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ABSTRACT
Accurate gas turbine diagnosis relies on accurate

measurements from sensors. Unfortunately, sensors are
prone to degradation or failure during gas turbine
operations. In this paper a stack of decentralised artificial
neural networks are introduced and investigated as an
approach to approximate the measurement of a failed
sensor once it is detected. Such a system is embedded into
a nested neural network system for gas turbine diagnosis.
The whole neural network diagnostic system consists of a
number of feedforward neural networks for engine
component diagnosis, sensor fault detection and isolation;
and a stack of decentralised neural networks for sensor
fault recovery. The application of the decentralised neural
networks for the recovery of any failed sensor has the
advantage that the configuration of the nested neural
network system for engine component diagnosis is
relatively simple as the system does not take into account
sensor failure. When a sensor fails, the biased
measurement of the failed sensor is replaced with a
recovered measurement approximated with the
measurements of other healthy sensors. The developed
approach has been applied to an engine similar to the
industrial 2-shaft engine, GE LM2500+, whose
performance and training samples are simulated with an
aero-thermodynamic modelling tool - Cranfield

University's TURBOMATCH computer program.
Analysis shows that the use of the stack of decentralised
neural networks for sensor fault recovery can effectively
recover the measurement of a failed sensor. Comparison
between the performance of the diagnostic system with
and without the decentralised neural networks shows that
the sensor recovery can improve the performance of the
neural network engine diagnostic system significantly
when a sensor fault is present.
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NOMENCLATURE
BR Bayesian Regularization
CF Compressor fault
CTF Compressor turbine fault
DNN Decentralised Neural Network
E Mean Square Error
FFNN Feedforward Neural Network
M Number of training samples
N Number of measurements; Engine

relative rotational speed (%)
Pc Compressor exit total pressure (atm)
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Pe Exhaust gas total pressure (atm)
PTF Power turbine fault
SCG Scaled Conjugate Gradient
s.d. Standard deviation
Tansig Tangent sigmoid
Te Exhaust gas total temperature (K)
Tc Compressor exit total temperature (K)
W Flow capacity
Wf Fuel flow rate (kg/s)
Y Network’s actual response
Z Actual value of a parameter
Zbaseline Baseline value of a parameter

Z∆ Normalized deviation (%)
η Efficiency

INTRODUCTION
Gas turbine components, such as compressors and

turbines, usually operate in harsh environments and are
bound to degrade during their operations. The component
degradation will lead to overall engine performance
change, which causes the engine to operate in a non-
economical manner or even results in a total failure.

According to Diakunchak [2], about 70 to 80 per cent
of gas turbine engine performance loss accumulated
during operation is attributed to compressor fouling,
turbine erosion and corrosion. Although the degradations
have different causes, they all result in a loss of engine
performance.

Effective operation of an engine diagnostic system
relies on correct information from sensors but sensors
may fail within a hostile working environment. Different
sensor fault detection techniques have been developed in
the past, such as those using neural networks [7, 9, 15,
16], Gas Path Analysis [5] and Genetic Algorithms [17].

Artificial neural networks have been introduced into
gas turbine diagnostics since the late 1980’s [3] and
different types of neural networks have been used for
diagnostic purposes. The most popular neural networks
are feed forward back propagation (FFBP) neural
networks. Due to the complexity of the problem, nested
neural networks have been introduced in gas turbine
diagnostics by many researchers such as Ogaji and Singh
[14].

When a sensor fails, the engine diagnostic system
should respond to the change in order to continue the
diagnosis correctly. To do so, the engine diagnostic
system either has the capability to detect the failed sensor
and only use the measurements from the sensors that are
not failed, or still use the same measurements but the

measurement corresponding to the failed sensor must be
replaced with a recovered measurement approximated
with other healthy measurements. Obviously, the engine
diagnostic system with the former method is more
complicated than that with the latter method. The idea of
gas turbine diagnostic system using recovered sensors
was described in [7, 9, 12, 13, 16].

