
TOWARDS NATURALISTIC INTERFACES OF VIRTUAL

REALITY SYSTEMS

JINGBO ZHAO

A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAMME IN

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

YORK UNIVERSITY

TORONTO, ONTARIO

JANUARY 2019

© JINGBO ZHAO, 2019

 ii

ABSTRACT

Interaction plays a key role in achieving realistic experience in virtual reality (VR). Its

realization depends on interpreting the intents of human motions to give inputs to VR sys-

tems. Thus, understanding human motion from the computational perspective is essential

to the design of naturalistic interfaces for VR.

This dissertation studied three types of human motions, including locomotion

(walking), head motion and hand motion in the context of VR.

For locomotion, the dissertation presented a machine learning approach for devel-

oping a mechanical repositioning technique based on a 1-D treadmill for interacting with a

unique new large-scale projective display, called the Wide-Field Immersive Stereoscopic

Environment (WISE). The usability of the proposed approach was assessed through a novel

user study that asked participants to pursue a rolling ball at variable speed in a virtual scene.

In addition, the dissertation studied the role of stereopsis in avoiding virtual obstacles while

walking by asking participants to step over obstacles and gaps under both stereoscopic and

non-stereoscopic viewing conditions in VR experiments.

In terms of head motion, the dissertation presented a head gesture interface for in-

teraction in VR that recognizes real-time head gestures on head-mounted displays (HMDs)

using Cascaded Hidden Markov Models. Two experiments were conducted to evaluate the

proposed approach. The first assessed its offline classification performance while the sec-

ond estimated the latency of the algorithm to recognize head gestures. The dissertation also

 iii

conducted a user study that investigated the effects of visual and control latency on tele-

operation of a quadcopter using head motion tracked by a head-mounted display. As part

of the study, a method for objectively estimating the end-to-end latency in HMDs was

presented.

For hand motion, the dissertation presented an approach that recognizes dynamic

hand gestures to implement a hand gesture interface for VR based on a static head gesture

recognition algorithm. The proposed algorithm was evaluated offline in terms of its classi-

fication performance. A user study was conducted to compare the performance and the

usability of the head gesture interface, the hand gesture interface and a conventional

gamepad interface for answering Yes/No questions in VR.

Overall, the dissertation has two main contributions towards the improvement of

naturalism of interaction in VR systems. Firstly, the interaction techniques presented in the

dissertation can be directly integrated into existing VR systems offering more choices for

interaction to end users of VR technology. Secondly, the results of the user studies of the

presented VR interfaces in the dissertation also serve as guidelines to VR researchers and

engineers for designing future VR systems.

 iv

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Prof. Robert Allison, who offered me the oppor-

tunity to conduct this work as a PhD student in Canada. This dissertation would not be

possible without his guidance and support over the past four years. I had excellent research

experience under his guidance, with the freedom to explore the research topics that I was

interested in. I also had many opportunities to travel to conferences in very nice places.

I would like to thank my committee members Prof. Petros Faloutsos and Prof. Bur-

ton Ma. They have been very supportive and encouraging during my PhD study. I would

also like to thank Prof. Jia Xu, Prof. Graham Wakefield and Prof. Andrew Hogue for taking

time out of their busy schedule to serve my examination committee.

I would like to thank Prof. James Elder, Prof. John Tsotsos and Prof. Michael

Brown - I learnt a lot from you in your classes and seminars. I would like to thank our

graduate program director Prof. Simone Pisana and ex-graduate program directors Prof.

Franck van Breugel and Prof. Uyen Trang Nguyen for their assistance that enabled me to

complete this PhD program. I would like to thank Ms. Ouma Jaipaul-Gill, Ms. Stefanie

Caputo, Ms. Susan Cameron and Ms. Teresa Manini for the coordination and the help they

offered to me during this entire program. I would like to thank Ms. Ulya Yigit, Mr. Jaspal

Singh, Mr. Nam Tran and Ms. Seela Balkissoon for their technical support.

I would like to thank Dr. Margarita Vinnikov and Mr. Sion Jennings for offering

me an opportunity to work as a research intern at the Flight Research Laboratory, National

Research Council, Ottawa. The work I have done during this internship is now part of the

 v

dissertation (Chapter 6). Thanks to Prof. James Elder for offering me the financial support

for the internship.

Finally, I would like to thank my parents for their support. Many thanks go to my

lab members, and to the participants who attended my user studies.

 vi

PREFACE

This dissertation is based on the following publications:

Paper I Zhao, J. and Allison, R. S. (2016). Learning gait parameters for locomotion

in virtual reality systems. 2nd International Workshop on Understanding

Human Activities Through 3D Sensors. Lecture Notes in Computer Science,

vol 10188, pp 59-73.

Paper II Zhao, J., Allison, R. S., Vinnikov, M. and Jennings, S. (2017). Estimating

the motion-to-photon latency in head mounted displays, 2017 IEEE Virtual

Reality (VR), pp. 313-314.

Paper III Zhao, J. and Allison, R. S. (2017). Real-time head gesture recognition on

head-mounted displays using cascaded hidden Markov models, 2017 IEEE

International Conference on Systems, Man, and Cybernetics (SMC), pp.

2361-2366.

Paper IV Zhao, J., Allison, R. S., Vinnikov, M. and Jennings, S. (in press). The ef-

fects of visual and control latency on piloting a quadcopter using a head-

mounted display, accepted by 2018 IEEE International Conference on Sys-

tems, Man, and Cybernetics (SMC).

Paper V Zhao, J. and Allison, R. S. (manuscript). Comparing head gesture, hand

gesture and gamepad interfaces for answering Yes/No questions in virtual

environments.

Paper VI Zhao, J. and Allison, R. S. (manuscript). The role of binocular vision in

avoiding virtual obstacles while walking.

 vii

Related publications not included in this dissertation:

Zhao, J., Bunn, F. E., Perron, J. M., Shen, E. and Allison, R. S. (2015). Gait

assessment using the Kinect RGB-D sensor, 37th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pp. 6679-6683.

 viii

TABLE OF CONTENTS

Abstract ... ii

Acknowledgements .. iv

Preface.. vi

Table of Contents ... viii

List of Tables ... xiv

List of Figures ... xv

CHAPTER 1 Introduction .. 1

CHAPTER 2 Related Work ... 7

2.1 VR Systems and Displays ... 7

2.2 Locomotion ... 8

2.2.1 Locomotion Techniques.. 8

2.2.2 The Role of Stereopsis in Walking ... 12

2.3 Head Motion ... 14

2.3.1 End-to-End Latency .. 15

2.3.2 Head Gesture ... 16

2.3.3 Teleoperation of Vehicles and Onboard Cameras through Head Motion

and Its Effects of Latency ... 18

2.4 Hand Motion ... 24

CHAPTER 3 Locomotion in Virtual Reality based on Gait Parameters 26

3.1 Introduction ... 26

 ix

3.2 Method .. 28

3.2.1 Hardware and Software of the VR System 30

3.2.2 Data Collection and Buffering .. 31

3.2.3 Step Segmentation and Feature Extraction 32

3.2.4 Classification... 35

3.2.5 Control of Treadmill Speed and Virtual Viewpoint 36

3.3 Experiment 3-1: Training and Testing of the Speed Estimation Algorithm

 ... 37

3.3.1 Introduction ... 37

3.3.2 Participants .. 37

3.3.3 Procedure .. 37

3.3.4 Results ... 40

3.4 Experiment 3-2: Evaluation of the Usability of the Locomotion Interface

 ... 42

3.4.1 Introduction ... 42

3.4.2 Participants .. 43

3.4.3 Procedure .. 43

3.4.4 Results ... 45

3.5 Discussion ... 48

x

CHAPTER 4 The Role of Stereopsis in Avoiding Virtual Obstacles While Walking

.. 50

4.1 Introduction ... 50

4.2 Method .. 51

4.2.1 Hardware and Software of the VR system .. 51

4.2.2 Feature Extraction for Gait Analysis .. 53

4.3 Experiment 4-1: Stepping Over Obstacles .. 59

4.3.1 Introduction ... 59

4.3.2 Design ... 59

4.3.3 Participants .. 60

4.3.4 Procedure .. 61

4.3.5 Results and Discussion ... 63

4.4 Experiment 4-2: Stepping Over Gaps ... 69

4.4.1 Introduction ... 69

4.4.2 Design ... 69

4.4.3 Participants .. 70

4.4.4 Procedure .. 70

4.4.5 Results and Discussion ... 71

4.5 General Discussion ... 76

xi

CHAPTER 5 Recognition of Head Gestures and Hand Gestures and their Application

for Interaction in Virtual Reality... 79

5.1 Introduction ... 79

5.2 Method .. 81

5.2.1 Head Gesture Interface ... 81

5.2.2 Hand Gesture Interface ... 86

5.2.3 Gamepad Interface .. 89

5.3 Experiment 5-1: Training and Testing of the Head Gesture Interface .. 89

5.4 Experiment 5-2: Estimating the Latency of the Head Gesture Interface to

Recognize Head Gestures ... 94

5.5 Experiment 5-3: Training and Testing of Hand Gesture Interface 97

5.6 Experiment 5-4: Comparing Head Gesture, Hand Gesture and Gamepad

Interfaces for Answering Yes/No Questions in Virtual Environments 99

5.6.1 Introduction ... 99

5.6.2 Metrics .. 100

5.6.3 Participants .. 100

5.6.4 Procedure .. 102

5.6.5 Results ... 103

5.7 Discussion ... 107

xii

CHAPTER 6 The Effects of Visual and Control Latency in a Head Motion Controlled

Quadcopter .. 111

6.1 Introduction ... 111

6.2 Method .. 114

6.2.1 Estimating the Motion-to-Photon Latency...................................... 114

6.2.2 Simulating a Head Motion Controlled Quadcopter 118

6.3 Experiment 6-1: Estimating the Motion-to-Photon Latency in HMDs

... 121

6.3.1 Introduction ... 121

6.3.2 Procedure .. 121

6.3.3 Results ... 123

6.4 Experiment 6-2: Effects of Visual and Control Latency on Piloting

Quadcopters using HMDs ... 124

6.4.1 Introduction ... 124

6.4.2 Participants .. 125

6.4.3 Procedure .. 125

6.4.4 Metrics .. 126

6.4.5 Results ... 130

6.5 Discussion ... 133

xiii

CHAPTER 7 Conclusion and Future Work ... 136

Bibliography ... 143

xiv

LIST OF TABLES

Table 3-1: Statistics of the Classification Performance .. 39

Table 3-2: The Mean Value and the Standard Deviation of the Error between the

Average Foot Position and the Captured Trunk Position 39

Table 4-1: Results of the Linear Mixed-Effects Models Analyses on Stepping over

Obstacles (significant p-values are in bold and shaded) 63

Table 4-2: Results of the Linear Mixed-Effects Models Analyses on Stepping over

Gaps (significant p-values are in bold and shaded) .. 72

Table 5-1: The Average Accuracy of the Simple Gesture Layer from a Training

Session (Unit: Percentage, M: The Number of Discrete Symbols in HMMs, N: The

Number of Hidden States in HMMs; The Highest Average Accuracy is in Bold and

Shaded) ... 90

Table 5-2: Head Gesture Recognition Latencies (Unit: s) 91

Table 5-3: The User Interface Questionnaire .. 98

Table 6-1: Latency Levels .. 117

Table 6-2: Experimental Session Order .. 117

Table 6-3: Results of Estimated Latencies (DP - Dynamic Prediction and TW -

Time Warping) .. 122

Table 6-4: Results of Three-way ANOVA Analyses (significant p-values are in

bold and shaded) ... 129

xv

LIST OF FIGURES

Figure 3-1: Overview of the Proposed Approach ... 30

Figure 3-2: Step Segmentation Example .. 32

Figure 3-3: Definition of the Gait Features... 32

Figure 3-4: Features of the Training Set ... 38

Figure 3-5: Features of the Testing Set ... 38

Figure 3-6: Error Pattern of Misclassification .. 40

Figure 3-7: Trunk Position vs Average Foot Position .. 40

Figure 3-8: The WISE Running Experiment 3-2 .. 42

Figure 3-9: The Setup for Experiment 3-2 .. 42

Figure 3-10: Exemplar Trajectories of the Ball and the Viewpoint 46

Figure 3-11: Experimental Data Traces .. 46

Figure 3-12: Performance of the Participants ... 47

Figure 3-13: The Learning Effect of a Participant .. 47

Figure 4-1: Exemplar Segmentation of Gait Cycles ... 55

Figure 4-2: The Setup of Experiment 4-1 ... 56

Figure 4-3: Console View of Experiment 4-1 ... 56

Figure 4-4: Foot Trajectories on Stepping over Obstacles 61

Figure 4-5: Gait Parameters on Stepping over Obstacles by Viewing Condition (red

dots denote mean values; the boxes of the number of strides and the number of

collisions denote the data distribution of that of all walking trials of each viewing

