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Abstract

The purpose of this thesis is to investigate the cognitive effects that delays in visual
feedback have on real-time system users, especially operators of remote vehicles.
Pilot work was carried out and then hypotheses were formed regarding the cognitive
nature of visual delay effects; namely visual delays cause disruption to working
memory. These hypotheses were then investigated with virtual reality based driving
experiments.

Results from these experiments supported this hypothesis. Further experiments
were then performed using a control system model to evaluate whether a system that
made use of a mechanism analagous to working memory would behave in a similar
manner to human operators. This system did indeed behave in a similar manner,
with the same pattern of instability in tracking performance with the introduction of
visual delays and additional interpolated tasks (similar to visual interference tasks).
It is suggested that the control system model that was derived may well have use in
further investigations regarding how to compensate for visual delays.

The thesis achieved the following goals: (1) previous work was replicated in show-
ing the detrimental effects of delayed visual feedback, (2) past work was extended by
investigating the cognitive nature of these effects and highlighting which cognitive
mechanisms appear to be failing; namely by demonstrating a link between visual
delays and working memory disruption, (3) a virtual environment was created to
enable the investigation of complex tasks in a measurable manner thus demonstrat-
ing the use of immersive virtual reality in conducting complex experiments, (4) a

model is proposed that introduces variable delay dependent on task complexity and

demonstrates similar results to human performance when using delayed feedback.
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Chapter 1

Introduction

1.1 Overview

This investigation into the effects of delayed visual feedback was commenced as a
result of these effects being well known in the use of remotely operated vehicles
(ROVs). The problem, that delayed visual feedback adversely affects any remote
operation task with a human operator in the loop, has been known for many years.
Delays can range from a few milliseconds (as is the case for delays introduced by
computer processing) to many minutes (where there are large distances between the
operator and vehicle, for example in space robotics applications such as the Mars
Rover). However, there has been little work in attempting to define the cognitive
nature of this problem.

For this reason pilot studies were carried out to measure the effect on performance
of delayed visual feedback. A model of the system, with an operator controlling
the vehicle with delayed feedback, was then produced and in-depth experiments
designed and performed using custom-written virtual reality (VR) software. From
the results gained from these experiments a control systems model was designed and
implemented in order to further test hypotheses regarding the cognitive nature of

delayed feedback effects. An overview of this experimental and modelling work is

given in Section 1.4 of this chapter.
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1.2 Research Aims

T'he research described in this thesis has the following major aims:

e 'To replicate previous work in showing the detrimental effects ot delayed visual

teedback on operator performance.

e To investigate the cognitive nature of this effect and highlight which cognitive

mechanisms appear to be failing.

e To create a virtual environment to enable the investigation of complex tasks

in a measurable manner and allow interpolated tasks to be incorporated in a

natural way.

e To create a model that performs in a similar manner to human operators when

using delayed feedback.

1.3 Structure of the report

The structure that this report will take is as follows.

A review of the literature relevant to this thesis is given in Chapter 2 including
a detailed description of the cognitive element of this investigation (namely human
memory and its role in visuo-spatial cognition). Initial pilot work that was carried
out in order to better understand and specify the problem is described in Chapter
3 along with the results obtained from these studies.

The knowledge gained from this pilot work was then incorporated into the main
experimental design as described in Chapters 4 and 5. As these experiments made
use of virtual reality (VR) the software design and implementation was a major
undertaking (approximately 12 months work) and is therefore described separately

in Chapters 6 and 7. Delays were introduced electronically into the VR system
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using a device designed and manufactured by technicians in the Department of
Computing and Electrical Engineering at Heriot-Watt University. The design and
implementation of this system is included in Chapter 8 for reterence in order to
ald replication of these experiments. Results from the main experiments are then
presented and briefly discussed in Chapters 9 and 10.

Once these results were obtained a control system model was designed and imple-
mented to define further the cognitive nature of the problems with delayed feedback.