In this research, a stack of decentralised neural
networks are used to recover the measurement of any
failed sensor, once it is detected, by using other healthy
measurements. These decentralised neural networks are
then embedded into a neural network gas turbine
diagnostic system. Therefore, the whole diagnostic
system has the capability of component fault diagnosis,
sensor fault diagnosis and recovery. The proposed system
is applied to a model gas turbine engine. Discussions and
analysis for some cases of typical sensor and engine
component degradations are provided.

GAS TURBINE ENGINE MODEL AND ITS
PERFORMANCE SIMULATION

The model gas turbine engine used for this work is
similar to the General Electric industrial engine LM
2500+. It is a two-shaft engine with one compressor, one
burner, one compressor turbine and one power turbine
shown in Figure 1. The basic performance parameters of
the model engine are as follows:

Total pressure ratio: 23.1
Turbine Entry Temperature: 1527 K
Mass flow rate: 86.4 kg/s
Shaft Power: 29 MW
Thermal efficiency: 38.11 %

Figure 1 – Schematic illustration of model engine

The performance of the engine is simulated using
TURBOMATCH [10], an aero-thermodynamic modelling
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software developed by Cranfield University.
TURBOMATCH has been developed and used for many
years at Cranfield and has proved a reliable performance
simulation tool.

The most common engine degradations, such as
compressor fouling, turbine erosion and corrosion, are
considered in this study. It is assumed that only a single
component fault could be present in the engine at a time.
By using TURBOMATCH, different compressor fouling
are simulated by reducing its flow capacity and isentropic
efficiency by 0.5% to 6%. Different compressor turbine
and power turbine erosions and corrosions are simulated
by increasing their flow capacity by 0.5% to 6% and
reducing their isentropic efficiency by 0.5% to 6%.

Six measurable engine parameters are selected for
diagnostic purposes and they are as follows:

• fuel flow rate (Wf)
• exhaust gas total temperature (Te)
• exhaust gas total pressure (Pe)
• compressor exit total temperature (Tc)
• compressor exit total pressure (Pc)
• engine relative rotational speed (N)

Sensor
Measurement Noise

(% of measurement)

Measurement Bias

(% of measurement)

Wf, Tc, Pc ±0.5% ±1-6%

Te ±1% ±1.5-4%

Tc ±0.3% ±0.6-4%

N ±0.1% ±0.3-3%

Table 1.  Level of measurement noise and bias

Measurements from the clean and degraded model
engine are simulated with TURBOMATCH. These
measurements are subject to measurement errors that can
be expressed as measurement noise and bias. In order to
make the investigation more realistic, all the simulated
measurements are superimposed with a level of random
measurement noise. The maximum measurement noise
levels for different measurable parameters are assumed
and shown in Table 1. Sensor degradation is simulated by
superimposing a bias on the corresponding simulated
measurement. Table 1 also shows the levels of the biases
that are used to simulate sensor failure.

Different component degradations are implanted in
the model engine with TURBOMATCH to produce a
large number of training samples inclusive of
measurement noise. Measurement biases are included in

the simulated measurements to simulate different cases of
degraded sensors.

ARTIFICIAL NEURAL NETWORKS FOR ENGINE
AND SENSOR DIAGNOSIS

Feed forward neural networks
The most commonly used artificial neural networks

for gas turbine diagnosis are the Feed Forward Neural
Networks (FFNN) and they are used in this study. FFNNs
have been used by many researchers for the detection,
isolation and quantification of gas turbine component
faults [8].

Figure 2. A typical FFNN

A typical FFNN that consists of a hidden layer is
shown in Figure 2. A FFNN normally consists of an input
layer of source nodes, one or more hidden layers and an
output layer. The function of the hidden layers is to
intervene between the input layer and the output layer.
Non-linear activation functions, such as the hyperbolic
tangent sigmoid function, are used to take into account
the non-linear relationship between the input and the
output of the neural network.

