13 research outputs found

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    Towards Naturalistic Interfaces of Virtual Reality Systems

    Get PDF
    Interaction plays a key role in achieving realistic experience in virtual reality (VR). Its realization depends on interpreting the intents of human motions to give inputs to VR systems. Thus, understanding human motion from the computational perspective is essential to the design of naturalistic interfaces for VR. This dissertation studied three types of human motions, including locomotion (walking), head motion and hand motion in the context of VR. For locomotion, the dissertation presented a machine learning approach for developing a mechanical repositioning technique based on a 1-D treadmill for interacting with a unique new large-scale projective display, called the Wide-Field Immersive Stereoscopic Environment (WISE). The usability of the proposed approach was assessed through a novel user study that asked participants to pursue a rolling ball at variable speed in a virtual scene. In addition, the dissertation studied the role of stereopsis in avoiding virtual obstacles while walking by asking participants to step over obstacles and gaps under both stereoscopic and non-stereoscopic viewing conditions in VR experiments. In terms of head motion, the dissertation presented a head gesture interface for interaction in VR that recognizes real-time head gestures on head-mounted displays (HMDs) using Cascaded Hidden Markov Models. Two experiments were conducted to evaluate the proposed approach. The first assessed its offline classification performance while the second estimated the latency of the algorithm to recognize head gestures. The dissertation also conducted a user study that investigated the effects of visual and control latency on teleoperation of a quadcopter using head motion tracked by a head-mounted display. As part of the study, a method for objectively estimating the end-to-end latency in HMDs was presented. For hand motion, the dissertation presented an approach that recognizes dynamic hand gestures to implement a hand gesture interface for VR based on a static head gesture recognition algorithm. The proposed algorithm was evaluated offline in terms of its classification performance. A user study was conducted to compare the performance and the usability of the head gesture interface, the hand gesture interface and a conventional gamepad interface for answering Yes/No questions in VR. Overall, the dissertation has two main contributions towards the improvement of naturalism of interaction in VR systems. Firstly, the interaction techniques presented in the dissertation can be directly integrated into existing VR systems offering more choices for interaction to end users of VR technology. Secondly, the results of the user studies of the presented VR interfaces in the dissertation also serve as guidelines to VR researchers and engineers for designing future VR systems

    没入型テレプレゼンス環境における身体のマッピングと拡張に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 暦本 純一, 東京大学教授 坂村 健, 東京大学教授 越塚 登, 東京大学教授 中尾 彰宏, 東京大学教授 佐藤 洋一University of Tokyo(東京大学

    Virtual Reality via Object Pose Estimation and Active Learning:Realizing Telepresence Robots with Aerial Manipulation Capabilities

    Get PDF
    This paper presents a novel telepresence system for advancing aerial manipulation indynamic and unstructured environments. The proposed system not only features a haptic device, but also a virtual reality (VR) interface that provides real-time 3D displays of the robot’s workspace as well as a haptic guidance to its remotely located operator. To realize this, multiple sensors, namely, a LiDAR, cameras, and IMUs are utilized. For processing of the acquired sensory data, pose estimation pipelines are devised for industrial objects of both known and unknown geometries. We further propose an active learning pipeline in order to increase the sample efficiency of a pipeline component that relies on a Deep Neural Network (DNN) based object detector. All these algorithms jointly address various challenges encountered during the execution of perception tasks in industrial scenarios. In the experiments, exhaustive ablation studies are provided to validate the proposed pipelines. Method-ologically, these results commonly suggest how an awareness of the algorithms’ own failures and uncertainty (“introspection”) can be used to tackle the encountered problems. Moreover, outdoor experiments are conducted to evaluate the effectiveness of the overall system in enhancing aerial manipulation capabilities. In particular, with flight campaigns over days and nights, from spring to winter, and with different users and locations, we demonstrate over 70 robust executions of pick-and-place, force application and peg-in-hole tasks with the DLR cable-Suspended Aerial Manipulator (SAM). As a result, we show the viability of the proposed system in future industrial applications

    Human-robot interaction for telemanipulation by small unmanned aerial systems

    Get PDF
    This dissertation investigated the human-robot interaction (HRI) for the Mission Specialist role in a telemanipulating unmanned aerial system (UAS). The emergence of commercial unmanned aerial vehicle (UAV) platforms transformed the civil and environmental engineering industries through applications such as surveying, remote infrastructure inspection, and construction monitoring, which normally use UAVs for visual inspection only. Recent developments, however, suggest that performing physical interactions in dynamic environments will be important tasks for future UAS, particularly in applications such as environmental sampling and infrastructure testing. In all domains, the availability of a Mission Specialist to monitor the interaction and intervene when necessary is essential for successful deployments. Additionally, manual operation is the default mode for safety reasons; therefore, understanding Mission Specialist HRI is important for all small telemanipulating UAS in civil engineering, regardless of system autonomy and application. A 5 subject exploratory study and a 36 subject experimental study were conducted to evaluate variations of a dedicated, mobile Mission Specialist interface for aerial telemanipulation from a small UAV. The Shared Roles Model was used to model the UAS human-robot team, and the Mission Specialist and Pilot roles were informed by the current state of practice for manipulating UAVs. Three interface camera view designs were tested using a within-subjects design, which included an egocentric view (perspective from the manipulator), exocentric view (perspective from the UAV), and mixed egocentric-exocentric view. The experimental trials required Mission Specialist participants to complete a series of tasks with physical, visual, and verbal requirements. Results from these studies found that subjects who preferred the exocentric condition performed tasks 50% faster when using their preferred interface; however, interface preferences did not affect performance for participants who preferred the mixed condition. This result led to a second finding that participants who preferred the exocentric condition were distracted by the egocentric view during the mixed condition, likely caused by cognitive tunneling, and the data suggest tradeoffs between performance improvements and attentional costs when adding information in the form of multiple views to the Mission Specialist interface. Additionally, based on this empirical evaluation of multiple camera views, the exocentric view was recommended for use in a dedicated Mission Specialist telemanipulation interface. Contributions of this thesis include: i) conducting the first focused HRI study of aerial telemanipulation, ii) development of an evaluative model for telemanipulation performance, iii) creation of new recommendations for aerial telemanipulation interfacing, and iv) contribution of code, hardware designs, and system architectures to the open-source UAV community. The evaluative model provides a detailed framework, a complement to the abstraction of the Shared Roles Model, that can be used to measure the effects of changes in the system, environment, operators, and interfacing factors on performance. The practical contributions of this work will expedite the use of manipulating UAV technologies by scientists, researchers, and stakeholders, particularly those in civil engineering, who will directly benefit from improved manipulating UAV performance

    An investigation into the cognitive effects of delayed visual feedback

    Get PDF
    Abstract unavailable please refer to PD

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Idaho National Laboratory LDRD Annual Report FY 2012

    Get PDF
    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs
    corecore