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Abstract— Safe navigation on vertical concrete structures is
still a great challenge for mobile climbing robots. The main
problem is to find the optimum of applicability and safety since
these systems have to fulfill certain tasks without endangering
persons or their environment. This paper addresses aspects of
safe navigation in the range of wall-climbing robots using neg-
ative pressure adhesion in combination with a drive system. In
this context aspects of the developed robot control architecture
will be presented and common hazards for this type of robots
are examined. Based on this a risk prediction function is trained
via methods of evolutionary algorithms using internal data
generated inside of the behavior-based robot control network.
Although there will always be a residual risk of a robot drop-
off it is shown that the risk could be lowered tremendously by
the developed analysis methods and counteractive measures.

I. INTRODUCTION

Up to now, inspections or the maintenance of large vertical
concrete structures are a great challenge for wall-climbing
robots. Although there is a large field of application – e. g. in
the regular inspections of buildings like dams, cooling towers
or bridge pylons – there are still no commercial robots avail-
able. Whereas some climbing robots [1], [2] suite well for
these tasks but are not robust enough, others [3], [4], [5] seem
to climb safely but provide less applicability. Applicability
requires e. g. fast navigation speed, high maneuverability,
easy handling by the user and high payload in terms of
inspection sensors or tools for maintenance. In contrast to
that, safety demands a more defensive system behavior to
ensure the adhesion even under worst conditions to avoid
injuries of the technical staff or damages of the system.

The main problem related to safe robot navigation is based
on the fact that the influence of the environment on the robot
cannot be described well. In the area of ground-based vehi-
cles this description – e. g. based on geometric considerations
– is focussed on locomotion and originates methods of terrain
classifications or adaptions of the navigation depending on
an estimated or measured impact [6], [7], [8]. But, so far,
it is nearly unexplored in which cases wall-climbing robots
fail and in which way these cases can either be avoided, or
at least reduced in their impact or probability of occurance.

This paper addresses the problem of safe navigation in
the range of wall-climbing robots using negative pressure
adhesion in combination with a drive system [9]. Here, a
malfunction, an unhandled event, or a wrong evaluation of
the situation can lead to a drop-off and therefore to strong
damages or to a total loss of the system. Due to the increased
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system complexity compared to ground vehicles – since not
only the locomotion, but also the adhesion components inter-
act with the environment – additional analysis elements and
measures are needed. The goal is to reduce the probability
of a robot drop-off to a minimum by performing a detailed
hazard analysis and applying special control methods.

Section II introduces the prototypic climbing robot
CROMSCI and the state-of-the-art in terms of safety systems
of mobile and climbing robots. Since standard closed-loop
controllers are not sufficient to avoid a drop-off in certain
situations, section III presents the behavior-based control
elements of the negative pressure system and examines
different hazards affecting the robot and methods to detect
and avoid risks. Finally, the experimental results are summed
up in section IV and conclusion follows in section V.

II. FUNDAMENTALS

Of course, navigation safety strongly depends on the
environmental situation and on the capabilities of the vehicle.
Therefore, one needs to know the basic technologies of the
used robot to get an idea of the challenge in this area.

A. Wall-Climbing Robot CROMSCI

The service robot CROMSCI (figure 1) has been developed
to perform inspection tasks on large concrete buildings
area-wide and semi-autonomously [10]. To fulfill demands
like fast navigation speed and high payload it combines
several technologies: a negative pressure adhesion system
with redundant chambers, an omnidirectional drive system
and adaptive sealings. Key data are a diameter of 80 cm,
a height of 40 cm, a weight of about 50 kg including an
optional manipulator arm, and a payload of about 10 kg.
For communication purposes and because of high energy
consumption CROMSCI is supported via an umbilical cord.
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Fig. 1. Climbing robot CROMSCI driving on a concrete wall.
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The unique feature of CROMSCI is the negative pressure
system consisting of individual adhesion chambers in a shape
of spokes with airfilled rubber sealings. This allows a bal-
ancing of downforces and torques for the adhesion to vertical
or overhead structures. Figure 2 shows a simplyfied model
of the system with its seven working chambers (marked with
numbers 1 to 7). They are supported by one large reservoir
volume (R) on top, which is evacuated by three suction
engines. Also an exemplary crack is shown, which influences
chambers C3 and C7 by an increased leakage.
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Fig. 2. Structural view of the negative pressure system: Adhesion chambers
1 to 7 and reservoir R with an exemplary crack below chambers 3 and 7.

