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Resumen 

En las últimas décadas, la cirugía laparoscópica se ha convertido en una práctica 

habitual en los quirófanos de todo el mundo, cuya evolución está tendiendo hacia 

técnicas cada vez menos invasivas. En este escenario, la robótica ha encontrado un 

gran campo de aplicación, que va desde sistemas robóticos que actúan como 

sistemas esclavos que replican los movimientos del cirujano hasta sistemas capaces 

de actuar con cierto grado de autonomía asistiendo al cirujano en determinadas 

maniobras quirúrgicas, o bien realizando tareas completas de forma autónoma. Sin 

embargo, estos sistemas requieren la supervisión directa del cirujano y su capacidad 

de toma de decisiones y de adaptación a un entorno tan dinámico como es una 

intervención quirúrgica es aún muy limitada.  

Esta tesis doctoral presenta el diseño e implementación de un asistente robótico 

inteligente para colaborar con el cirujano en un entorno quirúrgico real. En primer 

lugar, se presenta el diseño de un sistema robótico camarógrafo novedoso que 

permite aumentar las capacidades de los sistemas actuales. Dicho sistema robótico 

está basado en un robot cámara intra-abdominal que se introduce por completo en 

el abdomen del paciente y se puede mover libremente a lo largo de toda la cavidad 

abdominal mediante interacción magnética con un imán externo. Con el objetivo 

de dotar a la cámara de autonomía, el imán externo se encuentra acoplado al efector 

final de un brazo robótico, que controla el desplazamiento de la cámara. De esta 

manera, el asistente robótico que se propone en esta tesis cuenta con seis grados de 

libertad, permitiendo obtener no solo un mayor campo de visión que con los 

sistemas de visión actuales, sino también la posibilidad de observar una misma 

escena desde nuevas perspectivas.  

Por otro lado, la inteligencia del sistema robótico se basa en una arquitectura 

cognitiva especialmente diseñada para la colaboración autónoma con el cirujano en 

entornos quirúrgicos reales. La arquitectura propuesta trata de simular el 

comportamiento de un asistente humano, de manera que la comunicación con el 

cirujano sea lo más natural posible, así como el tipo de colaboración. La arquitectura 

cognitiva incluye mecanismos de aprendizaje para que el robot pueda adaptar su 

comportamiento a las particularidades del personal quirúrgico, así como mejorar su 

comportamiento a través de la experiencia, tal y como lo haría un asistente humano.  

Los conceptos teóricos de esta tesis se han validado tanto mediante 

experimentación in-vitro en los laboratorios de robótica médica de la Universidad 

de Málaga, como en experimentación in-vivo con modelos porcinos en el Centro 

IACE (Instituto Andaluz de Cirugía Experimental) llevada a cabo por cirujanos 

expertos.  
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Abstract 

In the last decades, laparoscopic surgery has become a daily practice in operating 

rooms worldwide, which evolution is tending towards less invasive techniques. In 

this scenario, robotics has found a wide field of application, from slave robotic 

systems that replicate the movements of the surgeon to autonomous robots able to 

assist the surgeon in certain maneuvers or to perform autonomous surgical tasks. 

However, these systems require the direct supervision of the surgeon, and its 

capacity of making decisions and adapting to dynamic environments is very limited.  

This PhD dissertation presents the design and implementation of a smart camera 

robotic assistant to collaborate with the surgeon in a real surgical environment. 

First, it presents the design of a novel camera robotic assistant able to augment 

the capacities of current vision systems. This robotic assistant is based on an intra-

abdominal camera robot, which is completely inserted into the patient’s abdomen 

and it can be freely moved along the abdominal cavity by means of magnetic 

interaction with an external magnet. To provide the camera with the autonomy of 

motion, the external magnet is coupled to the end effector of a robotic arm, which 

controls the shift of the camera robot along the abdominal wall. This way, the 

robotic assistant proposed in this dissertation has six degrees of freedom, which 

allow providing a wider field of view compared to the traditional vision systems, 

and also to have different perspectives of the operating area.  

On the other hand, the intelligence of the system is based on a cognitive 

architecture specially designed for autonomous collaboration with the surgeon in 

real surgical environments. The proposed architecture simulates the behavior of a 

human assistant, with a natural and intuitive human-robot interface for the 

communication between the robot and the surgeon. The cognitive architecture also 

includes learning mechanisms to adapt the behavior of the robot to the different 

ways of working of surgeons, and to improve the robot behavior through experience, 

in a similar way as a human assistant would do.   

The theoretical concepts of this dissertation have been validated both through 

in-vitro experimentation in the labs of medical robotics of the University of Malaga 

and through in-vivo experimentation with pigs in the IACE Center (Instituto 

Andaluz de Cirugía Experimental), performed by expert surgeons.  
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1 INTRODUCTION 

1.1 Background and motivation 

In the last few decades, the field of surgery has evolved towards minimally 

invasive techniques that are aimed at reducing the invasiveness of the interventions. 

Laparoscopic surgery (LS) involves operating through small incisions performed on 

the patient’s abdominal wall whereby the instruments and a camera are introduced. 

This form of operating offers numerous advantages for patients, including cosmetic 

and recovery benefits (Romanelli, Mark, and Omotosho 2008). However, they imply 

new challenges for surgeons, who require longer training periods to become skilled 

in performing operations following this approach. Laparoscopic procedures have 

evolved to new less invasive techniques that improve the cosmetic advantages for 

patients but increase the difficulties for surgeons: Single Port Access Surgery 

(SPAS) and Natural Orifice Transluminal Endoscopic Surgery (NOTES). SPAS 

makes use of a single incision whereby all the working instruments and the 

endoscope are introduced (Gascón Hove et al. 2014). This technique requires the 

use of special semi-flexible or curved instruments that increase the surgeons’ 

learning curve (Bucher, Pugin, and Morel 2008). Moreover, this way of operating 

reduces the instruments workspace due to the “sword fighting” effect, i.e. tools 

easily collide inside and outside the abdomen. Furthermore, the close proximity of 

the instruments and the endoscope entails a loss of triangulation, which translates 

to a loss of depth sensation. On the other hand, in NOTES procedures special 

flexible instruments are introduced into the abdominal cavity through natural 

orifices of the body (Wang et al. 2016). However, this technique is stagnant due to 

the lack of suitable instruments (Trejos et al. 2011). 

In this sense, robotics has encountered a wide field of application in order to 

overcome the limitations of laparoscopic procedures described above by enhancing 

surgeons’ abilities in terms of high precision and more intuitive movements of the 
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surgical tools. Surgical robots can be defined as robotic systems that work 

cooperatively with surgeons, and they can be classified into two main groups: 

surgeon extenders and auxiliary surgical supports (Taylor 2006). The first group 

are directly operated by the surgeon and are conceived to augment surgeons’ 

abilities to manipulate surgical instruments. The market for these kinds of surgical 

assistants has been monopolized by Intuitive Surgical Inc., who developed the da 

Vinci Surgical System, a three or four-armed teleoperated platform. The company 

has sold more than 3,000 units worldwide, and more than 1.5 million surgeries have 

been performed with this platform. In fact, approximately 90% of the 

prostatectomies are performed using the da Vinci system (Haidegger, Sándor, and 

Benyó 2011). However, the main limitation of these kinds of robots is that they are 

not able to perform autonomous tasks to help the surgeon during the intervention. 

Thus, they act as a robotic tool rather than as a robotic partner for the surgeon. 

On the other hand, auxiliary surgical supports, also called surgical robotic 

assistants, work side-by-side with the surgeon and perform functions such as 

endoscope holding or retraction.  

In order to augment the capabilities of surgical robotic assistants, many authors 

have addressed the development of autonomous and semi-autonomous systems able 

to perform automatic tasks that relieve the surgeon of performing some maneuvers 

and reduces his or her workload during laparoscopic procedures. There have been 

proposed methods for automatic camera guidance (Ko et al. 2005; Weede et al. 

2011), and for autonomous performance of complete surgical tasks such as suturing 

(Kang and Wen 2001), tissue retraction (Patil and Alterovitz 2010) or motion 

planning for needle insertion (Alterovitz et al. 2009). Other authors have proposed 

collaborative scenarios in which the robot performs some parts of a maneuver while 

the surgeon performs the more challenging states (Bauzano et al. 2015; Padoy and 

Hager 2011). However, these systems still require a lot of attention from surgeons 

and they are limited to performing preprogrammed motions. Thus, they lack the 

intelligence and awareness to be considered autonomous (Pandya et al. 2014).  

Therefore, the evolution of surgical robots should be aimed toward the 

development of co-worker robotic assistants that work side-by-side with the surgeon 

in a similar way as a human assistant. Cognitive architectures provide the required 

infrastructure to endow robots with human capabilities. There are numerous 

standard cognitive architectures that have been applied to different fields such as 

mobile robots (Janrathitikarn and Long 2008; Laird et al. 2012), games theory 

(Choi et al. 2011; Kirk, Mininger, and Laird 2016) and modelling human behavior 

(Liu et al. 2016; Zhang et al. 2014). However, the concept of co-worker robot in 

minimally invasive surgery is an open research field in which there is still much 

work to be done. These kinds of robots require the interaction of different 

technologies that provide the robot the means necessary to reason and make 
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decisions, and to perform surgical tasks autonomously. Thus, navigation 

technologies must be combined with a natural human-robot interaction that 

emulates human communication, all integrated into a cognitive architecture that 

provides the robot with the capabilities for performing high-level task planning 

through reasoning and an appropriate knowledge base.  

1.2 Contributions 

This PhD dissertation offers theoretical and experimental results related to a 

smart camera robotic assistant that works side-by-side with the surgeon during 

minimally invasive interventions. This robotic assistant is conceived to substitute 

the endoscope and to provide autonomous assistance to the surgeon. This work 

proposes a novel concept of a camera robot that enhances the capabilities of current 

approaches of surgical vision systems. Moreover, the robotic assistant is designed 

following a cooperative philosophy, involving natural communication with the 

surgeon that emulates human surgical team interaction. Thus, the intelligence of 

the system is based on a cognitive architecture with learning capabilities that 

provides the robot with decision-making and autonomous navigation capabilities. 

In particular, aside from an in-depth analysis of the current state of the art, this 

PhD dissertation offers the following contributions: 

1. Novel concept of camera robotic assistant for minimally invasive 

surgery without holonomic constraints 

This work proposes a novel concept of camera robotic assistant for minimally 

invasive surgery without holonomic constraints of its movement. The camera 

robotic assistant is composed of an external robotic arm and an intra-

abdominal camera robot, which is guided along the abdominal wall via 

magnetic interaction with the external robot. Thus, the camera can be freely 

moved within the abdominal cavity thanks to the six degrees of freedom of 

the robotic assistant: two shifts along the abdominal wall and a pan rotation, 

which are actuated by the external robot, and two internal rotations, roll and 

tilt, and a digital zoom, which are actuated by the intra-abdominal device. 

This system approach enhances the field of view of the operating area 

compared to conventional endoscopes and it is able to provide different 

perspectives of the anatomical structures, helping surgeons to overcome the 

loss of depth perception of planar images and offering a more natural view of 

the anatomical structures. Moreover, this approach allows autonomous 

camera navigation, releasing the surgeon from this task and avoiding the 

need of a human assistant to handle the camera. 
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2. Force-position control with torque compensation able to adapt the 

motion of the camera to the anatomy of the abdominal wall  

Shifting of the camera along the abdominal wall requires an active orientation 

control able to adapt the motion of the robot to the anatomy of the 

abdominal wall, assuring that the motion of the camera does not cause any 

harm to the patient. With this aim, a hybrid force-position control with a 

torque compensation module that assures a proper robot orientation is 

proposed. Thus, the force-position scheme controls the displacement of the 

robot in the tangent directions of the contact surface (abdominal wall) while 

controlling the force exerted in the normal direction. On the other hand, the 

torque compensation module assures that the end effector of the external 

robot stays parallel to the abdominal wall during the displacement, which 

anatomy is a priori unknown and differs from one patient to another.   

3. Design of a cognitive architecture with learning capabilities that 

emulates human behavior for surgical applications 

Cognitive architectures provide robotic systems with human functionalities, 

such as reasoning, learning, problem-solving and decision making. A standard 

cognitive architecture has been adapted to provide the camera robotic 

assistant with a natural human-robot interaction, along with decision-making 

and autonomous navigation capabilities to work side-by-side with the surgeon 

in a similar way as a human assistant would do. The cognitive architecture 

also includes learning mechanisms that allow the system to augment its base 

of knowledge and to improve its behavior over time.    

4. Implementation of the smart camera robotic assistant and 

experimental results  

The cognitive architecture and the hybrid force-position control have been 

validated through a set of in-vitro experiments that demonstrate the 

feasibility of the theoretical concepts proposed in this PhD dissertation. The 

design of the camera robotic assistant has also been tested through an in-

vivo experiment in a pig in the Center IACE (Instituto Andaluz de Cirugía 

Experimental), through which the main features of the robot have been 

analyzed.  
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1.3 Context 

This thesis has been conducted within the context of the research lines of the 

research group of medical robotics of the Department of Systems Engineering and 

Automation of the University of Malaga. Furthermore, the author spent a three-

month research stay at the laboratories of The Birobotics Institute of the Scuola 

Superiore Sant’Anna (Pisa, Italy).  

The first primary achievement of the author’s research group was the design and 

implementation of a camera robotic assistant that was successfully used in human 

surgery (Munoz et al. 2006). After this achievement, the group focused its research 

on the development of a robotic platform able to autonomously collaborate with 

the surgeon in surgical tasks (Bauzano 2012), and in the development of a surgeons’ 

gesture recognition system (Estebanez 2013). The last PhD dissertation of the 

group was focused on the navigation of surgical instruments for Single Port Access 

Surgery (Pérez del Pulgar 2015). Thus, this PhD dissertation is a step forward in 

smart surgical robotics systems.  

This doctoral thesis has been supported by a doctoral grant given by the Spanish 

Ministry of Economy and Competitiveness (EEBB-I-13-07552) associated with the 

National Project DPI2010-21126-C03-01, with the main goal being to develop a 

robotic assistant for SPAS/NOTES surgical techniques. The research stay was also 

supported by the Spanish Ministry of Economy and Competitiveness in the context 

of research stay grants for doctoral students.  

1.4 Thesis outline 

This thesis is divided into six chapters, four appendices, and bibliographical 

references. Except for this chapter and the one related to the conclusions and future 

work, each chapter starts with an introduction that states the problem to solve and 

ends with the conclusions that highlight the contributions and/or the results that 

have been obtained. 

Chapter 2, State of the art, offers an up-to-date state of the robotic solutions 

applied to the needs of current surgical techniques, including the current state of 

the art regarding surgical robot skills. A revision of the most significant cognitive 

architectures is later discussed, along with the application of each one. The chapter 

ends with the global proposal of this PhD dissertation that goes a step further 

beyond the current state of the art.  
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Chapter 3, Control system of the robotic assistant, presents the control scheme 

of the camera robotic assistant. It starts with a general description of the robotic 

assistant along with the specifications of the design of the camera robot, followed 

by the geometric model of the task. Then, it delves into the control scheme of the 

system, which is divided into the control of the cable-driven actuation mechanism 

of the camera robot, and a hybrid force-position control with torque compensation 

for the external displacement of the robot.  

Chapter 4, Robot cognition, describes the cognitive architecture implemented for 

the smart camera robotic assistant. First, a general overview of the architecture is 

presented, followed by an in-depth analysis of the robot cognition system. Then, 

the semantic memory and the procedural memory of the system are described, along 

with the reinforcement learning mechanism to improve the robot behavior.  

Chapter 5, Implementation and experiments, describes the implementation of the 

theoretical concepts described in the previous chapters and presents the 

experimental results of this work. After the description of the robotic assistant 

employed for the experiments, the software architecture based on a ROS network 

is described. Then, an in-vivo validation of the camera robot in a pig is presented. 

After that, experiments that validate the force-position control for the camera 

displacement are analyzed. Finally, experiments to validate the smart camera 

navigation proposed in this work are exposed. These experiments are divided into 

a comparison among different robotic assistant behaviors, and an evaluation of the 

learning mechanism. 

Chapter 6, Conclusion and future work, highlights the most relevant 

contributions of this thesis and proposes future research topics.  

Finally, the appendices provide a further analysis of the teleoperation control 

used in the experimentation and the theoretical concepts of the programming tools 

used for the implementation of this work.  
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2  STATE OF THE ART 

2.1 Introduction 

Nowadays, Minimally Invasive Surgery (MIS) or Laparoscopic Surgery (LS) is a 

widely accepted technique all over the world, not only by surgeons but also by 

patients who benefit from its better cosmetic outcomes. Although LS has a steep 

learning curve compared to conventional open surgery, and unexpected 

complications are not infrequent, it leads to a shorter recovery time, less use of 

analgesic and tissue trauma, and a reduced risk of post-operative complications 

(Romanelli, Mark, and Omotosho 2008; Shah and Shah 2008; Varela, Wilson, and 

Nguyen 2010). LS involves the use of special surgical instruments that are inserted 

into the abdominal cavity through small incisions in the abdominal wall, along with 

a camera that provides visual feedback of the operating area. The natural evolution 

of laparoscopic procedures has led to new less invasive techniques:  

 Single Port Access Surgery (SPAS): this technique involves having all 

instruments entering the abdominal wall through a single portal entry, 

typically the navel. Unlike the traditional multi-port LS, it does not leave 

any visible scar (Gascón Hove et al. 2014). 

 Natural Orifice Transluminal Endoscopic Surgery (NOTES): in this new 

procedure, access to the abdominal cavity is gained through natural orifices 

of the body. NOTES has the advantages of avoiding incision scars on the 

abdomen, but it is limited by the lack of suitable flexible instruments (Wang 

et al. 2016).  

Despite the medical and aesthetical advantages of these techniques for patients, 

the difficulties derived from the manipulation of laparoscopic instruments by means 
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of a standard video image feedback implies a long training period for surgeons to 

become skilled enough to successfully perform these techniques (Park et al. 2009; 

Zhang and Tanigawa 2009). In fact, the surgeon learning curve significantly 

increases from LS to NOTES. Difficulties derive not only from the narrow field of 

view offered by endoscopes and the planar vision they provide but also from the 

lack of natural perspective of the operating area and the limited motion of the 

camera, restricted by the entry port. Moreover, the entry port also hinders 

instrument manipulation due to the motion inversion as a consequence of the 

fulcrum effect. Furthermore, the nature of laparoscopy requires the use of at least 

three instruments at the same time: two for manipulation and the camera. 

Therefore, the surgeon needs an assistant, who usually handles the endoscope. Thus, 

the cooperation of the medical staff is essential for a successful operation.  

These LS limitations increase with the reduction of invasiveness. In SPAS, the 

close proximity of the instruments and the camera entails extra challenges for this 

type of procedure. First, the close proximity of the instruments severely restricts 

the range of motion of the tools (Figure 2.1). This fact reveals the need of special 

semi-flexible or curved laparoscopic instruments (Bucher, Pugin, and Morel 2008) 

so that a larger space can be achieved inside the patient without the tools running 

into each other. Second, the close proximity between the instruments and the 

camera entails a loss of triangulation, which translates into a loss of 3D perception 

in the image. NOTES represents the more challenging MIS technique, which has a 

limited application due to the lack of actual suitable instruments. Limitations of 

the existing instruments for NOTES include a reduced number of channels of small 

size, instability, triangulation issues, inability to apply retraction and the difficulty 

in the instrument handling (Trejos et al. 2011).  

 

 

Figure 2.1 Close proximity of instruments and camera in SPAS. 
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Figure 2.2 Da Vinci Surgical System (Intuitive Surgical Inc.). 

In this context, teleoperated platforms have emerged as a robotic solution for 

the above limitations, providing more accuracy and a more intuitive motion of the 

instruments, and a three-dimensional view of the operating area. Although these 

systems have become a daily reality in operating rooms all over the world 

(Haidegger, Sándor, and Benyó 2011), this market is actually stagnant with the 

available teleoperated robotic systems on the market, with the main reference 

worldwide being the da Vinci System (Figure 2.2). Although this system enhances 

surgeons’ abilities in terms of accuracy, accessibility and dexterity, it requires long 

training periods, adapting the operating rooms for its integration, and the 

challenging surgical tasks remain tedious and time-consuming. Its teleoperated 

schemes do not provide the required assistance and human support for collaborating 

with surgeons during an intervention; they limit to replicate the surgeons’ 

movements. In other words, the da Vinci System acts as a robotic tool for the 

surgeon, but not as a robotic partner.  

In order to augment surgical robot capabilities, many authors have developed 

strategies for automatic motion of surgical tools, such as reactive methods for 

obstacle avoidance in surgical tool navigation (Bauzano, Muñoz, and Garcia-

Morales 2010; Shiller, Gal, and Rimon 2010) or autonomous camera navigation 

based on instrument tracking (Casals, Amat, and Laporte 1996; Voros et al. 2010). 

These methods have been improved with predictive navigation techniques that 

consider the future motion of humans and/or other obstacles to foresee future 

situations (Foka and Trahanias 2010; Weede et al. 2011). Other authors employ 

learning from demonstration techniques for the automation of surgical tasks 

(Reiley, Plaku, and Hager 2010). (Leonard et al. 2014) propose a surgical robot for 

automatic planar suturing, and (Bauzano et al. 2015) propose a motion planner to 

assist surgeons during a collaborative suture. However, an active collaboration 

requires adapting robots to dynamic environments and being able to react to 

unexpected situations.  
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Figure 2.3 Integration of key technologies to develop a smart robotic assistant. 

According to the above considerations, it is clear that the evolution of surgical 

robotics must move in the direction of developing a new concept of surgical robot 

that combines human and robot capabilities under the co-worker concept 

(Haddadin et al. 2011). These new robotic assistants must work side-by-side with 

surgeons, collaborating with them in a natural and autonomous way, as a human 

assistant would do. The development of such robotic assistants requires the 

integration of the following key technologies, depicted in Figure 2.3: navigation, 

mechatronics, human-robot interaction, and cognition. 

Current navigation methods are constrained by the fulcrum point, i.e. the point 

at which the surgical instruments are inserted. This hugely limits the range of 

motion of the tools and reduces their reachable workspace. This effect could be 

avoided with new mechatronic solutions that lead to unconstrained robotic systems 

able to reach any point within the abdominal cavity. Some steps have been taken 

in this sense, with the development of intra-abdominal robots based on external 

magnetic guidance (Best et al. 2012; Lehman et al. 2008).  

On the other hand, human-robot interaction technologies must offer a natural 

way of communication that goes a step further than the current direct control 

interfaces, such as teleoperation or bilateral control provided with force-feedback 

(Hagn et al. 2010; Yoon, Kim, and Lee 2015), voice commands (Kraft et al. 2004; 

Munoz et al. 2006; Voros et al. 2010), head movements (Gilbert 2009; Stolzenburg 

et al. 2011) or gaze-contingent control (Noonan et al. 2008, 2010). Gesture 

recognition is a more natural human-machine interface that allows the robot to 

identify the maneuvers the surgeon is performing and thus to follow the surgical 

workflow without direct commands from the surgeon (Estebanez et al. 2010). This 
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approach requires a robot knowledge base that stores, among other things, surgical 

protocols and maneuvers. Moreover, a smart robotic assistant must be endowed 

with a cognitive infrastructure with decision-making and high-level planning 

capabilities, as well as learning mechanisms, that allow the robot to collaborate 

with the surgeon in a dynamic environment without direct supervision and to react 

to situations that have not been preprogrammed.  

This chapter offers the state of the art of the key technologies depicted in Figure 

2.3. Firstly, a revision of the new intra-abdominal magnetic devices proposed in the 

literature is presented. Then, Section 2.3 discusses the automation of surgical tasks 

and its current limitations, and Section 2.4 reviews the most significant standard 

robot cognitive architectures and the application of cognitive frameworks in surgical 

robotics. Finally, conclusions are reported.  

2.2 Intra-abdominal magnetic devices 

The new laparoscopic techniques SPAS and NOTES require the design of new 

robotic approaches that overcome the limitations derived from the reduced degree 

of invasiveness of this new form of operating. Thus, the new research line of surgical 

robotics is geared towards the development of intra-abdominal devices, also called 

miniature robots, which are fully introduced into the human body and operate 

directly from inside the patient. These devices are introduced into the abdominal 

cavity through one of the incisions the surgeons make to insert the surgical tools or 

through natural orifices, commonly the esophagus. Different forms of attachment 

to the abdominal wall have been explored, such as suturing (Hu et al. 2009) or 

needle locking (Castro et al. 2012), but magnetic interaction is the only one that 

allows continuous motion of the devices (Leong et al. 2016). In this last approach, 

also called Magnetic Anchoring and Guidance Systems (MAGS), a permanent 

magnet is embedded into the devices, and an external magnet placed onto the 

abdominal wall is used to guide and reposition the intra-abdominal devices. Hence, 

this solution makes it possible to reach areas unattainable for conventional 

laparoscopic tools and to release an entry port, which can be used for an additional 

tool if required. MAGS found in literature include robotic platforms with miniature 

tools for manipulation (Lehman et al. 2011; Park et al. 2007; Tortora et al. 2013), 

intra-abdominal camera robots (Best et al. 2012), surgical retractors (Brancadoro 

et al. 2017), and surgical cauterizers (Zeltser et al. 2007).  

(Garbin et al. 2015) proposed a tissue retractor based on local magnetic actuation 

(LMA). This approach, shown in Figure 2.4, combines two pairs of magnets: the 

anchoring unit and the actuation unit. The former provides the anchoring to the 
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abdominal wall, while the latter transfers motion to an internal mechanism 

connected to a retracting lever. This device, tested in a porcine model, is able to 

lift a load up to 500 g, but its final dimensions (12.5 mm in diameter and 20 mm 

length) makes it difficult to reposition it along the abdominal wall. Based on the 

same concept of local magnetic actuation, (Natali et al. 2015) proposed a surgical 

manipulator for MIS able to perform surgical tasks combining power transmission 

based on LMA and cable-driven actuation of the wrist. This approach results in a 

manipulator with significant torque/speed performance, and a wrist with no 

singularities and cable decoupling. Along the same lines, (Brancadoro et al. 2017) 

developed an innovative retraction system that exploits a magnetic link for the 

anchoring with a screw-drive mechanism that allows the axial position of the 

external magnet to be changed (Figure 2.5). Thus, the magnetic force can be 

adapted on-the-fly according to the different thickness of abdominal walls.  

 

 

Figure 2.4 Tissue retractor based on local magnetic actuation proposed by 

(Garbin et al. 2015). 
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Figure 2.5 Retraction system with a screw-drive mechanism to adapt for 

different thickness of abdominal wall developed by (Brancadoro et al. 2017). 

Regarding robotic platforms for MIS, (Lehman et al. 2009) have developed a 

dexterous six DoFs robot consisting of a central body and two arms fitted with 

cautery and forceps end-effectors (Figure 2.6.a). The robot enters the abdominal 

cavity through the esophagus with the arms unfolded, and once inside, the arms 

are refolded and the robot is attached to the abdominal wall through external 

magnetic interaction. The surgeon remotely controls the actuation of the robot 

using an external console provided with two joysticks, which also serves as the 

external magnetic handle. The efficacy of the robot was validated in three 

procedures in a porcine model, namely, abdominal exploration, bowel 

manipulations, and cholecystectomy. Under the same concept, (Tognarelli et al. 

2015) have developed an endoluminal modular robotic platform for NOTES 

composed of a set of miniaturized robotic units (Figure 2.6.b). The triangular-

shaped anchoring frame enters the abdominal cavity through a 17 mm esophageal 

access port in an open configuration. Once inside the abdomen, Shape Memory 

Alloy actuators are used to reach the triangular configuration (Salerno et al. 2013). 

An external magnetic component guarantees a stable adhesion of the frame to the 

abdominal wall, and a dedicated docking mechanism allows the anchoring of a set 

of modular robotic units (Tortora et al. 2011). This system has also been validated 

in an in-vivo experiment with a porcine model. 

Although the previous systems enhance the capabilities of surgical robotic 

systems by augmenting the reachable workspace by the instruments, the close and 

fixed relative position of the camera with respect to the working tools results in 

triangulation problems and a limited perspective of the operating area. Thus, some 

authors have developed miniature camera robots with magnetic anchoring to the 

abdominal wall. With this kind of vision system, the surgeon operates with 

conventional laparoscopic tools, but visual feedback is obtained through a miniature 

robot provided with a high-resolution camera, instead of through a conventional 

endoscope. It has been demonstrated that these camera robots provide a wider field 
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of view with respect to fixed devices, as the camera can be moved independently 

from the instruments by external displacement of the magnetic holder (Fakhry et 

al. 2009). 

 

 

Figure 2.6 Magnetic anchoring robotic platforms: (a) dexterous miniature robot 

(Lehman et al. 2009); (b) Modular robotic platform (Tognarelli et al. 2015). 

 

 

Figure 2.7 Magnetic anchoring camera robot designed by (Cadeddu et al. 

2009). 

  (Cadeddu et al. 2009) have demonstrated the feasibility of using an intra-

abdominal camera robot in human minimally invasive interventions, in particular, 

it has been used during laparoscopic nephrectomy and appendectomy. The robot, 

which is inserted into the abdominal cavity through a 2.5 cm incision, has a 

commercial camera and two high-intensity light-emitting diodes to provide onboard 

illumination (Figure 2.7). Power supply and signal transmission are provided by 
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external wires. To avoid the mobility limitations derived from the use of wires, 

some authors have proposed cable-free camera robots (Li, Mancini, and Tan 2016; 

Zhuang et al. 2014). The problems of these systems are that they are powered by 

batteries, which may be an issue especially in long interventions, and wireless 

cameras do not have the same quality as conventional wired ones.   

