4,213 research outputs found

    Interventions for improving upper limb function after stroke

    Get PDF
    Background: Improving upper limb function is a core element of stroke rehabilitation needed to maximise patient outcomes and reduce disability. Evidence about effects of individual treatment techniques and modalities is synthesised within many reviews. For selection of effective rehabilitation treatment, the relative effectiveness of interventions must be known. However, a comprehensive overview of systematic reviews in this area is currently lacking. Objectives: To carry out a Cochrane overview by synthesising systematic reviews of interventions provided to improve upper limb function after stroke. Methods: Search methods: We comprehensively searched the Cochrane Database of Systematic Reviews; the Database of Reviews of Effects; and PROSPERO (an international prospective register of systematic reviews) (June 2013). We also contacted review authors in an effort to identify further relevant reviews. Selection criteria: We included Cochrane and non‐Cochrane reviews of randomised controlled trials (RCTs) of patients with stroke comparing upper limb interventions with no treatment, usual care or alternative treatments. Our primary outcome of interest was upper limb function; secondary outcomes included motor impairment and performance of activities of daily living. When we identified overlapping reviews, we systematically identified the most up‐to‐date and comprehensive review and excluded reviews that overlapped with this. Data collection and analysis: Two overview authors independently applied the selection criteria, excluding reviews that were superseded by more up‐to‐date reviews including the same (or similar) studies. Two overview authors independently assessed the methodological quality of reviews (using a modified version of the AMSTAR tool) and extracted data. Quality of evidence within each comparison in each review was determined using objective criteria (based on numbers of participants, risk of bias, heterogeneity and review quality) to apply GRADE (Grades of Recommendation, Assessment, Development and Evaluation) levels of evidence. We resolved disagreements through discussion. We systematically tabulated the effects of interventions and used quality of evidence to determine implications for clinical practice and to make recommendations for future research. Main results: Our searches identified 1840 records, from which we included 40 completed reviews (19 Cochrane; 21 non‐Cochrane), covering 18 individual interventions and dose and setting of interventions. The 40 reviews contain 503 studies (18,078 participants). We extracted pooled data from 31 reviews related to 127 comparisons. We judged the quality of evidence to be high for 1/127 comparisons (transcranial direct current stimulation (tDCS) demonstrating no benefit for outcomes of activities of daily living (ADLs)); moderate for 49/127 comparisons (covering seven individual interventions) and low or very low for 77/127 comparisons. Moderate‐quality evidence showed a beneficial effect of constraint‐induced movement therapy (CIMT), mental practice, mirror therapy, interventions for sensory impairment, virtual reality and a relatively high dose of repetitive task practice, suggesting that these may be effective interventions; moderate‐quality evidence also indicated that unilateral arm training may be more effective than bilateral arm training. Information was insufficient to reveal the relative effectiveness of different interventions. Moderate‐quality evidence from subgroup analyses comparing greater and lesser doses of mental practice, repetitive task training and virtual reality demonstrates a beneficial effect for the group given the greater dose, although not for the group given the smaller dose; however tests for subgroup differences do not suggest a statistically significant difference between these groups. Future research related to dose is essential. Specific recommendations for future research are derived from current evidence. These recommendations include but are not limited to adequately powered, high‐quality RCTs to confirm the benefit of CIMT, mental practice, mirror therapy, virtual reality and a relatively high dose of repetitive task practice; high‐quality RCTs to explore the effects of repetitive transcranial magnetic stimulation (rTMS), tDCS, hands‐on therapy, music therapy, pharmacological interventions and interventions for sensory impairment; and up‐to‐date reviews related to biofeedback, Bobath therapy, electrical stimulation, reach‐to‐grasp exercise, repetitive task training, strength training and stretching and positioning. Authors' conclusions: Large numbers of overlapping reviews related to interventions to improve upper limb function following stroke have been identified, and this overview serves to signpost clinicians and policy makers toward relevant systematic reviews to support clinical decisions, providing one accessible, comprehensive document, which should support clinicians and policy makers in clinical decision making for stroke rehabilitation. Currently, no high‐quality evidence can be found for any interventions that are currently used as part of routine practice, and evidence is insufficient to enable comparison of the relative effectiveness of interventions. Effective collaboration is urgently needed to support large, robust RCTs of interventions currently used routinely within clinical practice. Evidence related to dose of interventions is particularly needed, as this information has widespread clinical and research implications