xvi

condition across participants; for other gait parameters, the boxes denote the data

distribution from the gait parameters of all gait cycles that covered an obstacle for

each viewing condition) .. 62

Figure 4-6: Gait Parameters on Stepping over Obstacles by Height Level (red dots

denote mean values; the boxes of these gait parameters denote the data distribution

from the gait parameters of all gait cycles that covered an obstacle for each level of

obstacle height) ... 62

Figure 4-7: Interaction Effect on Stride Height (error bars denote the standard error

of the mean) .. 64

Figure 4-8: Interaction Effect on Foot Clearance (error bars denote the standard

error of the mean).. 64

Figure 4-9: The Setup of Experiment 4-2 ... 68

Figure 4-10: Console View of Experiment 4-2 ... 68

Figure 4-11: Foot Trajectories on Stepping over Gaps ... 71

Figure 4-12: Gait Parameters on Stepping over Gaps by Viewing Condition (red

dots denote mean values; the boxes of the number of strides and the number of

collisions denote the data distribution of that of all walking trials of each viewing

condition across participants; for other gait parameters, the boxes denote the data

distribution from the gait parameters of all gait cycles that covered an gap for each

viewing condition) .. 73

xvii

Figure 4-13: Gait Parameters on Stepping over Gaps by Depth Level (red dots

denote mean values; the boxes of these gait parameters denote the data distribution

from the gait parameters of all gait cycles that covered an gap for each level of gap

depth) .. 73

Figure 5-1: The Coordinate System of the Oculus Rift DK2 80

Figure 5-2: The Structure of the CHMMs for Real-time Head Gesture Recognition

.. 83

Figure 5-3: Hand Gesture Interface .. 87

Figure 5-4: Gamepad Interface ... 88

Figure 5-5: An Exemplar Real-time Recognition Result from a Participant 96

Figure 5-6: Experiment Stages .. 98

Figure 5-7: Response Time ... 101

Figure 5-8: Real-Time Accuracy .. 101

Figure 5-9: Subjective Measures .. 102

Figure 5-10: Total Score ... 104

Figure 6-1: Circuit Diagrams (Left: Photodiode Circuit, Right: Potentiometer

Circuit) .. 113

Figure 6-2: The Setup of the Experiment ... 113

Figure 6-3: HUD for the Quadcopter .. 117

Figure 6-4: Testing Environment .. 117

Figure 6-5: Waypoint and Its Coordinate ... 117

xviii

Figure 6-6: Experiment Setup ... 117

Figure 6-7: Exemplar Data Traces .. 122

Figure 6-8: SSQ Score Increase by Latency ... 128

Figure 6-9: SSQ Score Increase by Session .. 128

Figure 6-10: Task Completion Time by Latency .. 128

Figure 6-11: Task Completion Time by Session .. 128

Figure 6-12: Average Flight Speed by Latency .. 128

Figure 6-13: Average Flight Speed by Session... 128

Figure 6-14: Path Smoothness by Latency ... 128

Figure 6-15: Path Smoothness by Session .. 128

Figure 6-16: Total Number of Waypoints Passed by Latency 129

Figure 6-17: Total Number of Waypoints Passed by Session 129

Figure 6-18: Total Number of Collisions by Latency ... 129

Figure 6-19: Total Number of Collisions by Session ... 129

1

Chapter 1
Introduction

Virtual reality (VR) systems are those that use a combination of trackers, displays, actua-

tors, computational hardware and software algorithms to immerse users into a virtual world

and render senses to users based on the contents and interactions in virtual environments.

The goal of VR systems is to provide users with immersive and realistic experience to

interact with virtual worlds. Four factors in VR systems are sought to be improved by VR

researchers and engineers. These include immersion, presence, perception and interaction

(Dodiya and Alexandrov, 2007). Among these factors, interaction allows users to interact

with virtual worlds in real-time and it is typically realized through the interfaces between

users and VR systems.

The naturalism of interfaces is largely dependent on whether the way users interact

in virtual environments corresponds to what they do in real worlds. For instance, in the

early days of VR research, joysticks were used to walk in VR (Robinett and Holloway,

1992). But now users are able to perform real walking in VR using locomotion interfaces

(Hollerbach, 2002) , which make such experience more natural and realistic. Thus, devel-

oping naturalistic interfaces is essential to the research and the design of VR systems.

In this dissertation, interfaces in VR systems are categorized into active interfaces

and passive interfaces. Active interfaces refer to those devices that are used by users to

give inputs to VR systems. These include locomotion (walking) interfaces (Hollerbach,

2002) and hand gesture interfaces (Xu, 2006) and they work by tracking and recognizing

 2

human motion to interpret users’ intents to interact with VR systems. Conversely, passive

interfaces are the devices that give users feedbacks based on the contents in virtual envi-

ronments. Typical passive interfaces include displays (Sutherland, 1968; Ware et al., 1993;

Cruz-Neira et al., 1993), haptic interfaces (Choi et al., 2016) and olfactory displays

(Matsukura et al., 2010). Some interfaces can be hybrid. For example, a locomotion inter-

face can be equipped with mechanical structures and actuators to give people sensations

during walking. Examples include the feelings of walking on uneven surfaces (Noma et

al., 2000) or climbing stairs (Vu et al., 2017). Such integration makes a locomotion inter-

face also a haptic interface. On the other hand, haptic interfaces, such as data gloves, are

also motion-tracked, which are able to give inputs to VR systems, so these are also active

interfaces.

In general, research on VR interfaces has not been extensively studied and some

topics have been ignored. For instance, head gesture is a natural means for communication

and interaction between people, but the use of head gesture interfaces to interact with vir-

tual avatars and virtual environments has been largely ignored. Thus, it is desirable to add

head gesture interfaces to VR systems for interaction. Similarly, many algorithms have

been developed for hand gesture recognition (Cheng et al., 2016), but they have been rarely

evaluated for VR interaction. Therefore, interfaces for VR systems, such as head gesture

interfaces and hand gesture interfaces, are worth further exploration.

Designing active interfaces for interaction in VR requires understanding of human

motion from the computational perspective. The general approach is to capture and analyze

 3

human motion to estimate the motion states using motion capture systems. Estimated mo-

tion states usually include the position, the orientation and the velocity of body parts. These

motion states can be directly reflected to changes in the user’s virtual representation (view-

point and avatar) to update the user’s states in virtual environments. This introduces ego-

centric motion and motions that can be used for interaction with VR, through means such

as gesture recognition. The interaction between users and virtual worlds is calculated by

algorithms and the feedbacks from the virtual worlds are rendered through passive inter-

faces, such as displays and actuators. High-level algorithms may also be developed and

used to reveal the metaphor of a sequence of estimated motion states. For example, it is

possible to recognize whether users are walking or running in virtual environments based

on the trajectories of tracked body parts. Virtual avatars other than the avatars of users are

therefore able to understand the motion of users in virtual environments and interact with

users. This will be helpful for designing more interactive virtual environments.

Popular motion capture systems for present-day VR research are optical systems

and inertial systems, or hybrid systems that are a combination of both. Optical systems use

techniques, including triangulation (two or more camera views) (Hartley and Zisserman,

2003), structured light (Shotton et al., 2011) and time-of-flight (Sarbolandi et al., 2015), to

directly measure positions of tracked body parts. Inertial systems typically use a combina-

tion of accelerometers and gyroscopes (Woodman, 2007), mounted on body parts to be

tracked, to measure linear acceleration and angular velocity. Hybrid systems also fuse the

 4

data streams from optical systems and inertial systems using algorithms, such as the Kal-

man filter (Kalman, 1960), to give estimates. Both optical systems and hybrid systems were

involved in the experiments presented in the dissertation.

This dissertation studied three types of human motion in VR: locomotion, head

motion and hand motion and focused on the design of the corresponding interfaces. The

primary goal of the dissertation was to design and evaluate active interfaces in VR, includ-

ing a locomotion interface, a head gesture interface and a hand gesture interface, based on

analyzing captured motion data. The locomotion interface was evaluated through a user

study that asked users to pursue a rolling ball in a virtual scene by walking on the locomo-

tion interface while the performance and the usability of the head gesture interface and the

hand gesture interface were evaluated and compared with a gamepad interface for answer-

ing Yes/No questions in virtual environments. In addition, VR systems provide researchers

with a unique way for studying human motion and behaviour as the experiment settings in

virtual environments can be well-controlled and motion data can be easily captured in a

controlled and tracked lab space. The results of the psychophysical experiments may tell

us how people perceive and react and may in turn help to improve VR systems in terms of

realism and interoperability. Furthermore, VR also can be used as a tool to model designs

in the real-world. Usability studies can be conducted in virtual environments and these

studies help to determine whether the proposed design meets the actual requirements. Thus,

another goal of the dissertation was to conduct experiments using VR interfaces to observe

and investigate locomotion and head motion through two user studies: the first user study

 5

investigated the role of stereopsis in avoiding virtual obstacles while walking in VR and

the second study investigated the effects of visual and control latency on piloting a quad-

copter using a head-mounted display (HMD); in the second study, a method for objectively

estimating the end-to-end latency in HMDs was also presented.

In summary, the main contributions of the dissertation were:

▪ I presented a locomotion interface based on a Wide Immersive Stereo Environ-

ment (WISE) and a treadmill using a machine learning approach. The evalua-

tion of the locomotion interface was conducted through a novel user study that

asked users to pursue a rolling ball. The task required users to adjust their walk-

ing speed to maintain a distance of 5 m to the rolling ball using the locomotion

interface.

▪ I studied the role of stereopsis in avoiding obstacles and gaps through two

walking experiments conducted in VR. Similar to the previous study, these ex-

periments were conducted using the WISE and a linear treadmill. Two virtual

scenes were designed. Users were able to perform linear walking in these vir-

tual scenes while avoiding virtual obstacles and gaps.

▪ I presented a head gesture recognition algorithm that recognized head gestures

using a proposed algorithm called the Cascaded Hidden Markov Models

(CHMMs). The proposed recognition algorithm can be used as an interface to

interact with virtual environments.

 6

▪ I presented a hand gesture interface that recognized dynamic hand gestures

based on a static hand gesture recognition algorithm. I also conducted a user

study for the hand gesture interface that asked participants to answer Yes/No

questions in virtual environments to compare its performance and utility with

the proposed head gesture interface and a conventional gamepad interface.

▪ I conducted a user study that investigated the effects of visual and control la-

tency on piloting a quadcopter using an HMD. To study whether the end-to-

end latency plays a dominant role in the quadcopter control scenario, I also

presented a general method for estimating the end-to-end latency in HMDs.

The rest of the thesis is organized as follows: Chapter 2 discusses related work.