To increase the capabilities of surgical vision systems, other authors have 

proposed camera robots with internal DoFs in order to augment the visual 

capabilities of the robots. (Lehman et al. 2008) propose an imaging robot with 

panning and tilting capabilities activated with internal permanent magnet direct 

current micromotors. Panning is accomplished by rotating a planet gear about a 

stationary sun gear fixed to the outer tube, and tilting is actuated with a 

micromotor. The intra-abdominal device is designed with a diameter of 12 mm so 

it can be inserted through a standard trocar. Another camera robot with active pan 

and tilt capabilities activated with internal motors has been proposed in (Fowler et 

al. 2010). (Simi et al. 2013) have designed a vision platform with two internal 

actuated DoFs, which combines motorized and magnetic actuation (Figure 2.8). 

The tilt DoF is actuated by an internal mechanism consisting of a motor connected 

to an internal magnet, which allows a maximum bending of 80º. The drawback of 

this system is that bending of the robot brings the camera closer to the anatomical 

structures, reducing the field of view. (Garbin et al. 2016) presented an orthogonal 

magnet arrangement for pan and tilt of an intra-abdominal camera device with a 

mechanical auto-flip that compensates for dipole-dipole singularity (Figure 2.9). 

The mechanism consists of two internal permanent magnets and an external one 

coupled with a motor. The mechanical auto-flip avoids the need of using software 

for correcting the image if necessary.  

Summarizing, current intra-abdominal robotic solutions are provided with two 

active DoFs, pan and tilt, and two passive DoFs, roll and shift in two directions, 

which are actuated by hand motion of the external magnet. Thus, although 

magnetically guided camera robots augment the field of view of conventional 

endoscopes and provide a stable anchoring to the abdominal wall for high-quality 

image retransmission, the current approaches require a human assistant to control 

the external handle. Therefore, at present, it is not possible to implement an 

autonomous navigation in order to actively collaborate with surgeons in real 

interventions. Thus, a new approach in which the external handle could be 

controlled autonomously would augment the capacities of miniature camera robots 

and would make them suitable for integration in a co-worker scenario.  
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Figure 2.8 Magnetically activated stereoscopic vision system proposed by (Simi 

et al. 2013). 

 

 

Figure 2.9 Laparoscopic camera based on an orthogonal magnet arrangement 

proposed by (Garbin et al. 2016). 
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2.3 Automation of surgical tasks 

Most of the current robotic systems employed in surgical environments are 

teleoperated platforms, from external platforms such as the da Vinci surgical system 

(Haidegger, Sándor, and Benyó 2011) or the SPRINT robot (Niccolini et al. 2012), 

to the new intra-abdominal robotic platforms developed by (Lehman et al. 2009) 

or (Tognarelli et al. 2015). These systems enhance surgeons’ abilities in terms of 

accuracy, instrument handling, tremor filtering and force sensing. However, they 

do not provide real assistance to the surgeon; they simply replicate the motions 

performed by the surgeon on a master console into a slave platform. Hence, 

researchers have focused their efforts on developing automatic ways of assistance 

in order to reduce the surgeon’s workload during the interventions. The current 

trends can be divided into camera guidance, automation of subtasks, and 

automation of complete task (Elek et al. 2016).  

Camera guidance is one of the most significant tasks to be automated, as it 

considerably reduces the cognitive load on the surgeon. Natural human interfaces 

are common methods for indirectly commanding the robot where to move the 

camera. Among these methods, the most relevant are voice commands (Kraft et al. 

2004; Muñoz et al. 2005; Voros et al. 2010), head movements (Gilbert 2009; 

Stolzenburg et al. 2011) and gaze-contingent camera control (Noonan et al. 2008, 

2010). Although these methods have succeeded in substituting medical staff, they 

introduce extraneous devices that may result uncomfortable for surgeons. Moreover, 

surgeons must pay attention in order to say the correct commands or to execute a 

particular head motion, which may distract them from the important surgical task.  

Instrument tracking is a camera guidance approach consisting in following the 

tip of the surgical instruments with the camera (Azizian et al. 2014). The first 

examples of automatic camera guidance based on instrument tracking date back to 

the 1990s (Casals, Amat, and Laporte 1996). Visual servoing has also been used for 

the automatic positioning of surgical instruments. (Krupa et al. 2003) used this 

technique to move a surgical instrument around the area of an organ, and to place 

the instrument inside the camera field of view when it was out the camera view. 

(Hynes, Dodds, and Wilkinson 2005) used visual servoing to perform automatic 

stitching. Most of these methods employ color markers to identify the surgical tools, 

although (Voros et al. 2010) have implemented a tracking method based on the 

information of the 3D positions of the insertion point of the instruments and shape 

considerations. (Weede et al. 2011) improved tracking methods with the long-term 

prediction of the surgical instruments motion. This method is based on building a 

knowledge base of the position of the instruments for a particular procedure from 

recordings of former interventions. Using Markov chains, the system predicts the 
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area where the surgical tools are going to move. The ideal field of view includes all 

predicted points and both tools’ tips.  

Other surgical tasks of interest for automation are tissue retraction (Patil and 

Alterovitz 2010), suturing (Kang and Wen 2001), knot tying (Chow and Newman 

2013), autonomous surgical debridement (Kehoe et al. 2014), cochleostomy (Brett 

et al. 2007) and motion planning for needle insertion for biopsies, anesthesia drug 

injections or brachytherapy cancer treatments (Alterovitz et al. 2009). In this sense, 

(Jansen et al. 2009) proposed an algorithm to generate stable and secure grasp and 

retraction trajectories with a 3D finite element simulation to certify the quality of 

the trajectories. (Jackson and Cavusoglu 2013) proposed a preliminary study of 

automatic suture needle driving using preplanned motion combined with visual 

servoing and force and torque measurements. The problem of automating the 

stitching task has also been addressed by (Nageotte et al. 2009). (Brett et al. 2007) 

developed the first autonomous surgical robot for cochleostomy. This robot 

navigates using transients of the reactive drilling forces to discriminate cutting 

conditions, the state of the tissue and the detection of the medial surface before 

drill break-out occurs.  

(Muradore et al. 2011) discussed the application of formal methods for the 

verification of properties of autonomous surgical robots. They state that task 

automation requires progress in knowledge representation and the development of 

reasoning methods capable of dealing with various knowledge types in static and 

dynamic environments. Modeling of surgical tasks can be done manually or using 

machine learning strategies. One of the most common approaches is teaching the 

robot by imitation. (Mayer et al. 2008) proposed an approach for human-machine 

skill transfer. User demonstrations are decomposed into meaningful primitives by 

matching user patterns against features in the trajectory. They tested this method 

in an autonomous knot-tying task. (Osa, Sugita, and Mamoru 2014) improved this 

approach by proposing a method for learning time-and-space-dependent trajectories 

able to on-line adaptation to changes in the environment. This system, which was 

tested in a da Vinci system in a double loop and pick and pull tasks, can learn 

particular gestures and reproduce them with different initial conditions. (Van den 

Berg et al. 2010) have proposed a learning approach to autonomously execute 

specific trajectories with superhuman performance in terms of speed and 

smoothness by recording a set of trajectories. The important parameters maximized 

during the learning process are smoothness and speed of task execution. The 

approach is implemented on the Berkeley Surgical Robot and applied in two tasks: 

drawing figures on a magnetic wire-board and knot-tying (Figure 2.10).  
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Figure 2.10 The Berkeley Surgical Robots performing knot-tie (Van den Berg 

et al. 2010). 

 

 

Figure 2.11 Automated suturing on a pig using the STAR robot (Shademan et 

al. 2016). 
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The ENDOBOT is the first surgical robot that can autonomously perform a 

suturing without surgeon supervision (Kang and Wen 2001). This robot was 

designed with three modes of operating: manual mode, in which the controller only 

provides gravity compensation, shared control, in which the surgeon controls some 

axes while the other axes are controlled automatically, and autonomous mode. The 

Stapbot is an autonomous robot for suturing using staples (Baili, Tazi, and Salih 

Alj 2014). The system is composed of a sensing module that collects data to detect 

the position and characteristics of the wound, a software analysis system to 

translate data into specific instructions, and the execution unit that performs the 

stapling. Recently, (Shademan et al. 2016) achieved the first semi-automated 

reconnection of bowel segments during a live pig surgery. They designed the Smart 

Tissue Autonomous Robot (STAR), combining smart imaging technologies and 

fluorescent markers to navigate and adapt to the complexities of the tissue (Figure 

2.11).  

Other authors propose a semiautonomous robotic system that can collaborate 

with surgeons during a laparoscopic procedure performing simple tasks, instead of 

automating a complete task. This approach requires an exhaustive modeling of the 

complete task and the robot must be able to follow the surgical workflow to be able 

to participate without direct orders from the surgeon. In this sense, (Padoy and 

Hager 2011) propose a collaborative system in which portions of the task are 

performed by the surgeon manually, and other portions are performed 

autonomously by the robot. It uses Hidden Markov Models (HMM) for the 

recognition of task completion and temporal curve averaging for learning the 

executed motions. The approach is validated using the da Vinci research interface 

in a pin task and in a suturing task, where the left tool is automated and the right 

one is handled by the surgeon (Figure 2.12). Based on this paradigm, (Bauzano et 

al. 2015) have proposed a collaborative robot for surgical procedures based on 

gesture recognition. A suturing task is modeled with a state diagram in which 

transition from one state to the following is triggered by a gesture recognition. 

Thus, the robot is able to follow the surgery workflow and to execute 

preprogrammed behaviors depending on the actual state of the task. 

(Hu et al. 2015) proposed a semiautonomous neurosurgical procedure of brain 

tumor ablation using the RAVEN robot. The task is represented using behavior 

trees, in which each subtask is expressed as a leaf and relation between leafs is 

modeled through higher order nodes. Semi-autonomous tasks are also being studied 

with miniature robots. (Dumpert et al. 2009) proposed to automate the 

achievement of particular points the surgeon marks in the image using an overhead 

camera for tracking the position of the robot and a PI controller for position control 

of the robot joints.  
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Figure 2.12 Illustration of the tasks performed by the collaborative framework 

of (Padoy and Hager 2011). 

According to the state of the art reported above, current surgical robots have 

different grades of automation, from camera guidance to automation of specific 

surgical tasks. However, they lack the abilities to provide the required assistance 

to work side-by-side with the surgeon in a co-worker surgical scenario. Such a robot 

must have the capacity to react to unexpected situations, a knowledge base to be 

able to interpret the environment and to perform reasoning functions, and learning 

mechanisms to improve and adapt its behavior to the ways of operating of different 

surgeons. Thus, a smart robotic assistant must go a step further in the current 

abilities of surgical robots to be able to autonomously collaborate with surgeons in 

a real environment. First, it must be able to react to unexpected or unplanned 

situations and to adapt to the way of operating of different users. Second, 

interaction with the medical personnel must be as natural as possible, getting as 

close as possible to human communication. Thus, it must be provided with the 

surgical knowledge to be able to follow the surgery workflow by interpreting the 

maneuvers the surgeon performs, but it must also allow direct control interfaces, 

such as voice commands, to correct the behavior of the robot and to be used as 

inputs to the learning mechanisms. In regards to the cognitive level, a smart robotic 

assistant must be able to interpret its environment and to reason about it, to 

acquire new knowledge from the perception system and/or direct human 

commands, and to improve and learn new behaviors from past experiences. 

Cognitive architectures provide the means to manage all these abilities in order to 

simulate human behavior. Thus, endowed with an appropriate cognitive 

architecture, surgical robots could take over the simpler parts of a task and allow 

surgeons to focus on the more crucial and complex parts of the procedure (Kassahun 

et al. 2016).  
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2.4 Cognitive robot architectures 

A cognitive architecture is a theoretical/computational model that describes the 

underlying infrastructure of cognitive systems, i.e. humans. Thus, it can be said 

that a cognitive architecture is an integration of modules or components that 

produces human-like behavior (Butt et al. 2013). A variety of cognitive 

architectures can be defined depending on the features required for each particular 

application. However, all of them share the following characteristics: 

 Memory structures. Memory structures are a pivotal attribute of each 

biological or artificial cognitive system. They are the precondition for 

cognitive processes such as the acquisition of new knowledge, learning, 

planning, and reasoning (Kleinmann and Mertsching 2011). For 

psychologists, the term memory covers three aspects of information 

processing: encoding, storage, and retrieval (Matlin 2005). Encoding is the 

process of receiving and processing the incoming information, storage is the 

process of creating a record in a memory structure during a period of time, 

and retrieval is the process of getting back information. Psychologists 

distinguish two memory structures according to the duration of the storage: 

short-term memory (minutes) and long-term memory (days and years). 

Short-term memory, also called working memory, is viewed as a temporary 

store of information, but unlike the instantaneous sensory register, it holds 

the information in consciousness for a short period of time so that it can be 

processed (Woolley 2011). Conversely, long-term memory is a permanent 

memory store, where information transferred from working memory is 

organized and stored indefinitely. Long-term memory is usually broken down 

into semantic, procedural and episodic memory. Semantic memory stores 

declarative knowledge about factual information; procedural memory stores 

knowledge about how to perform particular behaviors such as using a pencil 

or driving a car; and episodic memory stores events and past experiences. 

 Knowledge representation. Knowledge is the awareness or understanding 

of facts, objects or skills, and it is the main characteristic of human cognition. 

Knowledge is the base for other human skills such as reasoning, planning and 

interpreting the world we perceive. Thus, an autonomous system must have 

a knowledge base with the knowledge it needs to reason and interact with its 

environment. The content of this knowledge base would depend on the 

particular environment the robot is working in and the particular task it has 

to perform. Knowledge representation is the symbolic encoding of the 

propositions the cognitive agent knows.  In human cognition, there are three 

main ways in which information can be encoded: visual, in the form of 
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pictures; acoustic, in the form of sounds; or semantic, in terms of the meaning 

of the information. In computer cognition, the knowledge representation 

approach depends on the type of knowledge to model and the type of 

information the system needs. Procedural knowledge is usually encoded as 

production systems containing the set of behaviors of the robot, while for 

semantic knowledge, the two dominant approaches are semantic networks 

and semantic spaces (Griffiths, Steyvers, and Tenenbaum 2007).  

 Perception. Perception is essential to perceive the environment robots work 

in. We humans have multiple senses to perceive data from the environment, 

such as sight, hearing, taste, smell, and touch. Robots use different kinds of 

sensors to acquire data from the environment, such as cameras, range sensors, 

acoustics, force sensors, etc. Sensing ability is essential to work in highly 

dynamic and a priori unknown environments. Moreover, perception is one of 

the main mechanisms cognitive agents use to acquire new knowledge.     

 Reasoning and planning. One of the essential high-level cognitive 

functions for cognitive agents is reasoning about its actions and the change 

that these actions cause in the environment. Planning is one of the most 

important reasoning tasks in robotic agents, and allow them to autonomously 

find a sequence of actions to execute to reach a given goal from an initial 

state (Dogmus, Erdem, and Patoglu 2013). The reasoning process needs to 

perceive the current conditions of the environment, the list of actions that 

can be executed, and how these actions affect the world. For this purpose, 

actions are usually described in a logic-based formalism so that the agent can 

autonomously perform reasoning tasks by based on logic-based algorithms.  

 Learning. Learning is a pivotal process in human cognition that allows us 

to acquire new knowledge and to modify our behavior based on past 

experiences. In artificial intelligence, knowledge acquisition can be performed 

manually by the designer, i.e. directly entering new code in the system, or in 

a more dynamic way using learning mechanisms. Machine learning tasks are 

typically classified into three broad categories: supervised learning, 

unsupervised learning and reinforcement learning. In supervised learning, the 

system infers a function from labeled training data, so the goal is to learn 

patterns that can be recognized in the future. Hidden Markov Models is a 

widely used technique for modeling tasks for autonomous robots (Rosen et 

al. 2006). Conversely, unsupervised learning is a technique used to infer a 

function to describe hidden structure from data, and it is used in a wide range 

of applications such as clustering spam emails (Alishahi, Mejri, and Tawbi 

2015), online topological map construction (Chin and Loo 2013) or online 

prediction of trajectories (Bascetta et al. 2011). Finally, in reinforcement 
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learning the agents take actions in an environment so as to maximize some 

notion of cumulative reward. This learning mechanism is used in many 

disciplines such as game theory (Chen et al. 2006), control theory (Anderlini 

et al. 2016; Jagodnik et al. 2016), multi-agent systems (Dimeas and 

Hatziargyriou 2010) and swarm intelligence (Iima and Kuroe 2015). 

There are many standard frameworks of cognitive architectures that offer 

different functionalities. The most relevant ones are SOAR, ACT-R, ICARUS, 

CLARION, and LIDA. SOAR is the most general cognitive architecture and its 

main characteristic is its flexibility. It is designed following a symbolic paradigm 

based on production rules. Besides its flexibility, the main advantages of SOAR are 

the multiple learning mechanisms it implements and a low-level planning that 

makes it especially suitable for robotic control applications. Thanks to its 

characteristics, it has a full range of applications for intelligent behavior. ACT-R is 

also a rule-based architecture that implements a learning mechanism that makes it 

possible to learn new rules from sample solutions over a process of production 

compilation. However, it differs from SOAR in its strong emphasis on producing a 

psychologically motivated cognitive model. Along with ACT-R, ICARUS and 

CLARION have a strong emphasis on cognitive psychology. ICARUS is 

characterized by a hierarchical organization that separates concepts from skills, 

while CLARION is based on neural networks. CLARION’s on-line bottom-up 

learning allows agents to adapt to dynamic changes in the environment without 

pre-existing knowledge. Finally, LIDA is a broad-based architecture aimed at 

modeling the mind but puts special emphasis on human intention. Next, further 

details of each of these architectures and its applications are described.  

SOAR is one of the most famous cognitive architectures and was developed by 

John E. Laird in 1983. Currently, SOAR is running its Version 9. The primary 

principle of SOAR is that all decisions are made through a combination of relevant 

knowledge at run-time. Every decision is based on the current interpretation of 

sensory data, the contents of working memory created by prior problem solving, 

and any relevant knowledge retrieved from long-term memory (Laird 2008). The 

SOAR architecture is depicted in Figure 2.13, consisting of various memory 

structures, divided into a long-term memory and a working memory, and a decision-

making mechanism linking perception to action. The working memory in SOAR 

houses all the knowledge that is relevant to the current situation. It contains the 

goals, perceptions, the hierarchy of states, and operators. SOAR has many kinds of 

learning mechanisms: reinforcement learning, semantic learning, episodic learning, 

and chunking learning. SOAR has been implemented in a tabletop robot that learns 

new tasks from online interactive language instructions (Kirk, Mininger, and Laird 

2016). (Raza and Sastry 2008) use SOAR to represent human behavior in military 

situations. This architecture has also been implemented in robust control of mobile 
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robots, taking advantage of its multiple learning mechanisms (Hanford 2011; Laird 

et al. 2012). 

 

 

Figure 2.13 The SOAR cognitive architecture (Laird 2008). 

The ACT-R (Adaptative Control of Thought-Rational) is a modular cognitive 

architecture that offers a theory of how cognition modules are integrated to produce 

coherent cognition. Each model processes a different kind of information (Figure 

2.14). The vision module determines objects; the motor module is responsible for 

controlling the robot; the declarative module retrieves information from the long-

term memory; and the goal module keeps track of the internal state when solving 

a problem. The fifth module, the production system, coordinates the operation of 

the other four modules by using the module buffers to exchange information 

(Profanter 2012). ACT-R is used to model a variety of aspects of human behavior, 

as well as to control mobile robots that interact with humans. For example, (Liu 

et al. 2016) employ ACT-R to model astronauts’ cognitive behavior while (Xue et 

al. 2012) model the processes of civil aviation pilots. 

ICARUS is a hierarchical cognitive architecture that aims at unifying reactive 

and deliberative problem-solving, as well as symbolic and numeric reasoning (Adam 

et al. 2016). ICARUS is composed of four main components: the perceptual buffer, 
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the conceptual memory, the skill memory, and the motor buffer. It operates on a 

recognize-act cycle: the architecture locates the descriptions of visible objects in the 

perceptual buffer, compares primitive concepts to precepts, and adds the matched 

instances to the short-term memory as beliefs (Langley, Laird, and Rogers 2009). 

As a learning mechanism, it supports means-ends problem-solving. The main 

application of this architecture is in problem-solving and learning in humanoid 

robots (Choi et al. 2011). 

 

 

Figure 2.14 The ACT-R cognitive architecture (Kajdocsi and Pozna 2014). 

CLARION models essential psychological mechanisms and processes (Sun and 

Helie 2015). This architecture is composed of four distinct subsystems (Figure 2.15): 

action-centered subsystem (ACS), non-action-centered subsystem (NACS), 

motivational subsystem (MS) and meta-cognitive subsystem (MCS). The role of 

the ACS is to control actions, while the NACS maintains the general knowledge. 

The MS provides underlying motivations for perception, action, and cognition, and 

the MCS monitors and regulates the operations of the other subsystems 
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dynamically (Sun, Wilson, and Lynch 2016). Each subsystem consists of two levels: 

a top level that contains prepositional rules of explicit symbolic knowledge, and a 

bottom level containing procedural knowledge that uses subsymbolic neural 

mechanisms (Chong, Tan, and Ng 2007). Several simulations have been carried out 

within CLARION. For example, (Wilson and Sun 2014) show how CLARION may 

be used to capture the emotional dynamics of victims of school bullying. (Sun and 

Wilson 2011) implements CLARION to simulate human motivation and 

personality, and (Sun, Wilson, and Lynch 2016) employ CLARION to capture a 

variety of important aspects of emotion.  

 

 

Figure 2.15 The CLARION cognitive architecture (Sun, Wilson, and Lynch 

2016). 

Finally, the LIDA (Learning Intelligent Distribution Agent) model of cognition 

is a fully integrated artificial cognitive system capable of reaching across a broad 

spectrum of cognition, from low-level perception/action to high-level reasoning 

(Faghihi and Franklin 2012). LIDA affords intention, action selection and human-

like learning intended for use in controlling cognitive agents that replicate human 

experiments as well as performing real-world tasks (Franklin et al. 2014). One of 

the main characteristics of LIDA is that it features many learning processes: 

perceptual learning that allows the robot to construct its own representation of the 

environment, the episodic learning that learns from experience, the procedural 
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memory that learns new actions, and the attentional learning that allows restoring 

content to consciousness. In the area of medicine, LIDA has been implemented in 

a system of cognitive robots and as a supervisor that gathers both logistical and 

medical information in hospital Emergency Departments (Wilkes et al. 2010). The 

triage team and patients interact with the robots to register and make initial 

assessments. The robots are able to help patients and family to register their 

information and update patients on current wait times, while the triage team uses 

the robots to visually inspect and listen to the waiting room and can alert clinicians 

in case a patient requires immediate clinical attention. Recently, (Becker et al. 

2015) developed a “conscious” mobile robot using LIDA to simplify decision-making 

processes during navigation. 

Although standard cognitive architectures have been employed in numerous 

fields, such as modeling human behavior, game theory and mobile robots, the 

EuRoSurge European Project (The EUROSURGE Project 2016) is the only project 

that has addressed the specifications of a cognitive architecture for surgical robots. 

The goal of EuRoSurge is to facilitate the development of new products and their 

integration into surgical robots endowed with cognitive capabilities, thus 

establishing the new field of cognitive robotic surgery. Thus, there is an open 

research line in developing cognitive architectures for surgical co-worker robotic 

scenarios. To date, works endowing surgical robots with cognitive properties employ 

cognitive architectures designed for very specific applications. 

 

 

Figure 2.16 Human-robot interaction architecture for camera guidance in LS 

proposed by (Ko et al. 2005). 

(Ko et al. 2005) propose to augment the intelligence of a camera robotic assistant 

with an intelligent human-robot interaction architecture (Figure 2.16). The goal of 

this work is to provide a particular camera view autonomously, depending on the 

state of the procedure. Robot surgical knowledge consists in modeling the surgical 
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task into a sequence of states characterized by the instrument used in each of them. 

The camera view can be set on a surgical site of interest or it can track the surgical 

tools. In case the surgeon disagrees with the camera view generated by the robot, 

he or she can use voice commands to modify the camera position.  

(Chui, Nguyen, and Wen 2014) have presented on-going research about a 

cognitive surgical system, that comprises a cognitive engine to understand the 

operating room model and workflow and to model human behavior. This engine 

enables the robot to be aware of its environment and to make decisions about the 

actions to perform. They propose to model the biomechanics of biological tissue for 

the autonomous planning of surgical tasks. However, the application of this 

proposal to routine medical care remains a great challenge.  

(Weede et al. 2013) and (Bihlmaier and Worn 2015) also propose a cognitive 

system for a surgical robot and present two examples of application: autonomous 

camera guidance and planning of trocar positions. Figure 2.17 shows the knowledge-

based architecture proposed in these works for the robotic assistant. Perception has 

an attention process that filters the essential information, which is interpreted as a 

state of the world. The knowledge base distinguishes between procedural and 

declarative knowledge. By decision-making and planning aims are generated which 

can be interpreted and evaluated in a cyclic loop. Finally, decision-making results 

in an action taken by the robot. The camera guidance application is based on 

predicting the future position of the tools to provide a stable camera view.  

 

 

Figure 2.17 Cognitive architecture proposed by (Weede et al. 2013). 
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2.5 Conclusion 

Most current surgical robots, as with the da Vinci system, follow a classical 

teleoperated scheme. These kinds of systems offer effective assistance to the surgeon 

as robotic tools that enhance his or her abilities, but they lack the required 

intelligence to act as a robotic partner for the surgeon, providing a collaborative 

assistance that reduces the surgeon workload during laparoscopic interventions. 

Moreover, traditional mechatronic solutions, based on external robots that handle 

laparoscopic tools, are no longer valid for new surgical techniques. Thus, researchers 

are focusing on the development of intra-abdominal devices that reduce the grade 

of invasiveness and overcome the new laparoscopic limitations by avoiding motion 

constraints due to the entry port. However, current approaches of this new kind of 

robots still require a human assistant to control the position of the intra-abdominal 

robots, limiting their applicability in co-worker scenarios where the robots can work 

with autonomy.  

Many authors have addressed the problem of autonomy in surgical robots by 

developing systems for autonomous camera guidance and automation of surgical 

tasks. However, these works still require surgeons’ supervision and their decisional 

capacity and their adaptability to dynamic scenarios are very limited. A smart 

robotic assistant able to collaborate with the surgeon in a co-worker scenario must 

go a step further in the current abilities of surgical robots, endowing the system 

with human-like cognitive features, such as knowledge representation, reasoning 

and planning, environment interpretation and learning algorithms. Some authors 

have designed specific cognitive architectures for surgical applications, such as 

endoscope guidance, but none of these works include learning mechanisms, an 

essential cognitive ability. Adapting a standard cognitive architecture for surgical 

applications would provide a general framework that could be employed for 

different surgical tasks and would lay the foundations of smart robotic assistants 

for co-worker surgical scenarios.     

Analyzing the particular features of standard cognitive architectures described 

in the previous section, SOAR seems to be the most appropriate basis for building 

a general framework for smart robotic assistants. SOAR provides the required 

flexibility and modularity to be implemented in a full range of applications, from 

simpler ones such as acting in response to specific commands, to more complex 

collaborative scenarios in which autonomous assistance and reasoning are required. 

It offers different levels of long-term memory to store a wide range of knowledge: 

procedural memory makes it possible to store the robot behaviors; semantic memory 

makes it possible to store surgical knowledge such as tasks protocols or even a 

semantic representation of the environment; and episodic memory makes it possible 
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to store and recover past experiences related with, for example, unexpected 

situations that may occur or particular ways of operating of different surgeons. 

Moreover, SOAR offers a variety of learning mechanisms that allow the system to 

improve its behavior over time and to add new knowledge throughout the lifetime 

of the robotic assistant. Finally, SOAR is designed to allow an easy integration 

with other components, such as robots or sensors.     

 

 

Figure 2.18 SOAR-based cognitive framework for smart robotic assistants. 

Thus, this PhD dissertation proposes the SOAR-based general cognitive 

framework for smart robotic assistants depicted in Figure 2.18. The cognition 

system is composed of the required memory structures to store the robot knowledge 

base, learning mechanisms, and reasoning and planning algorithms. This cognition 

system makes use of the information provided by the perception system, which 

gathers sensorial data from the dynamic surgical environment and sends the 

corresponding planned robot behaviors to the action system. This action system is 

composed of two modules: the physical robotic assistant and its control system. 

Finally, the human-robot interaction module allows for communication between the 

cognition system and the surgeon. The basic way of interaction is through a Human 



2 State of the art   

32 

Machine Interface (HMI) that allows the surgeon to directly command particular 

motions or behaviors to the robot through voice commands, direct teleoperation, 

or a graphical interface. However, a smart robotic assistant aimed at emulating 

human behavior requires a more natural way of communication. This intuitive and 

natural human-robot interaction is performed through a gesture recognition system, 

which interprets the surgeon’s maneuvers in order to follow the surgery workflow. 

This architecture is implemented for the particular application of a camera robotic 

assistant in a general open-source framework that allows easy integration of 

different robotic and sensorial components. 
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3 CONTROL SYSTEM OF 

THE ROBOTIC ASSISTANT 

3.1 Introduction 

Visual information is essential for surgeons to perform a surgical procedure. In 

laparoscopic surgery, surgical instruments are introduced into the abdominal cavity 

through small incisions. Thus, an endoscope is mandatory to provide visual 

feedback to the surgeon. Traditionally, a human assistant is in charge of holding 

the endoscope. This is a complex and tedious task, especially in long interventions, 

where the assistant must keep the endoscope in the same position during long 

periods. Fatigue and stress adversely affect image stability and accuracy of the 

endoscope position. Robot characteristics including tremor filtering and high 

accuracy help to overcome these limitations. Conventional camera robotic 

assistants consist of a robotic arm that holds the endoscope and moves it in response 

to specific commands (Gilbert 2009; Kraft et al. 2004; Munoz et al. 2006; Polet and 

Donnez 2008; Stolzenburg et al. 2011; Voros et al. 2010). Although these kinds of 

robots have succeeded in substituting medical staff, they do not tackle the narrow 

field of view inherent to laparoscopic procedures.  