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201

    A review on design of upper limb exoskeletons

    Get PDF

    Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym

    Get PDF
    Background Stroke rehabilitation in low- and middle-income countries, such as Mexico, is often hampered by lack of clinical resources and funding. To provide a cost-effective solution for comprehensive post-stroke rehabilitation that can alleviate the need for one-on-one physical or occupational therapy, in lower and upper extremities, we proposed and implemented a technology-assisted rehabilitation gymnasium in Chihuahua, Mexico. The Gymnasium for Robotic Rehabilitation (Robot Gym) consisted of low- and high-tech systems for upper and lower limb rehabilitation. Our hypothesis is that the Robot Gym can provide a cost- and labor-efficient alternative for post-stroke rehabilitation, while being more or as effective as traditional physical and occupational therapy approaches. Methods A typical group of stroke patients was randomly allocated to an intervention (n = 10) or a control group (n = 10). The intervention group received rehabilitation using the devices in the Robot Gym, whereas the control group (n = 10) received time-matched standard care. All of the study subjects were subjected to 24 two-hour therapy sessions over a period of 6 to 8 weeks. Several clinical assessments tests for upper and lower extremities were used to evaluate motor function pre- and post-intervention. A cost analysis was done to compare the cost effectiveness for both therapies. Results No significant differences were observed when comparing the results of the pre-intervention Mini-mental, Brunnstrom Test, and Geriatric Depression Scale Test, showing that both groups were functionally similar prior to the intervention. Although, both training groups were functionally equivalent, they had a significant age difference. The results of all of the upper extremity tests showed an improvement in function in both groups with no statistically significant differences between the groups. The Fugl-Meyer and the 10 Meters Walk lower extremity tests showed greater improvement in the intervention group compared to the control group. On the Time Up and Go Test, no statistically significant differences were observed pre- and post-intervention when comparing the control and the intervention groups. For the 6 Minute Walk Test, both groups presented a statistically significant difference pre- and post-intervention, showing progress in their performance. The robot gym therapy was more cost-effective than the traditional one-to-one therapy used during this study in that it enabled therapist to train up to 1.5 to 6 times more patients for the approximately same cost in the long term. Conclusions The results of this study showed that the patients that received therapy using the Robot Gym had enhanced functionality in the upper extremity tests similar to patients in the control group. In the lower extremity tests, the intervention patients showed more improvement than those subjected to traditional therapy. These results support that the Robot Gym can be as effective as traditional therapy for stroke patients, presenting a more cost- and labor-efficient option for countries with scarce clinical resources and funding. Trial registration ISRCTN98578807

    Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.

    Get PDF
    Abstract Purpose: This paper proposes a novel system (using the Nintendo Wii remote) that offers customised, non-immersive, virtual reality-based, upper-limb stroke rehabilitation and reports on promising preliminary findings with stroke survivors. Method: The system novelty lies in the high accuracy of the full kinematic tracking of the upper limb movement in real-time, offering strong personal connection between the stroke survivor and a virtual character when executing therapist prescribed adjustable exercises/games. It allows the therapist to monitor patient performance and to individually calibrate the system in terms of range of movement, speed and duration. Results: The system was tested for acceptability with three stroke survivors with differing levels of disability. Participants reported an overwhelming connection with the system and avatar. A two-week, single case study with a long-term stroke survivor showed positive changes in all four outcome measures employed, with the participant reporting better wrist control and greater functional use. Activities, which were deemed too challenging or too easy were associated with lower scores of enjoyment/motivation, highlighting the need for activities to be individually calibrated. Conclusions: Given the preliminary findings, it would be beneficial to extend the case study in terms of duration and participants and to conduct an acceptability and feasibility study with community dwelling survivors. Implications for Rehabilitation Low-cost, off-the-shelf game sensors, such as the Nintendo Wii remote, are acceptable by stroke survivors as an add-on to upper limb stroke rehabilitation but have to be bespoked to provide high-fidelity and real-time kinematic tracking of the arm movement. Providing therapists with real-time and remote monitoring of the quality of the movement and not just the amount of practice, is imperative and most critical for getting a better understanding of each patient and administering the right amount and type of exercise. The ability to translate therapeutic arm movement into individually calibrated exercises and games, allows accommodation of the wide range of movement difficulties seen after stroke and the ability to adjust these activities (in terms of speed, range of movement and duration) will aid motivation and adherence - key issues in rehabilitation. With increasing pressures on resources and the move to more community-based rehabilitation, the proposed system has the potential for promoting the intensity of practice necessary for recovery in both community and acute settings.The National Health Service (NHS) London Regional Innovation Fund

    Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation

    Get PDF
    The upper limb rehabilitation robots have made it possible to improve the motor recovery in stroke survivors while reducing the burden on physical therapists. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. To be aligned with the most biomechanically complex joint of human body, the shoulder, specific considerations have to be made in the design of robotic shoulder exoskeletons. It is important to assist all shoulder degrees-of-freedom (DOFs) when implementing robotic exoskeletons for rehabilitation purposes to increase the range of motion (ROM) and avoid any joint axes misalignments between the robot and human’s shoulder that cause undesirable interaction forces and discomfort to the user. The main objective of this work is to design a safe and a robotic exoskeleton for shoulder rehabilitation with physiologically correct movements, lightweight modules, self-alignment characteristics and large workspace. To achieve this goal a comprehensive review of the existing shoulder rehabilitation exoskeletons is conducted first to outline their main advantages and disadvantages, drawbacks and limitations. The research has then focused on biomechanics of the human shoulder which is studied in detail using robotic analysis techniques, i.e. the human shoulder is modelled as a mechanism. The coupled constrained structure of the robotic exoskeleton connected to a human shoulder is considered as a hybrid human-robot mechanism to solve the problem of joint axes misalignments. Finally, a real-scale prototype of the robotic shoulder rehabilitation exoskeleton was built to test its operation and its ability for shoulder rehabilitation

    Home-based rehabilitation of the shoulder using auxiliary systems and artificial intelligence: an overview

    Get PDF
    Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.info:eu-repo/semantics/publishedVersio

    Upper-limb Kinematic Analysis and Artificial Intelligent Techniques for Neurorehabilitation and Assistive Environments