Decentralised neural networks
Decentralised Neural Networks (DNN) have been

used in the past by researchers such as Napolitano et al.
[12, 13] and Lu and Hsu [9] for the approximation of
sensor faults. A DNN is basically a FFNN. Its input layer
consists of n-k nodes and its output layer of k nodes,
where n is the total number of sensors and k the number
of sensors failed. In this research, it is assumed that only
one sensor may fail at a time so k = 1. Such a network
system configuration gives the system the ability to
approximate the measurement of a failed sensor by using

Input
Layer

Output
Layer

Hidden
Layer
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the information from other sensors that are working
correctly. Usually the same of number of DNNs to that of
the sensors is used so that the measurement of any failed
sensor can be recovered.

Figure 3. Nested neural networks

Neural network diagnostic system
A single neural network, whatever its type is, cannot

cope with the complexity of real problems such as gas
turbine component and sensor diagnosis. Therefore, a
nested neural network system is needed. Such a system
consists of a number of different neural networks; each
one of them is trained for a particular job.

The configuration of the nested neural network
diagnostic system and how the system works are shown
in Figure 3. Within the system, Net 1a, a FFNN used for
the detection of a sensor fault, receives measurement data
from the gas turbine engine and starts the diagnostic
process. If a sensor fault is detected the measurement data
is passed to Net 1b that is also a FFNN used to isolate the
particular sensor that is faulty. When the faulty sensor is
isolated, the data is fed to one of the six decentralised
neural networks (Nets 2-7) corresponding to the six
sensors that have been used. Each one of Nets 2-7 is
capable of approximating the correct output of the sensor
when it works properly. The recovered sensor value
together with other sensor values is then fed into Net 8 for
engine component diagnostic analysis.

If Net 1a does not detect any sensor fault, the
measurement data is fed into Net 8 that is able to identify
if there is a component fault. If there is no component
fault, the engine is declared being clean then the
diagnostic process finishes. If there is a component fault
the measurement data is passed to Net 9 that detects

which component has the fault, i.e. the compressor (CF),
the compressor turbine (CTF) or the power turbine (PTF).
Following Net 9 are Nets 10-12 that can quantify the fault
in terms of the change in isentropic efficiency η and flow
capacity W of the components. Nets 8-12 are all of the
feed forward type.

Training of nested neural networks
The neural networks should be trained with training

samples and validated with validation samples before
they can be used for engine and sensor diagnosis. The
training and validation samples are simulated with
TURBOMATCH by implanting different component and
sensor faults.

Since the six sensors are used to measure different
engine parameters, each one of them would have a
completely different range. Therefore, the training and
validation samples are normalised so that they all fall into
the same range in order that the neural networks can be
trained and validated properly. The equation used for the
normalization is shown below:

100×
−

=∆
baseline

baseline

Z
ZZ

Z (1)

where Z is the value of a parameter and Zbaseline an
established baseline value for the parameter.

The activation function used for all nodes is the
hyperbolic tangent sigmoid transfer function (tansig). It
squashes all inputs to give output in the range {-1, 1}.
The networks are trained using batch training and
supervised learning. The training algorithm is the Scaled
Conjugate Algorithm (SCG). The SCG training algorithm
is chosen as it performs well over a wide variety of
problems and has relatively modest memory requirements
compared to other algorithms such as Lavenberg-
Marquardt. [1]. A full description of the SCG training
algorithm can be found in [6, 11].

Having decided on all the above, the next step is the
actual training and validation of the neural networks.
Neural networks with different architectures are trained
and validated until acceptable results are obtained. The
performance of the networks is assessed by two criteria,
the Mean Square Error (E) and the generalization of the
validation data set.

The Mean Square Error function is given by Equation
2
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where M is the number of training patterns and N the
number of measurements, kiZ are the target values and
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kiY  the network’s responses. In theory the training
process should reduce the Mean Square Error E.

The generalization of a network is defined as the
ability of the network to produce the outputs that are
close to their target values.

The details of the training of the 13 networks in the
nested neural network system (Figure 3) are discussed as
follows.