To allow a closed-loop control of the chamber pressures
– generally lying between -100 and -50 mBar compared to
ambient pressure – the adhesion chambers and the reservoir
are equipped with pressure sensors and connected via valves.
In operation, the robot drives at a wall with inflated chamber
sealings which glide over the surface and make the system
more or less air-proof so that – in general – all vacuum
chambers contribute to adhesion. The sealing system consists
of an air filled rubber tube at about 1.5Bar with a coating for
improved sliding characteristics. For locomotion CROMSCI
is equipped with three steerable standard wheels without
suspension allowing high maneuverability in three degrees
of freedom and fast continuous motion with a velocity of up
to 9.81m/min. Integrated load cells measure downforces and
torques at the wheel contact points.

For collision avoidance CROMSCI is equipped with a light-
weighted laser range sensor (Hokuyo URG-04LX). But, its
accuracy is too low to detect small surface features or
irregularities which can be overcome by the locomotion
system, but which have an influence on the adhesion system.
Of course, other more precise sensors exist, but, these devices
(e. g. light section or stripe projection sensors) are either
much too heavy or large, have a long sensing time or a
small sensing area. Therefore, internal sensors must be used
to analyze the safety state of the robot.

B. State-of-the-Art in Navigation Safety

The requirement for safe navigation connects two aspects:
Safety and locomotion. For industrial applications but also
for mobile service-robots certain guidelines and requirements
exist e. g. in terms of international standards for hazard
identification and risk reduction. But, especially in the case of
climbing machines the robot itself and not the environment is
most endangered. In general, four criteria have been defined
which are important for safe navigation of mobile robots
[11]: Detection, localization, response and throughput. But
these guidelines need a detailed analysis of the system and
knowledge about its interaction with the environment. The
same counts for the analysis of internal components [12]
via classic analysis methods like fault tree analysis or the
interaction between robot and environment depending on
precise or very abstract descriptions [13], [14].

Since – in the present case – navigation safety is strongly
linked to the adhesion system, common approaches related to
navigation safety are not sufficient since they only consider
the ability of the locomotion system to overcome certain
surfaces and of the detection abilities to survey the robot’s
surrounding. So far, navigation safety of climbing robots is
handled only in terms of closed-loop controllers [1], [15]
or sufficient reserves of the adhesion system [16]. Since
these common measures are not sufficient to ensure a certain
safety of mobile wall-climbing robots like CROMSCI, new
approaches of robot control and situation rating are needed.
Nevertheless, a final safety measure to avoid a drop-off of
the robot is a security rope, as it is also applied here.

III. RISK ANALYSIS AND PREDICTION

In general, climbing robots have to face a couple of
hazards during operation. Similar to ground-based systems
they are in danger of a collision or have to face permanent
problems like wheel-slip or abrasion. Also internal malfunc-
tions of hard- and software may lead to damages, but their
probability of occurance is comparably low in the present
case. But, since adhesion is an additional dimension here,
further hazards may occur which are strongly related to
surface characteristics and defects at the building (figure 3).

Fig. 3. Different surfaces, contruction characteristics and defects: washed-
out and roughened concrete, formwork joint, rock pockets, exposed core
iron and spalling (from top left to bottom right).



Sources of these hazards can be the general surface
structure like exposed aggregate concrete, sheathing gaps or
edges, but also spalling or rock pockets, which are influenced
by the weather and general stress. So far, it is not known in
which way the negative pressure system is affected if the
robot reaches these surfaces and whether it will fail or keep
adhered. This is also caused by missing statistical data, which
would be needed to create a model describing the interaction
between robot and surface sufficiently.