Chapter 3 presents the design and the evaluation of a locomotion interface. Chapter 4 in-

vestigates the role of stereopsis in avoiding virtual obstacles while walking. Chapter 5 pre-

sents the designs of a head gesture interface and a hand gesture interface and a user study

that compares these two interfaces together with a gamepad interface. Chapter 6 studies

the effects of visual and control latency in teleoperation of a head motion controlled quad-

copter using an HMD. Chapter 7 draws the conclusion of the dissertation and discusses

future work.

 7

Chapter 2
Related Work

2.1 VR Systems and Displays

VR systems integrate different hardware and software components. Typical hardware com-

ponents include trackers, displays, actuators and computational platforms. These hardware

components are usually supported by their own algorithms and software frameworks. For

example, trackers may use filtering algorithms to eliminate noise in the tracked human

motion signals and graphics cards usually have their rendering frameworks to generate

photo-realistic images. As the trackers in VR systems are usually heterogeneous, it is a

common practice to use a sensor network (Taylor et al., 2001) to support the communica-

tion and control across these trackers. On top of these hardware and software components,

there is usually a global strategy (or an interaction technique) that defines the behaviours

of users and the functions of VR systems. It also circumvents the limitations of hardware

and software components.

Displays are indispensable components to VR systems and they are used for viewing

virtual environments. The primary types of displays for VR systems include monitors, im-

mersive projection displays (such as cave automatic virtual environments (CAVEs)) and

head-mounted displays (HMDs). Ware et al. (1993) introduced the Fish Tank VR system.

This system used stereoscopic monitors for visualization. Head positions of users were

tracked by mechanical sensors and the stereoscopic images of a 3D scene were rendered

 8

based on the tracked head positions. CAVEs (Cruz-Neira et al., 1993) are typical immer-

sive stereoscopic displays for VR systems. These displays usually use projectors to project

images onto a cube-like structure, which consists of 3-6 wall displays, or onto spherical

displays (curved displays). HMDs are devices that are mounted on a user’s head for the

visualization of 3D scenes. Sutherland (1968) created the first HMD, which integrated head

tracking, real-time rendering and a stereoscopic display. Displays are relatively mature

technologies but interaction techniques with displays remain an open field and are therefore

worth exploring.

2.2 Locomotion

2.2.1 Locomotion Techniques

Locomotion techniques in VR systems include: flying using a joystick (Robinett and Hol-

loway, 1992), leaning (LaViola et al., 2001), walking-in-place (WIP) (Slater et al., 1995;

Templeman et al., 1999; LaViola et al., 2001; Yan et al., 2004; Feasel et al., 2008; Bruno

et al., 2013, 2017; Williams et al., 2011; Wilson et al., 2014), redirected walking (RDW)

(Razzaque et al., 2001, 2002) and numerous mechanical repositioning techniques (Nilsson

et al., 2013), including treadmills (Souman et al., 2008), torus treadmills (Iwata, 1999),

virtual perambulators (Iwata, 1999), foot platforms (Iwata et al., 2001), pedaling devices

(Allison et al., 2000) and spheres (Medina et al., 2008). For example, flying using a joy-

stick, originally developed for locomotion in CAVEs, enables a participant to locomote by

actively operating a joystick with a hand. Later, as locomotion techniques became more

sophisticated, more motion cues were considered and included to improve presence in VR

 9

environments. Leaning, for instance, made a step forward in terms of full body control

compared to flying by sensing upper body tilt angle and using it for locomotion. The first

WIP interface "walking on spot" (Slater et al., 1995) used head motion to estimate one's

walking speed and more recent WIP techniques (Templeman et al., 1999; Yan et al., 2004;

Feasel et al., 2008; Wendt et al., 2010; Bruno et al., 2013; Wilson et al., 2014; Tregillus

and Folmer, 2016; Bruno et al., 2017) consider human biomechanics by using gait param-

eters to estimate one's walking speed. These WIP techniques allow a user to step in-place

to locomote but only accommodate the motions of stepping not the forward stride of loco-

motion. The more sophisticated RDW technique makes it possible for a user to perform

‘real’ walking (e.g., take forward steps) by consistently re-orienting the user toward the

center of a constrained space while the user wears an HMD. This circumvents the difficulty

that it is often impractical to build a 1:1 virtual scene, for example, when the simulated

space exceeds the size of the physical space of the VR display or the VR tracking volume.

Another approach to simulate walking while constraining physical motion is mechanical

repositioning. These techniques normally use a locomotion interface to cancel the effects

of the user’s stride, keeping them in-place while performing walking motions. The tech-

nique is especially useful for VR systems that use large-scale projected displays for visu-

alization. Walking biomechanics in these techniques are usually monitored by optical

trackers, inertial trackers or hybrid trackers mounted on lower limbs. In summary, the gen-

eral goal for designing a locomotion technique is to make it as natural as real-walking.

 10

Introducing bipedal walking in VR elicits proprioceptive cues that make walking experi-

ence in VR more naturalistic (Langbehn et al., 2018). In addition to proprioceptive cues,

vestibular cues are also important for natural experience in VR, which can be provided by

RDW techniques (Langbehn et al., 2018).

Researchers have also evaluated and compared different locomotion interfaces.

Nabiyouni et al. (2015) evaluated the Virtusphere technique, the real walking interface and

the gamepad interface. They showed that the Virtusphere as a moderate-fidelity technique

was significantly outperformed by a high-fidelity real walking interface and a well-de-

signed low-fidelity gamepad interface as the Virtusphere was fatiguing and difficult to con-

trol due to its large inertia. Conversely, the real-walking interface was natural to people

and the gamepad interface had a clear mapping between joystick movement and users’

intended direction of travel so it was easy to use. Kitson et al. (2017) compared several

seated leaning locomotion techniques using different types of chairs to the joystick inter-

face. They reported that participants in general preferred the leaning techniques as they are

fun, engaging and more realistic but the joystick interface was still easier to use and control.

Zielasko et al. (2016) evaluated five locomotion techniques. Among these techniques, the

Adapted Walking in Place and the Accelerator Pedal involved lower limb movements.

Leaning required upper body movements while seated. The Shake Your Head technique

used only head movements tracked by an HMD. These techniques were also compared

with the traditional gamepad interface. They found that the Accelerator Pedal and the Lean-

ing technique performed better than other techniques in terms of user preference and task

 11

performance. Most recently, Coomer et al. (2018) compared four locomotion methods, in-

cluding the joystick interface, the Arm-Cycling, the Point-Tugging and teleporting. The

Arm-Cycling is a locomotion technique that creates egocentric motion in VR based on the

displacements of HTC Vive controllers held in users’ hands when users perform cycling

motion of their arms with the triggers on the HTC Vive being pressed down. The Point-

Tugging is method that requires users to grab a virtual point in virtual environments by

pressing the triggers on the HTC Vive controllers and then tug to move themselves in vir-

tual environments, followed by releasing the triggers to complete the movement. They con-

cluded that the Arm-Cycling was the best locomotion method among these four techniques

as it gave better sense of spatial awareness and lower simulator sickness scores.

Although many locomotion interfaces have been developed for mechanical reposi-

tioning in VR systems, 1-D treadmills are still of interest since they can be easily obtained.

Many studies have focused on developing methods for automatic speed adaptation of 1-D

treadmills and these methods can be generally divided into four categories (Park et al.,

2015): inertial-force-based controllers, position-based controllers, physiology-based con-

trollers and gait-parameter-based controllers. For example, von Zitzewitz et al. (2007) de-

veloped a force-based controller by which a participant is required to wear a mechanical

harness equipped with force sensors to measure the ground reaction force between their

feet and the belt of a treadmill. The control of the acceleration of the treadmill is determined

based on Newtonian mechanics using the measured ground reaction force. Souman et al.

(2010) developed a position-based controller in which the walking speed is estimated from

 12

the deviation of the position of the user from a reference position on the treadmill. The

physiology-based controller by Su et al. (2005) used heart rate in a biofeedback mode to

control the speed and the slope of a treadmill to help a user maintain heart rate. Yoon et al.

(2012) developed a combined gait-parameter-based and position-based controller, which

estimates a user's walking speed from the peaks of foot swing velocity and the position of

a user on the treadmill. Wiens et al. (2017) developed a similar method to the approach by

Yoon et al., which was to adjust the speed of treadmill based on user’s position on a tread-

mill and leg swing velocity. Generally, the goals of such controllers are to keep a user on

the treadmill by estimating a user's intended walking speed and adapting the speed of the

treadmill using the speed estimate. The related parameters that can be used for such esti-

mation include ground reaction force, the user's position on treadmill, physiological factors

or gait parameters, etc. However, estimation of walking speed using machine learning tech-

niques based on gait parameters has not been explored. Thus, it is a promising research

topic.

2.2.2 The Role of Stereopsis in Walking

Locomotion techniques in VR allow researchers to study human locomotion behaviors as

it is relatively easy to set up experimental scenes and perform motion tracking in VR than

in the real-world. The role of stereopsis in walking has been studied in small physical space

in laboratories but has not been studied in a virtual environment that simulates a much

longer walking distance. Thus, it is a potential research topic that can be studied with VR

locomotion techniques.

 13

Previous research has shown that stereopsis aids activities related to hand-eye co-

ordination (Fielder and Moseley, 1996), but it is less clear that stereopsis provides ad-

vantages in locomotion activities, such as walking and running, as steady viewing is needed

to let stereopsis achieve maximum precision (McKee et al., 1990). Some studies have

shown that stereopsis also helps people to make more accurate lower limb movements

(Patla et al., 2002; Loomis et al., 2006; Hayhoe et al., 2009; Chapman et al., 2012).

For example, Patla et al. (2002) conducted an experiment to study the role of ste-

reopsis in locomotion by asking participants to step over a single obstacle in a straight path.

Their finding was that toe clearance was increased under non-stereoscopic viewing com-

pared to stereoscopic viewing, which indicated that stereoscopic viewing improved lower-

limb lift accuracy or that people acted more cautiously in absence of stereoscopic viewing.

Loomis et al. (2006) had participants to go through a small field with randomly placed

obstacles to reach a goal at the other end of the field, while avoiding collision with the

obstacles. Results showed that stereoscopic viewing resulted in fewer collisions compared

to non-stereoscopic viewing than non-stereoscopic viewing. Hayhoe et al. (2009) studied

the role of stereopsis in locomotion by asking participants to walk in an indoor environment

with two obstacles and one table. The task was to step over two given obstacles, go around

the table and step over the two obstacles again before returning to the start point. They

found that stereoscopic viewing gave shorter task completion time and lowered foot clear-

ance height (toe clearance). The finding on the foot clearance height was consistent with

that of Patla et al. (2002). Chapman et al. (2012) investigated the influence of stereopsis in

 14

foot placement accuracy using a task that asked participants to walk in a straight path and

step on floor targets as accurately as possible. Each floor target consisted of two pieces of

white tape angled 90 degrees to form to a corner of a square. They found that, under non-

stereoscopic viewing, foot placement was less accurate in medio-lateral plane and terminal

foot-reach duration was longer compared to that of stereoscopic viewing.

A limitation of these studies was that the experiments were conducted in setups

with limited walking distances that did not represent typical walking scenarios in our eve-

ryday life - we usually walk continuously over longer distances. Thus, it is still uncertain

whether stereopsis helps people to make more accurate movements under constant motion

during continuous walking. VR systems provide us with a unique opportunity for simulat-

ing open and large environments, they are promising platforms to investigate the influence

of stereopsis on gait parameters.

2.3 Head Motion

Tracking head motion is important and ubiquitous for VR. Firstly, images of VR environ-

ment presented in VR displays are rendered based on the tracked head position in the phys-

ical space. Secondly, tracking head motion allows interaction in VR. For example, it is

possible to implement locomotion in VR by using head motion alone (Slater et al., 1995;

Tregillus and Folmer, 2016) and it is also possible to implement a head gesture interface

based on head movements for interaction, which is presented in Chapter 5. Thirdly, head

motion tracked by an HMD enables us to teleoperate vehicles. The surroundings of vehicles

can be observed on the HMD. This usually gives an egocentric, immersive and intuitive

 15

way of control than the conventional way that normally uses a joystick and a monitor. In

addition, the usability and performance of teleoperation of vehicles using an HMD can be

directly studied with VR experiments.

