search 

window level, the search range also increased to 64 in HEVC and hence the number of 

search points also increases, where for each point the rate distortion cost has to be 

calculated for all block sizes. Hence to reduce the ME complexity, reducing the number 

of search points effectively without much effect in RD performance is one of the main 

approach used in the present thesis. To do this, the present thesis uses a fast ME 

algorithm which employs effective search patterns to get the optimal search point faster. 

Compared to full search and state-of-the-art fast ME algorithm used in HEVC reference 

software encoder, the overall reduction achieved in the ME complexity is significant 

with negligible loss in the PSNR and bitrate. 

The ME complexity can be further decreased by using an appropriate hardware 

architecture. By introducing parallel stages for computing the SAD cost function, the 

computational cost can be further reduced. The present thesis also focused on effective 

implementation of an architecture of the fast ME algorithm which is able to perform in 

real time. The simulation and synthesis results show that the proposed architecture 

outperforms in terms of area and operating frequency compared with recent works. 

The summary of achieved results are as follows. 

� The proposed algorithm uses rotating hexagonal patterns and an efficient 

adaptive early termination strategy to reduce the ME time. On an average 

the total gain in ME time is 98.04% and 43.305% compared to full search 

and TZSearch algorithm respectively.  

� The proposed algorithm also uses hexagonal fine refinement strategy to 

further reduce ME time and total encoding complexity costs. On an 

average it achieves overall gain of 84.44% and 23.39% in encoding time 

compared to full search and TZSearch algorithm respectively. 
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� The total reduction in ME search points complexity for the proposed 

algorithm compared to full search and TZSearch algorithm is 98.96% and 

44.75% respectively. 

� The overall BD-PSNR loss is 0.037 and 0.028 compared to full search and 

TZSearch algorithm respectively. 

� The overall BD-bitrate increase is 0.665 and 0.432 compared to full search 

and TZSearch algorithm respectively. 

� The proposed hardware architecture uses high speed SAD architecture 

which effectively uses sixteen 4x4 parallel SAD calculating cores.  

� The architecture can perform ME with a throughput of 61 frames/sec and 

with a maximum clock frequency of 241.6 MHz for all the block sizes 

until 64x64 including asymmetric mode partitions, at a search range of 

±64. 

6.2 FUTURE RESEARCH DIRECTIONS 

To make the present research more complete, the present thesis work is planned to 

extend in several directions, listed below. 

� Effective mode decision algorithm: The ME complexity can be further reduced 

by using effective mode decision algorithms, which focus on eliminating some 

of the unnecessary modes of the current block. Hence for each selected mode, 

the proposed fast ME algorithm can be used and thus the overall performance of 

the video encoder can be increased. In the hardware architecture, the present 

work can be extended in order to incorporate mode decision and produce MVs 

for the blocks that are only necessary. 

� Fractional ME architecture: As explained in chapter 2, the ME is also 

performed at sub-pixel level. After performing the integer ME in hardware, the 

MVs can be used to get the half-pixel and quarter-pixel accurate MVs. A future 

line of work may focus on the implementation of the fractional ME hardware 

architecture. 

� Motion Compensation unit: The ME generates the MVs for each block in every 

frame. The motion compensation unit utilizes these MVs and generate motion 

compensated frames. These motion compensated frames are subtracted from the 
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current frames to get the residual frames. To verify the effectiveness of the ME 

architecture, the motion compensation unit hardware architecture can be 

designed and integrated with ME architecture. 
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Annex A 

RD curves of the all the test sequences for Full Search, TZSearch and the proposed 

algorithm. 
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