11 research outputs found

    Robot Behavior Architecture Based on Smart Resource Service Execution

    Full text link
    [EN] Robot behavior definition aims to classify and specify the robot tasks execution. Behavior architecture design is crucial for proper robot operation performance. According to this, this work aims to establish a robot behavior architecture based on distributed intelligent services. Therefore, behavior definition is set in a high-level delegating the task execution to distributed services provided by network abstractions characterized as Smart Resources. In order to provide a mechanism to measure the performance of this architecture, an evaluation mechanisms based on a service performance composition is introduced. In order to test this proposal it is designed a real use case implementing the proposed robot behavior architecture on a real navigation task.Work supported by the Spanish Science and Innovation Ministry MICINN: CICYT 866 project M2C2: Codiseño de sistemas de control con criticidad mixta basado en 867 misiones TIN2014-56158-C4-4-P and PAID (Polytechnic University of Valencia): 868 UPV-PAID-FPI-2013.Munera-Sánchez, E.; Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE.; Blanes Noguera, F. (2017). Robot Behavior Architecture Based on Smart Resource Service Execution. International Journal of Soft Computing And Artificial Intelligence (Online). 5(1):55-60. http://hdl.handle.net/10251/152272S55605

    Safe Navigation of a Wall-Climbing Robot by Methods of Risk Prediction and Suitable Counteractive Measures

    Get PDF
    Abstract-Safe navigation on vertical concrete structures is still a great challenge for mobile climbing robots. The main problem is to find the optimum of applicability and safety since these systems have to fulfill certain tasks without endangering persons or their environment. This paper addresses aspects of safe navigation in the range of wall-climbing robots using negative pressure adhesion in combination with a drive system. In this context aspects of the developed robot control architecture will be presented and common hazards for this type of robots are examined. Based on this a risk prediction function is trained via methods of evolutionary algorithms using internal data generated inside of the behavior-based robot control network. Although there will always be a residual risk of a robot dropoff it is shown that the risk could be lowered tremendously by the developed analysis methods and counteractive measures

    Model of Competencies for Decomposition of Human Behavior: Application to Control System of Robots

    Get PDF
    Humans and machines have shared the same physical space for many years. To share the same space, we want the robots to behave like human beings. This will facilitate their social integration, their interaction with humans and create an intelligent behavior. To achieve this goal, we need to understand how human behavior is generated, analyze tasks running our nerves and how they relate to them. Then and only then can we implement these mechanisms in robotic beings. In this study, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this study has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots

    Integration of Mobile Robot Navigation on a Control Kernel Middleware based system

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-07593-8_55This paper introduces how a mobile robot can perform navigation tasks by taking the advantages of implementing a control kernel middleware (CKM) based system. Smart resources are also included into the topology of the system for improving the distribution of computational load of the needed tasks. The CKM and the smart resources are both highly recon gurable, even on execution time, and they also implement.lt detection mechanisms and QoS policies. By combining of these capabilities, the system can be dinamically adapted to the requirements of its tasks. Furthermore, this solution is suitable for most type of robots, including those which are provided of a low computational power because of the distribution of load, the bene ts of exploiting the smart resources capabilities, and the dynamic performance of the system.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under the CICYT project Mission Based Control (COBAMI): DPI2011-28507-002-02.Munera Sánchez, E.; Muñoz Alcobendas, M.; Posadas-Yagüe, J.; Poza-Lujan, J.; Blanes Noguera, F. (2014). Integration of Mobile Robot Navigation on a Control Kernel Middleware based system. En Distributed Computing and Artificial Intelligence, 11th International Conference. Springer Advances in Intelligent Systems and Computing Volume 290. 477-484. https://doi.org/10.1007/978-3-319-07593-8_55S477484Rock (Robot Constrution Toolkit), http://www.rock-robotics.org/Albertos, P., Crespo, A., Simó, J.: Control kernel: A key concept in embedded control systems. In: 4th IFAC Symposium on Mechatronic Systems (2006)Bruyninckx, H., Soetens, P., Koninckx, B.: The Real-Time Motion Control Core of the Orocos Project. In: IEEE International Conference on Robotics and Automation, pp. 2766–2771 (2003)De Souza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)Fitzpatrick, P., Metta, G., Natale, L.: Towards long-lived robot genes. Robotics and Autonomous Systems (2008)Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Middleware for robotics: A survey. In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, pp. 736–742. IEEE (2008)Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot programming: The carnegie mellon navigation (carmen) toolkit. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2436–2441. IEEE (2003)Muñoz, M., Munera, E., Blanes, J.F., Simo, J.E., Benet, G.: Event driven middleware for distributed system control. XXXIV Jornadas de Automatica, 8 (2013)Muñoz, M., Munera, E., Blanes, J.F., Simó, J.E.: A hierarchical hybrid architecture for mission-oriented robot control. In: Armada, M.A., Sanfeliu, A., Ferre, M. (eds.) First Iberian Robotics Conference of ROBOT 2013. AISC, vol. 252, pp. 363–380. Springer, Heidelberg (2014)Sánchez, E.M., Alcobendas, M.M., Noguera, J.F.B., Gilabert, G.B., Ten, J.E.S.: A reliability-based particle filter for humanoid robot self-localization in RoboCup Standard Platform League. Sensors (Basel, Switzerland) 13(11), 14954–14983 (2013)Poza-Luján, J.-L., Posadas-Yagüe, J.-L., Simó-Ten, J.-E.: Relationship between Quality of Control and Quality of Service in Mobile Robot Navigation. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 557–564. Springer, Heidelberg (2012)Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems using the behavior-based control architecture iB2C. Robotics and Autonomous Systems 58(1), 46–67 (2010)Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: An open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)Roy, N., Burgard, W., Fox, D., Thrun, S.: Coastal navigation-mobile robot navigation with uncertainty in dynamic environments. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 1, pp. 35–40. IEEE (1999)Nicolau, V., Muñoz, M., Simó, J.: KertrolBot Platform: SiDiReLi: Distributed System with Limited Resources. Technical report, Institute of Control Systems and Industrial Computing - Polytechnic University of Valencia, Valencia, Spain (2011