To deal with the limitations of laparoscopic vision, many researchers have 

designed intra-abdominal devices equipped with high-resolution cameras (Best et 

al. 2012; Garbin et al. 2016). These devices are completely introduced into the 

abdominal cavity and can be moved freely along the abdominal wall by means of 

magnetic interaction with an external magnet. This solution enhances the 

traditional narrow field of view of laparoscopic interventions, making it possible to 
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reach areas inaccessible for conventional endoscopes. However, current intra-

abdominal camera robots are guided by hand. Thus, they still require an assistant 

to move the camera, or the surgeon must release the surgical tools to change the 

camera view.  

This chapter presents the general description of the camera robotic assistant 

proposed in this PhD dissertation, followed by the geometric model of the task. 

Afterward, the control scheme is described. This control includes a hybrid force-

position control for the shift of the camera along the abdominal wall and a cable-

driven actuation system for the control of the internal DoFs. Finally, a summary 

of the conclusions of the chapter is presented.     

3.2 General description of the camera robotic assistant 

The camera robotic assistant proposed in this work, depicted in Figure 3.1, is 

composed of three components: an external robot, a magnetic holder, and a camera 

robot. The camera robot is composed of a high-resolution camera and a set of 

permanent magnets (Figure 3.2.a). This device is inserted into the abdominal cavity 

through one of the entry ports created by the surgeon to introduce the surgical 

tools. Once inside, it is attached to the abdominal wall through magnetic interaction 

with the external magnetic holder. The magnetic holder is a device composed of a 

set of magnets that couple with the magnets of the camera robot (Figure 3.2.b). 

Hence, the magnetic holder and the camera robot move together when the holder 

is displaced along the abdominal wall. To allow autonomous positioning of the 

camera, the holder is attached to the end effector of an external robot. The external 

robot attachment component allows easy mechanical coupling and decoupling with 

the holder. This mechanism provides more flexibility to the system, allowing 

manual handling of the magnetic holder if required or even to control more than 

one camera robot with the same external robot.  

Unlike traditional endoscopes, whose motion is restricted to four DoFs due to 

the constraints at the entry port, the camera robotic assistant proposed in this work 

has six DoFs, depicted in Figure 3.1: two shifts along the abdominal wall, three 

rotations (roll, tilt, and pan) and a digital zoom, that performs the inward/outward 

motion of conventional endoscopes. As shown in Figure 3.3, these DoFs can be 

divided into external and internal ones, depending on the nature of its actuation. 

The external DoFs, the two shifts (dx and dy) and the pan rotation (ϕ), are actuated 

with the external robot, that controls the motion of the magnetic handle, while the 

internal DoFs, the roll rotation (α) and the tilt rotation (β), are actuated with an 

internal cable-driven mechanism, described in Section 3.2.1. 
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Figure 3.1 General description of the camera robotic assistant. 

 

 

Figure 3.2 (a) Top view of the camera robot; and (b) coupling mechanism 

between components of the robotic assistant. 

The two shifts allow the camera robot to reach almost any area inside the 

abdominal cavity, while the pan rotation has to do with the image horizon, i.e. a 

pan rotation provokes a rotation of the image. The most natural and intuitive way 
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of operating is following the hand-eye configuration, i.e. to have the camera between 

the active surgical tools and with a natural horizon (it would be quite difficult for 

a surgeon to operate with an inverted image). Hence, the pan rotation allows the 

image horizon to adapt to the position of the surgeon. On the other hand, tilt and 

roll rotations deal with the camera perspective. With traditional endoscopes, the 

angle from which an anatomical structure is viewed highly depends on the 

endoscope entry port. However, these two internal DoFs make it possible to view 

an organ from different angles of view. This fact is especially important in planar 

images, where one dimension is lost. Finally, the digital zoom allows the image to 

be focused on a particular area. Although digital zoom reduces the quality of the 

image, with the high quality of the actual cameras and the distance from the camera 

to the image plane (about 10 cm), a sufficient zoom can be applied without a loss 

of quality.  

 

 

Figure 3.3 Actuation of the DoFs: (a) external DoFs; and (b) internal DoFs. 

With these considerations, the advantages of the camera robotic assistant 

presented above can be summarized in the following points: 

1. Enhancement of the field of view. One of the main problems of 

laparoscopic procedures is that the field of view is limited by the motion 

restrictions of the endoscope, which limits the accessible areas by the camera. 

However, the intra-abdominal camera robot can be freely displaced along 

the abdominal wall, making it possible to reach almost any area within the 

abdominal cavity. 

2. Enhancement of the camera perspective. The internal DoFs of the 

robotic assistant allow the camera perspective to be changed easily, making 

it possible to view an anatomical structure from different angles. This fact 

is especially important in planar images, where one dimension is lost. Thus, 

depth perception can be improved if a particular image can be viewed from 

different angles. The main purpose of the camera robotic assistant is to 

substitute the conventional endoscope as a vision system. However, the 
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camera robot can also be used as a complementary vision system, allowing 

the operation to be performed with an endoscope as the main vision source, 

and using the intra-abdominal device to view unreachable areas by the 

endoscope or to view an organ from a different perspective. Furthermore, 

several camera robots could be used to create a global vision system that 

would provide a visual feedback as similar as possible to the vision surgeons 

have during an open surgery procedure (Rivas-Blanco et al. 2016).    

3. Recovery of triangulation in SPAS. In single port access surgery, the 

surgical tools and the camera are all introduced through the same incision. 

This situation provokes a loss of triangulation between the camera and the 

working ports, which translates to an aggravation of the loss of depth 

sensation, inherent to any laparoscopic procedure. The possibility of moving 

the camera separately from the instruments restores the triangulation and 

therefore, improves the depth sensation.  

4. Automatic navigation. All intra-abdominal devices found in the literature 

are controlled manually by hand motion of the magnetic holder. This implies 

that either a surgeon’s assistant is required to perform this task or the 

surgeon must release the instruments every time he or she needs to change 

the camera position. The solution of attaching the magnetic holder to an 

external robot allows an automatic navigation of the camera, releasing the 

surgeon or an assistant from this tedious task.   

3.2.1 Cable-driven actuation mechanism 

The camera robot is the main component of the robotic assistant and it has the 

most restrictive design conditions, as its purpose is to be introduced into the 

abdominal cavity. Hence, for its design the following requisites must be considered: 

1. Small size. The device is inserted into the abdomen through one of the 

incisions performed for the surgical instruments. Thus, the diameter of the 

camera robot is restricted by the size of the entry port. The maximum 

acceptable diameter of the device is 3 cm, as it is the size of the incisions 

performed in SPAS (Best et al. 2012). 

2. Low weight. Magnetic interaction force required to keep the camera robot 

attached to the abdominal wall surface depends on the width of the 

abdominal wall, which depends on the individual characteristics of each 

patient and on the weight the magnets have to support. The lower the 

weight of the device, the less magnetic force is necessary, and therefore, 
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smaller magnets can be used. This is an important fact to take into account 

when designing the actuation of the internal DoFs and when selecting the 

device components. 

3. Lighting system. A light source is mandatory in laparoscopic procedures 

to illuminate the working area. Some cameras have their own built-in light 

source. Otherwise, the device must be provided with an independent light 

source. White LEDs have demonstrated to be appropriate to illuminate the 

abdominal cavity (Cadeddu et al. 2009; Lehman et al. 2009).    

4. Power supply and image transmission. Active components of the device 

(the camera, the lighting system and motors in case they are needed for the 

actuation of the DoFs) require a power supply to work. Components can be 

powered with an external power source using wires, or with internal 

batteries. Similarly, image transmission from the camera to the monitor that 

displays the image can be done using a wired transmission, or with a wireless 

camera. Hence, an important design decision is whether it is advisable to 

have a wireless device or not. On the one hand, the main advantage of a 

wireless device is that it frees up an entry port. However, wires usually have 

a small diameter so they can exit through one of the cannulas of a multi-

port device or through a small incision closed with purse-string sutures to 

seal the tissue around the wire. Furthermore, wireless devices have the 

following disadvantages: batteries have a limited lifetime and their size and 

weight increase both the device dimensions and the total weight, and image 

transmission with wireless cameras is slower than with wired 

communication, causing image delays that are not acceptable in surgical 

environments. Moreover, for safety reasons, intra-abdominal devices must 

have a mechanism that allows them to be picked up in case the magnetic 

interaction is lost and the device falls. A wire exiting the device can be very 

useful in such cases to manipulate the device.  

Under the above considerations, the camera robot has been designed with an 

internal cable-driven mechanism. Thus, no motors are required, that would have 

increased both the size and weight of the device and would have required additional 

power supply. This actuation mechanism is described in Figure 3.4. The driven side 

is composed of two concentric mechanisms (roll mechanism and tilt mechanism) 

that move the camera in the two directions indicated by rotations α and β, while 

the driver side is composed of two motors (motor 1 and motor 2) in charge of 

actuating the system. The actuation system is based on motion transmission 

between two driver pulleys (pulley 1 and pulley 2) and two driven pulleys (pulley 

3 and pulley 4). On the driven side, blue and red cables are attached to the pulley 

of the roll mechanism (pulley 3), green and orange cables are attached to the pulley 
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of the tilt mechanism (pulley 4). On the opposite side, the driver side, blue and red 

cables are attached to the pulley of motor 1 (pulley 1), and green and orange cables 

are attached to the pulley of motor 2 (pulley 2).  

 

 

Figure 3.4 Cable-driven actuation system: (a) driven side; and (b) driver side.  

Cables are tied to the pulleys so that all of them are tight in the initial position 

of the motors, which is made coincident with null values of α and β. Figure 3.5 

shows the motion transmission of the system, particularized for the roll rotation. 

Figure 3.5.a depicts the initial position, for θ1 = 0 and α = 0. A clockwise rotation 

of motor 1, and consequently of pulley 1, causes the red cable to move pulley 3 in 

the same sense, augmenting the value of α and therefore provoking a clockwise roll 

motion of the camera (Figure 3.5.b). Analogously, as depicted in Figure 3.5.c, a 

counterclockwise rotation of motor 1 causes a roll rotation of the camera in the 

opposite direction.  

Thus, an incremental rotation θ1 of motor 1 transmits an incremental rotation 

α of the roll mechanism, and an incremental rotation θ2 of motor 2 transmits an 

incremental rotation β of the tilt mechanism. Assuming no slip of the cables in the 

mechanisms and negligible cables thickness, the equations describing the 

transmission of motion from the driver side to the driven side are: 

𝛼 =
𝐷1
𝐷3

𝜃1 (3.1) 

𝛽 =
𝐷2
𝐷4

𝜃2 (3.2) 

where D1, D2, D3, and D4 are the diameters of pulley 1, pulley 2, pulley 3, and 

pulley 4, respectively.  
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Figure 3.5 Motion transmission of the cable-driven actuation system 

particularized for the roll rotation: (a) initial position, (b) clockwise rotation, and 

(c) counterclockwise rotation. 

3.3 Geometric model of the task 

The task of the camera robotic assistant is to provide the surgeon with a 

particular camera view. Figure 3.6 depicts the geometric model of the task, where 

{0} is the global reference frame, {E} and {H} are the reference frame of the robot’s 

end effector and the magnetic holder, respectively, {C} is the reference frame of the 

camera, and {I} is the image reference frame. The global system {0} coincides with 

the external robot reference frame, and its origin is placed at the center of its base. 

The origin of systems {E}, {H} and {C} are located at the center of the end effector, 

the bottom of the holder and the center of the camera lens, respectively.  

Rotation matrix between systems {E} and {H}, {H} and {C}, and {C} and {I}, 
ERH, HTC, CRI are constant and correspond with the identity matrix, as shown in 

Figure 3.6. The relative position between these systems also remains constant, and 

are computed as follows: 

𝑂𝐼
𝐶 = (

−𝑤/2
−ℎ/2
𝑑𝐼

) ; 𝑂𝐻
𝐶 = (

0
0

𝑑𝑐 + 𝑑𝑎 + 𝑑ℎ

) ; 𝑂𝐸
𝐻 = (

0
0
𝑑𝑒

) (3.3) 

where COI, COH and HOE are the origin of systems {I}, {C} and {H} with respect 

to systems {C}, {H} and {E}, respectively, and dI, dc, da, dh and de are the height 

from the camera to the image plane, the height of the camera robot, the width of 

the abdominal wall, the height of the holder and the height of the external robot 

attachment component, respectively. Conversely, transformation matrix between 

{0} and {E}, 0TE(q), is a function of the robot articular configuration q.  
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Figure 3.6 Geometric model of the task. 

As the camera provides planar images, ZI component of points of the image is 

equal to 0. The center of the image is denoted as OI, and it is located in the point 

(w/2, h/2, 0) of system {I}, where w and h are the image width and height, 

respectively, whose value depends on the image resolution. Please note that system 

{I} associated with the image is expressed in different units of measures than the 

rest of systems: while points in {0}, {E}, {H} and {C} are expressed in Cartesian 

units, in particular in mm, points referred to system {I} are expressed in image 

units, i.e. in pixels.  

The camera view in a particular instant depends on the value of the six DoFs of 

the robotic assistant: dx, dy, α, β, ϕ, and zoom. Figure 3.7 depicts the effect of each 

DoF on the camera view, where image represents the camera view for the initial 

value of the DoFs, and image’ represents the camera view for a particular value of 

every DoF. First, digital zoom is performed by displaying a smaller area (wz x hz) 

of the overall image (Figure 3.7.a). Thus, it is computed as follows:     

(
𝑤𝑧

ℎ𝑧
) =

1

𝑧𝑜𝑜𝑚
(
𝑤
ℎ
) (3.4) 
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Figure 3.7 Effect of the robotic assistant DoFs on the camera view. 

Second, pan rotation α affects the image horizon, i.e. it causes a rotation of the 

image in the plane XC-YC (Figure 3.7.b). Shifts dx and dy are carried out along axis 

YC and XC, respectively, and cause a displacement of the center of the image OI 

along the respective axis (Figure 3.7.c and Figure 3.7.e, respectively). Finally, roll 

and tilt rotations cause a displacement of OI along axis YC and XC, respectively, 

which size depends on the distance from the camera to the image plane H (Figure 

3.7.d and Figure 3.7.f, respectively). These displacements are computed as follows: 



 3.4 Control system  

43 

𝑑𝛼 = 𝑑𝐼 · tan(𝛼) (3.5) 

𝑑𝛽 = 𝑑𝐼 · 𝑡𝑎𝑛(𝛽) (3.6) 

 

 

Figure 3.8 Control system of the robotic assistant. 

3.4 Control system 

The control system of the robotic assistant receives the value of the six DoFs 

(dx, dy, α, β, ϕ, and zoom) and executes the corresponding motion of the external 

robot and the camera robot (Figure 3.8). The shift control is done using a hybrid 

force-position controller that controls both the displacement of the robot and the 

force exerted on the abdominal wall. This control, further described in the following 

subsection, outputs the transformation matrix TEF of the end effector of the external 

robot. The pan rotation φ is also performed with the external robot. It consists in 

a rotation φ around axis ZC (Figure 3.7.b). Thus, it does not affect the robot 

position PEF, only the orientation REF. The robot orientation in a particular instant 

k, REF(k), is computed by applying a rotation Rz(φ) to the previous robot 

orientation REF(k-1):  

𝑅𝐸𝐹(𝑘) = 𝑅𝑧(𝜑) · 𝑅𝐶 0 · 𝑅𝐸𝐹(𝑘 − 1) (3.7) 

where CR0 is the rotation matrix between system {C} associated with the camera 

and the global reference system {0}. This matrix is necessary because Rz is 

expressed with respect to {C}, and REF has to be commanded referred to system 
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{0}. Matrix Rz(φ) has the following value: 

𝑅𝑧(𝜑) = (
cos⁡(𝜑) −sin⁡(𝜑) 0
𝑠𝑖𝑛(𝜑) 𝑐𝑜𝑠(𝜑) 0

0 0 1

) (3.8) 

On the other hand, roll and tilt rotations are performed with the cable-driven 

actuation system and are controlled following the scheme shown in Figure 3.9. It 

inputs the desired roll and tilt values, αd and βd, respectively, and computes the 

corresponding motors control. According to equations (3.1) and (3.2), rotations of 

motors 1 and 2, θ1 and θ2, respectively, to get the roll and tilt rotations αd and βd, 

respectively, are computed as follows:  

𝜃1 =
𝐷3
𝐷1

𝛼𝑑 (3.9) 

𝜃2 =
𝐷4
𝐷2

𝛽𝑑 (3.10) 

These motor rotations transmit the motion to the camera robot, as described in 

Section 3.2. Real values of roll and tilt rotations, α and β, respectively, are difficult 

to obtain, as it is not possible to include any additional sensor in the environment 

and image analysis techniques would lead to large errors due to the highly dynamic 

nature of the environment. Therefore, the loop is closed by the surgeon (man-in-

the-loop), who can correct these DoFs by commanding a particular value of the 

rotations.    

 

 

Figure 3.9 Roll and tilt control scheme. 

Finally, the zoom control applies equation (3.4) to obtain the range of the image 

to display depending on the desired zoom level. Next, the hybrid force-position 

control with torque compensation that controls displacements dx and dy of the 

external robot is further described.  
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3.4.1 Hybrid force-position control with torque compensation 

Displacement of the camera robot along the abdominal wall has some challenges 

that must be taken into account when designing the shift control. First, shifting 

must be carried out to preserve the magnetic interaction between the camera robot 

and the external holder, and second, it must assure that the devices do not cause 

any damage to the patient, internally or externally. To guarantee these issues, the 

displacement must be carried out in the tangential directions of the contact surface. 

This way, a smooth motion of the holder and the camera robot is assured, avoiding 

possible cuts on the patient’s skin, as well as a continuous magnetic interaction. As 

depicted in Figure 3.10, when the holder surface is parallel to the contact surface 

(abdominal wall), the magnetic interaction is assured by the equal interaction of 

the two magnets of the devices. This way, the force due to the device weight, Fg, 

is balanced by the magnetic forces Fm, keeping the camera robot attached to the 

abdominal wall. However, if the displacement is not carried out parallel to the 

contact surface, magnetic interaction in one of the magnets is lost, and the other 

magnetic force will not be able to balance the device weight, causing it to fall. 

Moreover, to assure that magnetic forces Fm are enough to keep the magnetic 

interaction between both devices, a minimum contact force of the holder in the 

normal direction of the contact surface must also be assured. 

 

 

Figure 3.10 Camera displacement along the abdominal wall. 

Hence, the problem of the control of DoFs dx and dy, i.e. the shift of the camera 

robot along the abdominal wall, consists in displacing the robot on the tangent 

plane to the contact point while exerting a particular force in the normal direction. 

The main challenge of this issue is that the abdominal wall is not a plane surface 
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and its shape is unknown for the system. Modeling the abdominal wall surface 

would be quite difficult, first of all, because it differs greatly from one patient to 

another, and second, because it is affected by a variety of external and dynamic 

factors. On the one hand, it is affected by how much the abdominal cavity is 

insufflated. On the other hand, the location of the entry ports and the external 

motion of the surgical tools may also affect the shape of the abdominal wall in 

particular areas. Thus, a reference frame associated with the abdominal wall must 

be dynamically computed. One approach to do this is to maintain the external 

robot’s end effector parallel to the contact surface at all times. As the orientation 

of the holder is the same as the orientation of the end effector, keeping the end 

effector parallel to the contact surface will assure that the holder also stays parallel 

to the abdominal wall during the displacement. Thus, the orientation of the 

reference frame associated with the abdominal wall coincides with the orientation 

of system {E}. 

 

 

Figure 3.11 Control scheme for the displacement of the camera along the 

abdominal wall. 

Under these considerations, the shift control is carried out following the control 

scheme of Figure 3.11. It is composed of two control layers: control layer 1 is 

executed every system cycle and it is in charge of assuring that the robot’s end 

effector is parallel to the contact surface, and control layer 2 is in charge of 

performing the displacement of the robot, and it is executed with a higher sampling 

time so as to assure a steady-state of control layer 1 before sending a new position 

reference. Thus, the motion of the external robot is decoupled into an orientation 
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reference, 0REF, managed by control layer 1, and a position reference, 0PEF, managed 

by control layer 2. Then, position and orientation are coupled to provide a single 

input to the robot in the form of transformation matrix 0TEF, as: 

𝑇𝐸𝐹
0 = (

𝑅𝐸𝐹
0 𝑃𝐸𝐹

0

0 0 0 1
) (3.11) 

Orientation control is done with a torque compensation algorithm that inputs 

the desired torque, Eτd, and real force and torque at the end effector, 0τ and 0F, 

respectively, and outputs the corresponding orientation REF to keep the end effector 

parallel to the contact surface. On the other hand, the position control is done with 

a hybrid force-position control that inputs a shift reference, dx and dy, a force 

reference, Fd, and real position and force at the end effector, 0P and 0F, respectively, 

and outputs the corresponding position reference 0PEF to the robot. Inputs to the 

control scheme are given with respect to system {E} because the control is 

performed over the end effector system. However, robot inputs and outputs 

variables are referred to its base reference frame, which is coincident with the global 

reference frame {0}. Next, torque compensation and force-position control are 

described in detail. 

 

 

Figure 3.12 Orientation control of the external robot: (a) holder parallel to the 

contact surface, (b) holder not parallel to the contact surface, (c) action to correct 

the robot orientation. 

When the external robot’s end effector, and therefore the holder, is parallel to 

the contact surface, the contact force is uniformly distributed along the bottom 
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surface of the holder, creating a resultant force F in the same direction of axis ZE, 

i.e., perpendicular to the contact surface (Figure 3.12.a). However, if the end 

effector is not parallel to the contact surface, it is produced the situation of Figure 

3.12.b, in which the contact force F, which is always perpendicular to the contact 

surface at the contact point, is not parallel to axis ZE, thus generating a torque τ.  

To get back to the situation depicted in Figure 3.12.a, the orientation of the robot 

must be corrected by performing a rotation of magnitude ϕ (angle formed by force 

F and axis ZE) in the opposite direction of the torque vector τ. This orientation 

correction is depicted in Figure 3.12.c.  

 

 

Figure 3.13 Control scheme of the torque compensation. 

Hence, the control scheme of the torque compensation that corrects the robot 

orientation is shown in Figure 3.13, in which the torque reference, Eτd, is a null 

vector, which leads to having the robot’s end effector parallel to the contact surface. 

This reference is transformed from system {E} to system {0} through the rotation 

matrix 0RE in order to compute the torque error, eτ, which is controlled by a 

proportional controller of gain Kτ. Then, the torque compensation is computed as 

the rotation matrix that performs a rotation ϕ around the opposite axis to the 

torque error, Rϕ. Firstly, angle α is computed as: 

𝜙 = 𝑎𝑐𝑜𝑠 (
𝐹0 · 𝑍𝐸

| 𝐹0 | · |𝑍𝐸|
) (3.12) 

Then, the vector of rotation is computed as: 

𝑢 = −‖𝑒𝜏‖ (3.13) 

Finally, matrix Rϕ is computed as follows: 
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𝑅𝜙 = (

𝑢𝑥
2(1 − 𝑐𝜙) + 𝑐𝜙 𝑢𝑥𝑢𝑦(1 − 𝑐𝜙) − 𝑢𝑧𝑠𝜙 𝑢𝑥𝑢𝑧(1 − 𝑐𝜙) + 𝑢𝑦𝑠𝜙

𝑢𝑥𝑢𝑦(1 − 𝑐𝜙) + 𝑢𝑧𝑠𝜙 𝑢𝑦
2(1 − 𝑐𝜙) + 𝑐𝜙 𝑢𝑦𝑢𝑧(1 − 𝑐𝜙) − 𝑢𝑥𝑠𝜙

𝑢𝑥𝑢𝑧(1 − 𝑐𝜙) − 𝑢𝑦𝑠𝜙 𝑢𝑦𝑢𝑧(1 − 𝑐𝜙) + 𝑢𝑥𝑠𝜙 𝑢𝑧
2(1 − 𝑐𝜙) + 𝑐𝜙

) (3.14) 

where sϕ = sin(ϕ), cϕ = cos(ϕ), and u = (ux, uy, uz). 

Once the torque compensation matrix Rϕ has been computed, this rotation has 

to be applied to the actual orientation of the robot. Thus, orientation reference of 

the robot, REF, is computed as the current robot orientation, 0RE, by matrix Rϕ. 

Thus: 

𝑅𝐸𝐹 = 𝑅𝐸
0 · 𝑅

𝜙
 (3.15) 

 

 

Figure 3.14 Control scheme of the hybrid force-position control. 

On the other hand, the hybrid force-position control to displace the camera along 

the tangent surface of the abdominal wall while exerting a force on the normal 

direction is performed with the control scheme of Figure 3.14. This control assumes 

that the torque compensation control, which acts with a smaller sampling time, 

ensures that the end effector is parallel to the contact surface. Thus, XE-YE is the 

contact plane, where position action takes place, and ZE is the normal vector to the 

contact surface, where the force action occurs. Hence, position and force actions are 

decoupled through matrixes DT and DN, avoiding interferences between the two 

controllers. Thus: 
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𝐷𝑇 = (
1 0 0
0 1 0
0 0 0

) (3.16) 

𝐷𝑁 = 𝐼 − 𝐷𝑇 = (
0 0 0
0 0 0
0 0 1

) (3.17) 

With this decoupling, position action outputs a position reference PT in which 

the z component is null, and force action outputs a position reference PN in which 

x and y components are null. Thus, the sum of PT and PN provides a complete 

position reference EPEF, which once transformed to the global reference frame, can 

be sent to the robot. Position action inputs the value of DoFs dx and dy, which are 

transformed into a position vector through matrix Rd as follows: 

𝑃𝑑
E = 𝑅𝑑 · (

𝑑𝑥
𝑑𝑦
) = (

1 0
0 1
0 0

) · (
𝑑𝑥
𝑑𝑦
) (3.18) 

The position controller ensures an accurate position reference tracking. This is 

done with a PI (proportional-integral) controller of gains KP and KI as: 

𝑃𝑇(𝑡) = 𝐾𝑃 · 𝑒𝑃(𝑡) + 𝐾𝐼 · ∫ 𝑒𝑃(𝑡)𝑑𝑡 (3.19) 

Robot dynamics are forced to follow a first order behavior (Munoz et al. 2006), 

so PI controller gains are designed following the Ackerman’s methodology for poles 

assignment, according to a dead-beat strategy. Thus: 

𝐾𝑃 =
1 + 𝑒−(𝑇 𝑇𝜏⁄ )

1 − 𝑒−(𝑇 𝑇𝜏⁄ )
 

   

(3.20) 

𝐾𝐼 =
1

𝑒−(𝑇 𝑇𝜏⁄ ) − 1
 (3.21) 

where T is the sampling time of the position controller, and Tτ is a time constant. 

On the other hand, the force action ensures a particular contact force during the 

robot displacement. Reference force Fd must be chosen to assure a safe contact of 

the magnetic holder on the abdominal wall so as not to lose the magnetic interaction 

with the intra-abdominal device and to not damage the patient, since if the force 

is too large it may cause necrosis on the patient. This force value is transformed 

into a force vector through matrix RF as follows: 

𝐹𝑑
E = 𝑅𝐹 · 𝐹𝑑 = (

0
0
1
) · 𝐹𝑑 (3.22) 

The force controller translates a force reference into a position reference. For the 

force controller design, an elastic interaction model has been assumed between the 
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robot and the surface. Thus: 

𝑒𝐹(𝑡) = 𝐾𝑥 · (𝑃𝑁(𝑡) − 𝑃𝑁(𝑡 − 1)) (3.23) 

where Kx is the stiffness matrix of the contact surface. Estimation of this 

parameter will be discussed below. Hence, the position reference in the normal 

direction, PN, to exert a force Fd on the abdominal wall is computed as: 

𝑃𝑁(𝑡) = 𝑃𝑁(𝑡 − 1) +
1

𝐾𝑥
𝑒𝐹(𝑡) (3.24) 

 

Stiffness matrix estimation  

The stiffness matrix of the contact surface, i.e. the abdominal wall, depends on 

the particular characteristics of each patient, such as the thickness of each person’s 

abdominal wall, which differs greatly between slim and obese people. Therefore, an 

accurate model of this value would be both quite complex and useless from the 

moment that we change the patient. Thus, Kx is estimated for each patient before 

the intervention with a recurrent least squares algorithm (RLS). This method 

employs measures of position and force obtained during the normal working of the 

system to update the stiffness matrix value Kx in real time (Martínez Rodríguez 

2004). Thus, new values of Kx are estimated based on the previously computed 

values, corrected with an update factor M as follows: 

𝐾𝑥(𝑡 + 1) = 𝐾𝑥(𝑡) + 𝑀(𝑡) · (𝑒𝐹(𝑡 + 1) − 𝑃𝑁(𝑡 + 1) · 𝐾𝑥(𝑡)) (3.25) 

where M is computed as: 

𝑀(𝑡) =
𝑁(𝑡) · 𝑃𝑁(𝑡 + 1)

1 + 𝑁(𝑡) · (𝑃𝑁(𝑡 + 1))
2  (3.26) 

where N is a variable that has to be updated once performed the iteration as: 

𝑁(𝑡 + 1) =
𝑁(𝑡)

1 + 𝑁(𝑡) · (𝑃𝑁(𝑡 + 1))
2  (3.27) 
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3.5 Conclusion 

This chapter has described a six DoFs camera robotic assistant that merges the 

advantages of conventional robotic camera holders and the new concept of intra-

abdominal device. First, the use of an intra-abdominal device provided with a high-

resolution camera, called camera robot, enhances the field of view if compared with 

a conventional endoscope, as the camera motion is not restricted by the entry port, 

so it can reach any area inside the abdominal cavity. Second, having the magnetic 

holder attached to the end effector of an external robot allows autonomous camera 

navigation, releasing the surgeon or an assistant from the task of moving the 

camera. Furthermore, the two internal DoFs of the camera robot, roll and tilt 

rotations, enhance the camera perspective, allowing an anatomical structure to be 

viewed from different angles. As in planar images one dimension is lost, perspective 

is especially important, as tasks involving depth perception become very 

challenging. A more natural perspective than the one obtained with an endoscope 

helps to recover depth perception. The internal DoFs of the robotic assistant are 

actuated by a cable-driven system that avoids the need of having motors onboard, 

which would increase both the size and the weight of the device. This system makes 

it possible to control the internal DoFs easily from outside.  