A. Robot Adhesion Control

Because of missing knowledge and statistical data as well
as suitable sensors for a foresighted detection, other solutions
are needed to analyze the safety state of the robot. The idea
is to take internal information from the control network of
CROMSCI into account. This network consists of components
of the behavior-based control architecture iB2C1 [17] and
reaches from closed-loop control up to high deliberative
functions. In general an iB2C behavior is an algorithmic
element with an arbitrary transfer function F (figure 4) gen-
erating control data ~u (e. g. valve opening) based on the input
vector ~e (e. g. pressure values) and meta data. This interface
is the same for all behaviors and uses the following four
meta values to signal the current state and to influence other
behaviors: Stimulation s ∈ [0, 1] activates the behavior which
enables its task execution; inhibition ~ι ∈ [0, 1]v reduces or
annihilates the effect of a stimulation; activity ~a ∈ [0, 1]w

shows the real amount of action the behavior is performing
and target rating r ∈ [0, 1] shows how satisfied the behavior
is in the current situation. Additionally, general elements
for arbitration or interaction exist like fusion behaviors to
combine outputs of behaviors trying to control the same
resource or behavioral groups to create logical units.

Fig. 4. Elementary behavior module in the iB2C architecture.

The adhesion control system itself consists of a network
of 47 behavior elements [18]. As input, the network receives
e. g. desired force values and it delivers valve positions for
chamber pressure control. The force control behaviors try
to adjust this amount of total downforce and its point of
action. They make use of the lower part of the network
as a kind of actuator, which consists e. g. of the chamber
control behaviors executing the closed-loop pressure control.
Here, for instance, the activity value corresponds to the valve
opening whereas the target rating depends on the difference
between desired and current chamber pressure. For safety
reasons it is also possible to cut off single chambers from the

1http://rrlib.cs.uni-kl.de/mca2-kl/libraries/ib2c/

remaining adhesion system if the leakage of this chamber is
too large due to surface defects. Corresponding deactivation
behaviors analyze the single chamber state, shut them down
and reactivate them if possible.

B. Risk Prediction Method

This adhesion control network works in general, but is
not able to prevent the robot from a drop-off in certain
situations. The presented approach of using internal informa-
tion for risk estimation is possible because of the redundant
multiple chamber system: Since robot adhesion is created
by a couple of chambers some of them may fail for a
short period of time without endangering the system. In
practice the front chambers in driving direction are exposed
to hazardous features first which allows a judgement of the
upcoming terrain. Since pressure sensor values itself are not
sufficient for risk prediction, virtual sensor values in form of
activity and target rating values of the adhesion behaviors
are evaluated. Especially the different target ratings provide
information about the state of the adhesion system because
they represent individual satisfaction values of controllers
like the difference between desired and current value.

The goal is to determine a risk value based on these meta
values and an evaluation function which is one or above if
the robot will drop off (if no evasive action is performed).
Additionally, this value must stay below one if the robot
adhesion is not endangered to avoid false positives. Finally,
the risk value should indicate a potential drop off early
enough (1-2 s) to allow evasion actions like driving back to
a safe position so that the adhesion system can recover. In
the current approach a weighted sum E(~a,~r) : [0, 1]2n 7→ R
is used as evaluation function which applies the meta data
of the n behaviors as shown in equation 1.

E(~a,~r) =

n−1∑
i=0

(wa,i · ai + wr,i · ri + ...) (1)

At this juncture activity ai and target rating values ri
of behavior i are used in combination with corresponding
weights wa,i and wr,i. In addition it is also possible to take
filtered or preprocessed meta values like average, median or
variance with according weights into account.

C. Optimization via Evolutionary Methods

The challenge is now to determine the weights of E(~a,~r).
Since they cannot be set by hand, an optimization function
via an evolutionary algorithm and training data has been
developed [19]. Based on training sets and a rating function
the weights are changed randomly but goal-leading until they
fit the given sets. Each training set contains the behavioral
meta values of every time step and a so-called adhesion
score SA ∈ [0, 1] indicating the current state of the adhesion
system (equation 2). This score (and therefore the chance of
a drop-off) raises if the adhesion force Fz becomes smaller
or if the position of its point of action (xF , yF ) departs from
the center. Here, dmax, Fmax

z and Fmin
z denote thresholds for

distance from center and downforce values respectively.
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The goal is to predict a raise of this score SA early enough
to start counteractive measures. Therefore, a population P
of possible solutions is optimized to fit certain criteria, as
published in [19]. Each individual c is one set of weights ~w
(one weight for each used meta value). One evolution step,
starting with the current population P (s) at step s, can be
summed up as follows:

1) Determine fitness F (c) of all individuals c ∈ P (s) of
the current population based on quality of prediction.

2) Cancel the optimization process if an individual meets
the desired criteria.

3) Randomly select individuals c with probability p(c) for
the intermediate population P ′(s) (survivors).

