16,930 research outputs found

    Twin Memory

    Get PDF
    In this article, I examine a new concept of “Twin Memory’ which has emerged in memory classification research of conscious and unconscious memory representations. It is to analyse the presence of twin memory among the various memory systems, and also to provide a platform for the twin memory “anatomy” in the field of cognitive science, neuropsychology and neuroscience

    How Dreams And Memory May Be Related

    Get PDF
    I present a theory of dreams and long term memory structure that proposes that both entities are closely related. It is based on a variation of Freud's dream theory: (1) I re-label Freud's "Unconscious" the “Long Term Memory Structure” (LTMS), (2) I propose that dreams are ever present excitational responses to perturbations of perceptions and thought, during waking life as well as sleep, which only become conscious when the executive function of waking life ceases, and (3) I reinterpret Freud’s “Dream Work” as describing the pre-dream Storage Transformation of perceptions and thought into the LTMS. I make one further conjecture: Memories are stored in the LTMS according to what is already in the LTMS. The observables of Freud's theory remain the same. The new theory is also consistent with recent experimental findings and suggests a partial basis for personality: the selection process of the Storage Transformation

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225

    Neural Models of Normal and Abnormal Behavior: What Do Schizophrenia, Parkinsonism, Attention Deficit Disorder, and Depression Have in Common?

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333

    Self-organized learning in multi-layer networks

    Get PDF
    We present a framework for the self-organized formation of high level learning by a statistical preprocessing of features. The paper focuses first on the formation of the features in the context of layers of feature processing units as a kind of resource-restricted associative multiresolution learning We clame that such an architecture must reach maturity by basic statistical proportions, optimizing the information processing capabilities of each layer. The final symbolic output is learned by pure association of features of different levels and kind of sensorial input. Finally, we also show that common error-correction learning for motor skills can be accomplished also by non-specific associative learning. Keywords: feedforward network layers, maximal information gain, restricted Hebbian learning, cellular neural nets, evolutionary associative learnin

    Normal and Amnesic Learning, Recognition, and Memory by a Neural Model of Cortico-Hippocampal Interactions

    Full text link
    The processes by which humans and other primates learn to recognize objects have been the subject of many models. Processes such as learning, categorization, attention, memory search, expectation, and novelty detection work together at different stages to realize object recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model class (Adaptive Resonance Theory, ART) and discuss how its structure and function might relate to known neurological learning and memory processes, such as how inferotemporal cortex can recognize both specialized and abstract information, and how medial temporal amnesia may be caused by lesions in the hippocampal formation. The model also suggests how hippocampal and inferotemporal processing may be linked during recognition learning.Air Force Office of Scientific Research (90-0175); British Petroleum (89A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100

    Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System

    Full text link
    A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175

    A neural network model of adaptively timed reinforcement learning and hippocampal dynamics

    Full text link
    A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.Air Force Office of Scientific Research (90-0175, 90-0128); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-87-16960); Office of Naval Research (N00014-91-J-4100

    Hair cortisol concentrations are associated with hippocampal subregional volumes in children

    No full text

    The production of spontaneous false memories across childhood.

    Get PDF
    We found evidence that the usual developmental trends in children's spontaneous false memories were eliminated using novel stimuli containing obvious themes. That is, children created more false memories than adults when scenes needed to be remembered. In Experiment 1, 7- and 8-year-olds had higher false memory rates than adults when using visual scenes. Experiment 2 showed that gist cuing could not account for this effect. In Experiment 3, children and adults received visual scenes and story contexts in which these scenes were embedded. For both types of stimuli, we found that children had the highest false memory rates. Our results indicate that the underlying theme of these scenes is easily identified, resulting in our developmental false memory trend
    • …
    corecore