66,662 research outputs found

    Gas turbine and sensor fault diagnosis with nested artificial neural networks

    Get PDF
    Accurate gas turbine diagnosis relies on accurate measurements from sensors. Unfortunately, sensors are prone to degradation or failure during gas turbine operations. In this paper a stack of decentralised artificial neural networks are introduced and investigated as an approach to approximate the measurement of a failed sensor once it is detected. Such a system is embedded into a nested neural network system for gas turbine diagnosis. The whole neural network diagnostic system consists of a number of feedforward neural networks for engine component diagnosis, sensor fault detection and isolation; and a stack of decentralised neural networks for sensor fault recovery. The application of the decentralised neural networks for the recovery of any failed sensor has the advantage that the configuration of the nested neural network system for engine component diagnosis is relatively simple as the system does not take into account sensor failure. When a sensor fails, the biased measurement of the failed sensor is replaced with a recovered measurement approximated with the measurements of other healthy sensors. The developed approach has been applied to an engine similar to the industrial 2-shaft engine, GE LM2500+, whose performance and training samples are simulated with an aero-thermodynamic modelling tool — Cranfield University’s TURBOMATCH computer program. Analysis shows that the use of the stack of decentralised neural networks for sensor fault recovery can effectively recover the measurement of a failed sensor. Comparison between the performance of the diagnostic system with and without the decentralised neural networks shows that the sensor recovery can improve the performance of the neural network engine diagnostic system significantly when a sensor fault is present. Copyright © 2004 by ASM

    Model-based sensor supervision inland navigation networks: Cuinchy-Fontinettes case study

    Get PDF
    In recent years, inland navigation networks benefit from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the manage- ment of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strate- gies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. The proposed approach will be particularized for the Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.In recent years, inland navigation networks bene¿t from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the management of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strategies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. The proposed approach will be particularized for the Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.Peer ReviewedPostprint (author's final draft

    Design and simulation of a multi-function MEMS sensor for health and usage monitoring.

    Get PDF
    Health and usage monitoring as a technique for online test, diagnosis or prognosis of structures and systems has evolved as a key technology for future critical systems. The technology, often referred to as HUMS is usually based around sensors that must be more reliable than the system or structure they are monitoring. This paper proposes a fault tolerant sensor architecture and demonstrates the feasibility of realising this architecture through the design of a dual mode humidity/pressure MEMS sensor with an integrated temperature function. The sensor has a simple structure, good linearity and sensitivity, and the potential for implementation of built-in-self-test features. We also propose a re-configurable sensor network based on the multi-functional sensor concept that supports both normal operational and fail safe modes. The architecture has the potential to significantly increase system reliability and supports a reduction in the number of sensors required in future HUMS devices. The technique has potential in a wide range of applications, especially within wireless sensor networks

    Distributed Fault Diagnosis using Sensor Networks and Consensus-based Filters

    Get PDF
    This paper considers the problem of designing distributed fault diagnosis algorithms for dynamic systems using sensor networks. A network of distributed estimation agents is designed where a bank of local Kalman filters is embedded into each sensor. The diagnosis decision is performed by a distributed hypothesis testing method that relies on a belief consensus algorithm. Under certain assumptions, both the distributed estimation and the diagnosis algorithms are derived from their centralized counterparts thanks to dynamic average-consensus techniques. Simulation results are provided to demonstrate the effectiveness of the proposed architecture and algorithm

    Wireless body sensor design for intra-vaginal temperature monitoring

    Get PDF
    Sensor nodes are small devices able to collect and retrieve sensorial data. The use of these sensors for medical purposes offers valuable contributions to improve patients’ healthcare, both for diagnosis and therapeutics monitoring. An important and common parameter used on healthcare diagnosis is the body temperature. It is monitored on several matters related with gynecological and obstetrics issues but, usually it is measure at the skin surface. Then, this paper proposes the design concepts of a new intra-body sensor for long-term intra-vaginal temperature collection. The embedded IEEE 802.15.4 communication module allows the integration of this sensor in wireless sensor networks for remote data access and monitoring. It is presented the sensor architecture, the construction of the corresponding testbed, and its performance evaluation. This sensor may be used on several applications, including fertile and ovulation period detection, and preterm labor prevention

    Wireless body sensor design for intra-vaginal temperature monitoring

    Get PDF
    Sensor nodes are small devices able to collect and retrieve sensorial data. The use of these sensors for medical purposes offers valuable contributions to improve patients’ healthcare, both for diagnosis and therapeutics monitoring. An important and common parameter used on healthcare diagnosis is the body temperature. It is monitored on several matters related with gynecological and obstetrics issues but, usually it is measure at the skin surface. Then, this paper proposes the design concepts of a new intra-body sensor for long-term intra-vaginal temperature collection. The embedded IEEE 802.15.4 communication module allows the integration of this sensor in wireless sensor networks for remote data access and monitoring. It is presented the sensor architecture, the construction of the corresponding testbed, and its performance evaluation. This sensor may be used on several applications, including fertile and ovulation period detection, and preterm labor prevention