2.3.1 End-to-End Latency

Head motion in VR systems is typically coupled with updates of visual contents on displays.

Changes in head position and orientation in tracked physical space must be immediately

updated in virtual environments and presented onto displays. A critical parameter involved

in the process is the end-to-end latency, which is defined as the time interval between a

user's physical motion and the resulting update of a new frame presented on the display

due to the motion. The parameter has been recently referred to as the motion-to-photon

latency (Iribe, 2013). Optimal VR experience requires the latency to be less than 20 ms,

and 60 ms is usually taken as an upper bound for an acceptable VR experience (LaValle et

al., 2014), depending on the task and the nature of head movements. High latency can result

in instability of the environment, cause simulator sickness and affect task performance (Al-

lison et al., 2001). To measure the latency of VR systems, objective methods are needed.

Many approaches have been proposed to estimate the end-to-end latency in CAVEs (Steed,

2008) and HMDs (Di Luca, 2010; Raaen and Kjellmo, 2015; Kijima and Miyajima, 2016;

Seo et al., 2017). Such methods usually use mechanical structures to introduce motion to

the tracker of the display, video cameras and photodiodes are used to monitor the motion

of the tracker and the changes on the display. In addition, the motion of the tracker also

can be monitored by a rotary encoder. Most recently, to estimate the latency of the Oculus

 16

Rift DK2, Kijima and Miyajima (2016) stacked two high-speed cameras on a turntable

rotating back and forth according to a semi-triangle wave. One camera captured a head

tracked vertical white line rendered on the HMD while the other captured a static vertical

white line in the real world. The latency was estimated by performing cross-correlation on

the angular directions of both the virtual and physical white lines. Similarly, Raaen and

Kjellmo (2015) compared light sensor outputs monitoring the position of a laser pointer

mounted to an HMD with another sensor monitoring changes in brightness on the HMD.

However, these studies did not evaluate the latency of an HMD given different initial ac-

celerations. In addition, the comparison between the translational latency and the rotational

latency of an HMD has not been done. Thus, the dissertation provides an alternative ap-

proach for estimating the latency of HMDs, use it to estimate the latency given different

initial accelerations and compare the translational latency and the rotational latency.

To minimize the motion-to-photon latency, it is possible to predict head motions

assuming constant head rotational speed or acceleration (LaValle et al., 2014). Measure-

ment of VR systems with prediction algorithms is more challenging as the motion-to-pho-

ton latency is a variable parameter due to prediction algorithms and the details of imple-

mentation of the prediction algorithms are usually proprietary and are not available for

examining.

2.3.2 Head Gesture

Head gesture is a natural means of face-to-face communication between people but the

recognition of head gestures in the context of virtual reality and use of head gesture as an

 17

interface for interacting with virtual avatars and virtual environments have been rarely in-

vestigated. Recent advances in motion tracking technologies have enabled users’ head

movements to be accurately tracked in real-time. For example, HMDs, such as the Oculus

DK2, integrate head motion tracking sensors (LaValle et al., 2014). Large projective dis-

plays, such as the CAVEs, are usually equipped with head tracking glasses. These devices

make real-time head gesture recognition possible in VR environments.

Recognizing gestures is usually considered as the problem of recognizing se-

quences and Hidden Markov Models (HMMs) (Rabiner, 1989) have been widely used for

recognizing hand and body gestures (Campbell et al., 1996; Hossain and Jenkin, 2005;

Chen et al., 2009; Liu et al., 2014). Previous studies on head gesture recognition were

mostly computer vision based systems using HMMs (Morimoto et al., 1996; Terven et al.,

2014). In such systems, a user’s face was usually captured by a camera and computer vision

algorithms were used to track a user's face and estimate the user's head orientation from

the tracked face.

Morimoto et al. (1996) used an optical flow algorithm to estimate the yaw, pitch

and roll of a user's head. The estimated angles were quantified into seven observation sym-

bols by thresholding. The thresholds were determined by calculating the energy of a se-

quence of angles, but the details of the energy calculation algorithm were not described.

The observation symbols were used to train four HMMs. These HMMs correspond to four

gestures: Yes, No, Maybe and Hello. Three gestures Yes, No and Maybe were modeled

with fully connected HMMs while the gesture Hello was modeled with a left-right HMM.

 18

The classification performance was evaluated offline using sequences of gestures collected

from several participants. Terven et al. (2014) used the Supervised Descent Method (SDM)

to extract 2-D facial features. The yaw, pitch and roll were estimated by using the Pose

from Orthography and Scaling with Iterations (POSIT) method with the extracted 2-D fa-

cial features and a 3-D anthropometric head model. The symbols were generated by com-

paring changes in yaw and pitch across consecutive frames. To cover six different head

gestures: Nodding, Shaking, Left, Right, Up and Down, the researchers trained six HMMs

and these models were fully connected to form a cyclic structure. To evaluate the classifi-

cation performance, videos that contained different head gestures were recorded and the

performance was evaluated offline.

Although computer vision based systems using HMMs for head gesture recognition

exist, to my knowledge, HMMs have not been used for recognizing head gestures on

HMDs. The performance and usability of head gesture interface in virtual environments

have not been studied. Thus, the dissertation presents a method for recognizing head ges-

tures on HMDs and conducts a user study to evaluate its performance and usability in vir-

tual environments.

2.3.3 Teleoperation of Vehicles and Onboard Cameras through Head Motion and Its

Effects of Latency

Head motion is useful for controlling vehicles and onboard cameras using HMDs. Earlier

research proposed to jointly use an HMD and a joystick to respectively control the onboard

camera and the vehicle. For instance, de Vries and Padmos (1997) compared different

 19

viewing conditions for operating a camera on a simulated unmanned aerial vehicle (UAV)

using head motions tracked by an HMD while piloting the UAV with a joystick. Morphew

et al. (2004) studied the performance of two methods (a joystick with an HMD vs a joystick

with a computer monitor) for controlling a UAV. Their study found that using a joystick

with a computer monitor gave better task performance than using a joystick with an HMD

and elicited less simulator sickness. Mollet and Chellali (2008) proposed the idea of using

head tracking functionality in HMDs for teleoperation of cameras on robots to improve the

degree of immersion by presenting the view from the robot vantage point. Their prototypes

were based on wheeled-robots and head rotation was used to control the attitude of an

onboard camera. But the evaluations of the proposed system were not given in the paper.

Doisy et al. (2017) compared the performance of three methods for controlling robots.

Experiment conditions included: (a) an Xbox 360 controller for controlling both robot

movement and camera orientation. (b) an Xbox 360 controller for controlling robot move-

ment and an HMD for controlling camera orientation. (c) hand gestures for controlling

robot movement and an HMD for controlling camera orientation. Similar to the results by

Morphew et al. (2004), they found that using the Xbox 360 controller for controlling robot

movements and camera orientation had the best task performance. A more recent work by

Smolyanskiy and Gonzalez-Franco (2017) presented a design of a quadcopter with stereo-

scopic viewing using the Oculus Rift DK2. Onboard camera panning was controlled digi-

tally (as opposed to mechanically) by head motion while the quadcopter was piloted by a

hand-held controller. Real flight tests were carried out to study the simulator sickness with

 20

an end-to-end latency of 250 ± 30 ms and participants had minor simulator sickness. An-

other experiment was conducted to study simulator sickness in relation to gaming experi-

ence and visual acuity using pre-recorded flight videos.

More recently, systems that teleoperate vehicles or robots using head motion

tracked by an HMD have been developed. In these systems, egocentric views captured

from the onboard cameras from the vehicles or robots are presented onto the HMD. Such

settings give users an egocentric, immersive and intuitive way of teleoperation compared

with conventional control methods using hand-held devices. Several projects have ex-

plored teleoperation of robots and quadcopters using an HMD: Martins and Ventura (2009)

presented a head motion controlled search and rescue (SAR) robot using an HMD. The

HMD in the design had a three Degree-of-Freedom (DOF) tracker, which could capture

yaw, pitch and roll angles of a user’s head. The SAR robot had two tracks and an articulated

frontal body with a stereo camera mounted on it. The yaw angle of a user’s head was

mapped to the angular velocity of the rotation of the SAR robot and the pitch angle was

directly mapped to the angle of the front body of the robot to ascend or lower it. Since the

robot was unable to perform roll movements, the roll angle of a user’s head was used to

rotate the image presented on the HMD. The experimental results showed that the control

that utilized the HMD gave better performance in terms of depth perception, detail percep-

tion and the execution of a SAR operation compared to a 2D interface on a computer mon-

itor with joystick control. Higuchi et al. (2013) proposed a control mechanism for quad-

 21

copters called the Flying Head. In this method, translation motion accomplished by walk-

ing and tracked by an HMD was directly mapped to the spatial motion of a quadcopter i.e.

the x-, y- and z-positions and the yaw angle were synchronized between the user and the

quadcopter. Experimental results showed that the proposed control method outperformed

the conventional control method using a joystick when tracking static or moving targets.

Pittman and LaViola (2014) evaluated six different techniques for operating a quadcopter,

including five techniques based on head motion and body motion using an HMD and a

technique using the Wiimote. To evaluate all six techniques, participants were asked to fly

a quadcopter through five archways placed in an open environment. However, their results

showed the Wiimote technique led to the shortest task completion time. Users had lower

simulator sickness scores using the Wiimote interface compared with other interfaces. We

note that in first five techniques, the control mechanisms were discrete ON/OFF control

inputs. This may introduce higher latency and increase discrepancy between the intended

motion, the vestibular cues and the visual cues. Thus, it is not surprising that performance

of participants using the five head motion control techniques was lower compared to the

Wiimote interface and the degree of simulator sickness was higher. Teixeira et al. (2014)

used an augmented reality (AR) device - the Google Glasses for controlling a quadcopter.

In this work, the gestures of the Google Glasses were mapped to the motion of the quad-

copter and the video stream captured by the onboard camera of the drone was presented to

the right eye of users. An advantage of the design is that operators know both their egocen-

 22

tric positions and the position of the quadcopter while operating the quadcopter. Thus, op-

erators may simultaneously use other devices while flying the quadcopter. But the design

may also confuse operators since visual inputs came from two different sources, which

may potentially cause simulator sickness. Some preliminary evaluations regarding the in-

teraction between operators and drones were conducted. But no details were given.

In such systems, a typically overlooked factor is the introduced latency, which in-

cluded visual latency and control latency. Visual latency (Jennings et al., 2004; Blissing et

al., 2016) refers to the time delay between when an image is captured by a camera and

when the photons of the captured image are emitted by the display. Control latency (Jen-

nings et al., 2004), on the other hand, is the time delay between when a control command

is given to a vehicle and when the vehicle is actuated by the control command. Visual

latency and control latency may result in simulator sickness and researchers have investi-

gated the effects of latency on controlling vehicles, including cars and helicopters while

the operators were in these vehicles. Blissing et al. (2016) investigated the effects of visual

latency on driving performance through an experiment conducted on real cars. Participants

wore see-through HMDs modified from an Oculus Rift DK2 while driving. End-to-end

latency was injected by delaying captured real-word video frames. The task was to drive a

car through a slalom course under three different latency levels. Results showed that par-

ticipants could compensate for increased latency by adapting their driving behaviors. But

the tests were short-duration so simulator sickness would not be expected and it was not

 23

assessed. Jennings et al. (2004) studied the relationship between latency and flight perfor-

mance of helicopter pilots. Two experiments were conducted to evaluate visual latency and

control latency on piloting helicopters. These included asking pilots to fly a helicopter

through two designated courses while wearing HMDs and perform precision hovering in a

flight simulator with a motion base. Results showed that both visual latency and control

latency degraded flight performance. The frequency and the intensity of simulator sickness

increased as longer delays were given. It is important to note that the settings of these

experiments were different from the teleoperation of vehicles where operators are not in

the vehicles. In the latter case, there is no vestibular cue, which causes a conflict between

visual and vestibular systems so simulator sickness can be expected.