Net 1a
Net 1a is a FFNN network used to detect if there is a

sensor fault. The training and validation samples include
cases for a clean engine and a degraded engine with
different component and sensor degradations. A summary
of the training results and the performance of Net 1a is
shown in Table 2. Assessed with the validation samples,
Net 1a is able to classify around 95.67% of the patterns
correctly.

Architecture 6-20-20-2
Number of training samples 8786

Number of validation samples 8786
Mean Square Error 0.0631

Epochs 1751
Time 25min

Training (%) 96.70Correctly Detected
Patterns Validation (%) 95.67

Faults Categorized as No Faults (%) 1.86
No Faults Categorized as Faults (%) 2.47

Table 2. Details of Net 1a

Architecture 6-12-12-6

Number of training samples 5024
Number of validation samples 5024

Mean Square Error 0.0845
Epochs 1351

Time (min) 15
Train %. 92Correctly Isolated

Patterns (%) Valid %. 85
Table 3. Details of Net 1b

Net 1b
Net 1b is used for the isolation of a faulty sensor. The

training and validation samples for this network is the
same as those for Net 1a, Table 2. The only difference is
that the training and validation samples for the clean
engine and the degraded engine with different component
degradations are excluded.

The training results and the performance of Net 1b
are shown in Table 3. The performance of Net 1b is not as
good as that of Net 1a. This is because the task of Net 1b
is more complicated than that of Net 1a in the sense that it
is to classify the data into six categories, one for each
sensor. Assessed with the validation samples,  Net 1b can
predict about 85% of the fault patterns correctly.

Nets 2 to 7
Nets 2 to 7 are all decentralised neural networks for

faulty sensor fault recovery and they have the same
architecture. The inputs to these networks are the
measurements from all sensors except the one detected as
faulty. The outputs of these networks are the recovered
measurements corresponding to the failed sensors.
Therefore only one of them, Net 5 for the approximation
of the measurement of the compressor exit temperature
(Tc), is presented.

Architecture 5-20-20-1

Number of training samples 4524
Number of validation samples 4524

Mean Square Error 0.0008
Epoch 1351
Time 10 min

Threshold ±0.3
Training 99.8Data within

Threshold (%) Validation 99.96
s.d (Validation) 0.0782
Within 1 s.d (%) 80.17
Within 2 s.d (%) 96.31
Within 3 s.d (%) 99.27

Table 4. Details of Nets 5

The training results and the performance of Net 5 are
shown in Table 4. The performance of the network is
judged based on the percentage deviation of the output
from the desired output. If the predicted percentage
deviation is within the established noise level, the
estimation is declared to be successful. The threshold is
taken to be the maximum noise level for the parameter
defined in Table 1.

Net 5 performs very well (Table 4). Nearly 100% of
the training and the validation patterns are estimated
within the predefined threshold. The distribution of the
prediction errors of Net 5 is fairly normally and narrowly
distributed (Figure 4).
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Figure 4. Percentage difference from target (Net 5)

All the other decentralised networks have similar
performance compared to Net 5 except Net 7. Net 7 is
used for the recovery of the rotational speed (N). The low
percentage of successful fault prediction of Net 7 is due
to its low threshold compared to other decentralised
networks. A performance comparison among Nets 2-7 is
shown in Table 7.

Nets 8 and 9
Net 8 is used to detect whether there is an engine

component fault. The input to the network is the
measurements from the six sensors. The output from the
network is either [0, 1] for no fault or [1, 0] for a fault.

Net 8 Net 9
Architecture 6-8-2 6-10-3

Number of training
samples 5025 3024

Number of validation
samples 4160 3024

Mean Square Error 4.9*E-36 0.0810
Epochs 187 651

Time 7 min 5 min
Training (%) 100 98.62Correctly

Detected
or isolated
Patterns

Validation
(%) 99.86 96.59

Table 5. Details of Nets 8 and 9

Net 9 is used to isolate a particular component that is
faulty. When a faulty component is detected, the value of
the output node corresponding to the faulty component is
1 while the values of the nodes for other components are
all 0. An example of the output is [0, 1, 0] pointing to a
compressor turbine fault.

