58 research outputs found

    Development of miniaturized light endoscope-holder robot for laparoscopic surgery

    Full text link
    PURPOSE: We have conducted experiments with an innovatively designed robot endoscope holder for laparoscopic surgery that is small and low cost. MATERIALS AND METHODS: A compact light endoscope robot (LER) that is placed on the patient's skin and can be used with the patient in the lateral or dorsal supine position was tested on cadavers and laboratory pigs in order to allow successive modifications. The current control system is based on voice recognition. The range of vision is 360 degrees with an angle of 160 degrees . Twenty-three procedures were performed. RESULTS: The tests made it possible to advance the prototype on a variety of aspects, including reliability, steadiness, ergonomics, and dimensions. The ease of installation of the robot, which takes only 5 minutes, and the easy handling made it possible for 21 of the 23 procedures to be performed without an assistant. CONCLUSION: The LER is a camera holder guided by the surgeon's voice that can eliminate the need for an assistant during laparoscopic surgery. The ease of installation and manufacture should make it an effective and inexpensive system for use on patients in the lateral and dorsal supine positions. Randomized clinical trials will soon validate a new version of this robot prior to marketing

    Multi-View Vision System for Laparoscopy Surgery.

    No full text
    International audienceThis paper deals with the development of a new generation of augmented laparoscopy system. We propose to equip a traditional endoscope, or a robotic endoscope holder, with a miniature stereovision device. The system includes two miniature high resolution CMOS cameras mounted around the endoscope as a pair of glasses that provides a global view of the abdominal cavity completing the traditional view. Each camera can reach a frame rate of 30 images/second with a resolution of 1600 _ 1200 pixels. A deployment, fixation and rapid extraction system of the proposed device through the trocar was designed and validated through preclinical experiments (testbench and human cadaver). The main benefit of the proposed system in the minimally invasive surgery domain is to provide simultaneously local/global views, and with perspectives in 3D reconstruction of the organ being treated

    Smart Camera Robotic Assistant for Laparoscopic Surgery

    Get PDF
    The cognitive architecture also includes learning mechanisms to adapt the behavior of the robot to the different ways of working of surgeons, and to improve the robot behavior through experience, in a similar way as a human assistant would do. The theoretical concepts of this dissertation have been validated both through in-vitro experimentation in the labs of medical robotics of the University of Malaga and through in-vivo experimentation with pigs in the IACE Center (Instituto Andaluz de Cirugía Experimental), performed by expert surgeons.In the last decades, laparoscopic surgery has become a daily practice in operating rooms worldwide, which evolution is tending towards less invasive techniques. In this scenario, robotics has found a wide field of application, from slave robotic systems that replicate the movements of the surgeon to autonomous robots able to assist the surgeon in certain maneuvers or to perform autonomous surgical tasks. However, these systems require the direct supervision of the surgeon, and its capacity of making decisions and adapting to dynamic environments is very limited. This PhD dissertation presents the design and implementation of a smart camera robotic assistant to collaborate with the surgeon in a real surgical environment. First, it presents the design of a novel camera robotic assistant able to augment the capacities of current vision systems. This robotic assistant is based on an intra-abdominal camera robot, which is completely inserted into the patient’s abdomen and it can be freely moved along the abdominal cavity by means of magnetic interaction with an external magnet. To provide the camera with the autonomy of motion, the external magnet is coupled to the end effector of a robotic arm, which controls the shift of the camera robot along the abdominal wall. This way, the robotic assistant proposed in this dissertation has six degrees of freedom, which allow providing a wider field of view compared to the traditional vision systems, and also to have different perspectives of the operating area. On the other hand, the intelligence of the system is based on a cognitive architecture specially designed for autonomous collaboration with the surgeon in real surgical environments. The proposed architecture simulates the behavior of a human assistant, with a natural and intuitive human-robot interface for the communication between the robot and the surgeon

    ارزیابی بالینی یک ربات جدید نگهدارنده دوربین در جراحی لاپاروسکوپی ـ نتایج مقدماتی