In summary, teleoperating a vehicle with an HMD and a joystick does not provide

performance advantages compared with teleoperating a vehicle with a computer monitor

and a joystick. The former (de Vries and Padmos, 1997; Morphew et al., 2004; Mollet and

Chellali, 2008; Smolyanskiy and Gonzalez-Franco, 2017; Doisy et al., 2017) usually elicits

symptoms of simulator sickness. However, operating vehicles using only HMDs (Martins

and Ventura, 2009; Higuchi et al., 2013; Teixeira et al., 2014; Pittman and LaViola, 2014)

seem to give people a more direct, immersive and intuitive way of control than joint use of

computer monitors and joysticks. In addition, researchers have also investigated the effects

of latency on driving cars (Blissing et al., 2016) and piloting helicopters (Jennings et al.,

2004). However, no research has been conducted to study the effects of various levels of

latency of head motion controlled quadcopters or other types of vehicles. The latency in

 24

the head motion controlled quadcopters differs with that of the helicopters. In helicopter

control, the visual updates are coupled with the hand motions of pilots. Latency in such

cases can be divided into visual latency and control latency. In head motion controlled

quadcopters, visual updates and quadcopter motions are coupled with head motions and

thus visual latency and control latency are combined into a single factor. Since using head

motion tracked by an HMD to teleoperate a quadcopter or other robotic platforms is a very

promising and popular interface, the effects of visual and control latency in such scenarios

are worth direct investigation.

2.4 Hand Motion

Traditionally, a way to give inputs to VR systems is to use hand motion tracked by me-

chanical hand-held devices, such as joysticks, gamepads and data gloves. This enables us-

ers to perform various activities. For example, as mentioned in Section 2.2, flying using a

joystick (Robinett and Holloway, 1992) was the first method to locomote or navigate in

virtual environments. A problem using hand-held devices in VR is that it prevents users

from using their hands to directly perform other natural activities such as object picking

and manipulation or making hand gestures to communicate with other people or virtual

avatars in virtual environments. Thus, it is beneficial to free users’ hands from operating

hand-held devices and integrate a hand gesture interface to VR systems so that users can

directly use hand gestures to perform activities in virtual environments.

Depth sensors, such as the Leap Motion, have recently become the state-of-the-art

devices for tracking hand movements. With datasets collected by these sensors, a large

 25

volume of algorithms that can recognize hand gestures have been developed (as compre-

hensively reviewed by Cheng et al. (2016)). However, these algorithms were primarily

evaluated on pre-collected datasets offline. The usability and performance of the hand ges-

ture interfaces for interaction with VR environments in real-time have not been explored.

In this dissertation, a dynamic hand gesture recognition algorithm is presented as a hand

gesture interface and its performance and usability are compared to the proposed head ges-

ture interface and a gamepad interface through a user study.

 26

Chapter 3
Locomotion in Virtual Reality based on Gait

Parameters

3.1 Introduction

In this study, I was interested in developing a combined gait-parameter-based and position-

based controller for controlling a 1-D treadmill to walk in VR. The first motivation for this

approach was that gait parameters contain explicit cues for estimating a user’s intended

walking speed. However, the proposed gait-parameter-based controller only estimates the

intended walking speed of a user without considering the user's position on the treadmill.

To account and control for position, I introduced a position-based controller that estimates

a user's position on the treadmill from the user’s captured foot position data. This position

estimate is used to adjust the position of a user on the treadmill. Other parameters, such as

the ground reaction force and the physiological factors could also be included to adapt the

current design for future research in specific domains, such as rehabilitation. Secondly,

while recent WIP techniques have used gait parameters for walking speed estimation, to

my knowledge, the use of gait parameters for mechanical repositioning techniques has not

been thoroughly investigated and offers potential for improved interaction, as has been

demonstrated by recent WIP techniques. Thirdly, the method is novel in that it uses a ma-

chine learning approach to map the defined gait parameters (gait features) into a user's

intended walking speed and such techniques have not been investigated for real-time tread-

mill locomotion interfaces. The work done by Park et al. (2012) is related to my approach

 27

but is intended for indoor over-ground walking speed estimation rather than control. They

used features that consisted of gravity components and DFT components extracted from

the acceleration data collected by a handheld device and trained regularized kernel methods

to estimate a user's walking speed. Their approach estimated a user's average walking speed

from data sequences collected over several seconds (2.56 or 5.12 seconds for over-ground

walking). I instead aimed to estimate a user's intended walking speed within 0.53 seconds

(given a sampling frequency of 120 Hz and a queue of a length 64 for buffering foot posi-

tion data) for real-time control of a 1-D treadmill using low-latency gait features extracted

from the foot motion data collected by an optical motion capture system. The current study

demonstrates that it is possible to achieve the goal of an interactive real-time locomotion

interface using a machine learning approach. Finally, while the techniques described in the

study are general and could be applied to a variety of HMD or projective VR display setups,

I developed and evaluated the system in the context of a novel immersive projected VR

display. This unique new display is known as the Wide-Field Immersive Stereoscopic En-

vironment (WISE). It has been set up at York University to explore locomotion techniques

and other interaction techniques with large-scale projective displays and investigate human

locomotion and navigation behaviors in controlled VR environments.

In the current study, I present a machine learning approach for developing a loco-

motion technique based on a conventional 1-D treadmill for interacting with the display.

In addition, previous studies (Su et al., 2005; von Zitzewitz et al., 2007; Souman et al.,

2010) evaluated their speed estimation algorithms by asking users to walk at their preferred

 28

speed on the treadmill. These evaluations were performed in terms of the estimated walking

speed pattern within one gait cycle (von Zitzewitz et al., 2007), gains of control law

(Souman et al., 2010) and the error of walking speed estimation (Su et al., 2005). Von

Zitzewitz et al. (2007) also used a questionnaire to let participants rate the performance of

their proposed method. However, these studies did not engage users in an active VR envi-

ronment during evaluation. To assess my locomotion technique in a more interactive and

relevant way, I present a novel user study for assessing the utility of locomotion interfaces

by asking a user to pursue a rolling ball in a virtual scene requiring them to control their

speed and relative position. While constrained to meet needs for experimental control, such

a task is representative of a broad range of navigation tasks in VR.

3.2 Method

I use a set of spatial-temporal features that can be extracted in real-time during actual lo-

comotion with low latency. Inspired by Yoon et al. (2012), I select the peaks of foot speed

curves as one of the features for estimating intended walking speed. But contrary to their

approach that models the foot speed curves as sinusoidal waves using the peaks as the

amplitudes and that estimates the walking speed by calculating the average amplitude of

the sinusoidal waves and by further fitting the estimated walking speed to the real walking

speed using quadratic regression, my assumption is that when walking at a specific speed

either over-ground or on the treadmill, the peaks of a foot speed curve should fall into a

certain interval. Thus, conversely, if I can estimate the amplitude of the peaks of a foot

speed curve, it should be possible to estimate the corresponding intended walking speed.

 29

The second feature that I use is the time intervals between consecutive peaks since the time

intervals are inversely proportional to step frequency. Thus, for every detected peak, the

algorithm generates a 2-D feature vector. With enough data on foot speed collected from

several participants, the problem of intended walking speed estimation can be turned into

a classification task by learning the extracted features and using the learning result to esti-

mate a user's intended walking speed. In my implementation, the classification is per-

formed by a typical machine learning approach: the k-nearest neighbor (KNN) algorithm

due to its simplicity for multi-class classification. Other machine learning algorithms such

as the Support Vector Machine and neural network algorithms may also be used, and fur-

ther investigation is needed to compare their performance with the KNN-based approach.

The result of the classification is the user's intended walking speed. The proposed technique

handles two cases of locomotion behavior on the treadmill using a single workflow. First,

when a user maintains current walking speed, the extracted 2-D feature vector will consist-

ently fall into a specific interval. The estimated intended walking speed generated by the

classification algorithm will be a constant speed value that maintains the speed of the tread-

mill. Second, when a user intends to change walking speed by increasing or decreasing

foot swing speed, the extracted 2-D feature vector will jump from their previous interval

to a new interval and the classification algorithm will generate an updated speed estimate

that adapts the speed of the treadmill to accommodate the changed motion of the user. If

the user maintains the new walking speed, the user's locomotion behavior returns to the

 30

first case and the algorithm will generate constant speed estimates again. The second dif-

ference of my work compared with that of Yoon et al. (2012) is that I only use foot position

data to estimate a user’s position on the treadmill, while their method directly captures the

position of a user from an infrared (IR) marker attached on the waist. My assumption is

that the positions of two feet are symmetrical to the trunk in healthy gait. Thus, the average

of the positions of two feet can be considered as the estimate of the position of the trunk.

With the user's intended walking speed from classification and the position infor-

mation estimated from a user’s foot motion, the speed command for controlling the tread-

mill can be obtained. The actual running speed of the treadmill is queried periodically to

update the speed of the virtual viewpoint in a scene. Figure 3-1 presents an overview of the

proposed approach.

3.2.1 Hardware and Software of the VR System

 The sensor for capturing foot motion is the NaturalPoint OptiTrack V120:Trio, which has

three cameras with a resolution of 640 × 480 and a frame rate of 120 Hz. The sensor is an

Figure 3-1: Overview of the Proposed Approach

Foot Motion Data

Step Segmentation

Feature Extraction

Classification

Treadmill Speed Control

Virtual Viewpoint Control

Trunk Position

Estimation

 31

active IR camera that emits IR light, which is reflected by IR markers and captured by the

sensor. To capture human motion, markers are attached to body parts to be tracked. The

positions of the markers are calculated by the system’s supporting software (Motive 3.7)

and broadcast through a network to be shared with other application software. The 1-D

treadmill for the study is a commercial type LifeSpan TR5000-DT5. The size of the top

surface of the treadmill belt was 51 cm (W) × 142 cm (L). The control of the treadmill is

performed through Universal Asynchronous Receiver/Transmitter (UART) controllers by

a host machine using a baudrate of 4800 bit/s. The virtual environment is presented on the

Wide-Field Immersive Stereoscopic Environment (WISE), which is a curved and large-

scale projective display designed by Christie. The images rendered on the display are cast

and seamlessly merged by eight overlapping projectors with blending and luminance cali-

bration performed in hardware. Each projector is driven by a client machine (HP Z820

Workstation with Nvidia Quadro k5000 graphics card) in a real-time rendering cluster. The

rendering and the synchronization between the host machine (HP Z820 Workstation with

Nvidia Quadro k5000 graphics card) and the client machines are handled by the VR soft-

ware Worldviz Vizard 5.0. The proposed approach was implemented using Python 2.7.

3.2.2 Data Collection and Buffering

To perform step segmentation and detect the peaks of foot speed, it is necessary to buffer

a certain amount of data. I use three queues for buffering the timestamps of frames and the

z-positions (in depth) of the left foot and the right foot, respectively. The sizes of the queues

 32

are chosen to be 64, which gives an initial latency of about 533.3 ms for filling the buffers

when the capture starts. The sizes of the queues ensure a complete step can be captured and

that the initial latency for buffering is relatively small.