The training results and the performance of the two
networks are shown in Table 5. It can be seen that after
training the percentage of correctly detected patterns is
99.86% for Net 8 and 96.59% for Net 9 using the
validation samples, which are very good results.

Architecture 6-20-2

Number of training samples 1008
Number of validation samples 1008

Mean Square Error 0.0011
Epochs 5000

Time 25 min
training 0.0750s.d     (Isentropic

Efficiency) validation 0.0939
training 0.1050s.d        (Flow

Capacity) validation 0.1572
1 s.d. 87
2 s.d. 99Validation % Data

within (Isentr. Eff.) 3 s.d. 100
1 s.d. 97
2 s.d. 99

Validation % Data
within (Flow
Capacity) 3 s.d. 100

Table 6. Summary of Net 11

Net Selected
Architecture

Threshold Correctly
Detected

Patterns (%)
1a 6-20-20-2 96.70
1b 6-12-12-6 85.00
2 ±0.5 99.18
3 ±1.0 100.00
4 ±0.5 99.43
5 ±0.3 99.96
6 ±0.5 92.12
7

5-20-20-1

±0.1 63.22
8 6-8-2 99.98
9 6-10-3 96.73

10 6-10-2 2 s.d. 99.00
11 6-20-2 2 s.d. 99.00
12 6-10-2 2 s.d. 99.00

Table 7. Performance comparison of all networks

Nets 10 to 12
Nets 10 to 12 are used to approximate the level of

degradation of the three components in terms of their
change in isentropic efficiencies and flow capacities.



7 Copyright © 2004 by ASME

These three networks deal with similar problems and have
a similar architecture so only Net 11 is discussed.

The training results and the performance of Net 11
are shown in Table 6. Assessed with the validation
samples, it can be seen that the values of standard
deviations (s.d.) are small so the network is capable of
predicting the faults with a high level of accuracy. If 2 s.d
is used as a threshold to assess the performance of the
network, Net 11 has the potential to correctly predict the
degradation by 99%. Both Nets 10 and 12 give very
similar results to Net 11.

A comparison of the performance of all the neural
networks within the whole diagnostic system (Figure 3) is
shown in Table 7.

DISCUSSIONS AND ANALYSIS
Once the training process for the nested neural

networks is finished, the neural network diagnostic
system is ready for the detection, isolation and recovery
of any faulty sensor as well as the diagnosis and
assessment of engine component faults.

The overall performance of the network system is the
combination of the performance of individual networks.
Therefore, the percentage of correctly detected fault
patterns of the whole diagnostic system is the
multiplication of the percentages of correctly detected
fault patterns of individual networks in use. To see the
performance of the whole diagnostic system, analysis is
carried out for some engine and sensor fault cases as
follows.

Case 1:
The diagnostic system receives measurement

information from the engine in Net 1a that has a
percentage of correct classification of about 95.67% and a
percentage of no-faults classified as faults of about
2.47%. When a sensor fault occurs and is wrongly
declared, Net 1b is going to indicate a sensor fault and
pass the measurement data to a selected network in Nets
2-7. The selected network will provide an estimate of the
measurement of the declared faulty sensor. The estimate
of the measurement of the declared faulty sensor should
be very close to its original value as the sensor is not
faulty. Therefore, the diagnostic procedure will continue
without any problem by feeding the measuremeent data
into Net 8. Because of the existence of the decentralised
neural networks, the performance of Net 1a can be
improved by 2.47%, i.e. from 95.67% to 98.14%.

Case 2:
The performance of the engine diagnostic system

(Nets 8-12) is analysed with and without the 6
decentralized neural networks, Nets 2-7, when combined
component and sensor faults are presented. For this
purpose simulated measurements for some typical
combined component and sensor faults are created and
passed to the neural network diagnostic system. The test
cases that are used are summarized in Table 8.