    Entrenamiento de drones para la monitorizaciĂłn de incendios mediante aprendizaje por refuerzo

    Full text link
    Año tras año hemos observado un aumento considerable del número de incendios producidos por todo el globo. Estos incendios dejan tras de sí numerosas perdidas tanto materiales como humanas. Debido a la naturaleza estocástica de las llamas, la necesidad de obtener información precisa y en tiempo real es clave para la toma de decisiones en las tareas de extinción de incendios. Pero no es tarea fácil debido a las grandes magnitudes que pueden alcanzar algunos incendios y en ocasiones, la falta de medios personales y materiales. A pesar del uso de vehículos en este tipo de tareas, suponen un número muy reducido con un elevado coste de uso. Para solucionarlo se propone el uso de drones autónomos. Este Trabajo Fin de Grado tiene como objetivo estudiar la viabilidad de un sistema de monitorización de incendios haciendo uso de drones. Se ha optado por el uso de una arquitectura basada en comportamientos en donde en vez de codificar el sistema global se codifican módulos más sencillos que al ser interconectados logran conductas más complejas al sistema. Además, para la codificación de estos comportamientos se han utilizado técnicas de aprendizaje por refuerzo para la obtención de funcionamientos más elaborados. Los algoritmos se han desarrollado y validado mediante un entorno de simulación de incendios forestales realista desarrollado en el propio trabajo. Los resultados muestran cómo las aeronaves pueden realizar un seguimiento de la expansión del incendio obteniendo información con un alto grado de fiabilidad respecto al crecimiento del incendio real. Simulaciones adicionales demuestran que el planteamiento se puede escalar aumentado el número de aeronaves y la generalización del conocimiento al poder ser aplicado en diferentes siluetas de incendio