3.2.3 Step Segmentation and Feature Extraction

I use the foot speed for step segmentation because foot speed generally shows better regu-

larities in relation to the phases of a gait cycle than foot position does by manually exam-

ining the captured data traces of foot speed and foot position. Foot speeds are calculated

Figure 3-2: Step Segmentation Example

Figure 3-3: Definition of the Gait Features

0 10 20 30 40 50 60
-1

0

1

2

3

4

5

6

7

Frames

S
p

e
e

d
 (

k
m

/h
)

Foot Speed

Peak

Thresholds

0 400 800 1200 1600 2000
-2

-1

0

1

2

3

4

5

6

7

Frames

S
p

e
e

d
 (

k
m

/h
)

Foot Speed

ps

ts

pt

as

 33

using the buffered position data and the calculated speeds of the left foot and the right foot

are then merged together by taking the maximum of the data elements of the left foot and

right foot with the same index, since it is not necessary to distinguish whether a detected

step is from the left foot or the right foot when estimating walking speed. A gait cycle has

three important phases: the initial swing, the mid swing and the terminal swing (Gamble

and Rose, 1994). In terms of foot speed, these phases correspond to the moments when a

foot gains initial speed due to lifting; the foot reaches the maximum speed in mid-air; and

the foot decelerates to a very slow speed before touching the ground, respectively. Theo-

retically, successful step segmentation involves the detection of these three phases. My

dynamic thresholding technique works by first locating a step with a high threshold. From

the thresholded data points of a step, the algorithm uses a gradient descent strategy to locate

the data points for the initial swing and the terminal swing. The gradient descent algorithm

stops whenever it reaches the minimum speed threshold for step segmentation or it detects

that the gradient is ascending, indicating a different step is detected. Once the initial swing

and the terminal swing are successfully located, I select the maximum speed value in the

interval between these two data points and consider it as the data point for the mid swing.

Use of the gradient strategy rather than using thresholding directly avoid incorrectly de-

tecting small noisy peaks as steps. However, during actual step segmentation, accurate de-

tection of the terminal swing is not necessary. This is because the algorithm can detect the

critical mid swing point before a user completes an entire step. Figure 3-2 shows the sce-

nario, in which the initial and mid swing phases are detected while the terminal swing has

 34

not been buffered. The algorithm stops at the last data point which is sufficient to bracket

the mid swing point. In this way, I can ensure timely detection of the mid swing and adap-

tation of the speed of the treadmill before the swing foot touches the treadmill belt. This

minimizes the error between the user's trunk position and the reference position on the

treadmill. The step segmentation algorithm is executed whenever a new data frame comes

into respective buffers. Thus, the same peak is repetitively detected. But each peak is used

for adapting the speed of the treadmill only once. The algorithm was simple with low over-

head.

The peak of the mid-swing during treadmill walking is not the same as the peak

during over-ground walking. A major difference between over-ground walking and tread-

mill walking is that the peak value detected during treadmill walking is shifted downward

(backwards motion) by the speed of the treadmill belt (Yoon et al., 2012) as the foot swing

velocity is relative to the speed of the treadmill belt. Thus, whenever a peak is detected, it

is necessary to add the current speed of the treadmill belt 𝑠𝑡 to the detected peak 𝑠𝑝 to yield

the real amplitude of the peak 𝑠𝑎. This gives:

𝑠𝑎 = 𝑠𝑡 + 𝑠𝑝 (3.1)

The second feature, the time intervals between consecutive peaks 𝑡𝑝, are calculated

by subtracting the timestamps of adjacent detected peaks. The initial latency for measuring

the time interval is approximately one and a half steps, as the algorithm needs to obtain the

timestamps of two successive peaks. Figure 3-3 shows a foot speed curve when the tread-

mill runs at 1 km/h and gives an illustration of the defined gait features. These two features

 35

constitute a 2-D feature vector: 𝑥 = (𝑠𝑎, 𝑡𝑝), which can be used for training and testing in

the classification step.

3.2.4 Classification

I divided the collected data from participants into halves: one for training and the other for

testing the classifier. The class labels of extracted feature vectors y were their correspond-

ing treadmill speeds and satisfy 𝑦 ∈ {1𝑘𝑚/ℎ, 2𝑘𝑚/ℎ, 3𝑘𝑚/ℎ, 4𝑘𝑚/ℎ, 5𝑘𝑚/ℎ}. Since

the features were in different units: km/h for amplitudes of peaks 𝑠𝑎 and seconds for time

intervals 𝑡𝑝, to avoid biasing the result of classification due to the unit mismatch; I calcu-

lated the minimum and maximum values for both features in the training set and performed

a linear transformation on all features in the training set to map them into the interval [0,

1] using min-max normalization. For the testing set, I used the minimum and maximum

values calculated from the training set and mapped the features in the testing set into the

interval [0, 1]. For classification, given a feature vector 𝑥, I wished to predict its class label

𝑦 using a KD-tree version of KNN algorithm (Bentley, 1975). The Euclidean distance was

used as the metric for similarity between feature vectors. During the testing phase, first a

KD-tree was built using the training set. Then, for each feature vector 𝑥 in the testing set,

the algorithm found its three nearest neighbors. The mode of the class labels 𝑦 of these

neighbors was considered as the output: the estimated walking speed �̂�𝑤.

 36

3.2.5 Control of Treadmill Speed and Virtual Viewpoint

The estimated walking speed �̂�𝑤 does not account for the user’s position on the treadmill.

To adjust the position of a user on a treadmill, I estimate a user’s trunk position on the

treadmill through tracked foot position data. Specifically, I calculate the average foot po-

sitions 𝑝
𝑓
 and consider it as the estimated position of the trunk �̂�𝑡:

�̂�𝑡 = 𝑝𝑓 =
∑ 𝑝𝑙𝑓

𝑖 + ∑ 𝑝𝑟𝑓
𝑖𝑤𝑟𝑓

𝑖=1

𝑤𝑙𝑓
𝑖=1

𝑤𝑙𝑓 + 𝑤𝑟𝑓
(3.2)

where 𝑤𝑙𝑓 and 𝑤𝑟𝑓 denote the sizes of the queues for buffering the left foot position 𝑝𝑙𝑓

and the right foot position 𝑝𝑟𝑓. In my case, both values equal 64. The speed value 𝑠𝑡
′ given

to the treadmill for control is defined as:

𝑠𝑡
′ = (�̂�𝑡 − 𝑝𝑟𝑒𝑓) ∙ 𝑘𝑝 + �̂�𝑤 (3.3)

where 𝑝𝑟𝑒𝑓 is a reference position (typically the center) on the treadmill relative to the IR

sensor and 𝑘𝑝 is the positional gain. The positional term (�̂�𝑡 − 𝑝𝑟𝑒𝑓) ∙ 𝑘𝑝 compensates for

small errors between the position of the trunk and the reference position on the treadmill

while the gait-parameter term �̂�𝑤 accommodates speed changes.

The virtual viewpoint in a scene is controlled by querying the current speed of the

treadmill 𝑠𝑡 and using it to update the speed of the viewpoint. The frequency for querying

speed is 5 Hz.

 37

3.3 Experiment 3-1: Training and Testing of the Speed Estimation Al-

gorithm

3.3.1 Introduction

The purpose of Experiment 3-1 was to collect the foot motion data to build the training and

testing sets for the KNN algorithm and to evaluate the classification performance of the

proposed approach. The trained classifier resulting from Experiment 3-1 was also used for

the locomotion interface evaluated in the user study in Experiment 3-2.

3.3.2 Participants

Eleven people (3 males, 8 females, age: 21 - 30) participated in the study. Informed consent

was obtained from all participants in accordance with a protocol approved by the Human

Participants Review Subcommittee at York University.

3.3.3 Procedure

In Experiment 3-1, the IR sensor was placed approximately 1 m in front of the treadmill

and participants attached an IR marker on the toe cap of each shoe and a third IR marker

on the trunk. Each participant performed two sessions of treadmill walking. In each session,

the treadmill started 5 seconds after the experiment began. Data collection was started at

the same time. The speed of treadmill started at 1 km/h, incremented by 1 km/h every 30

seconds until the speed reached 5 km/h, and stayed at 5 km/h for another 30 seconds. When

 38

the data collection finished, the treadmill slowed down to 1 km/h and stopped in 5 seconds.

Visual instructions were displayed on the WISE to give prompts to participants.

Figure 3-4: Features of the Training Set

Figure 3-5: Features of the Testing Set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time Intervals

A
m

p
li
tu

d
e

s
 o

f
P

e
a

k
s

1 km/h

2 km/h

3 km/h

4 km/h

5 km/h

as

pt

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time Intervals

A
m

p
li
tu

d
e

s
 o

f
P

e
a

k
s

1 km/h

2 km/h

3 km/h

4 km/h

5 km/h

as

pt

 39

The data of three participants were not recorded properly due to the IR marker fail-

ure (subsequently corrected for Experiment 3-2 by using improved Velcro fasteners). Thus,

I used the data of the first sessions of the rest of the 8 participants (3 males, 5 females, age:

21 - 26) as the training set and the data of the second sessions of the 8 participants as the

testing set. To test the efficiency of the proposed algorithm, the step segmentation and

feature extraction algorithms were applied on both sets. The extracted features vectors for

the training set and the testing set are plotted in Figure 3-4 and Figure 3-5, respectively.

The distinct clustering of feature vectors indicates that it is possible to classify them using

the KNN algorithm. During testing, a KD-Tree was built by using the extracted feature

vectors from the training set. The extracted feature vectors were classified using the KD-

Tree to obtain the intended walking speed estimates �̂�𝑤.

The ground truth label of a feature vector was the true speed of the treadmill at

which the foot positions were captured. I compared the result of the classification with its

ground truth label to determine whether the result was correct or not.

Table 3-1: Statistics of the Classification Performance

Feature Multi-Class Precision Multi-Class Recall Average Accuracy

𝒔𝒂 93.4 % 94.2 % 97.6 %

𝒔𝒂 + 𝒕𝒑 94.1 % 94.6 % 97.8 %

Table 3-2: The Mean Value and the Standard Deviation of the Error between the Average Foot

Position and the Captured Trunk Position

Participant 1 2 3 4 5 6 7 8

Mean (m) 0.03 0.001 0.007 0.004 -0.004 -0.01 -0.007 -0.008

Std (m) 0.033 0.03 0.028 0.025 0.021 0.028 0.032 0.046

 40

3.3.4 Results

I evaluated the KNN-based algorithm in terms of the multi-class recall (𝑅𝑒𝑐𝑎𝑙𝑙𝑀), the

multi-class precision (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀) and the Average Accuracy for all 5 classes (Sokolova

and Lapalme, 2009) (as shown in Table 3-1):

𝑅𝑒𝑐𝑎𝑙𝑙𝑀 =
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝑙
𝑖=1

𝑙
(3.4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 =
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝑙
𝑖=1

𝑙
 (3.5)

Figure 3-6: Error Pattern of Misclassification

Figure 3-7: Trunk Position vs Average Foot Position

0 200 400 600 800 1000 1200 1400 1600 1800
-4

-3

-2

-1

0

1

2

3

4

Frames

E
rr

o
r

(k
m

/h
)

Correct Estimate

Incorrect Estimate

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-2.5

-2

-1.5

-1

-0.5

0

0.5

Frames

P
o

s
it

io
n

 i
n

 D
e

p
th

 (
m

)

Trunk Position

Average Foot Position

Error

 41

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖
𝑡𝑝𝑖 + 𝑓𝑛𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖

𝑙
𝑖=1

𝑙
 (3.6)

where 𝑡𝑝𝑖, 𝑡𝑛𝑖, 𝑓𝑝𝑖 and 𝑓𝑝𝑖 denote true positive, true negative, false positive and false neg-

ative of class 𝑖 and 𝑙 is the total number of classes.

The evaluations were performed using the peaks of foot velocity 𝑠𝑎 alone and using

both the peaks of foot velocity 𝑠𝑎 and the time interval 𝑡𝑝. For all measures, using 𝑠𝑎 and

𝑡𝑝 both generated better results than using 𝑠𝑎 alone. The result demonstrates that using both

features increased the classification performance by 0.2% compared to using foot velocity

𝑠𝑎 alone.