This chapter also analyzes the control system of the robotic assistant. It details 

a hybrid force-position control with torque compensation for the displacement of 

the robot along the abdominal wall. Torque compensation ensures that the end 

effector of the external robot remains parallel to the contact surface. This is 

essential to ensure magnetic interaction between the external holder and the camera 

robot and also to assure a safe and smooth displacement of both devices along the 

abdominal wall. Then, the position and force actions can be decoupled into a 

displacement along the contact surface, and a force in the perpendicular direction 

to the surface. For the force controller, an elastic interaction model between the 

robot and the surface has been assumed, where the stiffness matrix is estimated 

with a RLS algorithm that updates the value of Kx with new measures taken during 

the normal working of the robotic assistant. Thus, the controller considers 

particular characteristics of each patient’s abdominal wall, and it is also able to 

correct the value during the robot motion.  
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4 ROBOT COGNITION 

4.1 Introduction 

A cognitive architecture can be seen as an integration of modules or components 

that produce a behavior. A variety of cognitive architectures can be defined 

depending on the features required for each particular application. Different 

cognitive architectures have been proposed in fields such as mobile robots 

(Kleinmann and Mertsching 2011; Laird et al. 2012; Wolf and Sukhatme 2008; 

Zhang et al. 2010), optimization problem solving (Al-Dujaili, Subramanian, and 

Suresh 2015; Tanweer, Suresh, and Sundararajan 2014; Yu and Mang 2002), 

humanoid robots (Burghart et al. 2005; Cangelosi 2010) and human behavior 

mimicking (Infantino et al. 2005). However, few cognitive architectures have been 

proposed for surgical robots. (Bihlmaier and Worn 2015) and (Ko et al. 2005) have 

proposed cognitive architectures for camera guidance in laparoscopic surgery based 

on a surgical knowledge base, and reasoning and planning capabilities. However, 

these works propose very specific architectures and none of them include learning 

abilities, an essential characteristic of cognitive agents.  

The previous chapter has described the design and control features of a camera 

robotic assistant, while the present chapter delves deeper into the system cognition. 

It describes a cognitive architecture that provides the robot with the means to work 

side by side with surgeons in a collaborative way, behaving as similar as possible 

to a human assistant. Firstly, it describes the global cognitive architecture of the 

system, aimed at providing an efficient and autonomous camera view during a 

laparoscopic procedure. Then, it expands into the robot cognition and its 

codification. In particular, it analyzes the long-term memory of the system, i.e. the 

semantic memory, which stores declarative knowledge, and the procedural memory, 
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which stores implicit knowledge of the robot. Furthermore, it describes the 

reinforcement learning algorithm of the system, which allows the robot to improve 

its behavior over time. Finally, conclusions are reported. 

4.2 Description of the cognitive architecture 

Figure 4.1 shows the cognitive architecture proposed for the smart camera 

robotic assistant. The aim of this architecture is to provide the robot with the 

means to assist the surgeon autonomously during a laparoscopic procedure, 

providing an efficient camera view adapted to the task conditions in every instant 

of time. The architecture is composed of two main modules: a cognition system, 

where the robot base of knowledge and reasoning functions are implemented, and 

the action system, described in the previous chapter, which controls the execution 

of motion of the robotic assistant. Moreover, a perception system makes it possible 

to perceive changes in the environment (the patient’s abdominal cavity), and a 

human-robot interaction system allows the surgeon to interact with the robot in a 

natural and intuitive way.    

The cognition system is the major module of the cognitive architecture. It 

contains the two memory structures (long-term memory and working memory), and 

the learning mechanisms. Long-term memory is broken down into semantic memory 

and procedural memory, each one containing a different type of knowledge. On the 

one hand, the semantic memory contains general knowledge that forms the base of 

the robot’s world understanding, including concept hierarchy, causal relations, and 

association rules. The semantic learning allows the system to acquire new 

knowledge during the lifetime of the robot. On the other hand, the procedural 

memory contains the basic knowledge of how to select and perform basic actions or 

behaviors, i.e. it contains the sequences of situation-action rules to perform 

navigation routines. The reinforcement learning allows the system to improve the 

behavior of the robot by an iterative process based on rewards associated with the 

action rules that form the base of the procedural knowledge. 

The perception system manages the data incoming from the sensors and sends 

it to the working memory so it can be processed. Sensing is an essential function to 

detect changes in a dynamic environment. In the particular context of this work, 

the main sensor for perceiving changes in the operating area is the camera. Thus, 

the perception system is based on vision algorithms that process the incoming 

information from the camera. Other works use 3D trackers to locate the surgical 

tools, but this method requires some kind of markers to be attached to the tools, 

which may result uncomfortable for surgeons (Bauzano et al. 2015). Vision 
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algorithms provide all the information the robotic assistant requires to decide on 

the best camera view in every instant of the procedure (tools position and detection 

of other areas of interest such as anatomical structures), and this method does not 

require any additional device. However, the main limitation of this approach is that 

it is only possible to track objects within the camera field of view, although 

predicting algorithms can be integrated to estimate the location of the tools out of 

the image field. There are numerous works in the literature related to object 

identification in real applications, such as automatic gauze detection (Garcia-

Martinez et al. 2015), needle detection (Rodriguez-Molares et al. 2015) or automatic 

surgical tool tracking (Sahu et al. 2017; Zhang et al. 2017). There are also studies 

addressing the problem of bleeding detection in real environments (Deeba et al. 

2016).  

 

 

Figure 4.1 Global cognitive architecture. 
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On the other hand, the action system is the part of the architecture in charge of 

executing a motion of the robotic assistant. Thus, it receives a motion command 

planned in the robot cognition system, and performs the corresponding motion of 

the external robot and the camera robot, following the control scheme described in 

Figure 3.8. Although the motion of the robotic assistant is autonomous, for the 

sake of patients’ safety and the successful performance of the surgical task, the 

surgeon must have the means to directly actuate on the robot to change the camera 

view or even to take control in the case of an emergency. This is done with a 

Human-Machine Interface (HMI), as a part of the human-robot interaction system, 

allowing the surgeon to change the value of any of the robot DoFs at any time 

during the procedure. The surgeon’s commands will always have priority over the 

outgoing commands the robot cognition system.   

Finally, decision making in autonomous robots largely depends on the current 

conditions of the environment, which in the particular context of a surgical 

procedure determine the actual state of the surgical task the surgeon is performing. 

Most surgical tasks can be described following a standardized protocol in which the 

global task is divided into a set of subtasks or states, modeled as a state diagram, 

where evolution to a particular state is triggered by a transition condition. 

Transition conditions can be determined using the information of the previous task 

state and the surgical instrument in use (Ko et al. 2005), but the most common 

way of modeling surgical tasks is depending on the interaction between the surgical 

tools (Rosen et al. 2006). Each state is modeled as a particular interaction between 

the instruments, called gestures. Thus, transition conditions from one step to the 

following in a particular surgical protocol are triggered when it is detected that a 

particular gesture has been completed (Estebanez et al. 2010, 2012). This process 

is performed in two steps: an off-line training process in which each gesture is 

modeled using Hidden Markov Models, and an on-line recognition system that 

triggers the transition conditions. This gesture recognition system has been studied 

in a previous thesis within the research group of the medical robotics of the 

Universty of Malaga (Estebanez 2013). Thus, although this module is needed for 

the overall working of the global cognitive architecture, it is out of the scope of this 

thesis proposal, as it is a scientific problem that has already been solved.   

The following sections expand into the mathematical formulation of the robot 

cognition system. First, the semantic memory codification is described, along with 

its semantic learning mechanism. Second, the procedural memory and the 

reinforcement learning algorithm are described. 
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4.3 Semantic memory 

Semantic memory plays a critical role in reasoning and decision-making, as it 

enables an agent to abstract useful knowledge (Wang, Tan, and Teow 2016). A 

human surgical assistant must have specific knowledge that makes him or her 

capable of assisting the surgeon during a surgical procedure. First, the assistant 

must be able to identify the different objects involved, in particular, he or she must 

be able to recognize the surgical tools and the different anatomical structures within 

the abdominal cavity. Second, he or she must have surgical knowledge to be able 

to follow the task workflow and act in consequence. Finally, to be able to anticipate 

to the surgeon requests, a human assistant also knows the way of operating of the 

surgeon he or she is assisting and his or her preferences regarding the assistance 

that must be provided during each state of the task. Thus, a smart surgical robotic 

assistant should have all this declarative knowledge to be able to assist the surgeon 

in an efficient and really autonomous way.  

 

 

Figure 4.2 Semantic memory codification as a database. 

Hence, the semantic memory is modeled as a database composed of three 

semantic units: S1, S2 and S3. A semantic unit is defined as a table containing specific 

knowledge useful for a particular reasoning or planning function: S1 stores the 

knowledge necessary to identify the different objects of the operating area; S2 stores 

knowledge about the surgical protocol workflow; and S3 stores knowledge about the 

expected camera behavior for each state of the protocol (Figure 4.2). Thus, each 

semantic unit is defined by a set of attributes (columns), and each row stores 

information of a particular object, event or state. As will be explained below, 
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semantic learning only acts on S3, as S1 and S2 are filled in off-line by manual 

entries.  

The most natural and simple way of recognizing objects is by vision. Moreover, 

as the location of the objects will only be used to select a particular camera view, 

and the image of the camera is planar, 2D information is enough for the task 

concerning this work. In this work, color markers are used to identify the surgical 

instruments and other objects of interest by vision algorithms. A color can be 

represented by its RGB (red-green-blue) components or its HSV (hue-saturation-

value) coordinates. In laparoscopic surgery, it is desirable that the image 

segmentation results be insensitive to the strength of illumination. Thus, the HSV 

representation is more suitable in this context (Wei, Arbter, and Hirzinger 1997). 

Therefore, semantic unit S1 contains the HSV components for each color marker 

the system has to recognize. Formally, each row i of S1 is defined with the following 

attributes: 

𝑆1i ≔ 〈𝑀𝑖 , 𝐻𝑆𝑉𝑖〉 (4.1) 

where Mi is the color marker to be tracked, and HSVi is a tuple containing the 

HSV coordinates for the marker color. In particular, HSVi = [H1i, H2i, S1i, S2i, V1i, 

V2i], being the hue, saturation and value coordinates for the color marker Mi in the 

range [H1i – H2i], [S1i – S2i], and [V1i – V2i], respectively. Hence, S1 will contain at 

least two rows, one for each marker stuck to the surgical tools.    

Besides recognizing the objects of the scene, a smart robotic assistant must also 

have surgical knowledge to be able to follow the task workflow. As mentioned 

above, a surgical task or protocol can be modeled as a state-transition diagram. 

The gesture recognition system triggers the transition from one state to another, 

but the semantic memory must store the sequence of states and the relation 

between them, i.e. the transitions that connect the states among each other. This 

information is stored in semantic unit S2. Formally, each row i of S2 is defined as 

follows: 

𝑆2i ≔ 〈𝑠𝑡𝑎𝑡𝑒𝑖 , 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑖〉 (4.2) 

where statei represents the state number of the protocol, and transition i defines 

the trigger condition to jump from statei to statei+1.  

With this previous knowledge, the robotic assistant is able to follow the task 

workflow and to identify the actual state of the task. Then, the last thing the robot 

must know to provide an efficient assistance is how to actuate in every state of the 

procedure, i.e. which camera view is expected by the surgeon. Let’s remember from 

Chapter 3 that the robotic assistant has six DoFs: shift in two directions along the 

abdominal wall that set the camera position (dx and dy), a pan rotation that sets 
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the image horizon (α), tilt and roll rotations that set the camera perspective (β and 

ϕ, respectively), and the camera zoom that sets the image region displayed on the 

monitor. Then, for each state of the protocol, the semantic memory must store the 

desired value of pan, tilt, and roll rotations, and the zoom level. However, camera 

displacements dx and dy cannot be set a priori as these are relative variables that 

depend on the initial position of the robot, and the final desired position of the 

camera. It makes more sense to define where the camera should point at during 

each state. Thus, instead of defining a particular value for DoFs dx and dy, semantic 

memory stores which object the camera should point at for each state of the task. 

Formally, each row i of S3 is defined with the following attributes: 

𝑆3i ≔ 〈𝑠𝑡𝑎𝑡𝑒𝑖 , 𝑀𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝜑𝑖 , 𝑧𝑜𝑜𝑚𝑖〉 (4.3) 

where Mi must be one of the objects defined in semantic unit S1 so that the 

system can recognize it.  

Semantic units S1, S2 and S3 are the bases of the semantic memory, and they are 

filled in off-line by the system designer. S1 and S2 contain objective data related to 

object recognition and the protocol workflow. However, data of S3 is highly 

dependent on the preferences and the way of operating of each particular surgeon. 

For example, it has been demonstrated that eye gaze patterns are different for 

expert surgeons than for novices: while expert surgeons tend to maintain eye gaze 

on the target, novices usually switch eye gaze between the instruments and the 

target (Wilson et al. 2010). Thus, although S3 data entered by the designer serves 

as the default camera view parameters value, it is likely that each user (or each 

user profile such as expert or novice) may prefer to set his or her particular 

preferences.  Therefore, a mechanism is necessary that allows data to be added to 

the semantic memory. This process is called semantic learning and allows a user to 

create a new semantic unit based on S3 (i.e. with the same attributes) filled in with 

his or her particular preferences.  

The complete process of the semantic learning is described in Table 4.1. When 

a new user is detected, the system creates a semantic unit called SuserID with the 

same attributes of semantic unit S3 (subscript userID is a string containing the 

name or the profile of the user). Then, for each state of the task, the system will 

wait until the transition to jump to the next step is triggered, which means that 

the current state has finished. During the state, the user performs the corresponding 

task and manually sets the camera view, using the HMI. Once the state has finished, 

the values of DoFs α, β, ϕ and zoom set by the user are stored in the corresponding 

row of SuserID. Finally, the color marker at which the camera should point during 

each state must be set. To do this, the system will compute the distance from every 

marker Mj of semantic unit S1 to the image center OI using equation (4.4) and will 

store the marker with the minimum distance to the center in SuserID.  
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𝑑𝑖 = √(𝑀𝑗𝑥 +𝑀𝑗𝑦)
2
+ (𝑂𝐼𝑥 + 𝑂𝐼𝑦)

2
 (4.4) 

where (Mjx, Mjy) and (OIx, OIy) are the position of marker Mj and the center of 

the image, respectively, in the image reference frame {I}.   

 

Table 4.1 Semantic learning algorithm. 

1: if new user is detected 

2:    create semantic unit SuserID based on S3 

3:    for each state i of the task do 

4:         wait for state transition 

5:         store α, β, ϕ and zoom values in row i of SuserID 

6:         for each marker Mj of S1 do 

7:              compute distance to center of the image using equation (4.4) 

8:         end for  

9:         store Mj with minimum distance in row i of SuserID 

10:   end for 

11: end if             

4.4 Procedural memory 

The procedural memory contains the navigation routines of the robotic assistant. 

Current navigation strategies for camera guidance in laparoscopic surgery are 

divided into two groups: a reactive behavior based on instrument tracking (Azizian 

et al. 2014; Casals, Amat, and Laporte 1996) and a proactive behavior based on 

the surgery workflow (Ko et al. 2005). Both of these approaches are based on very 

rigid preprogrammed behaviors, and they lack the intelligence and awareness to be 

considered autonomous (Pandya et al. 2014). While a reactive behavior has enough 

flexibility to track the surgical tools wherever they are, it lacks the capacity to 

adapt the viewpoint depending on the task currently being performed. On the other 

hand, a proactive camera behavior has the flexibility to offer different camera views 

depending on the task state, but the behavior within a particular state cannot be 

changed. Thus, a camera navigation strategy that combines both approaches would 

be able to offer a proactive behavior without losing the advantages of the reactive 

tracking of the instruments. The proactive behavior is important because the 

camera view during an intervention not only depends on the position of the surgical 

tools, but it is highly affected by the particular task the surgeon is performing. 

Depending on it, the surgeon may prefer to focus his or her attention on one of the 
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tools instead of on both tools, to zoom in the image during a challenging task, or 

to have a particular perspective of an anatomical structure. On the other hand, a 

reactive behavior that tracks the surgical tools is of great importance to be able to 

adapt the camera view to the particular circumstances of every instant of the 

procedure, and to not lose the tools from the sight of view of the camera, especially 

in the complex environment we are working in.  

 Under these considerations, the navigation strategy proposed for the camera 

guidance is described in Figure 4.3, which combines a proactive and a reactive 

behavior. Due to its nature, each behavior has a different execution cycle: while the 

proactive behavior runs every time the gesture recognition system triggers a 

transition to jump to the following state, the reactive behavior runs every system 

cycle. When a transition is triggered by the gesture recognition system, the 

cognition system infers the next state of the task according to the data stored in 

the semantic unit S2 (equation (4.2)). With the current state of the task, the system 

infers the values of DoFs α, β, ϕ, and zoom according to data stored in the semantic 

unit S3 (equation (4.3)), and sends it to the control system in order to execute the 

corresponding robot action. Moreover, the current state is also used to send to the 

perception system the HSV coordinates of the marker to track, according to the 

information stored in the semantic unit S1 (equation (4.1)). The state is also sent 

to the reinforcement learning module, which along with a reward value computes 

the value of constants Kr and Kp, needed in the procedural memory module. These 

two modules will be described below.    

 

 

Figure 4.3 Camera navigation strategy. 

Then, in each cycle of the system, the perception system outputs the 

instantaneous position of the marker tracked in the actual state, PM, and the 

position of the tip of the right and left tools, PR and PL, respectively. These variables 
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are used along with the zoom value to compute the corresponding displacement of 

the camera robot, dx and dy, which is sent to the control system. Please note that 

PM may coincide with PR or PL in case that for the actual state, Mi of semantic unit 

S3 coincides with the marker of one of the surgical tools.  

 

 

Figure 4.4 Procedural memory control scheme. 

The control scheme of the procedural memory module of Figure 4.3 is described 

in Figure 4.4. The aim of this control is to compute the external robot displacements 

dx and dy so that the camera keeps in its field of view the marker set in the semantic 

memory for the actual state and the surgical tools. When a surgical tool is moving, 

it would be very dangerous to lose sight of it, as it could cause damage to a tissue 

or an organ. However, it is very common to keep one tool holding an anatomical 

structure to have access to a particular organ, and then operate with the other tool 

in a separate area. Thus, it would not make sense to try to keep both the moving 

tool and the static one in the field of view. First, because it may be unfeasible, and 

second, because despite being feasible, it would require having the working tool in 

one extreme of the image, when the surgeon may prefer to have that tool centered 

in the image to focus all of his or her attention on it. Thus, PTools, defined as the 

image point to be tracked regarding only the surgical tools, is computed as follows:  

𝑃𝑇𝑜𝑜𝑙𝑠 = 𝐾𝑇𝑜𝑜𝑙𝑠 (
𝑃𝑅
𝑃𝐿
) (4.5) 

where 𝐾𝑇𝑜𝑜𝑙𝑠 =
1

𝛿𝑅+𝛿𝐿
(𝛿𝑅 𝛿𝐿), being δR and δL two binary variables that are 

true when right tool and left tool, respectively, are moving, and are false when they 

are not.  

Then, PTools has to be weighted with PM in order to provide a global point to 
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track that combines the proactive and the reactive behaviors. This weighting is 

done using constants Kr and Kp, that weight the contribution of the reactive and 

the proactive behavior, respectively, to the global behavior of the robotic assistant. 

Thus, the global point to track, i.e. the global focus of attention of the image PFoA, 

is computed as: 

𝑃𝐹𝑜𝐴 = 𝐾𝑟 · 𝑃𝑇𝑜𝑜𝑙𝑠 + 𝐾𝑝 · 𝑃𝑀 (4.6) 

where 𝐾𝑟 , 𝐾𝑝 ∈ [0,1]/𝐾𝑟 + 𝐾𝑝 = 1 . These values are learned with the 

reinforcement learning algorithm described in the following section. Finally, point 

PFoA has to be transformed into camera displacements. This computation is 

graphically described in Figure 4.5. The center of the image is the point OI: 

𝑂𝐼 =
1

2
(
𝑤𝑧

ℎ𝑧
) (4.7) 

where wz and hz are the width and height, respectively, of the zoomed image. 

According to equation (3.4), OI is expressed as a function of the zoom value as: 

𝑂𝐼 =
1

𝑧𝑜𝑜𝑚

1

2
(
𝑤
ℎ
) (4.8) 

where w and h are the width and height, respectively, of the original image, i.e., 

with zoom = 1. 

 

 

Figure 4.5 Camera robot displacement computation. 
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According to Figure 4.5, the distance between the center of the image OI and 

the point at which the camera should be pointing at PFoA referred to the image 

reference frame {I} is: 

(
𝑑𝑥𝐼
𝑑𝑦𝐼

) = 𝑃𝐹𝑜𝐴 − 𝑂𝐼 = 𝑃𝐹𝑜𝐴 −
1

𝑧𝑜𝑜𝑚

1

2
(
𝑤
ℎ
) (4.9) 

where dxI and dyI represent the displacements of the camera along axis xI and yI, 

respectively, so that the camera points at PFoA, i.e. having this point at the center 

of the image. As a final step, these displacements have to be transformed to the 

end effector reference frame {E}, as it is the component that executes the motion 

of the holder. Thus dx and dy are computed as: 

(
𝑑𝑥
𝑑𝑦
) = 𝐾𝑝𝑚 𝑅𝐸 𝐼 (𝑃𝐹𝑜𝐴 −

1

𝑧𝑜𝑜𝑚

1

2
(
𝑤
ℎ
)) (4.10) 

where Kpm is a constant to convert a distance in the image space (given in pixels) 

into the Cartesian space (given in mm), and ERI is the rotation matrix between 

systems {E} and {I}. 

4.5 Reinforcement learning 

As seen in the previous section, robot behavior highly depends on the weights of 

reactive and proactive behaviors, Kr and Kp, respectively: high values of Kr allow 

the camera to follow the instruments independently of the current state of the task, 

a behavior that is usually more comfortable for novices, while low values of Kr (and 

therefore high values of Kp) make the navigation strategy highly dependent on the 

actual state of the task, a behavior that expert surgeons usually prefer. Therefore, 

the system must learn the customized values of Kr and Kp for each user to provide 

the best robot behavior during each state of the task. This learning process is 

performed using a reinforcement learning algorithm. Reinforcement learning is a 

type of machine learning in which an agent seeks an effective policy for solving a 

sequential decision task. Such a policy dictates how the agent should behave in 

each state it may encounter (Whiteson 2010). The agent’s actions affect not only 

the immediate reward but also future opportunities for reward. Hence, a 

reinforcement learning agent seeks a policy that maximizes the total reward 

accumulated over the long term. Reinforcement learning is used in a wide range of 

applications such as gamer agents (Kamei and Kakizoe 2016), multi-agent 

cooperation (Lei and Yu 2016), weather forecasting applications (Yan, Zhang, and 

Guo 2016), or dynamic pricing and energy consumption scheduling (Kim et al. 

2016). 
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The reinforcement learning module is implemented following the Q-learning 

technique (Song et al. 2012). In this method, each rule Rh has a numerical value 

associated with it, Qh, called utility, which is a measurement of the expected utility 

of a particular action. The complete process of the reinforcement learning algorithm 

is described in Figure 4.6. Production rules Rh are composed of two parts: a 

precondition (“IF”) and an action (“THEN”). Preconditions depend on the actual 

state of the task, while actions store the possible values of Kr and Kp, which are 

discretized as follows: 

𝐾𝑟 = {𝐾𝑟1, ⁡𝐾𝑟2, … , 𝐾𝑟𝑚⁡}

𝐾𝑝 = {𝐾𝑝1, ⁡𝐾𝑝2, … , 𝐾𝑝𝑚⁡}
 (4.11) 

where Kpi = 1 – Kri. Therefore, each production rule Rh has the following syntax: 

𝑅ℎ: 𝐼𝐹⁡𝑠𝑡𝑎𝑡𝑒 = 𝑖⁡𝑇𝐻𝐸𝑁⁡𝐾𝑟 = 𝐾𝑟𝑗 ⁡𝑎𝑛𝑑⁡𝐾𝑝 = 𝐾𝑝𝑗 (4.12) 

where 1 ≤ 𝑖 ≤ 𝑛, with n being the number of states of the task, and 1 ≤ 𝑗 ≤ 𝑚, 

and with m being the number of intervals in which Kr is discretized. Thus, the 

production system is composed of a total of n x m rules. According to equation 

(4.12), an action is defined as a particular pair of values of Kr and Kp.  

 

 

Figure 4.6 Reinforcement learning algorithm. 

The final goal of the learning process is to infer the action that maximizes the 

global behavior of the robot for each state. Thus, the reward value is computed 

every time the surgeon finished a particular state. The reward function is designed 
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as a fuzzy model that evaluates the robot behavior during the performance of a 

particular task: 

𝑟𝑒𝑤𝑎𝑟𝑑 = fuzzy(noCorrections, time, satisfaction) (4.13) 

where noCorrections is the total number of corrections the surgeon commands 

the robot to adapt the camera view (using the HMI), time is the total time the 

surgeon spends in completing the state, and satisfaction is a subjective feedback 

that measures how satisfied is the surgeon with the robot behavior. This fuzzy 

model will be further described below.  

The reward value is used to update the utility Qh of each rule of the production 

system, following the equation: 

𝑄ℎ_𝑛𝑒𝑤 = (1 − 𝜌) · 𝑄ℎ_𝑜𝑙𝑑 + 𝜌 · (𝑟𝑒𝑤𝑎𝑟𝑑 + 𝜇 · 𝐸𝐹𝑅) (4.14) 

where Qh_new and Qh_old are the updated and the current utility values, 

respectively, 0 ≤ 𝜌 ≤ 1 is the learning rate, 0 ≤ 𝜇 ≤ 1 is the discount factor, and 

EFR is the expected future reward. On the one hand, the learning rate ρ models 

the importance of newly acquired information over old information. A value of ρ = 

0 makes the agent not considered new information, while a value of ρ = 1 means 

that the agent only considers the most recent information, and forgets the old one. 

On the other hand, the discount factor μ determines the importance of future 

rewards. A value of μ = 0 makes the agent only considers the current reward, while 

a discount factor approaching to 1 will make it strive for a long-term high reward.  

Finally, rule selection is done using the ε-greedy policy (Tokic and Palm 2011). 

This policy is a way of selecting random actions with uniform distribution from a 

set of available actions. With this policy, a random rule is selected with ε 

probability, and the rule with highest utility value is selected with probability 1- ε. 

Thus, rule selection is performed as follows: 

𝑟𝑢𝑙𝑒⁡𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = {
𝑟𝑎𝑛𝑑𝑜𝑚⁡𝑟𝑢𝑙𝑒, 𝑖𝑓⁡𝜉 < 𝜀

𝑟𝑢𝑙𝑒⁡𝑤𝑖𝑡ℎ⁡𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑢𝑡𝑖𝑙𝑖𝑡𝑦⁡𝑄ℎ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.15) 

where 0 ≤ 𝜀 ≤ 1 is the probability of selecting a random rule, and 0 ≤ 𝜉 ≤ 1 is 

a uniform random number drawn at each time step.  

In summation, the process of procedural memory with reinforcement learning 

follows the algorithm described in Table 4.2. When a new transition condition is 

triggered by the gesture recognition system, the system infers the new task state 

using data from the semantic memory, in particular, using equation (4.2). With the 

new state, the system retrieves the object to track in the new state, M, and the 

value of the robotic assistant DoFs α, β, ϕ, and zoom using equation (4.3). Then, 

using equation (4.1), the HSV value of object M is retrieved so that the perception 
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system can track the object. Then, the reward value associated with the last state 

is computed using the fuzzy model described in equation (4.13). With this reward 

value, the system updates the utility value of each rule in the production system 

using equation (4.14). And finally, the system selects the following action, i.e. the 

values of Kr and Kp for the next state, using equation (4.15). Then, for each system 

cycle, the system computes the camera displacements dx and dy using equation 

(4.10). 

 

Table 4.2 Procedural memory with reinforcement learning algorithm. 