4) Adapt the weights of the survivors c ∈ P ′(s) via
mutation with certain probabilities.

5) Set updated P ′(s) as new generation P (s + 1) and
continue evolution with the children.

The most difficult aspect is the calculation of the fitness
value which depends on criteria like the avoidance of false-
alarms and desired notifications of a robot drop-off in the
training phase. Here, an individual is fit if evaluation E from
equation 1 in combination with the individual’s weights is a
good prediction of the adhesion score SA from equation 2.

To describe this relationship in an algorithmic way, a
rating function RE compares the evaluation result E(t) of
an individual with the corresponding adhesion score SA(t)
of that training set over time. Three different aspects are
taken into account: At first, E(t) should stay below SA(t),
otherwise the rating value RE is diminished by a penalty.
Second, unwanted values must be avoided which produce
false alarms. Therefore, a penalty is added based on the
differences of E(t) and SA in cases of too early notifications
or false alarms. In the same way a penalty for missing desired
values can be applied, if the adhesion score SA of this
training set signals a drop-off without that E(t) predicted
this (reached a value above 1) a certain time span earlier.

In practice, the evaluation system has to be trained once
and can be applied to similar situations and setups. The
results of the complete system regarding the detection and
false alarm rates allow a good prediction of upcoming
hazards, as already presented in [19]. In terms of safety, this
analysis is essential to enable the robot to identify hazardous
situations soon enough to initiate counteractive measures.

D. Case-based Prediction of Risks

But, experimental results of the training process have
shown that it might be impossible to find sets of weights
that fit strongly differing situations. Driving upwards a wall
and driving downwards e. g. are completely different for the
adhesion system since in the first case the top chambers –
which have to adjust a higher negative pressure to balance
out robot tilt – first reach a surface defect. In the second

case the lower chambers reach the disturbance which do
not contribute much to the overall downforce. Therefore,
the complete risk prediction system considers three different
situations which have to be trained independently: Driving
down the wall, driving up and driving horizontal. Since
robot movement is a combination of horizontal and vertical
motions the prediction needs to be sensitive for two situations
in parallel if the robot e. g. moves up and sidewards. Similar
cases like driving left and driving right are handled by
mirroring the weights which are applied to behavior values
having a horizontal twin due to a symmetrical robot setup.

E. Counteractive Measures for Risk Avoidance

Beside the mentioned adhesion control structure there
also exists a behavior network for robot motion control.
Whereas some basic safety measures like a traction control
system or a shear force controller have been integrated on
embedded electronics [10] this network is used for high level
control. Figure 5 illustrates the components (middle) which
are responsible for the six basic robot motions: turn left,
turn right, drive forward, drive right, drive backward and
drive left (left out here). Two of them are combined via a
fusion behavior (dark gray boxes below) to determine the
final amount of turning, straight or sideward driving. The
fusion behaviors above are needed to allow a triggering of
these motions from different higher behaviors like a GUI.

trigger inputs E, SA motion inputs for history individual motion commands

individual inhibitions of motions motion commands for kinematics

draw back

turn left turn right forward right

turn left turn right forward right

em. stop

turning straight sideward

Fig. 5. Behavior-based network for basic robot motions and embedded
counteractive behaviors to avoid a robot drop-off.

Here, two important counteractive measures have been
developed to avoid a drop-off of the robot: Emergency
stop and draw back. Depending on the current situation
the emergency stop behavior can inhibit motion commands
pointing in the same direction as the last ones. By this
mechanism the robot stops driving into the current direction
but the user is still able to rescue the system by driving it
backwards manually. A more sophisticated measure is the
draw back behavior on top which actively triggers robot
motions to replay the last motions in the opposite way. This
behavior is activated by the risk prediction value E.



IV. EXPERIMENTAL RESULTS

The complete system of adhesion and motion behaviors,
detection, analysis and counteractions has been tested inside
of a simulated environment first to validate the general
functionalities of the presented methods [20]. Afterwards,
some real experiments were executed with the real prototype.

A. Experimental Setup and Preparation

To prove the approach under field conditions training data
from the real machine is needed to optimize the evaluation
function by finding suitable weights. For data collection and
subsequent experiments a wooden indoor test wall has been
used. The advantages of this setup are the easy adaption
of the wall (e. g. creation of holes and grooves) and the
independence from weather. In the test runs CROMSCI has
been driven sidewards several times until the end of the wall
where the robot is not able to stay adhered and drops off.