    Cloud-based data-intensive framework towards fault diagnosis in large-scale petrochemical plants

    Get PDF
    Industrial Wireless Sensor Networks (IWSNs) are expected to offer promising monitoring solutions to meet the demands of monitoring applications for fault diagnosis in large-scale petrochemical plants, however, involves heterogeneity and Big Data problems due to large amounts of sensor data with high volume and velocity. Cloud Computing is an outstanding approach which provides a flexible platform to support the addressing of such heterogeneous and data-intensive problems with massive computing, storage, and data-based services. In this paper, we propose a Cloud-based Data-intensive Framework (CDF) for on-line equipment fault diagnosis system that facilitates the integration and processing of mass sensor data generated from Industrial Sensing Ecosystem (ISE). ISE enables data collection of interest with topic-specific industrial monitoring systems. Moreover, this approach contributes the establishment of on-line fault diagnosis monitoring system with sensor streaming computing and storage paradigms based on Hadoop as a key to the complex problems. Finally, we present a practical illustration referred to this framework serving equipment fault diagnosis systems with the ISE

    Fault detection, identification and accommodation techniques for unmanned airborne vehicles

    Get PDF
    Unmanned Airborne Vehicles (UAV) are assuming prominent roles in both the commercial and military aerospace industries. The promise of reduced costs and reduced risk to human life is one of their major attractions, however these low-cost systems are yet to gain acceptance as a safe alternate to manned solutions. The absence of a thinking, observing, reacting and decision making pilot reduces the UAVs capability of managing adverse situations such as faults and failures. This paper presents a review of techniques that can be used to track the system health onboard a UAV. The review is based on a year long literature review aimed at identifying approaches suitable for combating the low reliability and high attrition rates of today’s UAV. This research primarily focuses on real-time, onboard implementations for generating accurate estimations of aircraft health for fault accommodation and mission management (change of mission objectives due to deterioration in aircraft health). The major task of such systems is the process of detection, identification and accommodation of faults and failures (FDIA). A number of approaches exist, of which model-based techniques show particular promise. Model-based approaches use analytical redundancy to generate residuals for the aircraft parameters that can be used to indicate the occurrence of a fault or failure. Actions such as switching between redundant components or modifying control laws can then be taken to accommodate the fault. The paper further describes recent work in evaluating neural-network approaches to sensor failure detection and identification (SFDI). The results of simulations with a variety of sensor failures, based on a Matlab non-linear aircraft model are presented and discussed. Suggestions for improvements are made based on the limitations of this neural network approach with the aim of including a broader range of failures, while still maintaining an accurate model in the presence of these failures

    Fault Diagnosis Of Sensor And Actuator Faults In Multi-Zone Hvac Systems

    Get PDF
    Globally, the buildings sector accounts for 30% of the energy consumption and more than 55% of the electricity demand. Specifically, the Heating, Ventilation, and Air Conditioning (HVAC) system is the most extensively operated component and it is responsible alone for 40% of the final building energy usage. HVAC systems are used to provide healthy and comfortable indoor conditions, and their main objective is to maintain the thermal comfort of occupants with minimum energy usage. HVAC systems include a considerable number of sensors, controlled actuators, and other components. They are at risk of malfunctioning or failure resulting in reduced efficiency, potential interference with the execution of supervision schemes, and equipment deterioration. Hence, Fault Diagnosis (FD) of HVAC systems is essential to improve their reliability, efficiency, and performance, and to provide preventive maintenance. In this thesis work, two neural network-based methods are proposed for sensor and actuator faults in a 3-zone HVAC system. For sensor faults, an online semi-supervised sensor data validation and fault diagnosis method using an Auto-Associative Neural Network (AANN) is developed. The method is based on the implementation of Nonlinear Principal Component Analysis (NPCA) using a Back-Propagation Neural Network (BPNN) and it demonstrates notable capability in sensor fault and inaccuracy correction, measurement noise reduction, missing sensor data replacement, and in both single and multiple sensor faults diagnosis. In addition, a novel on-line supervised multi-model approach for actuator fault diagnosis using Convolutional Neural Networks (CNNs) is developed for single actuator faults. It is based a data transformation in which the 1-dimensional data are configured into a 2-dimensional representation without the use of advanced signal processing techniques. The CNN-based actuator fault diagnosis approach demonstrates improved performance capability compared with the commonly used Machine Learning-based algorithms (i.e., Support Vector Machine and standard Neural Networks). The presented schemes are compared with other commonly used HVAC fault diagnosis methods for benchmarking and they are proven to be superior, effective, accurate, and reliable. The proposed approaches can be applied to large-scale buildings with additional zones
    corecore