1: if new transition condition do 

2:    infer next task state using equation (4.2) 

3:    retrieve M, α, β, ϕ and zoom using equation (4.3) 

4:    retrieve HSV components of object M using equation (4.1) 

5:    compute reward with fuzzy model of equation (4.13) 

6:    update utility value of the production rules using equation (4.14) 

7:    select a rule following policy of equation (4.15) and output Kr and Kp  

8:    for each system cycle do  

9:         compute camera displacement dx and dy using equation (4.10) 

10:   end for 

11: end if              

 

Reward function 

As mentioned above, the reward value is computed following a fuzzy model, built 

with a Mamdani inference system with three input variables (noCorrections, time 

and satisfaction) and a single output (reward).  Membership functions of variables 

of the fuzzy model designed are represented in Figure 4.7. Variable noCorrections 

is composed of three membership functions: two triangular functions to define few 

and many number of corrections, and a trapezoidal function to define a medium 

number of corrections. Variable time is also composed of three membership 

functions: two trapezoidal functions to define a fast and a slow performance, and a 

triangular one to define a normal performance. These variables represent objective 

values that depend on the surgeon’s performance. On the other hand, satisfaction 

is a subjective variable through which the surgeon gives feedback about his or her 

degree of satisfaction with the robot behavior. It is composed of three triangular 

membership functions to express a high degree of satisfaction (verySatisfied), a 

normal satisfaction (satisfied), and a high degree of dissatisfaction (notSatisfied). 

Finally, the reward output by the fuzzy system according to a set of predefined 

fuzzy rules is composed of seven triangular membership functions: three to express 
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penalization, i.e. negative values of reward (N1, N2, and N3), the central one (M), 

and another three for positive reward values (P1, P2, P3). It has been chosen to 

define three functions for positive and negative values to be able to express more 

nuances in the model. The reward range has been defined between -10 and 10.  

 

 

Figure 4.7 Membership functions of input and output variables of the reward 

fuzzy model: (a) noCorrections, (b) time, (c) satisfaction, and (d) reward. 

Fuzzy rules are designed so that the user satisfaction predominates over the 

other two variables. Time performance and the number of corrections gives an idea 

about if the camera behavior has helped the surgeon during the task. However, 

these two variables are highly affected by the surgeon’s dexterity and the particular 

conditions in which the task is performed, especially in the unpredictable 

environments of surgical interventions. Thus, although these two variables are 

taken into account to adjust the reward, this value is highly related to the surgeon’s 

satisfaction. This can be clearly appreciated in Figure 4.8, that shows the behavior 

of the fuzzy model: the reward is maximum for maximum satisfaction value, getting 

slightly lower with the number of corrections and the performance time, and the 

reward is minimum for minimum satisfaction and maximum number of corrections 

and performance time. For intermediate values of satisfaction, the reward value 

follows a similar tendency for the number of corrections and the performance time: 

it falls with the user satisfaction.  

 



   4.6 Conclusion 

69 

 

Figure 4.8 Fuzzy model surfaces: (a) satisfaction vs noCorrections, and (b) 

satisfaction vs time. 

4.6 Conclusion 

This chapter has described a cognitive architecture for a smart camera robotic 

assistant that allows the system to collaborate with surgeons in a surgical co-worker 

scenario. The architecture, based on the general framework SOAR (Laird 2012), is 

composed of a cognition system as the main component for knowledge storage and 

reasoning, perception and action systems for the interaction with the patient, and 

a human-robot interaction system for the communication with the surgeon. This 

architecture offers an easy integration of the different modules and an easy 

adaptation for other surgical tasks, although this work is focused on collaborative 

camera navigation. The cognition system makes it possible to store different kinds 

of knowledge, reason about them and make decisions regarding the environment 

according to the information received from the patient and the surgeon.   

The semantic memory stores the declarative knowledge of the system, essential 

to be able to reason and make decisions, as it contains the basic information to be 

able to follow the surgery workflow. This knowledge is encoded as a database 

containing object identification data, the surgery workflow, and the camera 

behavior expected during each state of the task. A semantic learning algorithm 

allows new information to be added to the knowledge base in order to acquire 

knowledge about different surgeons’ preferences and work styles.  

On the other hand, the procedural memory contains the navigation strategy. 

Camera navigation has been improved with respect to previous work in the 

literature by combining a reactive behavior that tracks the surgical tools with a 

proactive behavior that adapts the camera view to the surgery workflow. Thus, 

navigation follows a more flexible algorithm that allows the robot to adapt to 
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different ways of working and to react to unforeseen situations. This navigation 

method is improved with a reinforcement learning module that learns the 

contribution of reactive and proactive behaviors to the global robot performance 

that is best suited for each state of the task and for each particular surgeon. 

Learning capabilities are essential for a real cognitive agent, and as far as the 

author’s knowledge, no previous work has contemplated incorporating learning 

techniques with the camera navigation strategies.  
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5 IMPLEMENTATION AND 

EXPERIMENTS 

5.1 Introduction 

Previous chapters have described the theoretical concepts of a smart camera 

robotic assistant for minimally invasive surgery. In particular, Chapter 3 describes 

the design aspects of a camera robotic assistant of six DoFs, two of which are 

controlled with a cable-driven system actuation. Chapter 4 proposes a cognitive 

architecture for autonomous camera navigation and details the cognitive aspects of 

the robot along with the theoretical concepts of the actuation system that executes 

the motion of the robot.  

This chapter describes the implementation of the methodologies proposed in 

previous chapters. It describes the robotic platform in which the theoretical 

concepts of this thesis project have been implemented, including the description of 

the hardware architecture of the experimental setup and the software architecture 

implemented in a ROS (Robotic Operating System) network. Next, the experiments 

that validate the work presented in this thesis are exposed. First, an in-vivo 

experiment to demonstrate the feasibility of the experimental prototype of the 

camera robot is presented. Then, experiments to validate the hybrid force-position 

control with torque compensation are described, along with a stiffness matrix 

estimation analysis. Finally, a set of experiments to validate the smart camera 

navigation strategy described in the previous chapter are presented. These 

experiments include a comparison between the different camera robotic assistant 

and an evaluation of the reinforcement learning algorithm. The chapter concludes 
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with a discussion of the experiments.   

5.2 Implementation of the robotic assistant 

The theoretical concepts proposed in this work have been implemented in the 

robotic platform shown in Figure 5.1. The robotic assistant is composed of the 

camera robot described in Section 3.2 (not seen in the image because it is inside 

the abdominal simulator), and a Barret WAM robot (WAMTM Arm, Barrett 

Technology, Inc.). The WAM robot is a seven DoFs backdrivable manipulator that 

exhibits zero backlash, low inertia, and low friction, and uses a patented cable-

driven technology to facilitate kinematic motion when used as a manipulator or 

active resistance when used as a haptic device (WAM ARM datasheet 2016). Its 

high backdrivability makes this robot inherently safe for humans and very useful 

for applications that combine manual and automatic control. Thus, the robot can 

be easily moved by hand to the desired position, and then return to joint control. 

The WAM has a self-contained six axis force-torque sensor that provides real-time 

measurements (F/T Sensor datasheet 2016). The patient’s abdominal cavity is 

simulated with a methacrylate box with a flexible cover that simulates the 

abdominal wall.  

For the experimental setup, instead of using conventional surgical tools manually 

moved by the surgeon, it has been chosen to use a robotic platform to teleoperate 

the tools. This has been done for safety and practical reasons. First, the working 

workspace in a surgical intervention is quite limited. Thus, if the surgeon directly 

operated the surgical tools, he or she and the WAM robot would have to share a 

reduced space, with the consequent safety and comfort inconveniences. Second, 

using a teleoperating system provides more computerized information of the tools 

position, orientation, velocity, state of the tips, etc., which is very useful for the 

cognitive system to augment its knowledge about the state of the environment, and 

therefore, to augment its reasoning capabilities. Moreover, a three-arm 

configuration, one to handle the camera and the other two for surgical tools, 

replicates the da Vinci robot configuration. This has two main advantages: this 

configuration is widely accepted by clinicians all over the world, and the theoretical 

approaches presented in this thesis project could be easily extrapolated to a da 

Vinci with minimum changes to the real system.  
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Figure 5.1 Camera robotic assistant experimental setup. 

The robotic platform used to teleoperate the surgical tools is the CISOBOT 

platform, shown in Figure 5.2. This platform, developed by the research group of 

medical robotics of the University of Malaga, is composed of two commercial six 

DoFs manipulators manufactured by Robotnik Automation S.L, mounted on a 

structure that provides high stability to the platform. Two customized robotic 

graspers have been coupled to the end effector of each manipulator. The robotic 

graspers, manufactured by the Spanish company Ingenieria Uno, are made with 

commercial laparoscopic tools mounted on a spring system actuated by a 
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servomotor that allows opening and closing of the grasper tip. The CISOBOT 

platform is teleoperated with two haptic devices that control the motion of each 

manipulator and the opening and closing of the graspers tip. For natural and 

intuitive teleoperation of the surgical tools, the configuration of the haptic devices 

and the monitor follows a hand-eye configuration, as shown in Figure 5.2, i.e. the 

monitor is placed in front of the surgeon’s eyes and between both haptic devices. 

Moreover, an intuitive teleoperation control, described in detail in Appendix A, has 

been implemented in order to transform the motion of the haptic devices into 

natural and intuitive motion of the robotic graspers tip. 

 

 

Figure 5.2 CISOBOT platform. 

5.2.1 Experimental prototype of the camera robot 

According to the requirements specified in Chapter 3, the camera robot has been 

designed with a size of 30 x 27 x 88 mm, and a cylindrical shape to facilitate its 

introduction through the entry port (Figure 5.3). This size fits into the 3 cm 

incisions performed in SPAS (Best et al. 2012). The camera, with an onboard 

lighting source, is placed at the central part of the device body, and a camera wire 
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exits the device through an opening in one of the ends. Two cylindrical permanent 

magnets, with 20 mm in diameter and 5 mm height, are placed symmetrically at 

the bottom of the device. The internal DoFs, tilt and roll rotations, are actuated 

with a cable-driven system. Thus, no motors are required, which would have 

increased both the size and weight of the device and would have required additional 

power supply.     

 

 

Figure 5.3 Design of the intra-abdominal device: top view (left), and front view 

(right). 

 

 

Figure 5.4 Experimental prototype of the intra-abdominal device: (a) intra-

abdominal device, (b) external motors, and (c) HD miniature camera. 
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Figure 5.4 shows the experimental prototype manufactured for the experiments. 

The total weight of the device is 35 grams. Neodymium magnets (Webcraft GmbH, 

Germany) have a low weight of 12 grams each, a strength of approximately 6 kg 

and magnetization N42. The high-resolution miniature camera (model MO-

F3506LSC-3T, Misumi Electronics Corp., Taiwan) is only 8 mm in diameter and 

has a height of 5 mm (Figure 5.4.c). The camera has a resolution of 400 TV lines 

and a frame rate of 50 frames per seconds. It has been designed with a focus distance 

between 5 and 10 cm, appropriate to provide high-resolution images in the small 

workspace of a peritoneal cavity. The camera has six white LEDs onboard, placed 

symmetrically and coaxially to the lens. Thus, no additional light source is required 

during an intervention. Maximum roll and tilt rotations are ±30º. 

Motors (power HD Mini Servo HD-1160A, Pololu Robotics & Electronics) have 

a maximum speed of 0.11 seconds/60º, and a maximum torque of 2.7 kg·cm 

(Figure 5.4.b). Servo horns are used for the cables tying. Due to its breaking and 

knotting strength characteristics, cables of the actuation system are made of fishing 

line. These cables along with the camera cable are embedded into a Teflon tube. 

This material is very flexible and offers a low friction coefficient.      

5.2.2 Hardware architecture 

Hardware connections of the experimental setup are shown in Figure 5.5. The 

system is managed by three personal computers: PC1, which manages the cognitive 

system, PC2, that runs the interaction with the environment, and PC3, that 

controls the teleoperation platform. Thus, PC1 implements the cognition and the 

action system of the cognitive architecture of Figure 4.1, PC2 the perception system 

and the HMI modules, and PC3 the interaction surgeon-patient. PC1 sends position 

and orientation references to the Barrett WAM Arm through a CANbus connection, 

while roll and tilt rotations of the camera robot are commanded through a 

microcontroller (Arduino UNO), which sends the corresponding rotations to the 

external motors that control the internal DoFs of the camera robot through the 

cable-driven actuation. On the other hand, PC2 is connected to the camera of the 

intra-abdominal device, so this computer is in charge of displaying the camera 

image on the monitor and running the vision algorithms of the perception system. 

Finally, PC3 runs the teleoperation control of the CISOBOT platform through a 

NI-PXI (National Instruments Corporation), a real-time hardware that provides an 

interface between PC3 and the robot joint controllers, using a CANbus connection. 

The haptic devices (Phantom Omni, Sensable Inc.) are connected through a 

FireWire connection, and the robotic graspers opening and closing functions are 

controlled with a micro servo controller (Micro Maestro 6, Pololu Corporation).    
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Figure 5.5 Hardware architecture of the experimental setup. 

Next, the ROS architecture that implements the software of the system is 

described.  

5.2.3 Software architecture 

The software of the system has been implemented in ROS (Robotic Operating 

System), an open-source framework specially designed for writing robotic software 

(Koubaa 2016). A ROS architecture is composed of a set of programs or processes, 

called nodes, that communicate with each other through streaming topics using a 

publisher/subscriber communication. The main advantage of ROS is that its 

distributed and modular design allow an easy integration of the different 

components of a robotic system, as each element of the system is controlled by a 

different node. It also allows easy integration of new elements without modifying 

the current software structure of the system. Further details of ROS components 

and communications are given in Appendix C.  

The ROS architecture implemented for the experimental setup described above 

is shown in Figure 5.6. The ROS Master is the core element of a ROS architecture, 
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as it enables individual nodes to locate one another. The ROS architecture is 

composed of eight nodes: robot cognition node, reward node, motors node and 

WAM node, that run in PC1, HMI node and Vision node, implemented in PC2, 

and Teleoperation node and Robotic graspers node, running in PC3. Next, 

implementation details of each node are described. 

 

 

Figure 5.6 ROS architecture. 

 Robot cognition node. The cognition system of the robot is implemented 

in the general framework SOAR (Laird 2012). Soar has a working memory 

that represents the current problem-solving situation, and a long-term 

knowledge represented as production rules. It also has a reinforcement 

learning mechanism that tunes knowledge selection based on a given reward 

function. Further details of SOAR are given in Appendix D. This node inputs 

a reward value from the Reward node, the position of the objects of the scene 

from the Vision node, and the transitions from one state to the following, 

which are triggered manually, and outputs the value of the robotic assistant 

DoFs (dx, dy, α, β, ϕ and zoom) at every system cycle.   

 Reward node. This node implements the fuzzy model described in Section 

4.5. Thus, when the current state is finished, it inputs the number of 

corrections the surgeon has performed, the time spent in completing the task 

and the surgeon satisfaction feedback regarding the camera view and outputs 

the numerical value of the reward corresponding to the last state. This node 

is implemented in a MATLAB environment using the Fuzzy Logic Toolbox. 
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 HMI node. The human-machine interface that allows the surgeon to directly 

command a specific value of the robot DoFs is implemented in MATLAB 

using the GUI Layout Toolbox. A snapshot of the HMI is shown in Figure 

5.7. In the top left corner, the user introduces his or her name or profile so 

that the system can retrieve his or her particular camera view preferences 

from the semantic memory, as described in the algorithm in Table 4.1. The 

transitions between states are triggered using the pushbuttons labeled with 

State i. The interfaces allow the position to be modified by commanding the 

WAM a motion to the right or to the left, corresponding to a camera motion 

on the axis XI, or moving up or down, which moves the camera on the axis 

YI. It also allows the zoom level of the image to be changed, and to increase 

or decrease the tilt, roll and pan rotations. Pushbuttons labeled as IdleWam 

and HoldWam allow the external robot joints to idle so that they can be 

moved by hand to be placed in the desired location and to hold joints for 

automatic control, respectively. 

 Vision node. This node receives the signal from the camera and runs the 

code to display the image on the monitor and the color segmentation 

algorithm for object detection. The code is written in C++ using the real-

time control computer vision library OpenCV. The code contains the HSV 

components of every color marker used in the experiment and outputs the X 

and Y coordinates of the markers centroid referred to the image system {I}. 

In case a marker is not identified by the vision algorithm, the node outputs 

a (-1, -1) position, meaning that the marker is not visible. Thus, a recognition 

error does not interrupt the vision process. 

 WAM node. This node inputs the value of the robotic assistant DoFs that 

are performed by the external robot, i.e. dx, dy, and ϕ, and executes the 

corresponding motion of the camera robotic assistant and the hybrid force-

position control with torque compensation described in Section 3.4. It is 

implemented in C++ using the real-time control library libbarrett, written 

and maintained by Barrett Technology, Inc.   

 Motors node. This node controls the rotation of the motors of the cable-

driven system that actuates the internal DoFs of the intra-abdominal device. 

It inputs the value of the roll and tilt rotations, α and β, respectively, and 

outputs the corresponding motor rotations, θ1 and θ2, according to equations 

(3.9) and (3.10). This code is written in the Arduino environment using the 

servo motors control library called servo.   

 Robotic graspers node. This node runs the opening and closing function 

of the robotic graspers, performed through the two servomotors of Figure 5.2. 
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This code is written in C++ using the same library as in the previous node, 

servo.  

 Teleoperation node. This is the node in charge of controlling the 

CISOBOT platform, including processing the inputs from the haptic device, 

computing the teleoperation control described in Appendix A, and sending 

the corresponding motion to the robot joints. This code is implemented using 

a Simulink real-time windows target (SRTWT), that provides runtime for 

the Microsoft Windows operating system that is able to execute Simulink 

diagrams in real-time. The haptic devices are connected to SRTWT using a 

C++ application as a gateway between both haptic devices and the SRTWT. 

 

 

Figure 5.7 Snapshot of the Human-Machine Interface. 

5.3 In-vivo validation of the camera robot 

Validation of the camera robot has been carried out in an in-vivo experiment 

with a pig in the Center IACE (Instituto Andaluz de Cirugía Experimental) of 

Malaga. The experiment was performed by Dr. Eduardo Sánchez de Badajoz and 

Dr. Pilar Sánchez Gallegos, professors at the University of Málaga and experts in 
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laparoscopy. The main goals of the experiment were to demonstrate the viability 

of using a camera robot with magnetic anchoring to the abdominal wall and to test 

the quality of the camera in a real environment. Furthermore, the possibilities of 

the device providing more camera views than a traditional endoscope were also 

tested. The experiment consisted of performing a laparoscopic varicocelectomy 

(removal of varicoceles). For the intervention, the surgeons used conventional 

laparoscopic tools and a conventional endoscope (KARL STORZ H3Z HD) to 

acquire images of the camera robot inside the abdomen and to be able to compare 

the images provided by the two devices. 

 

 

Figure 5.8 In-vivo experimentation in a pig: (a) insertion procedure, (b) 

snapshot of the operating room during the experiment, and (c) snapshot of the 

camera robot inside the abdominal cavity. 

The camera robot was introduced into the abdominal cavity through an incision 

of around 3 cm (Figure 5.8.a). Insertion of the robot was easy and did not cause 

any damage to the skin of the patient thanks to the oval shape of the device. The 

insertion procedure was performed before the abdomen was insufflated, as during 
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this process the gas would escape through the incision. The camera robot wire 

exited the abdomen through the incision. Thus, in order to avoid gas leaks, the 

incision was closed with a purse-string suture to seal the tissue around the wire. No 

problems of gas leakage occurred during the experiment. Once the abdomen was 

insufflated with CO2 to introduce the laparoscopic instruments, the camera had to 

be cleaned with a gauze using a conventional laparoscopic grasper tool due to the 

contact of the camera with organs during the process. No more cleaning was 

necessary during the experiment, as the camera did not come into contact with any 

organ again. On the contrary, as it usually occurs in normal laparoscopy procedures, 

the endoscope had to be removed and cleaned very often in order to maintain a 

sharply-focused image.  

Figure 5.8.b shows a snapshot of the operating room during the experiment. As 

this experiment was aimed at evaluating the camera robot and not the whole 

robotic assistant, the magnetic holder was handled manually by one of the surgeons. 

A snapshot of a first prototype of the camera robot is shown in Figure 5.8.c. This 

prototype was designed with magnets 3 mm high and 20 mm in diameter, which 

resulted insufficient for the attachment of the device to the abdominal wall. Thus, 

as it can be appreciated in Figure 5.8.c, additional magnets of 2 mm height were 

necessary. Thus, this in-vivo experiment served to assess the dimension of the 

magnets, and consequently, the device was modified to contain magnets with a 

height of 5 mm. This magnet dimension results in an appropriate magnetic 

interaction between the internal device and the external holder, maintaining the 

device attached to the abdominal wall, and allows easy displacement of the holder 

without causing injury nor necrosis to the patient.  

Figure 5.9 shows a comparison between images provided by the camera robot 

(on the left) and images provided by the endoscope (on the right). Although the 

images from the endoscope are slightly better, the quality of the camera robot is 

good enough to perform laparoscopic tasks. Images on the top correspond to the 

same instant in time (as well as images on the bottom). This way, points of view 

of the camera robot and the endoscope can be compared. In general, during the 

intervention, images of the camera robot were more intuitive and natural than the 

laparoscopic ones, as they come from above, providing a more similar perspective 

to a laparotomy, where the surgeon’s eyes are always above the operating area. 

Although this was noticed and appreciated by the medical staff, it was especially 

relevant for the technical staff present in the operating room, who were not familiar 

with endoscopic procedures. For them, it was much easier to follow the intervention 

looking at the camera robot images. At the end of the intervention, the cold light 

of the endoscope was turned off to check if the onboard lights of the camera 

provided enough illumination to have a high-quality image. It was proved that the 

quality of the image was not affected by the endoscope light. 
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Figure 5.9 Comparison between images provided by the camera robot (left) 

and a conventional endoscope (right). 

Summarizing, the in-vivo experiment demonstrated the viability of introducing 

a camera device into the abdominal cavity with no medical complications. Magnetic 

interaction has proven to be an appropriate guidance method in laparoscopic 

procedures, which does not cause any damage to the patient. The experiment 

reveals that the weak point of the camera robot is the image quality. However, 

surgeons reported that, although not comparable with an endoscope, the camera 

robot provides a stable image with sufficient quality to perform a real operation. 

Moreover, image stability with the camera robot was better than with the 

conventional endoscope, as the latter suffers from the inherent instability of human 

holding. On the other hand, the strengths of the camera robot are the field of view 

and the camera handling. As the motion of the camera is not restricted by the entry 

port, it can provide more points of view than a conventional endoscope, making it 

possible to reach areas inaccessible for endoscopes. As regards camera handling, 

although the camera robot has a more tedious insertion procedure, once inside the 

abdominal cavity it can be easily moved along the abdominal wall, and the camera 

does not fog up during the intervention. By contrast, the conventional endoscope 

fogs up very frequently, forcing surgeons to remove them for cleaning during 

surgery. 
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5.4 Force-position control 

The hybrid force-position control with torque compensation described in Section 

3.4.1 has been validated through an in-vitro experiment. This section describes the 

experiment setup, followed by the stiffness matrix estimation and the results 

obtained during the experiment.  

 

 

Figure 5.10 Experimental setup for the force-position control validation. 
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5.4.1 Experimental setup 

The experimental setup for the validation of the hybrid force-position control 

that controls the displacement of the camera along the abdominal wall is shown in 

Figure 5.10. The patient abdomen is simulated with a methacrylate box, covered 

with a neoprene layer that emulates an elastic model of the contact surface. The 

external robot is a Barrett WAM Arm. The reference frame of the robot base, {0}, 

and the end effector, {E}, are also represented in the figure.  

5.4.2 Stiffness matrix estimation 

Before performing the force-position control validations, the stiffness matrix Kx 

has to be estimated, using the RLS algorithm described in Section 3.4.1. The 

experiment for Kx estimation consists in pushing the end effector of the Barrett 

WAM by hand in order to exert a particular force on the surface. During this 

process, measures of force and end effector position are measured, and equation 

(3.25) is applied to estimate the value of the stiffness matrix at every iteration. 

This process has been repeated three times. Results are shown in Figure 5.11.  

 

 

Figure 5.11 Stiffness matrix estimation. 
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As it can be seen, the stiffness value of the three experiments stabilizes at a 

constant value of 1727.7 N/m for experiments 1 and 2, and at 1691.5 N/m for the 

third experiment. High values of the stiffness parameter are due to the high rigidity 

of the surface. At the beginning of the experiment, a large noise is appreciated until 

the values begin to converge to a stable value. This is mainly due to the small 

quantities of position measured due to the high rigidity of the surface.  

 

 

Figure 5.12 Results of the force-position control experiment: (a) position 

tracking, (b) force tracking, and (c) torque tracking. 
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5.4.3 Experimental results 

The experiment performed to validate the force-position control consists in 

displacing the camera robot 75 mm along the y direction, i.e. dx = 75 mm, while 

exerting a force of 15 N on the surface simulating the abdominal wall. This force 

value corresponds with a weight of 1.5 kg on the surface, which is a small enough 

weight to not damage the surface, and high enough to assure magnetic interaction 

between the external holder and the intra-abdominal device. The system time 

constant of the first-order behavior imposed on the robot dynamics is Tτ =0.01 

seconds. PI gains in the position controller, computed following Ackerman’s 

methodology for poles assignment, according to equations (3.20) and (3.21), are KP 

=10.0333 and KI =-5.5167. And the gain of torque compensation control is Kτ =100. 

Figure 5.12 shows position, force and torque references tracking. Movement along 

the y direction is done following a trapezoidal velocity profile, with a maximum 

velocity of 0.05 m/s, to obtain a smooth movement. As it can be observed in Figure 

5.12.a, tracking of the position reference is done accurately with a small delay 

during the transient-state. On the other hand, penetration on the surface is done 

following a linear profile, as it can be appreciated in the force response in Figure 

5.12.b. Force and torque errors are mainly due to the inaccuracies of the force-

torque sensor, which has an output resolution of 12 bits, with a noise of 2 bits. 

Figure 5.12.c shows that torque norm starts with a null value when there is no 

contact with the surface, and then stabilizes at around 0.3 N/m when force reaches 

the steady-state at the desired force. 

5.5 Smart camera navigation 

This section describes the experimental results that validate the smart camera 

navigation strategy described in Chapter 4. First, the experiment design is 

described, followed by the experimental results. Finally, results are discussed in 

detail and conclusions of the experiments are presented.  

5.5.1 Experimental task 

The aim of the experiments regarding the smart camera navigation strategy is 

to validate the theoretical concepts described in Chapter 4, i.e. to evaluate the 

cognitive architecture of Figure 4.1. The experimental task has been designed under 

the following criteria: task must be as real as possible to be extrapolated to real 
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surgical environments, but easy enough to be performed by non-expert personnel 

and to be repeated a significant number of times so that results are reliable. Under 

these considerations, the experiment is inspired by the first task of the SAGES 

manual skills in laparoscopic surgery (Choy and Okrainec 2012), peg transfer. This 

task involves the transfer of six rubber triangular rings across a board with 12 pegs 

fixed into it. The user would begin by picking up the rings with their non-dominant 

hand, transfer them to their dominant hand, and then place them onto a peg on 

the opposite side of the pegboard. The main purpose of this training task is to 

exercise depth perception in a two-dimensional environment. Thus, it is a suitable 

task to validate if the navigation strategy proposed in this thesis project helps users 

to perform the task, as depth perception, and therefore the performance of the task 

is highly affected by the point of view provided by the camera.  

Figure 5.13 shows a snapshot of the task platform. The task is performed over a 

commercial pegboard from Medical Simulator, with two cylindrical rubber rings 

(ring 1 and ring 2). Color markers (pink marker, blue marker, orange marker, and 

green marker) have been used to identify particular areas within the pegboard. The 

experiment consists in performing a pick and place task with each ring using the 

robotic graspers of Figure 5.2. The initial setup of the task is as depicted in Figure 

5.13, with ring 1 placed on the peg labeled peg 1, and ring 2 onto the peg labeled 

peg 3. As it can be seen, the original pegboard setup has been slightly modified to 

increase the depth perception difficulty in order to give even more importance to 

the camera view and the perspective during the performance of the task. Hence, 

two metallic hooks have been stuck to peg 3 and peg 4, in order to increase the 

complexity of the picking and placing tasks.  The overall task has been divided into 

the following six states, where the first three are performed with ring 1 and the 

following three with ring 2 (Figure 5.14): 

 State 1 (picking state): the first state consists of picking ring 1 from peg 1 

with the left tool. The state is done when the ring is completely out of the 

peg. Transition to State 2 is triggered by T12.    

 State 2 (transferring state): this state consists of transferring ring 1 from the 

left tool to the right tool. The state is considered finished when the ring is 

held by the right tool and the left tool is not in contact with the ring. 

Transition to State 3 is triggered by T23. 

 State 3 (placing state): the last state performed with ring 1 consists of placing 

it onto peg 4. The state is done when the ring is on peg 4 and the right tool 

is not touching it. Transition to State 4 is triggered by T34. 

 State 4 (picking state): State 4 is a picking state similar to state 1 but in this 

case ring 2 has to be picked from peg 3 with the right tool. As in State 1, the 
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state is done when the ring is completely out of the peg. Transition to the 

next state is triggered by T45. 

 State 5 (transferring state): this state consists of transferring the ring from 

the right tool to the left tool. It is considered finished under the same criteria 

of State 2. Transition to State 6 is triggered by T56. 

 State 6 (placing state): the last state of the task consists of placing ring 2 

onto peg 2. After this state is completed the task is considered finished.  

 

 

Figure 5.13 Snapshot of the task platform. 
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Figure 5.14 State diagram of the overall task. 