This model is presented along with results of the system navigating around a bend
in Chapter 11. The thesis is then concluded with an in-depth discussion of all the

factors considered in this study presented in Chapter 12.

1.4 Experimental Framework

The main findings of this thesis are from three major pieces of work; namely pilot
work, main experiments and then deriving and testing a control system model. This
section explains the interactions and links between these three areas.

As has been mentioned pilot experiments were performed in order to measure,
under controlled laboratory conditions, the effects of delays on operator performance
(measured by task times and errors). A general model of the experimental system
used in all cases was proposed and is presented in Figure 1.1. All pilot studies made
use of physical vehicles and conventional measurement techniques (for example tim-
ings were measured using a stopwatch, errors in position were measured with a tape
measure). The main experiments however were performed using VR with virtual ve-
hicles driving along virtual tracks and measurements being captured automatically
by the computer system.

The first pilot study measured the effect on performance of inserting delays into

the visual feedback from a camera on-board the vehicle being controlled. This ex-
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Figure 1.1: General Model of Experimental System

perimental system is summarised in Figure 1.2. However, as a result of the software
that was used to insert delays into the feedback, the video was degraded to low
frame rates.

In order to understand better the results obtained from the first pilot study, a
second study was performed in which the delays inserted into the video were solely
a degradation of frame rate (i.e. slow scan feedback) as is described in Figure 1.3.

This work was originally designed to be extended into a consideration of track
complexity and low frame rates as summarised in Figure 1.4. However, the complex-
ity of the tracks was later removed (i.e. only one track was used for the experiments)
and so in effect the third pilot experiment replicated the results of the second.

Finally, using the knowledge gained from the pilot work a generic model was
derived to describe the system processes (including the cognition of the human
operator as an integral part of the whole system) as is shown in Figure 1.5. This
model was later formalised into a control system model which demonstrated similar

results to human operators, in particular, being similarly affected by visual delay,
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and is presented in Chapter 11.

The model was derived from assumptions regarding the cognition of human oper-
ators controlling vehicles with delayed visual feedback and is therefore task specific.
[t was designed to test these assumptions and see if these cognitive mechanisms
(or models that bear similarity with them) were being disrupted by delayed visual
feedback. This was achieved by creating a control system that used these assump-
tions and testing the system to see if it gave similar results as human operators in
controlling vehicles with delayed feedback.

This model is proposed as a system that appears to act in a similar manner
to human operators, in the specific task domain of remote operation with delayed
visual feedback.

From the understanding gained from formulating this model the main experi-

ments were designed and conducted as illustrated in Figure 1.6. The experiments

tested the following hypotheses (see Chapter 4 for more details):
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Figure 1.5: Experimental System Structure
Please note, the inner vision feedback loop (from heading to reference heading)
refers to the actual heading 1.e. not relative to current position. The outer vision
feedback loop refers to the relative measure of current position compared to required

position, i.e. the vehicle position within the environment.
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Null hypotheses

HOO An increase in visual delay magnitude will have no effect on driving perfor-

Imance.

HO1 The presence of visual interference tasks will have no significant eflfect on

driving performance.

HO02 The presence of visual interference tasks will not affect driving performance

In a similar manner to visual delays.

HO03 An increase in track complexity will have no significant eflect on driving per-

formance.

Alternate hypotheses

H11 Results of the experiments will show a similar performance decrement due to

delays as has been found in preliminary experiments, namely that an increase

in delay magnitude will cause a performance decrement.

H12 There will be threshold value of delay below which the effects of the delays

will be negligible.

H13 There will be a threshold value of delay above which the performance does not

decrease any more (complete failure).

H14 The spatial letter-processing task will disrupt tracking (driving) performance,

i.e. Baddeley’s findings will be replicated.

H15 Delays in visual feedback cause confusion due to disruptions in visuo-spatial
working memory, therefore visual interference which also disrupts visuo-spatial

working memory will give a similar performance decrement to visual delays.