To visualize the error pattern of misclassification, I plotted the estimated speed val-

ues for all participants, as shown in Figure 3-6. From it, I observed that the proposed algo-

rithm tended to underestimate the actual walking speed, since the number of incorrect es-

timates at the error level of -1 km/h was obviously larger than that of 1 km/h. In the worst

case (only a single frame), the classification produced an estimate 3 km/h slower than the

actual walking speed.

To evaluate whether the average foot position is a reliable estimate of the trunk

position, I calculated the mean value and the standard deviation of the error between the

average foot position and the captured trunk position from the testing set (Table 3-2). In

the worst case as shown by participant P1, the mean error was 0.03 m and standard devia-

tion was 0.033 m. Figure 3-7 also presents exemplar curves and shows that the average

foot position closely followed the trunk position and the error between these two curves

 42

was minimal. The result demonstrates that the average foot position can be used to estimate

the trunk position.

3.4 Experiment 3-2: Evaluation of the Usability of the Locomotion In-

terface

3.4.1 Introduction

The purpose of Experiment 3-2 was to evaluate the usability of the locomotion interface

through a user study using the WISE (Figure 3-8). The participants’ task was to pursue a

rolling ball in the virtual environment by walking on the treadmill and try to maintain the

Figure 3-8: The WISE Running Experiment 3-2

Figure 3-9: The Setup for Experiment 3-2

IR Sensor

Treadmill

Rolling ball

 43

distance between the viewpoint and the ball to the initial distance of 5 m. The metric for

usability was defined as the mean value and the standard deviation of the distance between

the virtual viewpoint and the rolling ball, subtracted by the initial distance 5 m. Thus, the

closer these two values to zero, the more usable the locomotion interface it is.

3.4.2 Participants

Ten people (8 male, 2 females, age: 18 - 28) participated in the study and none had partic-

ipated in Experiment 3-1. Informed consent was obtained from all participants in accord-

ance with a protocol approved by the Human Participants Review Subcommittee at York

University.

3.4.3 Procedure

In Experiment 3-2, the IR sensor was also placed approximately 1 m in front of the tread-

mill (Figure 3-9) and participants were asked to attach two IR markers on the toe caps of

their shoes. I designed a virtual scene in which the participants were asked to pursue a

rolling ball using the locomotion interface. The speed of the ball was unpredictably varied

between 1 km/h, 2 km/h and 3 km/h with changes in speed occurring at predefined key

frames. The acceleration of the ball was set to 0.176 𝑚/𝑠2, which matched the acceleration

of the treadmill. The virtual scene was rendered on the WISE in monocular mode with a

frame rate of 60 Hz. A KD-Tree was built by using the extracted feature vectors from the

training set in Experiment 3-1 for speed estimation. The positional gain 𝑘𝑝 in equation

(3.3) was set to 3 and the reference position 𝑝𝑟𝑒𝑓 was set to 1.8 m empirically. For safety

 44

reasons, I limited the range of speed command to 0.2 km/h minimum and 3.5 km/h maxi-

mum. The participants’ task was to try to maintain the distance between the virtual view-

point and the ball to the initial distance of 5 m. To provide a visual cue for participants to

judge the speed and the distance of the ball, the color of the ball was updated on a per-

frame basis such that the color would gradually become red if a participant was too far

away from it or blue if too close using the following equations:

𝑑 = (𝑝𝑏 − 𝑝𝑣) / 5 − 1 (3.7)

where 𝑝𝑏 is the position of the ball, 𝑝𝑏 is the position of the viewpoint, 𝑑 is the distance

between the ball and the viewpoint normalized by the 5 m target distance between the ball

and the viewpoint.

(𝑅, 𝐺 𝐵) = {
(1, 1 − 𝑑, 1 − 𝑑) 𝑖𝑓 𝑑 ≥ 0
(1 + 𝑑, 1 + 𝑑, 1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where (𝑅, 𝐺, 𝐵) are the color channels and 0 ≤ 𝑅 ≤ 1.0, 0 ≤ 𝐺 ≤ 1.0, 0 ≤ 𝐵 ≤ 1.0.

Since the length of the treadmill belt was limited and it was impractical to increase

walking speed by increasing step length, the participants were instructed to increase their

step frequency and foot swing speed if they intend to accelerate and conversely decrease

their step frequency and foot swing speed for deceleration. Each participant was asked to

perform 4 sessions of walking using the same scene and each session lasted 230 seconds.

To ensure the experiment was conducted in the same condition for all participants and all

sessions, the start and the stop of the treadmill and the ball were synchronized and con-

trolled by the experiment application software. When the researcher started the experiment,

a countdown timer was shown on the display and the data collection began at the same

(3.8)

 45

time. The treadmill and the ball started to move simultaneously after a 10-second count. 3

seconds prior to the end of the experiment, another countdown timer was shown on the

display and counted 3 seconds before the experiment stopped. The data collection was im-

mediately stopped at 230 seconds and the ball and the treadmill were stopped subsequently.

Given such experimental conditions, theoretically, a participant should be able to control

the viewpoint through the locomotion interface such that the curve of the position of the

viewpoint perfectly matched the trajectory of the rolling ball while maintaining the 5 m

reference distance.

3.4.4 Results

Figure 3-10 shows an example series of the trajectories of the ball and the virtual viewpoint.

The 5 m distance offset was subtracted from the trajectory of the ball point-wise to show

that the participant was able to maintain the 5 m distance and matched the trajectory of the

viewpoint to that of the rolling ball. Figure 3-11 shows an example of the speed changes

of the ball and the viewpoint and the speed commands issued by the controller in a single

experiment session by a participant. I observed that in some cases the speed of the view-

point did not reach the value given by a speed command due to the modest maximum

acceleration of the treadmill. The performance of the participants and the locomotion in-

terface was evaluated in terms of the error of the distance between the virtual viewpoint

 46

and the ball with respect to the reference distance 5 m. This point-wise error was calculated

by the following equation:

𝜀 = 𝑝𝑏 − 𝑝𝑣 − 5 (3.9)

where 𝑝𝑏 denotes the position of the ball and 𝑝𝑣 denotes the position of the viewpoint. I

then calculated the mean value and standard deviation of the point-wise error from the 4th

session of all participants. The results for all participants are shown in Figure 3-12 using

an error plot, which shows that participants P1, P3, P5, P6 and P8 performed relatively

Figure 3-10: Exemplar Trajectories of the Ball and the Viewpoint

Figure 3-11: Experimental Data Traces

0 50 100 150 200 250
0

20

40

60

80

100

120

Time (s)

T
ra

v
e

ll
in

g
 D

is
ta

n
c

e
 (

m
)

Ball - 5 m

Viewpoint

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

S
p

e
e

d
 (

k
m

/h
)

Ball

Viewpoint

Speed Command

 47

better than the other 5 participants. The mean value of the error shows on average whether

a participant is leading ahead or falling behind of the 5 m distance to the ball and the stand-

ard deviation reflects the interval in which the participant oscillates while maintaining the

5 m distance or the errors or delays at speed transition.

Several factors may lead to the error. These include a participant’s attention, the

ability to adapt to self-paced treadmill walking and control of gait, the accuracy of the

speed estimation algorithm and the hardware limitations of the treadmill. A participant’s

Figure 3-12: Performance of the Participants

Figure 3-13: The Learning Effect of a Participant

0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
-5

-4

-3

-2

-1

0

1

2

3

4

5

Participants

E
rr

o
r

(m
)

0 S1 S2 S3 S4
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Sessions

E
rr

o
r

(m
)

 48

attention on the ball is critical for the experiment. If attention is not focused on the ball and

the task, then the distance and the speed of the ball cannot be judged and controlled. In

addition, walking on a self-paced treadmill is different than walking over-ground. Thus,

participants must quickly adapt themselves to the walking condition and learn to control

the walking speed through the changing of foot swing speed and step frequency instead of

step length. The accuracy and the resolution of the speed estimation algorithm may be

improved if I only use the data collected from a specific participant to classify that partic-

ipant’s data during the user study. A major hardware limitation of the treadmill is its low

acceleration, which means it takes time for the treadmill reach the speed command sent by

the host computer. Several participants reported the lack of responsiveness due to the issue.

The results of two participants had clear learning effects as the mean errors across

four experimental sessions were monotonically decreasing. Figure 3-13 shows an example

of a participant that had such a clear learning effect. Five participants had smaller mean

errors in the fourth sessions compared to the first sessions, but the mean errors fluctuated

across sessions. The mean errors of three participants in the fourth sessions were larger

than that of first sessions. I suspected that these participants needed to have more training

and practice sessions to improve their performance and minimize the mean errors.

3.5 Discussion

In this chapter, I presented a machine learning approach for implementing a locomotion

technique based on a conventional 1-D treadmill. I used the locomotion interface for inter-

acting with the WISE and conducted experiments evaluating its usability through a novel

 49

user study. For future research, I will implement a turning strategy (Vijayakar and Holler-

bach, 2002) for the locomotion interface. The improved locomotion interface can be used

for the study of target interception in VR environments. Meanwhile, the speed estimation

algorithm may also be used with other types of sensors, such as inertial measurement units,

for estimating walking speed either over-ground or on treadmill. Finally, an empirical com-

parison of the proposed approach with other classic approaches of locomotion based on 1-

D treadmills also is needed.

The proposed locomotion technique may have many different utilities. For exam-

ple, it can be used as an educational platform for people to experience walking in VR. More

unusual scenes can be added to the VR system, including famous tourist spots, cartoon

worlds or surfaces of other planet, for people to have an immersive experience to walk in

the places that they may not have access to. Finally, such a locomotion technique may serve

as a rehabilitation platform for patients to practice walking as locomotion in VR is more

interesting than walking on a treadmill alone and the walking performance and the im-

provement of patients can be monitored by VR tracking devices.

 50

Chapter 4
The Role of Stereopsis in Avoiding Virtual Obstacles

While Walking

4.1 Introduction

Walking is a daily routine for us. We usually encounter and effortlessly avoid obstacles

and gaps during walking. To avoid being tripped, we adjust our footsteps to step over haz-

ards based on the visual information provided by our eyes. Stereopsis is important for vis-

ually guided behavior and has been shown to aid hand-eye coordination (Fielder and Mose-

ley, 1996). Many studies have been conducted to study the relationship between stereopsis

and the performance of tasks related to upper limbs. Stereopsis was originally thought to

be not very helpful for locomotion, such as walking and running, as a period of steady

viewing is required to reach a certain level of precision (McKee et al., 1990). However,

studies have shown that stereoscopic viewing provides advantages over non-stereoscopic

viewing in terms of more accurate lower limb movements (Patla et al., 2002; Loomis et

al., 2006; Hayhoe et al., 2009; Chapman et al., 2012), as reviewed in Section 2.2.2.

While these studies have been conducted to investigate the role of stereopsis in

locomotion, a primary limitation was that the scene setups were relatively simple, and the

experiments were usually conducted in an indoor setup with limited walking space. In eve-

ryday life, we often walk continuously over longer distances. Experiments conducted with

limited walking distance may not reflect what we experience in real-life. Thus, the influ-

ence of the stereopsis on continuous walking is still uncertain.

 51

Virtual Reality (VR) systems combined with mechanical repositioning techniques

(Nilsson et al., 2013) (to reposition a user to the center of the tracked physical space using

mechanical devices, such as treadmills (Iwata, 1999; Souman et al., 2008), foot platforms

(Iwata et al., 2001), pedaling devices (Allison et al., 2000) and spheres (Medina et al.,

2008), etc.) provide us with a unique opportunity to simulate large open environments.

These systems enable people to walk over long distances with their motion recorded in a

limited physical space. Thus, these are promising platforms to investigate the influence of

stereopsis on gait parameters in continuous walking. In this study, I presented two experi-

ments in VR to examine the effects of stepping over obstacles and gaps in continuous

walking under stereoscopic and non-stereoscopic viewing conditions. These experiments

were conducted using a novel immersive projected display, known as the Wide-Field Im-

mersive Stereoscopic Environment (WISE). This display together with a 1-D treadmill al-

lowed us to implement straight line walking in VR. Virtual scenes that presented obstacles

and gaps for the experiments based on the setup were designed.