As described in Section 5.2.3, the surgeon can directly modify the camera view 

through the HMI depicted in Figure 5.7, by changing the value of the following 

parameters: external robot displacement, zoom level, roll (α), tilt (β), and pan (φ) 

rotations. These parameters are changed through discrete steps, resulting in a trade-

off between motion accuracy and practical steps that do not imply large commands 

to perform a motion. Table 5.1 shows the value of the discrete steps of each DoF 

using the HMI. Displacements of the robots are of 10 mm in each direction, while 

the zoom level is increased or decreased by 10% when zoomed in or out with the 

HMI. Finally, the three rotations can be modified using steps of 10 degrees each. 

Due to constraints on the driven side, roll and tilt range is ± 60º, as the range of 

the motors is 180º. For both motors, the rest position has been defined at 90º. 

Thus, for θ1 = 90º and θ2 = 90º, α = 0º and β = 0º, respectively. Thus, according 

to equations (3.1) and (3.2), maximum and minimum values of α and β are ± 60º, 

where D1 = D2 = 8 mm, D3 = 11 mm, and D4 = 12 mm. On the other hand, pan 

rotations are performed by rotating the external robot end effector. Hence, the 

range of pan rotations is ± 180º. 

 

Table 5.1 Discrete steps of the robotic assistant DoFs with the HMI. 

DoF Step 

Displacement 10 mm 

Zoom 10% 

Roll 10º 

Tilt 10º 

Pan 10º 
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Figure 5.15 Distribution of the experimental data for the analysis of 

repeatability of cable-driven DoFs: (a) roll; (b) tilt. 

5.5.2 Analysis of the cable-driven mechanism 

In regards to the performance of the cable-driven DoFs of the intra-abdominal 

device, control of these roll and tilt rotations is performed in an open loop due to 

the lack of mechanisms to measure the orientation of the camera in a real 

environment. Thus, an analysis of repeatability of each DoF has been carried out 

in order to evaluate the actuation system. For this experiment, motor angles θ1 and 

θ2 have been computed with the following equations, derived from equations (3.1) 

and (3.2), for each desired value of α and β: 
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𝜃1 =
𝐷3
𝐷1

α (5.1) 

𝜃2 =
𝐷4
𝐷2

𝛽 (5.2) 

Six particular positions of the motors 1 and 2, θ1 and θ2, respectively, were chosen, 

namely ±60º, ±40, and ±20º. Each of these positions was repeated ten times, 

measuring α and β for each of them, for motor 1 and 2, respectively. Figure 5.15 

shows the distribution of the experimental data for each DoF, where αm and βm 

represent the mean value of α and β, respectively, for each set of data. As it can be 

appreciated in the figure, the values measured are in the range [αm0.7, αm+0.7] 

and [β m0.6, β m+0.65], for α and β, respectively. Taking into account that 

maximum values of α and β are ±30 degrees for both angles, the maximum errors 

are 2.3% and 2% for α and β, respectively. These are acceptable errors for moving 

the camera in a surgical intervention, as this task does not require an accuracy as 

high as is required for other surgical tasks, such as moving the instruments. In fact, 

for a standard camera height of approximately 10 cm, an error of 0.7º in the 

orientation of the camera means an error of 1.22 millimeters in the area displayed 

by the camera, which can be considered a negligible error.   

 

Table 5.2 Knowledge stored in semantic unit S1. 

M HSV 

M1 [14, 29, 135, 255, 73, 255, 42, 201] 

M2 [42, 70, 109, 197, 87, 137] 

M3 [152, 179, 51, 194, 171, 255] 

M4 [90, 149, 148, 255, 0, 255] 

M5 [0, 19, 103, 157, 183, 255] 

M6 [90, 101, 200, 255, 130, 218] 

5.5.3 Semantic knowledge 

This section describes the knowledge stored in the semantic memory, following 

the formulation presented in Section 4.3. As shown in Figure 4.2, the semantic 

memory is composed of three semantic units: S1, that stores knowledge to identify 

the different objects of the operating area, S2, that stores knowledge about the 

surgical protocol workflow, and S3, that stores knowledge about the camera 

behavior for each state of the protocol. Table 5.2 shows the knowledge stored in 

the semantic unit S1, where each row contains the HSV coordinates of each color 
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marker used to perform the experiments. As shown in Figure 5.17, six color markers 

have been used: one to identify each surgical tool, and another four to identify the 

significant pegs. 

 

 

Figure 5.16 Colored markers stored in the semantic memory. 

On the other hand, Table 5.3 contains the sequential set of states in which the 

overall task has been divided, along with the transition triggers to jump from one 

step to the following, according to the diagram depicted in Figure 5.14. Tend 

represents the trigger that states the end of state 6, and therefore, the completion 

of the task. Finally, Table 5.4 contains the values of semantic unit S3 for one of the 

users that performed the experiment. Figure 5.18 shows a snapshot of the camera 

view described by Table 5.4 for each state, starting from the initial view depicted 

in Figure 5.13. As it can be seen, the user has adapted the camera view depending 

on the task to be performed in every state. Roll rotation allows for a more natural 

perspective of the working area, which helps the users to tackle the lack of depth 

perception. Tilt rotation is used in State 3 and State 4 to complement the 

perspective given by the roll rotation. On the other hand, the pan rotation is not 

used during the experiment, as the camera is located in a position so that the image 

horizon results natural for the tool handling. Finally, picking and placing tasks 

(State 1, State 3, State 4 and State 6) are performed with higher zoom, as the user 

focuses his or her attention only on the ring that he or she is managing, however, 

for transferring tasks (State 2 and State 5) zooming is out as the user usually prefers 

to have an overall view that covers both tools.   
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Table 5.3 Knowledge stored in semantic unit S2. 

State Transition 

State 1 T12 

State 2 T23 

State 3 T34 

State 4 T45 

State 5 T56 

State 6 Tend 

 

Table 5.4 Knowledge stored in semantic unit S3. 

State M α β ϕ zoom  

State 1 M3 30º 0º 0º 1.46  

State 2 M3 30º 0º 0º 1.00  

State 3 M4 50º 10º 0º 1.33  

State 4 M5 30º 30º 0º 1.21  

State 5 M6 30º 0º 0º 1.00  

State 6 M6 30º 0º 0º 1.21  

 

 

Figure 5.17 Snapshot of the camera view for each state of the task. 
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5.5.4 Experiment 1: navigation behaviors comparison  

This section describes the first experiment of the smart camera navigation 

strategy, aimed at comparing the different behaviors of the camera robotic 

assistant. First, the objective of the experiment is stated, followed by the detailed 

description of the procedure and the variables used to evaluate the results. Finally, 

the results are exposed and discussed.  

5.5.4.1 Objective 

As described in Section 4.4, the camera navigation strategy combines two types 

of behaviors: a reactive behavior, that tracks the surgical tools, and a proactive 

behavior, that modifies the camera view depending on the current state of the task. 

Thus, camera position depends on the contribution of each behavior to the global 

comportment of the robotic assistant, according to equation (4.6), in which the 

contribution of the reactive and the proactive behaviors are denoted by parameters 

Kr and Kp, respectively. This approach is based on the hypothesis that combining 

the advantages of these two behaviors allows the robotic assistant to provide a real 

autonomous camera navigation that spares the surgeon from having to give direct 

commands to the assistant, and that provides an efficient camera view that 

improves the task performance.     

The objective of this first experiment is to validate the previous hypothesis by 

comparing the task performance results using different behavior contribution 

parameters Kr and Kp in the robotic camera assistant navigation strategy.  

5.5.4.2 Procedure 

The experiment has been performed by five users with no experience in surgical 

procedures. Each user has performed a total of 20 trials of the task described in 

Section 5.5.1. The experiment has been divided into sets of five trials, each of them 

with a different predefined robotic assistant behavior, as described in Table 5.5. 

The first five trials are performed with Kr = 0 and Kp = 0, i.e. camera view is 

directly controlled by the surgeon, who can change the camera position and 

orientation using the HMI. The next five trials are performed with Kr = 1 and Kp 

= 0, i.e. using a pure reactive control to navigate the camera. In this case, 

information of the current task state is not taken into account to position the 

camera. Conversely, the next five trials are performed with Kr = 0 and Kp = 1, i.e. 

adapting the camera view for each state only depending on the pre-defined data 
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stored in semantic unit S3. In this case, the camera view is static during the 

performance of each state. The last five trials are performed with Kr = 0.5 and Kp 

= 0.5, i.e. with an equal contribution of the reactive and proactive behavior to the 

global camera positioning. For simplicity reasons, each pair of values of Kr and Kp 

has been labeled with an identifying string, shown in Table 5.5. From now on, these 

labels will be used to name each set of trials. 

 

Table 5.5 Description of the procedure of Experiment 1. 

Kr Kp # Trials Label 

0 0 5 Manual control 

1 0 5 Reactive control 

0 1 5 Proactive control 

0.5 0.5 5 Dual control 

 

 

Figure 5.18 Admissible area within no camera displacement is necessary. 
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To guarantee image stability during the autonomous navigation of the camera, 

an admissible area has been defined that does not require any camera motion. This 

area is defined as a 200 x 200 pixels square in the center of the image, as depicted 

in Figure 5.18. Thus, if the tracking point PFoA is within this area, no camera 

displacement occurs. Otherwise, equation (4.10) is used to compute camera 

displacements dx and dy. This filtering is necessary to have a stable and smooth 

motion of the camera. Otherwise, the camera would be continuously moving and it 

would negatively affect the quality of the image, resulting in a great discomfort for 

users.  

5.5.4.3 Evaluation variables 

Evaluation of the experimental results is done using two variables that allow an 

objective evaluation of the user performance: 

 NoCommands: number of commands used by the users to correct the camera 

view during the performance of each state. 

 Time: time spent in completing each state. 

 The number of commands is the most significant variable, as it gives a clear 

idea about the efficiency of the camera view provided by the robotic assistant. The 

higher the number of commands, the less efficient the navigation strategy, and vice 

versa. On the other hand, time is affected more by external factors but is also 

relevant to analyze the navigation strategy, as the more efficient it is, the more 

natural the camera view would be and the less time the user would spend 

performing the task.  

In an attempt to isolate these variables to external factors, such as the users’ 

skills in managing the teleoperating system and performing the task, each user has 

spent a training period before the experiment. The goal of this training was trying 

to minimize the influence of the number of trials, i.e. if the user is not skilled with 

the task, he/she would have a better performance in the last trial than in the first 

one independently of the camera behavior. However, if the user already skillfully 

performs the task, camera view would be the only factor affecting the performance 

of different trials.  
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5.5.4.4 Results 

Figure 5.19 shows the experimental mean performance time and the mean 

number of corrections of the five users for each state of the task. It can be observed 

how both the time and the number of corrections are higher for manual control, 

decrease for reactive and proactive control, and result in the lowest values for dual 

control. These results demonstrate the efficacy of combining a reactive and a 

proactive behavior in the camera navigation strategy. Moreover, in such cases, the 

number of corrections is reduced to 0, allowing the user to concentrate on the 

important surgical task.  

 

 

Figure 5.19 Results of Experiment 1: (a) mean performance time; (b) mean 

number of corrections. 
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On the other hand, an in-depth analysis of every state reveals that reactive and 

proactive control strategies are more useful depending on the task being performed. 

Picking and placing states, i.e. states 1, 3, 4 and 6, are performed with lower camera 

corrections using the proactive control, as these states are performed around a 

particular area and tools usually do not leave the camera field of view. However, in 

transferring states (2 and 5), both tools are interacting and may not always be 

moving around the same area, so a more reactive behavior results more comfortable 

for users. For example, ring transfer may be done around the picking peg or around 

the placing peg. Moreover, during the ring transfer it may happen that the object 

falls. This situation is not contemplated by the proactive control, but the reactive 

control will follow the tools to pick up the ring again. Such an unexpected situation 

will be further analyzed below. Hence, in these states, the reactive contribution is 

more critical than the proactive contribution. The performance time is less 

significant to compare the different control strategies as it is more affected by the 

user ability and the state difficulty. However, the tendency is similar than for the 

number of corrections.  

 

 

Figure 5.20 Comparison of the performance of a particular user during the five 

trials: time (up) and number of commands (down). 
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Figure 5.20 shows the total time spent in performing the overall task and the 

total number of commands of a particular user. The graphs show the evolution of 

the task performance during the different trials and provide a graphical comparison 

of the different behaviors during the overall task, instead of by states, as done in 

Figure 5.19. The graphs reveal the effect of the training in the performance of the 

task. Although users had spent a previous training period to get skilled with the 

system and the task, it can be appreciated how, in manual control, the overall time 

highly decreases in the last trials. This occurs because manual control is the first 

set of trials the users perform. This effect is no longer observed for the remaining 

set of trials with reactive, proactive and dual control, in which a similar 

performance is observed for the five trials. However, it is clear that the overall 

performance is much better for dual control than for the rest of the types of control, 

as both evaluation variables get the lowest values. Despite the effect of training, 

manual control shows the worst performance values, and reactive and proactive 

controls present similar results.  

 

 

Figure 5.21 Marker tracking and camera displacement in State 2 in a normal 

situation. 

Figure 5.21 shows a low-level analysis of the robot behavior during one of the 

trials of State 2. In particular, it shows the marker tracking in the XI and YI axis, 

and the corresponding camera displacements dx and dy. During State 2, the vision 

algorithm of the perception system tracks the position of the right and left tool, PR 

and PL, respectively, and the position of marker M3 (PM) as stored in the semantic 
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unit S2 (Table 5.3). Then, the tracking point PFoA  is computed following equation 

(4.6). As it can be observed in Figure 5.21, at the beginning of the state, the left 

tool remains still while the right tool approaches it (PL = 0 means the tool is not 

moving, as δL of equation (4.5) is null). Then both tools slightly move during the 

ring transfer. During this entire process, PFoA remains within the admissible area 

defined in Figure 5.18, so no camera displacement is required during the state. 

On the other hand, Figure 5.22 shows the same data, also during State 2, but in 

this case, an unexpected situation occurs during the state performance. The state 

begins as in the previous case, with the right tool approaching the left tool. In this 

case, a slight camera movement is required to get PFoA in the admissible area. Then, 

something unexpected occurs: the rubber ring is dropped during the transfer, and 

it goes out of the camera view. Thus, the user starts moving the left tool in the 

direction the object fell, and the camera moves to keep it within the field of view. 

As it can be appreciated, while the ring is being picked back up, which occurs 

approximately during seconds 40 and 100, the left tool stays on the left side of the 

image, while marker M3 remains on the right side of the image, which keeps PFoA 

more or less in the center of the image. Once the ring is picked back up, both tools 

perform the ring transfer.  

 

 

Figure 5.22 Marker tracking and camera displacement in State 2 during an 

unexpected situation. 
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5.5.4.5 Discussion 

This experiment has evaluated the different behaviors of the robotic camera 

assistant in order to analyze the benefits of combining a reactive control that tracks 

the surgical tools with a proactive control that adapts the camera view to the 

conditions of each state. Results show that user performance is better when the 

navigation strategy combines both behaviors than when each behavior is isolated. 

Both the performance time and the number of corrections are lower in such a case. 

In particular, the number of corrections are reduced to zero, meaning that the user 

can concentrate on the surgical task instead of having to continuously give 

commands to the robotic assistant. Furthermore, results show that the desirable 

contribution of each control strategy depends on the task being performed, and 

therefore, should be made dependent on the current state.  

Moreover, an unexpected situation in which the rubber ring is dropped during 

the transfer has been analyzed. Results have shown that by combining both reactive 

and proactive control strategies, the system is able to react to such a situation, 

adapting the camera view without requiring direct control of the user. With a purely 

reactive behavior, the camera would have followed the left tool and would have lost 

sight of the marker. So, after the transfer, the user would have had to command 

the camera to move back towards the placing peg. Conversely, with a purely 

proactive behavior, the camera would not have followed the tool during the recovery 

of the ring, also requiring direct commands from the user to follow the tool. 

However, the combination of both control behaviors has made it possible to 

overcome such an unexpected situation. Thus, a real autonomous camera 

navigation that overcomes the limitations of isolated reactive and proactive control 

approaches has been demonstrated.  

5.5.5 Experiment 2: learning evaluation 

This section describes the second experiment in regards to the camera navigation 

strategy, which is aimed at evaluating the reinforcement learning mechanism of the 

cognitive agent. Organization of this section follows the same structure as the 

previous one.  

5.5.5.1 Objective 

The previous experiment has revealed that the contribution of reactive and 

proactive control strategies, Kr and Kp, respectively, should be made dependent on 
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the current state. As stated in Section 4.5, the reinforcement learning algorithm 

implemented in the cognitive architecture chooses, for each state of the task, the 

values of Kr and Kp that maximize the system reward. Thus, the goal of this 

experiment is to analyze if the camera robotic assistant is able to learn the 

customized values of parameters Kr and Kp that most satisfy each user.  

5.5.5.2 Procedure 

This experiment has been performed by the same five users of the previous one. 

In this case, each user has performed 15 trials of the task. Contribution of each 

control strategy is initialized at Kr = 0.5 and Kp = 0.5. Then, for each trial, the 

learning mechanism chooses new contribution values according to the reinforcement 

algorithm. The algorithm has been designed with the following parameters: a 

learning rate (ρ) of 0.3, to consider past knowledge acquired but allowing the 

addition of new information, and a discount factor (μ) of 0.9, that makes the system 

strive for a long-term reward. In regards to the policy to choose the following action, 

a value of ε = 0.4 is used for the first ten trials, to allow exploration of new actions, 

while the last five trials are performed with ε = 0.2, to facilitate the convergence 

of Kr and Kp. In a surgical scenario, environmental conditions may randomly change 

from one intervention to another. Thus, long-term learning should prevail over the 

most recent information. Hence, the value of 𝜏 has been chosen so that old 

information prevails over new knowledge, and the value of μ makes the system 

strive for a long-term reward. Conversely, values of 𝜏 approaching 1 would make 

the system consider only the most recent information, and values of μ approaching 

0 would consider only the current rewards. Moreover, the value of ε determines the 

learning speed of the algorithm. While a smaller value of ε favors the exploration 

of new rules, higher ε values favors the convergence of the algorithm. 

5.5.5.3 Evaluation variables 

Evaluation of the learning mechanism is done with the following variables: 

 Kr and Kp: contribution of the reactive and the proactive behavior, 

respectively, to the global navigation strategy. These parameters are 

essential in the learning mechanism, as computation of its value is precisely 

the final aim of the reinforcement learning algorithm.   

 Reward: the reward is computed with the fuzzy model described in Section 

4.5. Negative reward values mean that the user is penalizing the camera 
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behavior. Thus, in this case, the system would not be learning the 

appropriate control strategy. Conversely, positive reward values mean that 

the user is satisfied with the camera behavior. Therefore, the objective of 

the reinforcement learning mechanism is to output the contribution 

parameters that provide a positive reward to the system. Moreover, the 

convergence of the reward value is important to provide a stable robotic 

assistant behavior. The reward ranges from -10 to 10, where -10 is the 

highest penalization the system may obtain, and 10 is the highest reward.   

5.5.5.4 Results 

Figure 5.23 shows the customized values of Kr for each user (please note that Kp 

= 1 −  Kr), defined as the mode of the results of the 15 trials.  As it can be seen, 

states 1, 3, 4 and 6 have Kr values lower or equal to 0.5, as for this states, users 

appreciate the proactive control contribution over the reactive one. Conversely, 

states 2 and 5 have Kr values closer to 1, as for these states, users feel more 

comfortable with the camera tracking the surgical tools. It can be appreciated that 

the value of Kr is slightly different among users. This is because of the particular 

preferences of each user, and because of the influence of the initial values of Kr 

output by the algorithm, as when a particular value has a positive reward, it is 

more likely to be chosen again. These values of Kr will be used by the procedural 

memory to set the global focus of attention during the normal performance of the 

system. 

 

 

Figure 5.23 Customized values for Kr for each user and each state. 
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Figure 5.24 shows the frequency of the customized values of Kr for each user (the 

mean of the six states is represented). The purpose of this figure is to show the 

evolution of the election of the final customized value of Kr during the learning 

period. The red bar represents the global frequencies for the 15 trials, which are 

64.4%, 61.1%, 70%, 58.9%, and 67.8% for Users 1 to 5, respectively. The other three 

bars represent the evolution of the data during the 15 trials. As can be seen from 

the figure, during the first five trials, the frequency of the customized value of Kr 

is lower and, as the system learns, the frequency increases, reaching the maximum 

for the last five trials.  

 

 

Figure 5.24 Frequency of the customized value for the 15 trials performed by each 

user. 

Figure 5.25 shows the particular results for State 4 of User 4, with the value of 

Kr and the associated reward of each of them represented in blue and yellow, 

respectively (this is a representative case, but results of other states and users are 

similar). As can be seen in Figure 5.23, the customized value for User 4 and State 

4 is Kr = 0.3. Figure 5.25 shows how this value has a higher reward than the other 

values of Kr. According to equation (4.14), a rule with a high reward has a higher 

utility value; thus the value of Kr associated with this rule is more likely to be 

chosen in following trials. This fact can be appreciated in the figure, as the most 

rewarded value, Kr = 0.3, is the most output value by the learning algorithm in the 

set of trials. However, owing to the reinforcement learning nature, even within the 

last five trials, new action exploration is presented. This is why the algorithm chose 

a random value of Kr in Trial 13, which in this case is 0.1. However, the user 

penalizes this value with a negative reward; therefore this value is highly unlikely 

to appear again. 
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Figure 5.25 Reinforcement learning algorithm analysis for State 4 of User 4: Kr 

and reward for each trial of the experiment.  

5.5.5.5 Discussion 

The reinforcement learning algorithm makes it possible to adapt the contribution 

of each kind of control to the global behavior of the robot for each state, and for 

each particular user. Otherwise, predefined values would have to be used. As it was 

expected, the customized values of Kr and Kp are highly related to the nature of 

the task to be performed during each state: those states that are performed mostly 

around a particular area have higher values of Kp, while tasks that require large 

motion of the tools are better performed with a higher contribution of the reactive 

control.  

Analyzing the results of the experiments, we can observe that, with the values 

chosen for parameters 𝜏, μ and ε of equation 4.14, the speed of the learning 

algorithm prevails over its accuracy. Higher values of ε will make the algorithm less 

dependent on initial values, but appreciably slower. For the particular application 

of moving the camera in a laparoscopic procedure, a high accuracy of the 

customized values of Kr and Kp is not crucial, as similar values of these parameters 

will provide similar behaviors of the camera. However, it is important that the 

system is able to provide a comfortable camera view with a short learning period.  
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5.6 Conclusion 

This chapter has presented the implementation of the theoretical concepts 

described in this thesis project, and its validation through a set of in-vivo and in-

vitro experiments. First, the experimental setup is described, along with the 

hardware architecture that allows the connection of the different robots and devices 

used for the experiments. The software implementation of the system has been 

performed in a ROS network, which allows easy communication between the 

different elements of the system. Moreover, ROS networks allow testing every 

system component individually before the global integration, which results very 

practical in complex systems structures as the experimental setup described in this 

chapter.  Furthermore, implementation in a ROS structure makes it possible to 

easily add new components to the system, and to export the concepts implemented 

in this work into another system or experimental setup. For example, the Barrett 

WAM could be effortlessly substituted by another external robot, as well as the 

CISOBOT platform, while concepts validated in this work could be integrated into 

a Da Vinci platform by substituting the nodes that manage the WAM Arm and 

the CISOBOT with a Da Vinci node.  

The camera robot has been tested in an in-vivo experiment in a pig. This 

experiment has demonstrated the feasibility of substituting the conventional 

endoscope with a camera robot in a real surgical environment. Magnetic interaction 

has been proven safe and efficient, and image quality good enough to perform 

surgical tasks. The experiment also reveals that the camera robot does not mist up 

as conventional endoscopes do, avoiding the annoying constant cleaning of the 

camera. Furthermore, the camera robot provides different camera views and organ 

perspectives than a conventional endoscope, which results more natural and 

intuitive for surgeons, as the image comes from above as in a conventional open 

surgery. Thus, the camera robot can be used as the single vision source in a 

laparoscopic procedure, or it could also be used as a support camera view to get 

access to unreachable areas for the endoscope. This approach could augment the 

possibilities of laparoscopic surgery to procedures that currently can only be 

performed by open surgery.  

The in-vitro experiments have validated the force-position control to displace 

the external robot along the abdominal wall and the smart camera navigation 

strategy. Experiments have demonstrated that combining a reactive and a proactive 

behavior results in a flexible and autonomous navigation, that does not require 

direct control of the surgeon, and that provides an efficient camera view able to 

help surgeons during the performance of surgical tasks. It has also been 

demonstrated that with the navigation strategy proposed in this work, the camera 
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robotic assistant is able to successfully overcome unexpected situations, similar to 

the way a human assistant would react. Finally, it has been validated that the 

learning mechanism allows the system to improve its behavior and adapt the 

camera view according to different surgeons’ particular preferences and ways of 

working.  
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6 CONCLUSION AND 

FUTURE WORK 

6.1 Conclusion 

Laparoscopic surgery has become a widely accepted technique all over the world 

that provides many benefits for patients. However, it is still a more challenging 

technique for surgeons compared to conventional open surgery that largely limits 

the number of interventions that can be performed with this technique. The main 

challenges of laparoscopic procedures can be divided into visual and manipulation 

limitations. The only visual feedback surgeons have of the operating area comes 

from the image provided by an endoscope. Unlike vision in open surgery, these 

devices offer a planar and shadowless image of the anatomical structures, which 

considerably hinders the execution of surgical tasks. On the other hand, instrument 

manipulation in laparoscopic interventions is much more complex than operating 

in an open procedure. As instruments are manipulated through small incisions, the 

entry ports restrict the motion of the tools. Thus, instrument manipulation suffers 

from a loss of DoF that hinders not only the surgeons’ dexterity but also the access 

to certain areas within the abdominal cavity.  

Surgical robots have made an important contribution to the progress of 

laparoscopic surgery, as robotic systems such as the da Vinci (Haidegger, Sándor, 

and Benyó 2011) greatly facilitate the work of the physicians providing tremor 

filtering, improved dexterity, ability to scale motions, ergonomic position, better 

visualization, etc. (Lanfranco et al. 2004). In regards to vision, robotic camera 

assistants such as the EndoAssist (Gilbert 2009) or the AESOP (Kraft et al. 2004) 
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allow surgeons to operate without the need for an additional assistant that handles 

the endoscope during the intervention and offer advantages such as more image 

stability than human endoscope holding. However, current camera robotic 

assistants require constant monitoring and control by the surgeon, who has to 

release the surgical instruments to move the camera or may be distracted by 

commanding the robot for specific camera motions. Many researchers have focused 

their efforts on designing autonomous robots that navigate the camera without 

direct control from the surgeon. However, current navigation methods lack the 

intelligence and awareness to be considered autonomous, as they are based on very 

rigid and predefined behaviors (Pandya et al. 2014).  

In this sense, this thesis project proposes a novel concept of a smart camera 

robotic assistant that augments the vision capabilities in laparoscopic procedures 

and provides a real autonomous camera navigation based on a cognitive 

architecture. The camera robotic assistant is composed of a camera robot 

magnetically controlled from the outside by an external robot. Placing the vision 

source in an intra-abdominal device enhances the field of view compared to 

conventional endoscopes, as camera motion is not restricted by the entry port. 

Besides the narrow field of view surgeons have to operate through, laparoscopic 

images suffer from a reduced perspective of the anatomical structures, as camera 

orientation is limited by the position of the entry port in the abdomen. The two 

internal DoFs of the camera robot make it possible to easily change the perspective 

from which a particular area is seen, which along with the enhanced field of view, 

opens the doors to procedures that currently are only performed through open 

surgery. The cable-driven actuation system avoids the need for incorporating 

motors to the device, which would augment both the size and the weight of the 

device. The experimental prototype of the intra-abdominal device has been tested 

in an in-vivo experiment in a pig. This experiment validated the insertion procedure 

in the abdominal cavity and the magnetic interaction approach to attach the device 

to the abdominal wall and to displace it along the surface without causing any 

harm to the patient. Moreover, the quality of the image has proven to be good 

enough to perform real surgical tasks.   

Previous research works in intra-abdominal devices for surgical applications 

employ manual guidance of the external magnetic holders, thus requiring direct 

human control, from the surgeon or an additional assistant. This work proposes to 

attach the external holder to a robotic arm in order to be able to perform 

autonomous navigation of the intra-abdominal device. A cognitive architecture has 

been implemented in order to provide real autonomous camera navigation. On the 

one hand, the semantic memory stores the declarative knowledge of the system, 

essential for reasoning and making decisions. While on the other hand, the rules 

that govern the camera navigation strategy are stored in the procedural memory of 
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the system. Camera navigation has been improved in respect to previous work in 

the literature by combining a reactive behavior that tracks the surgical tools with 

a proactive behavior that adapts the camera view to the surgery workflow. Thus, 

navigation follows a more flexible algorithm that allows the robot to adapt to 

different ways of working and to react to unforeseen situations. The cognitive 

system includes two learning mechanisms: a semantic learning algorithm that allows 

the system to add new knowledge to the current knowledge base, and a 

reinforcement learning algorithm that learns the contribution of reactive and 

proactive behaviors to the global robot performance that is best suited for each 

state of the task and for each particular surgeon. Learning capabilities are essential 

for a real cognitive agent, and as far as the author’s knowledge, no previous work 

has contemplated including learning techniques in camera navigation strategies. 

The action system of the robotic assistant includes a hybrid force-position control 

with torque compensation for the displacement of the robot along the abdominal 

wall. Torque compensation ensures that the end effector of the external robot 

remains parallel to the contact surface. This is essential to ensure magnetic 

interaction between the external holder and the intra-abdominal device and also to 

ensure a safe and soft displacement of both devices along the abdominal wall. For 

the force controller, an elastic interaction model between the robot and the surface 

has been assumed, in which the stiffness matrix is estimated with a RLS algorithm 

that updates the value of Kx with new measures taken during the normal working 

of the robotic assistant. 