    Get PDF
    زمینه و هدف: ربات ابزاری الکترومکانیکی است که به منظور انجام یک کار فیزیکی خاص با دقت و مهارت بالا ساخته می‌شود. ربات‌های پیشرفته امروزی قادرند طیف وسیعی از حرکات پیچیده و از پیش تعریف شده را بارها، با دقت زیاد و بدون خستگی به انجام رسانند. لذا در مواردی که از نیروی انسانی انتظار انجام چنین وظیفه‌ای می‌رود، ربات جایگزین مناسبی است. در این مقاله، ضمن توصیف ویژگی‌های فنی و عملکردی یک ربات جدید دستیار جراح، برای نگهداری دوربین در حین جراحی لاپاروسکوپی، گزارشی از نتایج تست بالینی مقدماتی آن ارایه می‌شود. مواد و روش‌ها: پس از بررسی و ارزیابی طرح‌های پیشین، یک ربات سیار با فرمان پذیری صوتی و پدالی طراحی و ساخته شد که قادر است مطابق فرمان جراح، دوربین لاپاروسکوپ را در جهات مختلف (بالا، پایین، چپ، راست، داخل و خارج) حرکت داده و در موقعیت مناسب نگهداری نماید. نمونه اولیه دستگاه پس از انجام تست‌های کارایی و ایمنی، طی 29 عمل جراحی مختلف لاپاروسکوپیک شامل برداشتن کیسه صفرا، برداشتن آپاندیس، برداشتن طحال و ترمیم فتق در اتاق عمل بیمارستان امام خمینی (دانشگاه علوم پزشکی تهران) مورد آزمایش مقدماتی قرار گرفت. در طی آزمایش‌ها ربات جایگزین فرد نگاهدارنده دوربین شده و کارآیی آن در حین عمل مورد بررسی قرار گرفته است. یافته‌ها: نتایج حاصل از اندازه‌گیری و ثبت زمان لازم برای راه‌اندازی ربات، سهولت کار کردن با ربات، کیفیت عملکرد ربات در پاسخ به دستورات جراح، میزان دقت در حرکات ربات، توانایی ربات در ارائه پوشش تصویری کامل، عدم لرزش یا تکان خوردن تصویر، خستگی ناپذیری ربات در اعمال جراحی طولانی، فقدان حرکات ناخواسته و فقدان خطا در حرکت‌ها حاکی از ایمنی و کارایی ربات و عملکرد رضایت بخش آن در جریان اعمال جراحی است. اگرچه راه اندازی ربات مستلزم صرف زمان و کار اولیه‌ است، ولی نتایج حاکی از کاهش زمان کل عمل، در اکثریت موارد است. نتیجه‌گیـری: نرمی حرکات، پایداری و عدم لرزش تصویر از جمله برتری‌های ربات نگهدارنده لاپاروسکوپ نسبت به دست انسان است، به همین دلیل این ربات می‌تواند جایگزین مناسبی برای فرد نگهدارنده دوربین باشد. گام بعدی ساده‌تر نمودن کار با دستگاه از طریق ارتقاء نرم افزار و انجام مطالعات بالینی بیشتر به منظور ارزیابی مقایسه‌ای عملکرد ربات خواهد بود

    Snake-Like Robots for Minimally Invasive, Single Port, and Intraluminal Surgeries

    Full text link
    The surgical paradigm of Minimally Invasive Surgery (MIS) has been a key driver to the adoption of robotic surgical assistance. Progress in the last three decades has led to a gradual transition from manual laparoscopic surgery with rigid instruments to robot-assisted surgery. In the last decade, the increasing demand for new surgical paradigms to enable access into the anatomy without skin incision (intraluminal surgery) or with a single skin incision (Single Port Access surgery - SPA) has led researchers to investigate snake-like flexible surgical devices. In this chapter, we first present an overview of the background, motivation, and taxonomy of MIS and its newer derivatives. Challenges of MIS and its newer derivatives (SPA and intraluminal surgery) are outlined along with the architectures of new snake-like robots meeting these challenges. We also examine the commercial and research surgical platforms developed over the years, to address the specific functional requirements and constraints imposed by operations in confined spaces. The chapter concludes with an evaluation of open problems in surgical robotics for intraluminal and SPA, and a look at future trends in surgical robot design that could potentially address these unmet needs.Comment: 41 pages, 18 figures. Preprint of article published in the Encyclopedia of Medical Robotics 2018, World Scientific Publishing Company www.worldscientific.com/doi/abs/10.1142/9789813232266_000

    Advanced Augmented Reality Telestration Techniques With Applications In Laparoscopic And Robotic Surgery

    Get PDF
    The art of teaching laparoscopic or robotic surgery currently has a primary reliance on an expert surgeon tutoring a student during a live surgery. During these operations, surgeons are viewing the inside of the body through a manipulatable camera. Due to the viewpoint translation and narrow field of view, these techniques have a substantial learning curve in order to gain the mastery necessary to operate safely. In addition to moving and rotating the camera, the surgeon must also manipulate tools inserted into the body. These tools are only visible on camera, and pass through a pivot point on the body that, in non-robotic cases, reverses their directions of motion when compared to the surgeon\u27s hands. These difficulties spurred on this dissertation. The main hypothesis of this research is that advanced augmented reality techniques can improve telementoring for use between expert surgeons and surgical students. In addition, it can provide a better method of communication between surgeon and camera operator. This research has two specific aims: (1) Create a head-mounted direction of focus indicator to provide non-verbal assistance for camera operation. A system was created to track where the surgeon is looking and provides augmented reality cues to the camera operator explaining the camera desires of the surgeon. (2) Create a hardware / software environment for the tracking of a camera and an object, allowing for the display of registered pre-operative imaging that can be manipulated during the procedure. A set of augmented reality cues describing the translation, zoom, and roll of a laparoscopic camera were developed for Aim 1. An experiment was run to determine whether using augmented reality cues or verbal cues was faster and more efficient at acquiring targets on camera at a specific location, zoom level, and roll angle. The study found that in all instances, the augmented reality cues resulted in faster completion of the task with better economy of movement than with the verbal cues. A large number of environmentally registered augmented reality telestration and visualization features were added to a hardware / software platform for Aim 2. The implemented manipulation of pre-operative imaging and the ability to provide different types of registered annotation in the working environment has provided numerous examples of improved utility in telementoring systems. The results of this work provide potential improvements to the utilization of pre-operative imaging in the operating room, to the effectiveness of telementoring as a surgical teaching tool, and to the effective communication between the surgeon and the camera operator in laparoscopic surgery