H16 An increase in track complexity will cause a performance decrement.



Chapter 2

Literature Review

2.1 Introduction

This research continues on from work carried out by the author as part of a MSc

dissertation (Day, 1998). In this work it was discovered that operator performance
1s degraded by visual delays to a point, and then the level of degradation appears

to tail off.

When this study was begun, it was envisaged as an investigation into the eflects
of delays on real-time system operators such as those controlling remotely operated
vehicles. For this reason, it was expected that the majority of the literature would
be from the fields of robotics and tele-operation.

However, on further investigation, it was discovered that there was relevant in-
formation to be found in a diverse number of areas of study. The main areas ot

study that were found to be useful are as follows:
e Robotics and teleoperation
o Experimental psychology
e Simulation (in particular flight simulators)
e Cybernetics

e Virtual reality

e Neuroscience including neurophysiology and neuropsychology

10
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e Krgonomics and human factors

e Speech, acoustics and hearing studies
e Opthalmics and optometry

¢ Biological physics

¢ Video-mediated communication

FFor ease of reference, these areas are broadly grouped into 3 distinct fields:

1. Psychological: experimental and applied psychology

2. Physiological: neuroscience, biological physics, optometry, acoustics and er-

gONOMIICS

3. Engineering: robotics, teleoperation, simulation, instruments, cybernetics,

video-mediated communcication and virtual reality (VR)

Each field wiil be discussed individually in order to present effectively the main

findings with the addition of human memory, which is discussed separately due to

1ts importance to the thesis.

2.2 Psychological Literature

2.2.1 Structure

This section will describe the classic psychological findings on the perception of

movement, will then discuss the general efiects ot delayed sensory feedback (par-

ticularly auditory feedback) before finally discussing the effects of delayed visual

feedback.
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2.2.2 Introduction

Initial investigations into the problems of delayed feedback, as part of an MSc disser-
tation (Day, 1998), uncovered technical difficulties in delaying video. Due to these
difficulties of producing experimental equipment suitable for introducing controlled
delays into full-motion (25 or greater frames per second or fps) video, it was decided
that the cognitive effects of low frame rates should be investigated. For this reason,
classical studies on the perception of movement were reviewed.

In order to understand properly the effect that delays in visual feedback have

one must first understand the effect that low frame rates have on performance.

2.2.3 Eftects of Low Frame Rates

It was Wertheimer (1912) who first rigorously explored the perception of movement.
He investigated stroboscopic movement whereby successions of discrete visual stimuli
are perceived as a single continuous image. In doing so, he discovered a condition
known as pure phi; at an interval longer than that required for optimal stroboscopic
movement, the two objects are seen only at their terminal positions, and yet there is
a clear impression of movement from one to the other. At some shorter interval (60
ms in Wertheimer’s experiments) the stroboscopic movement is seen, with the two
objects being perceived as a single object moving through space (from one terminal
position to another). If we take this figure of 60 ms and apply it to video, we have
a useful rule that adequate perception of movement (i.e. ‘smooth’ video) occurs at
frame rates of 16 fps and above.

Osgood (1953) reports on these findings and includes further details. Of particu-
lar interest are the time intervals (between the two visual stimuli being shown) that
Osgood states. For instance, he states that ‘f the interval is too long (more than

about 200 ms), the two objects are seen in succession without apparent movement

12
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between them’. Taking this figure of 200 ms gives us the guideline that movement is
unlikely to be perceived in frame rates of less than 5 frames a second (fps). In addi-
tion to this, the comment is made that the optimum time interval for stroboscopic
movement (Wertheimer’s figure was 60 ms) is variable with many conditions such
as exposure time, distance and intensity of the objects in addition to training and
attitude of the participants.