A set of in-vitro experiments have been performed to validate the theoretical 

concepts proposed in this work. The experiments have demonstrated that 

combining a reactive and a proactive behavior results in a flexible and autonomous 

navigation, that does not require direct control of the surgeon, and that provides 

an efficient camera view able to help the surgeon during the performance of surgical 

tasks. It has also been demonstrated that with the navigation strategy proposed in 

this work, the camera robotic assistant is able to successfully overcome unexpected 

situations, similarly to how a human assistant would react. Finally, it has been 

validated that the learning mechanism allows the system to improve its behavior 

and to adapt the camera view according to different surgeons’ particular preferences 

and ways of working. 

Summarizing, this thesis project proposes a smart camera robotic assistant that 

enhances the camera view in laparoscopic procedures and provides an autonomous 

camera navigation similar to the collaboration between the surgeon and a human 

assistant. The main goal of this achievement is to decrease the workload of surgeons 

during laparoscopic interventions and avoid the need for additional medical staff in 

charge of handling the camera.  
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6.2 Future work 

The work presented in this thesis could be expanded with the following 

contributions:  

1. Integration of the gesture recognition system in the 

implementation of the cognitive architecture  

The implementation of the gesture recognition system is out of the scope of 

this thesis because it has been the goal of other thesis projects within the 

research group of the author (Estebanez 2013). Thus, it would be convenient 

to integrate the previous work developed in the group within the framework 

of the work developed in the present thesis, to provide a complete surgical 

robotic platform.   

2. Dynamic model of the actuation system of the intra-abdominal 

device 

The performance of the cable-driven actuation system has been tested 

according to the needs of the present work. However, a complete study of 

the camera robot design that includes a dynamic model of the actuator 

should be carried out.  

3. Augmenting the cognitive capabilities of the robotic assistant 

including an episodic memory 

Incorporating an episodic memory that allows adding information from the 

on-line experiences of the robotic assistant would be interesting to augment 

the robot capabilities and to augment its knowledge base. Thus, errors 

committed in the camera guidance could be corrected in later performances.  

4. Improvement of the force-position control with a deep magnetic 

interaction analysis 

The force-position control of the action system could be improved with a 

deeper analysis of the magnetic interaction between the intra-abdominal 

device and the external holder. Thus, stiffness matrix estimation could be 

avoided with an appropriate interaction modeling.  

5. In-vivo experimentation with the complete robotic assistant 

This thesis offers in-vivo results regarding the intra-abdominal device. 

However, in-vivo experimentation should be augmented by testing the 

complete system, including the external robot, in a real surgical 

environment.  



 

113 

A INTUITIVE  

TELEOPERATION CONTROL 

This appendix describes the intuitive teleoperation control implemented in the 

CISOBOT platform to teleoperate the surgical tools. This control is important in 

a teleoperated system in order to isolate the reference systems of the master side 

and the slave side to the user, especially when the user is teleoperating the slave 

side through visual feedback from a camera image. As stated in Section 5.2, for 

natural and intuitive teleoperation of the surgical tools, the configuration of the 

haptic devices and the monitor follows an arms-eyes configuration. Thus, when the 

user moves the left haptic device to the right, he or she expects a coherent motion 

of the left tool, as shown in Figure A.1. A coherent motion is a motion that results 

natural for human. Thus, the tool is expected to move to the right in the image. 

Therefore, an intuitive teleoperation control should isolate to the user the 

computation required to translate haptic motion in coherent motion of the surgical 

tools.  

Thus, this appendix starts with the description of such intuitive control scheme, 

followed by an experimental validation. The teleoperation control was developed in 

The Birobotics Institute (Scuola Superiore Sant’Anna of Advances Studies, Pisa, 

Italy) during a research stay of the author, under the supervision of Professor 

Arianna Menciassi and Dr. Giuseppe Tortora. This appendix describes the modular 

robotic platform used to validate the control scheme and the experimental results. 

The work validated in this appendix can be directly exported to the experimental 

setup used in this thesis project (Figure 5.1), as the configuration of the robotic 

system is the same on both platforms: a camera robot and two slave manipulator 

for surgical tools.   
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Figure A.1 Intuitive teleoperation of the surgical tools. 

A.1 Control scheme 

Figure A.2 shows the control scheme of the intuitive teleoperation control. The 

surgeon teleoperates the haptic devices, which associated references frames are {M1} 

and {M2}, as shown in Figure A.1. For simplicity, Figure A.2 only represents the 

control of one manipulator. Thus, {M} and {S} represent the reference frames of 

the master side (haptic devices) and the slave side (surgical tools). The haptic 

devices output the incremental motion performed by the surgeon, MΔP. A kinematic 

coupling module transforms this incremental motion from system {M} to system 

{S}, SΔP, so it can be sent to the slave manipulators. As manipulators work in the 

joints domain, inverse kinematics is used to transform the desired motion into the 

corresponding manipulators’ articular configuration q. The real position of the 

manipulator in the Cartesian space cannot be measured in a real surgical 

environment, but the control loop is closed by the surgeon (man-in-the-loop), who 

can correct the position of the tools based on the visual information provided by 

the camera.  
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Figure A.2 Intuitive teleoperation control scheme. 

The kinematic coupling module maps a haptic motion into a natural motion of 

the surgical tools. This coupling is done by connecting the master and the slave 

systems through the image system (the natural reference frame for the user) as 

follows: 

∆P𝑆 = 𝐾𝑒 · 𝑅𝐼
𝑆 · 𝑅𝑀

𝐼 · ∆P𝑀  (A.1) 

where SRI is the rotation matrix between systems {S} and {I}, IRM is the rotation 

matrix between systems {I} and {M}, and Ke is a scale matrix that connects the 

workspaces of the master and the slave sides. On the one hand, IRM depends on the 

relative orientation between the haptic devices and the camera. On the other hand, 
SRI depends on the relative location of the slave manipulators and the camera. These 

rotation matrixes can be computed using a 3D position tracker, such as the Polaris 

Spectra (Northern Digital Inc.). Finally, Ke is necessary to connect the size of the 

workspaces of both teleoperating sides in a practical way. It is defined as follows:  

𝐾𝑒 = (

𝑒𝑥 0 0
0 𝑒𝑦 0

0 0 𝑒𝑧

) (A.2) 

where ex, ey and ez are the factor scales applied in directions x, y and z, 

respectively.    

A.2 Experimental validation 

This section describes the experimental validation of the control scheme 

presented in the previous section. Firstly, the experimental setup is exposed, 

followed the kinematics configuration of the slave manipulators. Finally, the 

experimental results are presented and discussed.  
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A.2.1 Modular robotic platform 

The experiments have been performed with the modular robotic platform 

developed by (Tortora, Dario, and Menciassi 2014), shown in Figure A.3. This 

platform has been designed for NOTES procedures, and it is composed of a set of 

miniaturized robotic units coupled in a magnetic anchoring frame, that allows 

magnetic anchoring to the abdominal wall thanks to an external magnetic handle. 

The triangular-shape anchoring frame enters the abdominal cavity through a 17 

mm esophageal access port (Guardus, US endoscopy, USA) in an open 

configuration. Once inside the abdomen, Shape Memory Alloy (SMA) actuators are 

used to reach the triangular configuration. It has been demonstrated that SMA 

actuators are suitable in terms of effectiveness and safety (Salerno et al. 2013). A 

dedicated docking mechanism allows the anchoring of the miniaturized modular 

robotic units (Tognarelli et al. 2015; Tortora et al. 2011, 2013). One of the robots 

has a miniature camera at the end effector (camera robot), while the other two 

robots are provided with a grasper and an electro-cutter at the end effector (active 

robotic units).  

 

 

Figure A.3 Modular robotic platform developed by (Tortora, Dario, and 

Menciassi 2014).  

The active robotic units, shown in Figure A.4, are made by connecting two basic 

robotic modules in a serial configuration, as described in (Tortora, Dario, and 

Menciassi 2014). Each basic module provides two DoFs, which can be Pitch (P) 

and Roll (R), or Pitch and End Effector (EE). The electro-cutter robot is composed 

of two P/R modules, so it is provided with a total of four DoFs. On the other hand, 

the grasper robot is composed of a P/R module assembled with a P/EE module. 
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The EE of this robot is an active grasper, so the EE DOF is responsible for opening 

and closing the grasper.  Force on the tip is 0.65 N, which is enough for the 

execution of basic tasks in endocavitary surgery, while grasping force is about 5.3 

N (Tortora et al. 2014). The diameter of the robots is 12 mm, which is a diameter 

compatible with the insertion through the esophageal access port. The motors of 

the robots (SBL04 by Namiki, Akita, Japan, reduction ratio 1:337) are controlled 

using wireless microcontrollers integrated into dedicated boards within the 

manipulators (CC2430 ZigBee, Texas Instruments, Dallas, TX, USA). Each board 

can control two brushless motors. 

 

 

Figure A.4 Modular robotic units: (a) electro-cutter robot, and (b) grasper 

robot. 

A.2.2 Kinematics configuration  

Denavit-Hartenberg parameters of the robots are listed in Table A.1. It is worth 

noting that q4 = 0 for the grasper robot, as the last motor is used to activate the 

grasper tool. Maximum bending for the first joint is ± 180º, while the third joint 

is limited to the range of [0º, 90º] in order to avoid multiple solutions of the inverse 

kinematics. Inverse kinematics for an end effector position P = (x, y, z) are shown 

in Table A.2. As end effector rotation does not affect position P, joint q4 is not 
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considered in the inverse kinematics. A rotation matrix between the robotic units 

and the image, SRI, necessary in equation (A.1), is easily computed from the 

anchoring frame design, as the relative position between the active robotic units 

and the camera robot is fixed and known. 

 

Table A.1 Denavit-Hartenberg parameters of the robotic units. 

Link αi ai (mm) di (mm) θi 

1 -π/2 0 0 q1 

2 π/2 0 40.85 q2 

3 -π/2 0 0 q3 

4 0 0 32.85 q4 

 

Table A.2 Inverse kinematics of the robotic units. 

Joint Equation 

q1 𝑎𝑡𝑎𝑛 (
−(𝑥(𝑑2 + 𝑑4cos⁡(𝑞3)) + 𝑧𝑑4cos⁡(𝑞2)sin⁡(𝑞3))

𝑧(𝑑2 + 𝑑4cos⁡(𝑞3)) − 𝑥𝑑4cos⁡(𝑞2)sin⁡(𝑞3)
) 

q2 −𝑎𝑠𝑖𝑛 (
⁡𝑦

𝑑4cos⁡(𝑞3)
) 

q3 𝜋 − 𝑎𝑐𝑜𝑠 (
⁡𝑑2

2 + 𝑑4
2 −√𝑥2 + 𝑦2 + 𝑧2

2𝑑2𝑑4
) 

A.2.3 Experiments 

To evaluate the feasibility and intuitiveness of the control scheme presented in 

the previous section, a pick and place experiment has been designed, similar to the 

one described in Section 5.5.1. Since only one grasper robot has been manufactured, 

the experiment has been adapted to be performed by the two robotic units of the 

modular platform. For the experiments, the electro-cutter has been replaced by a 

metallic hook. The experimental platform is a pegboard and the task is performed 

with a rubber triangular ring. The overall task has been divided into the three 

following states, depicted in Figure A.5: 

 State 1: this state consists of picking the ring from one position of the 

pegboard using the grasper robot. This task is considered completed when 
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the ring has been completely removed from the peg. 

 State 2: this states consists of placing the ring in a different peg of the 

pegboard. This task is completed when the grasper has completely released 

the ring.  

 State 3: the last state consists of hitting the ring using the electro-cutter 

robot to make it fall. The task finishes when the ring falls out from the peg. 

The task has been performed by 15 users, who have technical skills in robotics, 

but not medical skills, so they are not familiar with performing manipulation tasks 

under 2D vision. Two experiments have been carried out: the first one, performed 

by five of the 15 users, aimed at estimating the learning curve associated with the 

use of the robots, and the second one, performed by the other ten users, aimed at 

verifying the dexterity of the system by evaluating the time scored by the users to 

perform the experiments.  

 

 

Figure A.5 Task protocol: (a) state 1, (b) state 2, and (c) state 3. 

Experiment 1: learning curve 

To estimate the learning curve associated with the use of the system, five users, 

who had never tried the system before, were asked to perform the experiment three 

consecutive times. Time spent on the development of each state was recorded. 

Figure A.6 shows the average time spent on completing each state with respect to 

the trial number. As it can be seen, the three curves decrease significantly with the 

number of trials, by approximately 70% for State 1, and by about 50% for State 2 

and State 3. The higher decrease in State 1 is due to the fact that the first trial of 

this state is the very first contact of the users with the system. 

Experiment 2: dexterity evaluation 

To evaluate the dexterity of the system, ten additional users were asked to 

perform the test. Users were not previously familiarized with the system, but they 

had a short training period before the experimental session of about 5-10 minutes. 
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Recorded times for each task are presented in Table A.3. Mean times are 36, 46.7 

and 17.1 seconds for state 1, state 2 and state 3, respectively. These values are 

considered acceptable if compared with other results with robots with more DoFs 

(Petroni et al. 2013). Standard deviation is 32.8, 23.5 and 21.7 for state 1, state 2 

and state 3, respectively. These high values are due to the different innate skills of 

the users. In addition, a surgeon specialized in general surgery with experience in 

robotic-assisted laparoscopy tried the system. Times to perform each state were 

also recorded, resulting in 15, 17 and 29 seconds for State 1, State 2 and State 3, 

respectively. The surgeon expressed his satisfaction with the system and reported 

that it is intuitive to use.  

 

 

Figure A.6 Learning curve associated with the teleoperated system. 

Table A.3 Dexterity evaluation experimental results. 

User State 1 (s) State 2 (s) State 3  (s) 

1 23 93 19 

2 19 38 5 

3 26 26 19 

4 119 65 8 

5 10 24 13 

6 52 52 9 

7 55 74 77 

8 14 30 9 

9 24 31 3 

10 18 34 9 
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B THE CISOBOT PLATFORM 

As described in Chapter 5, the CISOBOT platform is composed of two six-DoFs 

manipulators manufactured by Robotnik Automation S.L. (Figure B.1). These 

modular robots have a spherical wrist configuration, which allows for the decoupling 

of the end effector position (defined by the first three joints) and orientation 

(defined by the last three joints). The rotational joint actuators are comprised of 

PowerCube servomotors from Schunk Corp. Each actuator includes a position and 

velocity PID controller that is configured to receive position and/or velocity 

references. Therefore, each joint is responsible for accomplishing its reference. 

Moreover, each actuator provides sensory information, such as position, velocity, 

and state of the joint. Communication with the actuators is performed by CANbus. 

This interface guarantees real-time communication and allows the use of a unique 

bus for each joint, making it possible to perform a joint decoupled control and 

sending the position and velocity references simultaneously to each joint.  

Denavit-Hartenberg parameters of the manipulators are shown in Table B.1, 

where L is the length of the robotic graspers attached to the end effector of the 

manipulators. As the manipulators have a spherical wrist configuration, inverse 

kinematics is computed following the kinematics decoupling method, consisting in 

solving the position and the orientation problem independently, thus reducing the 

number of variables. The position problem has been solved using geometric 

techniques, while an algebraic solution is used for the orientation problem. The 

solution of the inverse kinematics is shown in Table B.2. This inverse kinematics 

may adopt four different solutions depending on the value of parameters b and c. 

These solutions are shown in Figure B.2. Parameter b has to do with the rotation 

of the first joint, being b = 1 and c = 1, complementary solutions for q1. On the 

other hand, parameter c has to do with the position of the elbow. Thus, c = 1 is 

called “elbow up” configuration, while c = -1 is called “elbow down” solution. Table 
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B.2 shows the sin and cosine of every joint, si and ci, respectively. Then, joints 

values are computed as follows: 

q𝑖⁡ = 𝑎𝑡𝑎𝑛 (
s𝑖⁡
c𝑖⁡
) (B.1) 

Parameters R and L of the equations exposed in Table B.2 have the following 

values: 

𝑅 = √𝑥2 + 𝑦2  (B.2) 

𝐿 = √𝑅2 + (𝑧 − 𝑑1)
2  (B.3) 

 

 

Figure B.1 Robotnik modular arm. 
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Table B.1 Denavit-Hartenberg parameters of the Robotnik modular arms. 

Link αi ai (mm) di (mm) θi 

1 π/2 0 240 q1 

2 0 540 0 q2 

3 -π/2 0 0 q3 

4 π/2 0 415 q4 

5 - π/2 0 0 q5 

6 0 0 171.5+L q6 

 

 

 

Figure B.2 Inverse kinematics solutions: (a) b = 1, c = 1, (b) b = 1, c = -1, (c) 

b = -1, c = 1, and (d) b = -1, c = -1. 
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Table B.2 Inverse kinematics of the Robotnik modular arms. 

Joint Equation 

q1 

𝑠1 =
𝑏𝑦

𝑅
 

𝑐1 =
𝑏𝑥

𝑅
 

q2 

𝑠2 = 𝑏(𝑐
𝑧 − 𝑑1
𝐿

√1 − (
𝑎2
2 + 𝐿2 − 𝑑4

2

2𝑎2𝐿
)

2

−
𝑅

𝐿

𝑎2
2 + 𝐿2 − 𝑑4

2

2𝑎2𝐿
) 

𝑐2 = 𝑐
𝑅

𝐿
√1 − (

𝑎2
2 + 𝐿2 − 𝑑4

2

2𝑎2𝐿
)

2

+
𝑧 − 𝑑1
𝐿

𝑎2
2 + 𝐿2 − 𝑑4

2

2𝑎2𝐿
 

q3 
𝑠3 = 𝑏𝑐√1 − (

𝑎2
2 − 𝐿2 + 𝑑4

2

2𝑎2𝑑4
)

2

 

𝑐3 = −
𝑎2
2 − 𝐿2 + 𝑑4

2

2𝑎2𝑑4
 

q4 

𝑠4 = −
𝑟23

√𝑟31
2 + 𝑟32

2
 

𝑐4 = −
𝑟13

√𝑟31
2 + 𝑟32

2
 

q5 

𝑠5 = √𝑟31
2 + 𝑟32

2  

𝑐5 = 𝑟33 

q6 

𝑠6 = −
𝑟32

√𝑟31
2 + 𝑟32

2
 

𝑐6 =
𝑟31

√𝑟31
2 + 𝑟32

2
 



 

125 

C ROBOTIC OPERATING 

SYSTEM (ROS) 

ROS is defined as a flexible framework for writing robot software. It is a 

collection of tools, libraries, and conventions that aim to simplify the task of 

creating complex and robust robot behavior across a wide variety of robotic 

platforms (ROS.org 2016). The main characteristics of ROS are a distributed and 

modular design, open source software, hardware abstraction, low-level device 

control, implementation of commonly used functionality, message-passing between 

processes, and package management.  

A ROS network consists of a number of processes connected at runtime in a 

peer-to-peer topology. The basic concepts of a ROS network are:  

 Nodes. Nodes are processes that perform computation. A common robotic 

system usually comprises many nodes, each one controlling a different device 

or functionality. A ROS node is written using a ROS client library and 

accepts a variety of programming languages, such as Python, C++, Lisp or 

MATLAB. Nodes of the same network can be written in different languages. 

 Master. The ROS Master is the central server of the network. Its function is 

to create the network and to register every node and message in the network. 

Thus, without this Master node, nodes would not be able to find each other, 

exchange messages or invoke services.  

 Messages. Messages are the way nodes communicate among each other. A 

message is a data structure comprising typed fields. ROS offers standard 

predefined messages types, but messages can be created depending on each 



C Robotic operating system (ROS)   

126 

system needs. A message can be sent through topics or through services.  

 Topics. A topic is a name used to identify the content of messages. Messages 

are sent via a publisher/subscriber communication. A node sends out a 

message by publishing it on a given topic. In the same way, a node can 

subscribe to a particular topic to read the message within it. A node can 

publish and subscribe to multiple topics, and a topic can be published by 

different nodes.  

 Services. Services are the way of communicating two nodes in a 

request/answer communication. A service is a pair of message structures: one 

for the request and one for the reply. A node may offer different services and 

other nodes can use this service by sending a message through it.  

Figure C.1 shows the computational graph of a ROS network. Nodes connect to 

other nodes directly; the Master only provides lookup information. It stores topics 

and services registration information for the nodes. This architecture allows for 

decoupled operation, where the names are the primary means by which larger and 

more complex systems can be built.  

 

 

Figure C.1 ROS network. 
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D SOAR COGNITIVE 

ARCHITECTURE 

Soar is a general cognitive architecture for developing systems that exhibit 

intelligent behavior (Soar Home 2016). It was developed by John E. Laird in 1983 

and has evolved through many different versions to Version 9. The primary 

principle of Soar is that all decisions are made through a combination of relevant 

knowledge at run-time. Every decision is based on the current interpretation of 

sensory data, the contents of working memory created by prior problem solving, 

and any relevant knowledge retrieved from long-term memory. The architecture of 

Soar, Version 9, is shown in Figure D.1 (Laird 2008). It is composed of a set of 

long-term memories and a short-term memory. The long-term memory is divided 

into procedural memory, semantic memory, and episodic memory, and it is encoded 

as production rules. Rules provide a flexible, context-dependent representation of 

knowledge, with their conditions matching the current situation and their actions 

retrieving information relevant to the current situation. At the lowest level, Soar’s 

processing consists in matching and finding rules. The short-term memory is 

encoded as a symbolic graph structure so that objects can be represented with 

properties and relations. It holds the agent’s assessment of the current situation 

derived from perception and via retrieval knowledge from its long-term memory. 

Action in an environment occurs through the creation of motor commands in a 

buffer in short-term memory. The gesture recognition system selects operators and 

detects impasses. And the appraisal detector generates emotions, feelings, and an 

internal reward for reinforcement learning. 
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Figure D.1 Structure of Soar, Version 9 (Laird 2008). 

Most rule-based systems choose a single rule to fire at a given time, but they do 

not use additional context-dependent knowledge to influence the decision. However, 

Soar allows additional knowledge to influence a decision by introducing operators 

as the locus for choice and using rules to propose, evaluate, and apply operators. 

In Soar, there are rules that propose operators that create a data structure in 

working memory representing the operator and an acceptable preference so that 

the operator can be considered for selection. There are also rules that evaluate 

operators and create other types of preferences that prefer one operator to another 

or provide some indication of the utility of the operator for the current situation. 

Finally, there are rules that apply the operator by making changes to working 

memory that reflect the actions of the operator. 

The structure of problem-solving in Soar determines when new knowledge is 

needed, what that knowledge might be, and when it can be acquired.  In Soar, 

impasses occur if the directly available knowledge is either incompliant or 

inconsistent. Therefore, impasses indicate when the system should attempt to 

acquire new knowledge. While problem-solving within a subgoal, Soar can discover 

information that will resolve an impasse. This information, if remembered, can 

avert similar impasses in future problem-solving. When a subgoal is completed, 

because its impasse has been resolved, an opportunity exists to add new knowledge 
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that was not already explicitly known. Chunking is the Soar learning mechanism 

to automatically learn new rules. When a subgoal is generated, a learning episode 

begins that could lead to the creation of a chunk. During problem-solving within 

the subgoal, information accumulates on which a chunk can be based. When the 

subgoal terminates, a chunk can be created. Each chunk is a rule (or set of rules) 

that gets added to the production memory. Reinforcement learning (RL) is a 

complementary learning mechanism of Soar that involves adjusting the selection of 

actions in an attempt to maximize a reward.  RL applies to every operator selection, 

on every decision, even when there are no impasses, while chunking only learns 

rules through impasses. In addition, RL modifies existing rules by changing the 

value of numeric preferences, while chunking only adds new rules.  

In contrast to semantic and procedural memory, which contains knowledge 

independent from when and where it was learned, and episodic memory, which 

contains memories of what was experienced over time. In Soar, it includes specific 

instances of the structures that occur in working memory at the same time, 

providing the ability to remember the context of past experiences as well as the 

temporal relationships between experiences. An episode is retrieved by the 

deliberate creation of a cue, which is a partial specification of working memory in 

a special buffer. Once a cue is created, the best partial match is found (biased by 

recency and working memory activation) and retrieved into a separate working 

memory buffer (to avoid confusion between a memory and the current situation). 

The next episode can also be retrieved, providing the ability to replay an experience 

as a sequence of retrieved episodes. 
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RESUMEN DE LA TESIS 

DOCTORAL 

Introducción 

En las últimas décadas, el campo de la cirugía ha evolucionado hacia técnicas 

mínimamente invasivas encaminadas a reducir el grado de invasión de las 

intervenciones. Así, la cirugía laparoscópica consiste en operar a través de pequeñas 

incisiones realizadas en la pared abdominal de los pacientes, a través de las cuales 

se introducen tanto los instrumentos laparoscópicos como un endoscopio. Esta 

forma de operar presenta numerosas ventajas para los pacientes, incluyendo 

beneficios tanto cosméticos como de tiempo de la recuperación (Romanelli, Mark, 

and Omotosho 2008). Sin embargo, estas nuevas técnicas conllevan una serie de 

inconvenientes para los cirujanos, que requieren de largos periodos de 

entrenamiento para adquirir destreza con este nuevo enfoque. Los procedimientos 

laparoscópicos han evolucionado hacia técnicas menos invasivas que mejoran las 

ventajas cosméticas para los pacientes, pero implican nuevos retos para los 

cirujanos: las técnicas de puerto único (SPAS en inglés), y la cirugía mediante 

orificios naturales (NOTES en inglés). En las técnicas de puerto único se utiliza 

una única incisión a través de la cual se introducen tanto los instrumentos como el 

endoscopio (Gascón Hove et al. 2014). Esta técnica requiere el uso de instrumentos 

especiales semiflexibles o curvos, que incrementan la curva de aprendizaje de los 

cirujanos. Además, esta forma de operar reduce el espacio de trabajo de los 

instrumentos debido a la cercanía de éstos comparten un espacio muy reducido 
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tanto dentro como fuera del abdomen. La cercanía entre los instrumentos y la 

cámara también provoca una pérdida de triangulación, que se traduce en una 

pérdida de sensación de profundidad en la imagen que recibe el cirujano. Por otro 

lado, las técnicas NOTES se realizan con instrumentos flexibles específicos para este 

tipo de procedimientos, que se introducen en la cavidad abdominal a través de 

orificios naturales del cuerpo (Wang et al. 2016). Sin embargo, esta técnica está 

actualmente estancada debido a la falta de instrumentos apropiados para su 

desempeño (Trejos et al. 2011).  

En este sentido, la robótica ha encontrado un amplio campo de aplicación para 

superar las limitaciones de las técnicas de cirugía laparoscópica gracias a una mejora 

en las habilidades del cirujano en términos de alta precisión de movimientos y un 

manejo más intuitivo del instrumental. El mercado de la robótica quirúrgica ha sido 

monopolizado por la compañía Intuitive Surgical Inc. con el desarrollo del robot 

quirúrgico da Vinci. La compañía ha comercializado más de 3,000 unidades a lo 

largo del mundo, y se han realizado más de un millón y medio de intervenciones 

con esta plataforma robótica. De hecho, actualmente aproximadamente el 90% de 

las prostatectomías se realizan con el da Vinci (Haidegger, Sándor, and Benyó 

2011). Sin embargo, este robot se encuentra actualmente obsoleto debido a las 

limitaciones de su control teleoperado, que se limita a replicar el movimiento de las 

manos del cirujano, pero no ofrece ningún tipo de autonomía. Actualmente, el uso 

de asistentes robóticos en intervenciones quirúrgicas se encuentra limitado debido 

a los siguientes factores: se requiere un mayor tiempo de operación, no existen 

herramientas adecuadas para intervenciones de gran complejidad, es necesario 

adaptar los quirófanos para la integración de los sistemas robóticos, no hay contacto 

directo entre el paciente y el cirujano, y los sistemas actuales no son capaces de 

trabajar con autonomía real que les permita trabajar codo con codo con el equipo 

médico ni reaccionar ante situaciones imprevistas, como un sangrado.  

Para aumentar las capacidades de los robots quirúrgicos, muchos autores han 

desarrollado sistemas autónomos y semiautónomos capaces de realizar tareas 

automáticas que liberan al cirujano de carga de trabajo. En la literatura se pueden 

encontrar trabajos en los que se proponen métodos de navegación automática de la 

cámara (Ko et al. 2005; Weede et al. 2011), y trabajos relacionados con la 

automatización de tareas quirúrgicas como la sutura (Kang and Wen 2001), manejo 

de tejido (Patil and Alterovitz 2010) o planificación de movimientos para la 

inserción de la aguja (Alterovitz et al. 2009). Otros autores han propuesto escenarios 

colaborativos en los que el robot realiza parte de las maniobras mientras que el 

cirujano se centra en los movimientos más complejos (Bauzano et al. 2015; Padoy 

and Hager 2011). Sin embargo, estos sistemas aún requieren mucha intervención 

directa y supervisión del cirujano, y se limitan a realizar movimientos pre-

programados. Por tanto, estos sistemas carecen de la inteligencia y conciencia para 
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ser considerados realmente autónomos (Pandya et al. 2014). 

Bajo estas premisas, la evolución de los robots quirúrgicos debería ir encaminada 

al desarrollo de asistentas robóticos co-worker, que trabajen codo con codo con el 

cirujano de forma similar a como lo haría un asistente humano. Las arquitecturas 

cognitivas proporcionan la infraestructura necesaria para dotar a los robots con 

capacidades humanas. Existen numerosas arquitecturas cognitivas estándar que han 

sido aplicadas satisfactoriamente en diversos campos como la robótica móvil 

(Janrathitikarn and Long 2008; Laird et al. 2012), teoría de juegos (Choi et al. 