    Supernumerary Robotic Arm for Three-Handed Surgical Application: Behavioral Study and Design of Human-Machine Interface

    Get PDF
    In surgical to industrial manipulation, the operator needs assistance for tasks requiring more than two hands. Teamwork may be the source of errors and inefficiency, especially if the assistant is a novice or unfamiliar with the main operator. The need for assistance may become problematic in case of lack of human resources e.g. in emergency surgical cases in the late hours of the night. Our objective is to improve the surgeon's autonomy and dexterity by a robotic arm under his own control. Although a number of robotic instrument holders have been developed, the best way to control such devices is still an open question. No behavioral study has been conducted on the best control strategy and human performance in three-handed tasks. We have selected the foot for commanding the third arm on the basis of a literature review. A series of experiments in virtual environments has been conducted to study the feasibility of this choice. The first experiment compares performance in the same task using two or three hands. Results show that three-handed manipulation is preferred to two-handed manipulation in demanding tasks. The second experiment investigated the type of tasks to be aimed in three-handed manipulation and the learning curve of users. Moving the hands and a foot simultaneously in opposite directions was perceived as difficult compared to a more active task with liberty in choosing the limbs coordination. Limbs were moved in parallel rather than serially. The performance improved within a few minutes of practice. Also, the sense of ownership improved constantly during the experiment. Two other experiments were aimed at handling the endoscope in laparoscopic surgery. Surgeons and medical students participated in these studies. Residents had a more positive approach towards foot usage and performed better compared to more experienced surgeons. This proves that the best training period for surgeons to use a foot controlled robotic arm is during their residency. A realistic virtual abdominal cavity has been developed for the last experiment. This had a positive influence on the participants' performance and emphasizes the importance of using a familiar context for training such a "three-handed surgery". Finally, two different foot interfaces were developed to investigate the most intuitive third arm commanding strategy. A robotic arm is hence controlled by the foot's translation or rotation in one interface (isotonic interface), and by force or torque in the other one (isometric interface). An experimental behavioral study was conducted to compare the two devices. Isometric rate control was preferred to isotonic position control due to the lower physical burden and higher movement accuracy of the robot. It was shown that the proposed device for isometric rate control could be used for intuitive control of four DoFs of a slave robotic arm. This thesis is the first step in a systematic investigation of a three-handed manipulation, two biological hands and a foot controlled robotic assistant. Findings suggest a high potential in using the foot to become more autonomous in surgery as well as other fields. Users can learn the control paradigm in a short period of time with little mental and physical burden. We expect the developed foot interfaces to be the basis of future development of more intuitive control interfaces. We believe that foot controlled robotic arms will be commonly used in various surgical as well as industrial applications

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Design, development and testing of miniature instruments for flexible endoscopy

    Get PDF
    This thesis describes the design and development of single-stitch and chain-stitch endoscopic sewing machines for flexible endoscopy as well as devices and methods for tying knots and cutting thread at flexible endoscopy. The work also includes a comparative study of clipping methods for endoscopic haemostasis and a feasibility study of a wireless endoscope that might allow images to be transmitted from sites in the gastrointestinal tract without wires, cables or fibre optic bundles. The development and testing of simple prototypes of such an endoscope are reported. Chapter 1 reviews the surgical instruments and methods used for tissue approximation in general surgery, laparoscopic surgery and flexible endoscopic surgery. The design of existing, conventional sewing machines and the ways in which they form stitches are also considered. In Chapter 2, a comparative study of clipping methods for endoscopic haemostasis is reported. In Chapter 3, the design and development of new single-stitch endoscopic sewing machines are described, together with data on the clinical use of one of these machines. In Chapter 4, studies of ways of improving endoscopic vision during endoscopic sewing and the effects of needle size and the size and shape of the suction cavity are reported. In Chapter 5, the design and development of novel chain-stitch endoscopic sewing machines are reported. These make use of two new catch mechanisms. In Chapter 6, knot tying at flexible endoscopy is considered, and a number of new devices and methods are described and clinical results reported. In Chapter 7, cutting thread at flexible endoscopy is described. Several new endoscopic thread cutting devices and methods together with results are presented. In Chapter 8, a feasibility study of wireless endoscopy is reported. The study includes tests of the concept of wireless endoscopes made using prototypes constructed from miniature CCD cameras and microwave transmitters. Finally, some concluding remarks relating to the work described in this thesis are given
    corecore