    Get PDF
    Stroke, one of the leading causes of death and disability around the world, usually affects the motor cortex causing weakness or paralysis in the limbs of one side of the body. Research efforts in neurorehabilitation technology have focused on the development of robotic devices to restore motor and cognitive function in impaired individuals, having the potential to deliver high-intensity and motivating therapy. End-effector-based devices have become an usual tool in the upper- limb neurorehabilitation due to the ease of adapting to patients. However, they are unable to measure the joint movements during the exercise. Thus, the first part of this thesis is focused on the development of a kinematic reconstruction algorithm that can be used in a real rehabilitation environment, without disturbing the normal patient-clinician interaction. On the basis of the algorithm found in the literature that presents some instabilities, a new algorithm is developed. The proposed algorithm is the first one able to online estimate not only the upper-limb joints, but also the trunk compensation using only two non-invasive wearable devices, placed onto the shoulder and upper arm of the patient. This new tool will allow the therapist to perform a comprehensive assessment combining the range of movement with clinical assessment scales. Knowing that the intensity of the therapy improves the outcomes of neurorehabilitation, a ‘self-managed’ rehabilitation system can allow the patients to continue the rehabilitation at home. This thesis proposes a system to online measure a set of upper-limb rehabilitation gestures, and intelligently evaluates the quality of the exercise performed by the patients. The assessment is performed through the study of the performed movement as a whole as well as evaluating each joint independently. The first results are promising and suggest that this system can became a a new tool to complement the clinical therapy at home and improve the rehabilitation outcomes. Finally, severe motor condition can remain after rehabilitation process. Thus, a technology solution for these patients and people with severe motor disabilities is proposed. An intelligent environmental control interface is developed with the ability to adapt its scan control to the residual capabilities of the user. Furthermore, the system estimates the intention of the user from the environmental information and the behavior of the user, helping in the navigation through the interface, improving its independence at home.El accidente cerebrovascular o ictus es una de las causas principales de muerte y discapacidad a nivel mundial. Normalmente afecta a la corteza motora causando debilidad o parálisis en las articulaciones del mismo lado del cuerpo. Los esfuerzos de investigación dentro de la tecnología de neurorehabilitación se han centrado en el desarrollo de dispositivos robóticos para restaurar las funciones motoras y cognitivas en las personas con esta discapacidad, teniendo un gran potencial para ofrecer una terapia de alta intensidad y motivadora. Los dispositivos basados en efector final se han convertido en una herramienta habitual en la neurorehabilitación de miembro superior ya que es muy sencillo adaptarlo a los pacientes. Sin embargo, éstos no son capaces de medir los movimientos articulares durante la realización del ejercicio. Por tanto, la primera parte de esta tesis se centra en el desarrollo de un algoritmo de reconstrucción cinemática que pueda ser usado en un entorno de rehabilitación real, sin perjudicar a la interacción normal entre el paciente y el clínico. Partiendo de la base que propone el algoritmo encontrado en la literatura, el cual presenta algunas inestabilidades, se ha desarrollado un nuevo algoritmo. El algoritmo propuesto es el primero capaz de estimar en tiempo real no sólo las articulaciones del miembro superior, sino también la compensación del tronco usando solamente dos dispositivos no invasivos y portátiles, colocados sobre el hombro y el brazo del paciente. Esta nueva herramienta permite al terapeuta realizar una valoración más exhaustiva combinando el rango de movimiento con las escalas de valoración clínicas. Sabiendo que la intensidad de la terapia mejora los resultados de la recuperación del ictus, un sistema de rehabilitación ‘auto-gestionado’ permite a los pacientes continuar con la rehabilitación en casa. Esta tesis propone un sistema para medir en tiempo real un conjunto de gestos de miembro superior y evaluar de manera inteligente la calidad del ejercicio realizado por el paciente. La valoración se hace a través del estudio del movimiento ejecutado en su conjunto, así como evaluando cada articulación independientemente. Los primeros resultados son prometedores y apuntan a que este sistema puede convertirse en una nueva herramienta para complementar la terapia clínica en casa y mejorar los resultados de la rehabilitación. Finalmente, después del proceso de rehabilitación pueden quedar secuelas motoras graves. Por este motivo, se propone una solución tecnológica para estas personas y para personas con discapacidades motoras severas. Así, se ha desarrollado una interfaz de control de entorno inteligente capaz de adaptar su control a las capacidades residuales del usuario. Además, el sistema estima la intención del usuario a partir de la información del entorno y el comportamiento del usuario, ayudando en la navegación a través de la interfaz, mejorando su independencia en el hogar

    Design and acceptability assessment of a new reversible orthosis

    Get PDF
    International audience— We present a new device aimed at being used for upper limb rehabilitation. Our main focus was to design a robot capable of working in both the passive mode (i.e. the robot shall be strong enough to generate human-like movements while guiding the weak arm of a patient) and the active mode (i.e. the robot shall be able of following the arm without disturbing human natural motion). This greatly challenges the design, since the system shall be reversible and lightweight while providing human compatible strength, workspace and speed. The solution takes the form of an orthotic structure, which allows control of human arm redundancy contrarily to clinically available upper limb rehabilitation robots. It is equipped with an innovative transmission technology, which provides both high gear ratio and fine reversibility. In order to evaluate the device and its therapeutic efficacy, we compared several series of pointing movements in healthy subjects wearing and not wearing the orthotic device. In this way, we could assess any disturbing effect on normal movements. Results show that the main movement characteristics (direction, duration, bell shape profile) are preserved

    Design and bio-mechanical evaluation of upper-body exoskeletons for physical assistance

    Get PDF
    corecore