2011; Kirk, Mininger, and Laird 2016) o el modelado de comportamiento humano 

(Liu et al. 2016; S. Zhang et al. 2014). Sin embargo, la aplicación de este tipo de 

arquitecturas en el campo quirúrgico es un área de investigación abierta en la que 

aún queda mucho por hacer. Un asistente robótico inteligente que pueda trabajar 

en un escenario quirúrgico co-worker requiere de la integración de diferentes 

tecnologías que proporcionen al robot medios para razonar y tomar decisiones, y 

para poder realizar tareas quirúrgicas de forma realmente autónoma. Así, las 

tecnologías de navegación se deben combinar con una interacción natural entre el 

robot y el cirujano que emule la comunicación entre humanos. Todo esto debe ser 

integrado en una arquitectura cognitiva que dote al robot de las capacidades 

cognitivas necesarias para realizar tareas de planificación de alto nivel a través de 

habilidades como el razonamiento y el aprendizaje, y una base de conocimiento 

apropiada.  

Contribuciones 

Esta tesis doctoral ofrece resultados tanto teóricos como experimentales relativos 

a un asistente robótico inteligente para técnicas de cirugía mínimamente invasiva. 

Este trabajo propone un nuevo concepto de asistente robótico camarógrafo que 

permite aumentar las capacidades de los sistemas actuales. Dicho asistente robótico 

se ha diseñado siguiendo una filosofía cooperativa, con una comunicación natural 

entre el cirujano y el robot que emula la interacción entre un equipo quirúrgico 

humano. Así, la inteligencia del sistema se ha basado en una arquitectura cognitiva 

con mecanismos de aprendizaje que dota al sistema de capacidad de toma de 

decisiones y navegación autónoma. En concreto, además de ofrecer un análisis 

profundo del estado del arte actual, esta tesis doctoral ofrece las siguientes 

contribuciones: 
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1. Nuevo concepto de asistente robótico camarógrafo para cirugía 

mínimamente invasiva sin restricciones holonómicas 

Este trabajo propone un nuevo concepto de asistente robótico camarógrafo 

para cirugía mínimamente invasiva sin restricciones holonómicas en su 

movimiento. El asistente robótico está compuesto por un brazo robótico 

externo y un robot cámara intra-abdominal, cuyo movimiento a lo largo de 

la pared abdominal se controla mediante interacción magnética con el brazo 

externo. Así, la cámara puede moverse libremente por la cavidad abdominal 

gracias a los seis grados de libertad que ofrece el asistente: dos 

desplazamientos a lo largo de la pared abdominal y una rotación horizontal 

(actuados mediante el robot externo), y dos grados de libertad internos, giro 

e inclinación de la cámara, y un zoom digital (actuados mediante el 

dispositivo intra-abdominal). Este diseño permite aumentar el campo de 

visión de la cámara comparado con el de los endoscopios convencionales, y 

permite obtener diferentes perspectivas de las estructuras anatómicas 

internas, ayudando al cirujano a sobrellevar la pérdida de sensación de 

profundidad debida a la visión plana inherente a los procesos laparoscópicos, 

y ofreciendo una vista más natural del área de trabajo. Además, este enfoque 

de asistente robótico permite una navegación autónoma de la cámara, 

evitando la necesidad de un asistente humano únicamente destinado al 

manejo de la cámara.    

2. Control híbrido de fuerza-posición con compensación de pares 

capaz de adaptar el movimiento de la cámara a la anatomía de la 

pared abdominal 

El desplazamiento de la cámara a lo largo de la pared abdominal requiere un 

control de orientación activo capaz de adaptar el movimiento del robot a la 

anatomía de cada paciente, asegurando que el movimiento se realiza de forma 

segura, sin causar ningún tipo de daños, ya sean internos o externos, en el 

paciente. Con este objetivo, este trabajo propone un control híbrido de fuerza-

posición con un módulo de compensación de pares que asegura una 

orientación adecuada del robot. Así, el esquema de control de posición 

controla el desplazamiento del robot en las direcciones tangentes a la 

superficie de contacto (pared abdominal), mientras que el control de la fuerza 

se realiza en la dirección normal a la superficie. Por otro lado, el módulo de 

compensación de pares asegura que el efector final del brazo externo se 

mantiene en todo momento paralelo a la pared abdominal durante el 

desplazamiento de la cámara, cuya anatomía es a priori desconocida y 

variable entre distintos pacientes.  
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3. Diseño de una arquitectura cognitiva para aplicaciones quirúrgicas 

con mecanismos de aprendizaje que emula el comportamiento 

humano  

Las arquitecturas cognitivas proporcionan a los sistemas robóticos 

funcionalidades humanas, como capacidad de razonamiento, aprendizaje, 

resolución de problemas o toma de decisiones. En este trabajo, se ha adaptado 

una arquitectura cognitiva estándar para dotar al asistente robótico de una 

interacción hombre-máquina intuitiva y natural, y capacidad de toma de 

decisiones y de navegación autónoma que permitan al asistente trabajar codo 

con codo con el cirujano de forma similar a como lo haría un asistente 

humano. La arquitectura cognitiva también incluye mecanismos de 

aprendizaje que permiten al robot aumentar su base de conocimiento y 

mejorar su comportamiento en el tiempo.  

4. Implementación del asistente robótico camarógrafo inteligente y 

resultados experimentales 

Tanto la arquitectura cognitiva como el control híbrido de fuerza-posición se 

han validado mediante experimentación in-vitro que demuestra la validez de 

los conceptos teóricos propuestos en esta tesis doctoral. Además, el diseño 

del asistente robótico camarógrafo ha sido validado mediante 

experimentación in-vivo en un modelo porcino en el Centro IACE (Instituto 

Andaluz de Cirugía Experimental), mediante el que se han validado las 

principales características de diseño del robot cámara.   

Contexto  

Esta tesis doctoral se encuentra enmarcada dentro de las líneas de investigación 

del grupo de robótica médica del departamento de Ingeniería de Sistemas y 

Automática de la Universidad de Málaga. Además, la autora ha realizado una 

estancia de investigación de tres meses de duración en los laboratorios del Instituto 

de Biorobótica dela Scuola Superiore Sant’Anna (Pisa, Italia), bajo la supervisión 

de la profesora Arianna Menciassi.  

Los resultados de esta tesis extienden estudios previos del grupo de investigación 

relacionados con asistentes robóticos en entornos colaborativos. Estos estudios 

formaron parte de las actividades e investigación que fueron llevadas a cabo en la 

Universidad de Málaga, cuyo principal logro fue el diseño e implantación de un 

asistente robótico que maneja un endoscopio, el cuela ha sido utilizado con éxito en 

intervenciones quirúrgicas humanas (Munoz et al. 2006). Tras estos trabajos, el 
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grupo de investigación ha centrado sus investigaciones en el desarrollo de una 

plataforma robótica capaz de colaborar con el cirujano de forma autónoma en tareas 

quirúrgicas (Bauzano 2012) y en el desarrollo e implementación de un sistema de 

reconocimiento de maniobras quirúrgicas (Estebanez 2013). La última tesis doctoral 

desarrollada dentro del grupo de investigación se centra en la navegación del 

instrumental quirúrgico para técnicas de puerto único (Pérez del Pulgar 2015).  

Esta tesis doctoral ha sido financiada mediante una beca de Formación de 

Personal Investigador (FPI) concedida por el Ministerio de Economía y 

Competitividad (EEBB-I-13-07552), asociada con el proyecto nacional DPI2010-

21126-C03-01, cuyo principal objetivo ha sido el desarrollo de un asistente robótico 

para técnicas de cirugía SPAS/NOTES. La estancia de investigación de la autora 

de la presente tesis doctoral también ha sido financiada por el Ministerio de 

Economía y Competitividad en el contexto de ayudas a la movilidad para 

estudiantes de doctorado.  

Estructura de la tesis 

Esta tesis se divide en seis capítulos, cuatro apéndices y las referencias 

bibliográficas. Excepto este capítulo y el de conclusiones y trabajos futuros, cada 

capítulo comienza con una introducción que presenta el problema a resolver, y 

termina con unas conclusiones que resaltan las principales contribuciones y/o 

resultados obtenidos.  

El capítulo 2, titulado  State of the art, ofrece un estado del arte actualizado de 

las soluciones robóticas aplicadas a las necesidades actuales de las técnicas 

quirúrgicas, incluyendo el estado actual de las habilidades de los robots quirúrgicos. 

Posteriormente, se realiza un análisis de las arquitecturas cognitivas estándar más 

significativas, junto con los campos de aplicación de las mismas. El capítulo termina 

con una breve descripción de la propuesta de este trabajo de tesis doctoral, que va 

un paso más allá del estado del arte actual.  

El capítulo 3, titulado Control system of the robotic assistant, presenta el 

esquema de control del asistente robótico camarógrafo. El capítulo comienza con 

una descripción general del asistente robótico, junto con las especificaciones de 

diseño del robot cámara. A continuación se realiza una descripción del modelo 

geométrico de la tarea. Posteriormente, se profundiza en el esquema de control del 

sistema, que se divide en el control del mecanismo de actuación del robot cámara 

y el control híbrido fuerza-posición con compensación de pares para el 

desplazamiento del robot externo.  
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El capítulo 4, titulado Robot cognition, describe la arquitectura cognitiva 

implementada en el asistente robótico inteligente. En primer lugar, se expone una 

descripción general de la arquitectura, seguida de un análisis en profundidad del 

bloque cognitivo del sistema. A continuación, se realiza una descripción tanto de la 

memoria semántica como de la memoria episódica del sistema, junto con el 

mecanismo de aprendizaje por refuerzo que permite mejorar el comportamiento del 

robot.  

El capítulo 5, titulado Implementation and experiments, describe la 

implementación de los conceptos teóricos expuestos en los capítulos anteriores, y 

presenta los resultados experimentales de la presente tesis doctoral. Tras la 

descripción de la plataforma robótica empleada en los experimentos, se realiza una 

descripción de la arquitectura software basada en una red de ROS. A continuación, 

se presenta la validación in-vivo del robot cámara realizada en un modelo porcino. 

Posteriormente, se presentan los experimentos realizados para validar tanto el 

esquema de control del sistema como el método de navegación de la cámara 

inteligente basado en la arquitectura cognitiva descrita en el capítulo anterior.  

El capítulo 6, titulado Conclusion and future work, destaca las contribuciones 

más relevantes de esta tesis doctoral y propone los trabajos futuros que continúan 

el presente trabajo.  

Finalmente, los apéndices proporcionan un análisis más profundo del control 

teleoperado implementado en la plataforma de experimentación, y de los conceptos 

teóricos relacionados con las herramientas de programación implementadas en este 

trabajo.  

Conclusiones 

Actualmente, el mercado de los robots quirúrgicos se encuentra estancado debido 

a que los sistemas clásicos teleoperados, como el da Vinci, están obsoletos y no 

ofrecen la asistencia requerida por los cirujanos. Además, las soluciones 

mecatrónicas tradicionales, basadas en robots externos que manejan instrumental 

laparoscópico, no son válidos para las nuevas técnicas quirúrgicas que están 

surgiendo en los últimos tiempos. De esta manera, los investigadores están 

centrando sus esfuerzos en el desarrollo de dispositivos intra-abdominales, que 

reducen el grado de invasión de las intervenciones y solucionan las limitaciones de 

las nuevas técnicas laparoscópicas, ya que evitan los problemas de restricción de 

movimiento debidos al punto de entrada. Sin embargo, los enfoques actuales de este 

tipo de robots requieren de un asistente humano que controle el movimiento de los 

dispositivos intra-abdominales, lo que limita la aplicación de estos trabajos en 
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entornos co-worker en los que los robots puedan trabajar con autonomía.  

La autonomía de los robots en entornos quirúrgicos ha sido estudiada por un 

gran número de autores, con el desarrollo de aplicaciones que van desde la 

navegación autónoma de la cámara hasta la automatización de tareas quirúrgicas. 

Sin embargo, estos trabajos requieren de la supervisión constante del cirujano y su 

capacidad de toma de decisiones y de adaptabilidad a escenarios dinámicos se 

encuentra aún muy limitada. Un asistente robótico inteligente que pueda colaborar 

con el cirujano en un entorno co-worker debe ir un paso más allá en cuanto a las 

habilidades actuales de los robots quirúrgicos, dotando al sistema con características 

humanas, como la representación de conocimiento, el razonamiento y la 

planificación, la interpretación del entorno, o mecanismos de aprendizajes. Algunos 

autores han diseñado arquitecturas cognitivas específicas para ciertas aplicaciones 

en un entorno quirúrgico, como el guiado del endoscopio, pero ninguno de estos 

trabajos incluye mecanismos de aprendizaje, una característica humana esencial. La 

adaptación de una arquitectura cognitiva estándar para aplicaciones quirúrgicas 

proporcionaría un marco general que podría ser implementado para diferentes tareas 

dentro del campo de la cirugía robótica, y sentaría las bases para el desarrollo de 

asistentes robóticos quirúrgicos.  

Analizando las características particulares de las diferentes arquitecturas 

cognitivas estándar, SOAR parece ser la más adecuada para ser utilizada como base 

para construir una estructura general para robots quirúrgicos, ya que proporciona 

una gran flexibilidad y modularidad que permiten su implementación para una gran 

diversidad de aplicaciones, desde las tareas más sencillas como responder de forma 

autónoma a comandos específicos del cirujano, hasta escenarios colaborativos más 

complejos en los que se requiere de cierto grado de razonamiento y autonomía. 

SOAR ofrece diferentes niveles de memoria a largo plazo que permiten almacenar 

una amplia variedad de conocimiento: la memoria procedural permite almacenar 

comportamientos del robot; la memoria semántica permite almacenar conocimiento 

quirúrgico como los protocolos de la tarea o incluso realizar una representación 

semántica del entorno; y la memoria episódica permite almacenar y recuperar 

experiencias pasadas relativas, por ejemplo, con situaciones imprevistas que 

pudieran ocurrir durante una intervención, y permite también añadir nuevo 

conocimiento al sistema. Finalmente, SOAR está diseñada para permitir una fácil 

integración con otros componentes, como componentes robóticos o sensores.  

Así, esta tesis doctoral propone una arquitectura cognitiva para un asistente 

robótico inteligente basada en SOAR, representada en la Figure 2.18. La cognición 

del sistema se compone de una serie de estructuras de memoria que permiten 

almacenar conocimiento, mecanismos de aprendizaje, y algoritmos de razonamiento 

y planificación de alto nivel. El sistema cognitivo hace uso de la información que 
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proviene del sistema de percepción, que recoge datos sensoriales del entorno 

quirúrgico, y envía los movimientos que debe realizar el robot al sistema de 

actuación. Por su parte, el módulo de actuación está compuesto por dos 

componentes: el asistente robótico y su sistema de control. Finalmente, el módulo 

de interacción humano-máquina permite la comunicación entre el cirujano y el 

sistema cognitivo. La forma más básica de comunicación es a través de un interfaz 

humano-máquina que permita al cirujano comandar de forma directa movimientos 

o comportamientos al robot, como comandos de voz, teleoperación directa, o un 

interfaz gráfico. Sin embargo, un asistente robótico inteligente diseñado para emular 

comportamiento humano, requiere de una forma de comunicación más natural. 

Dicha comunicación se realiza mediante un sistema de reconocimiento de gestos, 

que interpreta las maniobras que realiza el cirujano en cada momento de la 

operación para poder seguir el flujo de trabajo de la intervención completa. La 

arquitectura cognitiva propuesta se ha implementado para la aplicación particular 

de un asistente robótico camarógrafo.  

El capítulo 3 de esta tesis describe un asistente robótico camarógrafo de 6 grados 

de libertad, que combina las ventajas de los asistentes robóticos convencionales y 

de los nuevos dispositivos intra-abdominales. Dicho asistente está compuesto por 

un dispositivo intra-abdominal dotado de una cámara de alta resolución, llamado 

robot cámara, y un brazo robótico externo. El robot cámara se introduce en la 

cavidad abdominal por una de las incisiones que realiza el cirujano para introducir 

el instrumental laparoscópico, y se adhiere a la pared abdominal por interacción 

magnética con un imán externo. Dicho imán se acopla al efector final del brazo 

robótico externo, de manera que el movimiento de la cámara en el interior del 

abdomen se controla mediante el desplazamiento del brazo externo por la pared 

abdominal exterior. Por un lado, el uso del robot cámara aumenta el campo de 

visión comparado con los endoscopios convencionales, ya que el movimiento de la 

cámara no se encuentra restringido por el punto de entrada. Por otro lado, el 

enfoque de acoplar el imán externo a un brazo robótico permite la implementación 

de estrategias de navegación autónoma de la cámara, liberando al cirujano o a un 

asistente adicional de esta tediosa tarea.  

El robot cámara está dotado de dos grados de libertad internos, giro e inclinación 

de la cámara, que se actúan mediante un mecanismo actuado por cables. Estos 

grados de libertad adicionales permiten aumentar las capacidades de visión de la 

cámara, permitiendo obtener diferentes perspectivas de una misma escena, lo que 

ayuda a recuperar la pérdida de sensación de profundidad de la visión plana y 

permite obtener una perspectiva más natural del área de trabajo que la ofrecida por 

los endoscopios convencionales, cuya libertad de giro se encuentra muy limitada. El 

sistema de actuación mediante cables evita la necesidad de incluir motores en el 

robot cámara, lo que incrementaría tanto el peso como el tamaño del dispositivo. 
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Además, este sistema permite controlar los grados de libertad internos desde el 

exterior de forma sencilla.  

El capítulo 3 también analiza el control del asistente robótico. En este capítulo 

se detallan las características del control híbrido de fuerza-posición con 

compensación de pares para el correcto desplazamiento de la cámara. La 

compensación de pares asegura que el efector final del brazo externo permanezca 

en todo momento paralelo a la superficie de contacto, dado que la anatomía de la 

pared abdominal es desconocida por el sistema, y además difiere entre diferentes 

pacientes. Esto es esencial para asegurar una correcta interacción magnética entre 

el imán exterior y el robot cámara, así como para asegurar que el desplazamiento 

de la cámara se realiza de forma segura, sin causar ningún tipo de daños sobre la 

piel del paciente. En dicho esquema de control, la fuerza y la posición del brazo 

externo se desacoplan en dos movimientos: un desplazamiento sobre la superficie 

de contacto, y una fuerza en la dirección perpendicular a dicha superficie. Para el 

control de fuerza, se ha asumido un modelo de interacción elástico entre el robot y 

la superficie de contacto (pared abdominal), cuya constante de elasticidad se estima 

mediante un algoritmo RLS que actualiza los valores de la constante elástica con 

nuevas medidas tomadas durante el normal funcionamiento del asistente robótico. 

De esta manera, se tienen en cuenta las características particulares de la pared 

abdominal de cada paciente, ya que el espesor de la pared abdominal difiere 

enormemente de un paciente a otro.  

El capítulo 4 describe una arquitectura cognitiva para el asistente robótico 

inteligente que permite que el sistema colabore con los cirujanos en un entorno 

quirúrgico co-worker. La arquitectura, que está basada en la arquitectura estándar 

SOAR (Laird 2012), está compuesta por un módulo cognitivo como principal 

componente del conocimiento y el razonamiento del sistema, unos módulos de 

percepción y acción para la interacción del sistema con el paciente, y un módulo de 

interacción humano-máquina para la comunicación con el cirujano. La arquitectura 

ofrece una fácil integración de los diferentes módulos y una fácil adaptación a otras 

tareas quirúrgicas, aunque este trabajo se centra en un entorno colaborativo en el 

que el asistente robótico se encarga de manejar la cámara. El módulo de cognición 

incluye diferentes tipos de memoria para almacenar información, y algoritmos de 

razonamiento y toma de decisiones dependiendo de la información que el sistema 

percibe tanto del paciente como del cirujano.   

Por un lado, la memoria semántica almacena el conocimiento declarativo del 

sistema, esencial para las funcione de razonamiento y toma de decisiones, ya que 

contiene información básica que permite al sistema seguir el flujo de trabajo de una 

intervención. Este conocimiento se codifica como una base de datos que contiene 

información necesaria para el reconocimiento e identificación de objetos, protocolos 
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quirúrgicos, y los comportamientos esperados de la cámara en función del estado 

actual de la tarea. Un algoritmo de aprendizaje semántico permite añadir nueva 

información a la base de conocimiento del sistema relativa a las preferencias y 

formas de trabajar de cada cirujano.  

Por otro lado, la memoria procedural contiene la estrategia de navegación de la 

cámara. Dicha estrategia se ha mejorado respecto de los trabajos previos 

encontrados en la literatura científica mediante la combinación de un 

comportamiento reactivo, que realiza un seguimiento continuo de las herramientas 

quirúrgicas, y un comportamiento proactivo, que adapta el punto de vista al flujo 

de trabajo de la intervención. Así, la navegación de la cámara se fundamenta en un 

algoritmo flexible que permite al robot adaptar su comportamiento a la forma de 

trabajar y preferencias de diferentes cirujanos, y además le permite reaccionar ante 

situaciones imprevistas y no programadas a priori. Este método de navegación se 

mejora en el tiempo mediante un mecanismo de refuerzo por aprendizaje, capaz de 

aprender la contribución de cada uno de los comportamientos del robot, reactivo y 

proactivo, al comportamiento global del asistente. Estas contribuciones se aprenden 

para cada cirujano y para cada estado dentro de la intervención completa. La 

capacidad de aprendizaje es una característica esencial para un agente inteligente, 

que no ha sido considerada en ninguno de los trabajos previos encontrados en la 

literatura.  

El capítulo 5 presenta la implementación de los conceptos teóricos desarrollados 

en la presente tesis doctoral, y su validación mediante una serie de experimentos 

tanto in-vivo como in-vitro. En primer lugar, se describe la plataforma de 

experimentación, describiendo en detalles toda la arquitectura hardware que 

permite conectar entre sí los diferentes sistemas robóticos utilizados y el resto de 

dispositivos necesarios durante la implementación. A continuación, se describe la 

arquitectura software implementada, que se ha llevado a cabo en el software 

robótico ROS, que permite una fácil comunicación e integración de diversos 

dispositivos. Además, ROS permite comprobar el correcto funcionamiento y 

programación de cada uno de los dispositivos de forma individual como paso previo 

a la integración completa, una característica muy útil cuando se trabaja con 

sistemas compuestos por un gran número de dispositivos diferentes. Además, esta 

plataforma permite añadir de forma sencilla nuevos dispositivos al sistema, e incluso 

exportar los conceptos implementados en el presente trabajo a otras plataformas de 

experimentación. Por ejemplo, el brazo robótico Barrett WAM, utilizado como 

brazo externo del asistente robótico camarógrafo, puede ser fácilmente sustituido 

por otro tipo de brazo sin necesidad de modificar el resto del sistema, por ejemplo, 

para poder realizar un experimento en un laboratorio diferente. Esto permitiría 

poder validar todos los conceptos desarrollados en esta tesis doctoral en una 

plataforma como el da Vinci.  
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En cuanto a la experimentación, por un lado, el robot cámara ha sido validado 

mediante experimentación in-vivo con un modelo porcino, gracias a la colaboración 

de los cirujanos Eduardo Sánchez de Badajoz y Pilar Sánchez Gallegos. Mediante 

este experimento se ha demostrado la viabilidad de sustituir un endoscopio 

convencional por un robot cámara en un entorno quirúrgico real. Se ha demostrado 

que la interacción magnética entre el robot cámara y el imán externo es segura para 

el paciente y eficiente, y la calidad de la imagen proporcionada por el robot cámara 

tiene una calidad suficiente como para realizar tareas quirúrgicas reales. El 

experimento también ha revelado que el concepto de robot cámara presenta la 

ventaja adicional de que no se empaña, como ocurre con los endoscopios 

convencionales, que es necesario limpiarlos continuamente durante una 

intervención. Además, el robot cámara permite obtener más puntos de vista y 

perspectiva de las estructuras anatómicas que los endoscopios convencionales, 

proporcionando una visión más intuitiva y natural del campo operatorio, ya que la 

imagen viene desde arriba, al igual que ocurre en cirugía abierta. De esta manera, 

el robot cámara se puede utilizar como sistema único de visión sustituyendo el 

endoscopio en intervenciones laparoscópicas, o bien como cámara de apoyo al 

endoscopio que permita acceder a áreas inaccesibles por la cámara principal, u 

obtener una vista, por ejemplo, de la parte trasera de un órgano. Este enfoque 

podría aumentar las posibilidades de los procedimientos laparoscópicos actuales, 

abriendo las puertas a intervenciones que actualmente únicamente se realizan 

mediante cirugía abierta.   

Por otro lado, tanto el control híbrido de fuerza-posición como la estrategia de 

navegación inteligente de la cámara, han sido validados mediante experimentación 

in-vitro en los laboratorios de robótica médica de la Universidad de Málaga. El 

control del asistente robótico diseñado permite realizar un desplazamiento seguro 

de la cámara a lo largo de la cavidad abdominal. Por otro lado, se ha demostrado 

que la combinación de un comportamiento reactivo y un comportamiento proactivo, 

proporciona una estrategia de navegación de la cámara flexible y autónoma, que no 

requiere del control directo del cirujano, y proporciona un punto de vista eficiente 

del campo operatorio durante una intervención quirúrgica. También se ha 

demostrado que la estrategia de navegación propuesta permite al sistema reaccionar 

de forma eficiente ante situaciones imprevistas, de un modo similar a como lo haría 

un asistente humano. Finalmente, se ha validado el mecanismo de aprendizaje del 

sistema, demostrándose que permite mejorar el comportamiento del robot y adaptar 

el punto de vista dependiendo del cirujano con el que esté colaborando.  
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Como trabajos futuros de esta tesis doctoral, se proponen las siguientes 

contribuciones:  

6. Incluir el reconocedor de gestos en la implementación de la arquitectura 

cognitiva, ya que en el presente trabajo no se ha realizado debido a que esta 

contribución pertenece a una tesis doctoral anterior del grupo de 

investigación. Por lo tanto, un paso futuro consistirá en integrar el trabajo 

de la tesis previa con los resultados de la presente tesis doctoral.  

7. Realizar un modelo dinámico del sistema de actuación de los grados de 

libertad del robot cámara. En el presente trabajo se ha validado el 

funcionamiento del accionamiento mediante cables diseñado en el robot 

cámara de acuerdo con las necesidades de la tarea específica en la cual se ha 

aplicado el dispositivo. Sin embargo, en el futuro se realizará un estudio 

completo del diseño del robot que incluya un modelo dinámico del sistema 

de actuación.  

8. Aumentar las capacidades cognitivas del asistente robótico incorporando una 

memoria episódica. Este tipo de memoria permitiría incorporar información 

de experiencias pasadas a los algoritmos de toma de decisiones. De esta 

manera, los errores cometidos durante el normal funcionamiento del 

asistente se podrían corregir de forma autónoma en experiencias posteriores.  

9. Mejora del control híbrido fuerza-posición mediante un análisis en 

profundidad de la interacción magnética entre el dispositivo intra-abdominal 

y el imán externo. De esta manera, se podría mejorar la estimación de la 

constante elástica que modela la superficie de contacto.  

10. Experimentación in-vivo del asistente robótico completo. Por cuestiones 

logísticas, esta tesis ofrece resultados in-vivo únicamente del dispositivo 

intra-abdominal, habiéndose validado el resto del sistema en un entorno de 

laboratorio. Por lo tanto, como trabajo futuro se contempla la validación del 

sistema completa en un entorno quirúrgico real.  
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GLOSSARY OF TERMS 

DoF: Degree of Freedom 

FDA: US Food and Drug Administration 

HMI: Human Machine Interface  

HMM: Hidden Markov Models 

HRI: human-robot interaction 

HSV: hue-saturation-value 

LED: Light Emitting Diode 

LMA: Local Magnetic Actuation 

LS: Laparoscopic Surgery  

MAGS: Magnetic Anchoring and Guidance Systems 

MIS: Minimally Invasive Surgery 

MM: Markov Models 

NOTES: Natural Orifice Transluminal Endoscopic Surgery 

PI: proportional-integrative controller 

RGB: red-green-blue 

RL: reinforcement learning 

RLS: Recurrent least square algorithm  

ROS: Robotic Operating System 

SMA: shape memory alloy 

SPAS: Single Port Access Surgery 

SRTWT: Simulink real-time Windows target 
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NOTATIONS 

da Width of the abdominal wall 

dc Height of the camera robot 

de Height of the external robot attachment component 

dh Height of the holder 

Di Pulley diameter 

dI Distance between the camera and the image plane 

dx Shift along x-axis 

dy Shift along y-axis 

h Image height 

hz Zoomed image height 

S1OS2 Origin of reference system {S1} with respect to {S2} 

S1RS2 Rotation matrix between references systems {S1} and {S2} 

S1TS2 
Transformation matrix between references systems {S1} and 

{S2} 

w Image width 

wz Zoomed image width 

α Roll rotation 

β Tilt rotation 

θi Motor rotation 

φ Pan rotation 

dα Image displacement due to a camera roll rotation 

dβ Image displacement due to a camera tilt rotation 

S Semantic unit 

M Color marker 

HSV HSV coordinates of color marker 
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P Point position in the image 

OI Center of the image 

Kpm Constant to transform pixels to mm 

F Force 

δR Binary variable for right tool 

δL Binary variable for left tool 

Kr 
Contribution of the reactive behavior to the overall camera 

behavior 

Kp 
Contribution of the proactive behavior to the overall camera 

behavior 

τ Torque 

ϕ Angle formed by force vector and end effector z-axis 

ZE z-axis of external robot end effector 

u Vector of rotation 

DT, DN Matrixes that decoupled force and position actions 

KP, KI Position controller gains 

Kx Stiffness matrix of the contact surface 
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