Osgood also notes that at an interval of 30 ms, both objects appear simultane-
ously. Again applying this to video gives us the rule of thumb that smooth perception
of movement occurs at frame rates of approximately 33 fps or above. This compares
favourably with the fact that conventional analogue video uses either 25 or 30 ips.

Woodworth and Schlosberg (1954) also made similar comments on the findings
of Wertheimer with the same figures being quoted. In addition to this, mention
is made of Korte’s work (1915) of drawing up what has become known as Korte’s
Laws. Postman and Egan (1949) also note these findings and give the following

summary of Korte’s Laws:

e Ifthe intensity remains constant, the time interval for optimal movement varies

directly with the distance between stimuli.

o If the time interval remains constant, the distance for optimal movement varies

directly with intensity.

o If the distance between stimuli remains constant, the intensity for optimal

movement varies inversely with the time interval.

Postman also elaborated on some of the conditions that can affect the perception
of stroboscopic movement. Some of his main points are as follows. If the second
flash is brighter than the first, perceived direction may be reversed. This is known

as delta movement. An increase or decrease in the illumination of a figure results in

13
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a corresponding increase or decrease in the perceived size of figure. This 1s known
as gamma movement.

The spatial framework in which a stimulus is perceived influences the perception
of movement. For example, if one stares at a point source of light in a dark room,
the light appears to move from one side to another; so called autokinetic move-
ment. When two light sources are in a dark room, and one is in motion, an observer
might perceive the other to be in motion; so called induced movement. Perception of

movement depends on the relative spacing of objects and other factors of spatial or-

ganisation (such as sizes and organisation). More detail on perception of movement

can be found in Regan (1997).

Poulton (1966) reported on the deterioration in tracking performance due to an
intermittent (low frame rate) display from an engineering perspective. The work

again demonstrates that low frame rates caused an increase in tracking error.

2.3 Effects of Delayed Sensory Feedback

Having ascertained the perception of stroboscopic motion and the equivalent effects

of low frame rates, studies dealing with delayed sensory feedback are presented.

Feedback delay can be defined as

‘a transmission lag in any part of the closed-loop pathways that govern

action in organic systems’ (Smith et al., 1965).

Of more particular interest to this study, however, are the external delays in

visual feedback (instead of the internal delays associated with organic pathways

noted by Le Berre et al. (1987, 1992, 1993, 1998) and others).
The earliest observation of delayed sensory feedback that could be found appears
in the Foxboro study (Foxboro Co., 1945) which unfortunately could not be obtained.

According to reports by Smith and Wargo among others, delayed feedback was only

14
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mentioned in passing in this report. Warrick (1949) considers these effects in more
detail in the context of a tracking system. Results from this study showed an inverse
linear relationship between the delay and the logarithm of time on target.

Early studies in the field of delayed sensory feedback were concerned with audi-
tory feedback. Lee (1950a,b, 1951) carried out experiments whereby a participant’s
voice was played back to them after some delay. The experiments made use of a dual
audiotape device that recorded a participant’s speech and played it back to the par-
ticipant, while introducing a delay. The participant wore headphones so that they
could not hear the actual speech, but instead could only hear the delayed speech.

In the first set of experiments Lee (1950b) noted that there was little or no eftect
on speech at 1/15s (67 ms), a ‘marked effect’ at 1/8s (125 ms) and a different eflect
at 1/4s (250 ms) delay. In the second set of experiments (1950a) delays of 40, 140
and 280 ms were used. These experiments were concerned more with the eftect of the

delay on the speed of reading but did note that stuttering errors were introduced

by the delays. In the third set of experiments (1951), delays of 40, 80, 140 and
280 ms were used. In addition to the points noted before, Lee also mentioned that
some of the subjects not only slowed down their speech, but also increased their
intensity (volume). Again, halts and repeated syllables were noted. In general, Lee
found that in the majority of participants, delays of approximately 200 ms caused
dramatic effects such as stammering, pausing at inappropriate points, making errors
in speech and sometimes completely preventing the participant from speaking.
Tiffany and Hanley (1956) and Winchester et al. (1951) also studied the effects
of delayed auditory feedback and found that adaptation to it is slight or even non-
existent. Similar findings were reported by Yates (1963). Biel and Warrick (1949)
were also working in a similar area, with a particular emphasis on studying the
perception of visual delay. They investigated the length of time delay present before

it could be perceived and found a limen (threshold) at between 50-75 ms.
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Archer and Namikas (1958) experimented with pursuit rotor performance as
a function of the delay of information feedback, but results showed no significant

differences between delay settings.