In total four training sets have been created: Three with a
drop-off of the robot (secured by a rope) and one without,
in which the end of the wall was not reached. The last one
is important to avoid false alarms whereas the others are
needed to get to know critical situations. Figure 6 depicts the
adhesion score values SA of all training sets as dashed gray
graphs. In solid black the optimized evaluation values E for
risk prediction based on the trained weights are shown which
should reach a value above 1 one to two seconds before the
adhesion score SA is at 1 as reaction time.
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Fig. 6. Resulting evaluation values E (solid black) for the used four training
sets based on the learned weights and adhesion scores SA (dashed).

B. Experiments on a Concrete Wall

After some preliminary and successful tests on the wooden
test wall, the prediction of risks and the corresponding safety
measures are executed under real conditions on a concrete
wall outside of a building. Again, the same setup – driving
beyond the wall’s edge – has been chosen because it leads

to a repeatable robot behavior (drop-off). Due to the high
dynamic of the system it can be stated that the robot is in
a similar but not the same situation as before. This shows
the robustness against some dissimilarities of the evaluation
since the training sets of the wooden wall are used here.
Nevertheless, it was possible to record only a small set of
training data and to perform a small number of validation
runs due to hardware limitations. Figure 7 shows videos
stills2 of a test run. It can be seen that the system behaves in
the desired way and moves backward away from the hazard.

t = 2 s

t = 4 s

t = 6 s

t = 8 s

t = 10 s

t = 12 s

Fig. 7. Video stills of prediction and avoidance experiments on a concrete
wall (frontal and side view).

Figure 8 depicts the development of the downforce Fz ,
the point of downforce ~PF and the rating values SA and E.
Although the estimated risk E is a bit irregular, it signals an
upcoming drop-off at t ≈ 7.2 s which triggers the automatic
counteractive measures in terms of the draw back behavior.
It can be expected, that the risk estimation is even better if
training examples of that particular situation are added to the
optimization process to update the weights.
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2The complete video can be found at http://agrosy.cs.uni-kl.
de/en/galerie/cromsci-medien/



The interaction of the motion control network from sec-
tion III are depicted in figure 9. Here, the GUI behavior is
active (first row) all the time to allow a manual steering of
the robot. The robot is driven by hand half-speed forward
and right as it can be seen by the activities aF and aR with
values of about 0.5 (compare video stills in figure 7). Up
to this point the draw back behavior (DB) is allowed to be
active due to an activation value ιDB = 1 but its activity is
zero. Due to the rising risk prediction value at t ≈ 7.2 s – as
shown before – this behavior is triggered and becomes active
(aDB = 1). This causes two things: At first the two active
motion behaviors controlled by the user (GUI) are inhibited
which causes an activation ι and therefore also an activity
a of zero (ai ≤ ιi counts for all behaviors i). Second,
the last motion commands are replayed by the draw back
behavior the other way around. This is done by stimulating
the opposed behaviors backward and left, as it can be seen
by the raising values of aB and aL with the same activity
values as used before. At second 11 the robot reached a safe
state and stopped for a recovering of the adhesion system.
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Fig. 9. Meta values of behaviors GUI (user input), draw back (DB) and of
the four motions drive forward (F), drive backward (B), drive left (L) and
drive right (R).

V. CONCLUSION
This paper presented a method of risk prediction and

corresponding safety measures for safe navigation of a wall-
climbing robot. The prediction is based on meta data of a
behavior-based control network and calculates a risk value
which points out if the robot is going to fail within the
next two seconds or not. A situational prediction has been
developed to handle the three main motion directions up,
down and sidewards. Corresponding safety measures, which
let the robot escape from hazardous situations, have been
developed and tested. All in all, the experimental results are
very satisfying, although further tests are needed to validate
the functionality of this approach in the field. In fact, more
situations and different surface structures have to be tested
to get to know the limitations of the system and whether it is
possible to find weights, which are suitable to a broad kind
of surfaces, or not.

Next steps are the development of a new and more
reliable climbing robot and to transfer the presented approach
including controllers and risk measures to the new adhesion
system using eleven chambers. This would also allow the
generation of more test examples and statistical data.
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