Type Faults Number of
Fault Cases

1 Compressor Fault combined
with Sensor Faults 10

2 Turbine Fault combined with
Sensor Faults 10

3 Power Turbine Fault
combined with Sensor Faults 10

4 Clean engine combined with
Sensor Faults 10

Total 40

Table 8. Data used for testing

First the simulated measurements of fault cases in
Table 8 are fed into Net 8. In the test Net 8 successfully
classifies the fault patterns by 100%. Then all the data are
fed into Net 9 that has the potential to correctly classify
96.73% of the faults using bias free measurements. The
test shows that without the decentralized networks the
percentage of correctly detected fault patterns of Net 9
falls to 63.33%.

Net 10
(6-10-2)

Net 11
(6-20-2)

Net 12
(6-10-2)

Isentropic
Efficiency 10 10 40% of Errors

inside the
pre-defined
threshold Flow Capacity 0 20 60

Table 9.  Performance of Nets 10, 11 and 12 when Nets
2-7 are absent

Suppose that Nets 8 and 9 provide correct detection
and isolation of the component faults for the test cases
then the measurement data are passed to one of Nets 10-
12 for the estimation of the component degradation. The
prediction errors that are the difference between the
predicted degradations and the implanted degradations
are compared with predefined thresholds taken to be
3*s.d. The success of the predictions is judged by whether
the prediction errors are within the thresholds. Table 9
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shows the results. It can be seen that the prediction
accuracy is fairly low.

Case 3:
The influence of the performance of individual

neural networks on the performance of the whole
diagnostic system can be seen in the following analysis.

When the compressor turbine degrades without
sensor fault, the percentage of correctly quantified faults
is around 91.48% that is obtained by multiplying the
percentages of correctly detected fault patterns of Nets 1a,
8, 9 and 11. When a combined compressor turbine fault
and sensor Tc fault is presented to the diagnostic system,
the percentage of correctly detected faults is around
84.12% that is obtained by multiplying the percentages of
correctly predicted fault patterns of Nets 1a, 1b, 5, 8, 9
and 11. This relatively low value of the percentage in the
latter situation is due to the relatively poor performance
of Net 1b. Even so, the performance of the whole
diagnostic system is still much better than that when the
decentralised networks are absent, as discussed in Case 2.
Therefore, to have a good performance of the whole
diagnostic system each of the nested neural networks
within the system must have good performance and the
sensor fault recovery does improve the performance of
the engine diagnostic system when a sensor fault is
present.

Case 4:
For trained neural networks, for example Nets 2-7,

their performance is affected by the complexity of the
problems they encounter. Nets 2-7 are designed and
trained for both sensor faults and combined sensor and
component faults. It is found that when the networks are
applied to sensor fault cases only, the performance of the
networks is much better than that when they are applied
to all different fault cases. For example, Net 7 has the
percentage of prediction accuracy of only 63.22% for all
fault cases. When it is used for sensor fault cases only, the
prediction accuracy of Net 7 can reach to around 91.20%.

CONCLUSIONS
A nested decentralised neural network system is

introduced and embedded into a neural network gas
turbine diagnostic system. It has the capability to detect
and isolate a failed sensor and provide the engine
diagnostic system with an estimated measurement of the
failed sensor. Therefore, embedded with the decentralised
neural networks, the engine component diagnostic system

can get rid of the impact of the sensor bias and ensure the
prediction accuracy of the engine component diagnostic
system. In addition, the engine component diagnostic
system has a relatively simple configuration by not taking
into account sensor failure.

The investigation shows that the decentralised neural
networks can successfully recover the measurement from
a failed sensor by using the remaining sensors that are
working properly. The application of sensor fault
recovery can improve the performance of fault
classification network Net 8 by 2.47%.

Analysis also shows that when a combined
component and sensor fault occurs the fault classification
accuracy of the component fault classification network
Net 9 may fall from 96.73% with bias free measurements
to 63.33% with biased measurements. The performance
of component fault quantification neural networks Nets
10-12 may also fall significantly with biased
measurements.

The performance of the whole neural network
diagnostic system is determined by the performance of
individual networks within the system. To have good
neural network diagnostic system, all the neural networks
within the system must have good performance.
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