Garvey et al. (1958) investigated the differential effects of ‘display lags’ and
‘control lags’ on the performance of manual tracking systems. In their experiments,
which considered the human operator to be a non-linear (and noisy) control system
element, they demonstrated no significant effect from increasing the time constant
of the control lag, but a highly significant effect of display lag. However, this highly
defined difference between ‘control’ and ‘display’ lags is not present in all systems,

and, in the case of controlling a virtual artifact in a virtual world, there is no

difference between ‘control’ and ‘display’ delays.

This work, especially those findings by Lee, was followed by the investigations ot
Smith (1962) into the effects of delayed sensory feedback on such tasks as tracking,
steering, handwriting, posture, head movements and other behaviour. This work was
extended into research on the relationship between body movements and feedback
control circuits (for example Smith and Smith, 1962; Smith, 1963; Smith et al., 1963;

Smith, 1970). The main research findings of these investigations were as follows:

1. All motor-sensory mechanisms are degraded to some extent in accuracy, timing

and integration by the introduction of feedback delay.

2. Some motor-sensory mechanisms show peak disturbances at specific delays.
For example, the speech of young adults exhibits peak disturbance with delays
of 200 ms. By contrast, other mechanisms show a degradation of performance

in proportion to the delay.

3. Complex movements are more affected by delays in feedback than less complex

or precise tasks.

4 The effects of feedback delay are exacerbated when they occur in combination
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with additional perturbations such as spatial displacements of feedback.

There also appears to have been work by US defence funded projects as is shown
by the review by Muckler and Obermayer (1964). This review shows similar findings
to Smith’s investigations.

Rapin et al. (1963) in their studies of the effects of delayed auditory feedback on
key-tapping of children show results that seem to indicate that the peak disturbance
for children is not in the order of 160-200 ms as is the case with adults, but instead the
1000 ms delay being the most disruptive. However, they do note that this study was
not concerned with the effects of delayed auditory feedback on speech (where a 200

ms peak disturbance would be expected) but instead is a general motor performance

study and therefore findings from delayed visual feedback that show an increasing

effect past 200 ms is reasonable.

Smith et al. (1960) noted that delayed auditory or visual feedback was found
to seriously degrade performance, introduced characteristic redundant motions, in-

creased performance time by marked amounts, and imposed very difficult and frus-

trating conditions upon the subject.

Others also contributed to the field in the 1960s. Kalmus et al. (1955) began

with studies into the effects of delayed auditory feedback but then extended the
work to visual feedback. Kalmus et al. (1960) reported severe loss of control in
studies into the effects of delayed visual feedback on writing, drawing and tracing.
Karlin (1965) reported on the effects of extra cues on pursuit-rotor performance,
particularly delayed auditory feedback but found no significant effect with a change
in delay. Smith et al. (1960) commented that the effects of delayed visual feedback on
a number of simple visual-motor tasks were found to be both marked and deleterious.
They also stated that performance became dificult and frustrating and that the

following particular types of errors were noted (given in order of frequency):

1. letter duplication
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2. error of insertion

3. error of omission

The use of delayed feedback in the study of hearing and speech disorders has
continued but no new insight has been gained into the cognitive effects ot delayed
feedback. For example, Billings and Stokinger (1975) used the effects of delayed
auditory feedback as an indicator of hearing loss (if subjects could not hear the
delayed auditory feedback then their performance was unaffected by it).