    A Hierarchical Hybrid Architecture for Mission-Oriented Robot Control

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-03413-3_26In this work is presented a general architecture for a multi physical agent network system based on the coordination and the behaviour management. The system is organised in a hierarchical structure where are distinguished the individual agent actions and the collective ones linked to the whole agent network. Individual actions are also organised in a hybrid layered system that take advantages from reactive and deliberative control. Sensing system is involved as well in the behaviour architecture improving the information acquisition performance.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under the CICYT project Mission Based Control (COBAMI): DPI2011-28507-C02-02, under coordinated project High Integrity Partitioned Embedded Systems (Hi-PartES): TIN2011-28567-C03-03, and under the collaborative research project supported by the European Union MultiPARTES Project: FP7-ICT 287702. 2011-14.Muñoz Alcobendas, M.; Munera Sánchez, E.; Blanes Noguera, F.; Simó Ten, JE. (2013). A Hierarchical Hybrid Architecture for Mission-Oriented Robot Control. En ROBOT2013: First Iberian Robotics Conference: Advances in Robotics, Vol. 1. Springer. 363-380. https://doi.org/10.1007/978-3-319-03413-3_26S363380Aragues, R.: Consistent data association in multi-robot systems with limited communications. Robotics: Science and Systems, 97–104 (2010)Aragues, R., Cortes, J., Sagues, C.: Distributed consensus on robot networks for dynamically merging feature-based maps. IEEE Transactions on Robotics (2012)Arkin, R.C.: Motor schema based mobile robot navigation. The International Journal of Robotics Research 8(4), 92–112 (1989)Asama, H., Habib, M.K., Endo, I., Ozaki, K., Matsumoto, A., Ishida, Y.: Functional distribution among multiple mobile robots in an autonomous and decentralized robot system. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation. IEEE (1991)Benet, G., Blanes, F., Martínez, M., Simó, J.: A multisensor robot distributed architecture. In: IFAC Conference INCOM 1998 (1998)Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)Canas, J.M., Matellán, V.: Dynamic schema hierarchies for an autonomous robot. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 903–912. Springer, Heidelberg (2002)Choset, H., Nagatani, K.: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation 17(2), 125–137 (2001)Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: Efficient position estimation for mobile robots. American Association for Artificial Intelligence, 343–349 (1999)Hu, J., Xie, L., Xu, J.: Vision-based multi-agent cooperative target search. In: Control Automation Robotics & Vision (ICARCV), pp. 895–900 (2012)Huq, R., Mann, G.K.I., Gosine, R.G.: Behavior-modulation technique in mobile robotics using fuzzy discrete event system. IEEE Transactions on Robotics 22(5), 903–916 (2006)Jayasiri, A., Mann, G., Gosine, R.G.: Mobile robot behavior coordination using supervisory control of fuzzy discrete event systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 690–695 (2009)Jayasiri, A., Mann, G.K.I., Gosine, R.G.: Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(5), 1224–1238 (2011)Koenig, N., Howard, A.: Gazebo-3d multiple robot simulator with dynamics. Technical report (2006)Lin, F., Ying, H.: Modeling and control of fuzzy discrete event systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 32(4), 408–415 (2002)Madden, J.D.: Multi-robot system based on model of wolf hunting behavior to emulate wolf and elk interactions. In: 2010 IEEE International Conference on Robotics and Biomimetics, ROBIO, pp. 1043–1050 (2010)Mataric, M.J.: Interaction and intelligent behavior. Technical report, DTIC Document (1994)Olivera, V.M., Molina, J.M., Sommaruga, L., et al.: Fuzzy cooperation of autonomous robots. In: Fourth International System on Intelligent Robotics Systems, Lisboa, Portugal (1996)McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A deliberative architecture for auv control. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1049–1054. IEEE (2008)Munera, E., Muñoz, M., Simó, J., Blanes, F.: Humanoid Robot Self-Location In SPL League. In: Comité Español de Automática (CEA), XXXIII Jornadas de Automatica, 797–804 (2012)Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems using the behavior-based control architecture iB2C. Robotics and Autonomous Systems 58(1), 46–67 (2010)Qiu, D.: Supervisory control of fuzzy discrete event systems: a formal approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(1), 72–88 (2005)Aladebaran Robotics. NAO Software Documentation 1.12. Technical report (2012)St-Pierre, M., Gingras, D.: Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system. In: 2004 IEEE Intelligent Vehicles Symposium, pp. 831–835 (2004)Stoytchev, A., Arkin, R.C.: Combining deliberation, reactivity, and motivation in the context of a behavior-based robot architecture. In: Proceedings of the 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 290–295 (2001)Nicolau, V., Muñoz, M., Simó, J.: KertrolBot Platform. SiDiReLi: Distributed System with Limited Resources. Technical report, Institute of Control Systems and Industrial Computing - Polytechnic University of Valencia, Valencia, Spain (2011

    Sviluppo di un Framework per la Programmazione di Robot basati su Architettura di Controllo Behaviour-based

    Get PDF

    Neues Konzept zur Bewegungsanalyse und -synthese fĂĽr Humanoide Roboter basierend auf Vorbildern aus der Biologie

    Get PDF
    Es werden neue Methoden zur Bewegungsgenerierung und -analyse von humanoiden Robotern vorgestellt und zur Anwendung gebracht. Als Vorbild dienen zum Einen menschliche Reflexe, zum Anderen zentrale neuronale Mustergeneratoren (CPG) fĂĽr zyklische Bewegungen. Mit Leaky Integrate-and-Fire Neuronen wird ein generisches Reflexmodell erstellt und fĂĽr konkrete Reflexe realisiert. Die erstellten CPGs dienen sowohl der Bewegungsanalyse als auch der -generierung fĂĽr einen zweibeinigen Demonstrator

    Behavior-based Control for Service Robots inspired by Human Motion Patterns : a Robotic Shopping Assistant

    Get PDF
    Es wurde, unter Verwendung menschenähnlicher Bewegungsmuster und eines verhaltensbasierten Ansatzes, eine Steuerung für mobile Serviceroboter entwickelt, die Aufgabenplanung, globale und lokale Navigation in dynamischen Umgebungen, sowie die gemeinsame Aufgabenausführung mit einem Benutzer umfasst. Das Verhaltensnetzwerk besteht aus Modulen mit voneinander unabhängigen Aufgaben. Das komplexe Gesamtverhalten des Systems ergibt sich durch die Vereinigung der Einzelverhalten (\u27Emergenz\u27)
    corecore