Smith et al. (1960) also noted that delayed auditory or visual feedback seriously
degrades performance, introduces characteristic redundant motions, increases per-
formance time by marked amounts, and imposes upon the subject very difficult and
frustrating conditions. A comparison between auditory and visual delays was carried
out by Wargo (1965, 1967) who found that degradation in tracking performance was
more apparent for visual delays than for auditory delays (as might be expected due
to visual tracking being superior to auditory tracking), and little adaptation to the
delays was seen. Results showed an increased degradation in tracking performance
with increasing magnitudes of delay. Interestingly, Wargo makes the point that the
amount of performance degradation seems to be dependent on the skill required to
complete the task. For example, visual tracking was shown to be superior to audi-
tory tracking across all delays and visual tracking was also demonstrated to be more

severely affected by the delays. Wargo (1965) suggests that:

‘the degrading effect of feedback delays on tracking performance is at-

tributed to the detrimental effect of control-display lags on the operator’s

internal predictive model of the control system’.

Wargo also cites the findings of Smith (1966) in which expert musicians were more
affected by delayed auditory feedback than novices, and more marked effects were

seen with more complex musical scores than simple scores. This work demonstrated
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the remarkably similar effects between delayed auditory and visual feedbacks thus

indicating that findings from delayed auditory feedback can justifiably be extended
into the field of delayed visual feedback.

These general studies into the eflects of visual delays were applied to the area
of tracking and steering. Lincoln and Smith (1952) had already investigated the
factors determining visual tracking accuracy but delays were not analysed in this
work. However, Coleman et al. (1970) found that the main effect of feedback delays
on eye tracking in steering was to restrict the normal capability of the eye to predict
or anticipate the course of seli-generated stimulus movements. A detailed study of
human tracking behaviour was performed by Poulton (1966) that included reference
to transmission and exponential lags. However, little new findings were reported in
the area of delayed sensory teedback.

Smith and Sussman (1970) used delays of 200, 400, 600, 800 and 1500 ms to
investigate their effects on steering. Of those settings, only 800 and 1500 ms were
found to have marked effects on steering performance. Steering and stimulus track-
ing were affected more by the delays during the practice period rather than during
the tracking period. The conclusion is drawn that ‘both steering and stimulus track-
ing become less susceptible to the effects of delay unth practice’. In addition 1t was
found that stimulus tracking was more severely affected by visual feedback delays
than steering was; a finding that Smith and Sussman suggest is due to steering re-
actions involving coordinations between eye, hand and body which are not present
in stimulus tracking. The steering task has these extra cues and it is therefore sug-
gested that there is less reliance placed on the visual feedback than is the case with
stimulus tracking, where a greater reliance on the visual feedback is necessary due
to less cues. Similar findings were also reported in Smith and Putz (1970b).

More detailed analysis of learning and performance in steering and tracking was

carried out by Smith and Kaplan (1970) and Smith and Putz (1970b) although
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this research was not directly concerned with delays. Smith and Kaplan (1970)
investigated the role of delayed feedback on learning and the transier of learning.
As expected, delays severely impaired driving accuracy and learning. In particular,
it was found that practice with larger delays produced a marked positive transfer of
the learning to drive with smaller delays.

However, Smith and Putz (1970a,c) and Putz and Smith (1971) continued this
investigation into tracking, especially the role that retinal feedback delay has on eye
tracking. Once again delays of 0, 200, 400, 600, 800 and 1500 ms were used with
three different modes of tracking control (head, eyes and head-eye motions). They
found that a delay in retinal feedback greatly increased errors in eye tracking. In
fact, the results showed that with increasing magnitudes of retinal feedback delay,
tracking error increased in an almost linear fashion. Increased tracking error was
particularly evident in the irregularity and magnitude of eye movements. Results
suggest that visual impairment may be produced by delays in retinal feedback, and
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