4.2 Method

4.2.1 Hardware and Software of the VR system

The virtual environments for the experiments were presented on the large-scale curved

projected display – the WISE. The images rendered on the display were cast and seamlessly

merged by eight stereoscopic overlapping projectors, with geometry correction (warping),

blending and luminance calibration performed in hardware. Each projector was driven by

a client machine (HP Z820 Workstation with Nvidia Quadro k5000 graphics card) in a real-

 52

time rendering cluster. The rendering and the synchronization between the host machine

(HP Z820 Workstation with Nvidia Quadro k5000 graphics card) and the client machines

are handled by the VR software Worldviz Vizard 5.7. Stereoscopic viewing was presented

through the Christie shutter glasses at a refresh rate of 60 Hz for each eye. The Worldviz

PPT Eyes tracker was mounted on the top of the glasses frame to track head moevments.

Body movements of participants, including head motion and foot motion, were captured

using the Worldviz PPT system, which used infrared (IR) cameras to capture IR light emit-

ted by markers attached on body parts to be tracked. Three IR cameras were mounted on

the top of the display facing the ground to track head positions while another three IR

cameras were mounted under the display facing the treadmill to track foot positions. The

3-D positions of the tracked IR markers were calculated by the Worldviz PPT Studio and

was shared with the Worldviz Vizard simulation through the Virtual-Reality Peripheral

Network (VRPN) (Taylor et al., 2001). The PPT Eyes were equipped with two IR markers

mounted on the top of the glasses frame. This enabled the 3-D position and orientation of

the PPT Eyes (i.e. the position and the orientation of the head) to be tracked. Disparity

between eyes and perspective transformation of a scene were generated based on tracked

head position in real-time. A commercial 1-D treadmill, LifeSpan TR5000-DT5, was used

as the walking platform. The top surface of the treadmill belt had a size of 51 cm (W) ×

142 cm (L). The treadmill was controlled through Universal Asynchronous Re-

ceiver/Transmitter (UART) controllers by a host machine using a baudrate of 4800 bit/s.

The speed of the treadmill was queried periodically at a frequency of 5 Hz. The queried

 53

value was synchronized to the speed of the virtual viewpoint to create egocentric motion

in the virtual environment. The position of the virtual viewpoint and the positions of

tracked body parts were recorded at a frequency of 60 Hz. The experiment software appli-

cation that integrated the presentation of virtual environments, hardware control and data

recording was implemented using Python 2.7. This integrated VR system allows partici-

pants to perform linear walking with their movements recorded.

4.2.2 Feature Extraction for Gait Analysis

Recorded foot positions from the IR markers mounted on participants’ ankles were used

for data analysis. I estimated gait parameters extracted from tracked foot positions to study

how stereopsis affects people’s walking performance. I explain my method for extracting

gait parameters of walking on a treadmill in this section.

The position of a tracked single foot is denoted as a 3-D vector 𝑝𝑓 = (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓),

where 𝑥𝑓, 𝑦𝑓 and 𝑧𝑓 are lateral, vertical and depth positions, respectively. A sequence of

recorded foot positions is represented as 𝑃𝑓 = 𝑝𝑓1𝑝𝑓2…𝑝𝑓𝑖, where 𝑖 is the index for a 3-

D vector 𝑝𝑓. Contrary to over-ground walking in which the z-position of a person’s foot

monotonically increases or decreases, when a person walks on a treadmill their feet per-

form reciprocating motion in terms of depth and the tracked z-position oscillates as opposed

to over-ground walking. As I aim to analyze participants’ gait in virtual environments, it is

necessary to match the tracked physical foot position to the equivalent virtual foot position

in the virtual environment. This can be done by performing a transformation on the tracked

 54

physical foot position with respect to the position of the virtual viewpoint, which is repre-

sented as 𝑝𝑣 . A sequence of positions of virtual viewpoint is represented as

𝑃𝑣 = 𝑝𝑣1𝑝𝑣2…𝑝𝑣𝑖. Recall that I synchronized the speed of the virtual viewpoint with re-

spect to the speed of the treadmill. Assume that a person walks on the treadmill with their

head position maintained at the center of the treadmill in tracked physical space, their head

position in the virtual environment is essentially the position of the virtual viewpoint 𝑝𝑣 as

the person walks forward. As the changes of foot positions are relative to the head position

in tracked physical space, the transformation between foot positions in tracked physical

space and in the virtual environment can be performed by adding the sequence of the foot

positions 𝑃𝑓 and the sequence of the positions of virtual viewpoint 𝑃𝑣. The x-component

and y-component in 𝑝𝑣 were set to zero for transformation, with 𝑝𝑣𝑖 = (0, 0, 𝑧𝑣𝑖), since it

was not necessary to transform the x-component and y-component of 𝑃𝑓 and I only needed

to recover the depth of 𝑃𝑓. This gives:

𝑃𝑡 = 𝑃𝑓 + 𝑃𝑣 (4.1)

where 𝑃𝑡 is the transformed foot position sequence with 𝑃𝑡 = 𝑝𝑡1𝑝𝑡2…𝑝𝑡𝑖 and 𝑝𝑡𝑖 =

(𝑥𝑡𝑖, 𝑦𝑡𝑖, 𝑧𝑡𝑖). After the transformation, instantaneous foot velocity 𝑉𝑡 was calculated from

𝑃𝑡 using 2-point difference. 𝑃𝑡 and 𝑉𝑡 were smoothed using 2nd order Butterworth filters

with a cut-off frequency of 1 Hz to remove noise. The transformation and filtering were

performed on recorded position data of both feet.

 55

A gait cycle is defined as two consecutive heel strikes of the same foot (Gamble

and Rose, 1994). To extract gait cycles for analysis, I examined the sequence of trans-

formed vertical foot positions 𝑦𝑡𝑖. This is similar to the approach presented in Chapter 3

that used foot speed in depth to segment steps. Specifically, I located local minimums be-

tween peaks to segment a gait cycle by first applying a high threshold 𝜏ℎ to the data se-

quence of 𝑦𝑡𝑖 (the median of the data sequence of 𝑦𝑡𝑖 was set as 𝜏ℎ). From the thresholded

data points, the algorithm used gradient descent to locate the initial swing 𝑠𝑖𝑛𝑖𝑡 and the

terminal swing 𝑠𝑡𝑒𝑟𝑚 (which correspond to frames). The gradient descent stopped when-

ever it reached the minimum threshold 𝜏𝑙 or it found that the gradient was ascending, indi-

cating a different gait cycle was detected. Once the frames corresponding to initial swing

𝑠𝑖𝑛𝑖𝑡 and the terminal swing 𝑠𝑡𝑒𝑟𝑚 were successfully located, the maximum position value

in the interval between these two swing points was selected and its index was considered

Figure 4-1: Exemplar Segmentation of Gait Cycles

 56

as the mid swing 𝑠𝑚𝑖𝑑. Figure 4-1 shows an example of segmented gait cycles on a single

foot trajectory that stepped over obstacles. This approach was in general more robust than

applying a single threshold to segment gait cycles. With the detected initial swing 𝑠𝑖𝑛𝑖𝑡,

mid swing 𝑠𝑚𝑖𝑑 and terminal swing 𝑠𝑡𝑒𝑟𝑚, it was easy to calculate gait parameters, such as

stride length and stride height. I then merged the gait cycles segmented from the position

data of both feet based on the sorted z-position of the mid swing 𝑠𝑚𝑖𝑑 of the gait cycles to

Figure 4-2: The Setup of Experiment 4-1

Figure 4-3: Console View of Experiment 4-1

 57

obtain a single sequence of gait cycles in an ascending order of z-positions. Distinguishing

foot position data between left foot and right foot was not necessary for further data anal-

ysis.

I used the minimum distance classifier (Lin and Venetsanopoulos, 1993) to register

the merged gait cycles with respect to obstacles or gaps presented in experiments. In other

words, the responses (gait cycles) were associated with stimuli (obstacles with different

heights or gaps with different depths) through the classification. This was done by calcu-

lating the Euclidean distances between the z-position of the mid swing 𝑠𝑚𝑖𝑑 of the merged

gait cycles 𝐺𝑗 and the centers of the z-position of obstacles or gaps 𝐶𝑖:

𝑅𝑖 = argmin
𝑖

(‖𝐺𝑗 − 𝐶𝑖‖2)
(4.2)

where 𝑗 is the index of the z-position of the mid swing 𝑠𝑚𝑖𝑑 of the merged gait cycles 𝐺𝑗

and 𝑖 is the index of the centers of the z-position of obstacles or gaps 𝐶𝑖, respectively. 𝑅𝑖 is

the resulting index of an obstacle or gap to be associated with its corresponding gait cycles

𝐺𝑗. In practice, this equation was solved by looping through all combinations of z-positions

of gait cycles and z-positions of obstacles or gaps. The pairs with the minimum Euclidean

distance were registered together. When the registration was completed, I was able to eval-

uate a specific gait cycle with respect to the obstacle or the gap that it covered. I defined

the following metrics to evaluate the gait performance of participants:

▪ Stride length 𝒍𝒔:

The z-distance between initial swing, 𝑠𝑖𝑛𝑖𝑡, and terminal swing, 𝑠𝑡𝑒𝑟𝑚.

▪ Stride height 𝒉𝒔:

 58

The difference in height of the foot at mid swing, 𝑠𝑚𝑖𝑑, and when the foot was planted

(the average of y-positions of initial swing, 𝑠𝑖𝑛𝑖𝑡, and terminal swing, 𝑠𝑡𝑒𝑟𝑚).

▪ Foot lifting distances to obstacles or gaps 𝒅𝒍:

The difference in z-distance of the foot at initial swing, 𝑠𝑖𝑛𝑖𝑡, and the front face of an

obstacle or the front edge of a gap.

▪ Foot planting distances to obstacles or gaps 𝒅𝒑:

The z-distance between the foot at terminal swing, 𝑠𝑡𝑒𝑟𝑚, and the back face of an ob-

stacle or the back edge of a gap.

▪ Foot clearance to obstacles 𝒅𝒄:

The y-distance of the foot at mid swing, 𝑠𝑚𝑖𝑑, to the top of an obstacle. Foot clearance

to gaps were not assessed as this is the same parameters as stride height ℎ𝑠, with an

added deepness of gaps fixed as 0.5 m.

▪ Foot velocity of mid-swing 𝒔𝒇:

The instantaneous speed of the foot at mid swing, 𝑠𝑚𝑖𝑑, obtained by calculating the

Euclidean norm of the y-component and the z-component of foot velocity 𝑉𝑡.

▪ Number of strides 𝒏𝒔:

The number of strides that were taken during a single walking trial.

▪ Number of collisions 𝒏𝒄:

 59

The number of collisions happened between the transformed foot position 𝑃𝑡 and the

bounding boxes of obstacles or gaps during a single walking trial. As people were un-

able to step into a gap physically, the bounding boxes of a gap was modeled with a low

height of 0.01 m above the ground surface to determine the occurrence of collisions.

4.3 Experiment 4-1: Stepping Over Obstacles

4.3.1 Introduction

The goal of experiment 4-1 was to investigate whether stereopsis provides advantages

when people step over obstacles in VR environments.

4.3.2 Design

In this experiment, I designed an outdoor environment that had a valley and a skydome,

using Autodesk 3ds Max 2016, shown in Figure 4-2. A console view of the scene on the

host machine is shown in Figure 4-3. The texture for the valley was manually blended from

a grass texture and a gravel texture while the texture for the skydome was a high definition

picture that captured a bright sky with few white clouds. The obstacles were brick-textured

cubic objects. The width (x-axis) and depth (z-axis) of the obstacles were fixed as 10 m and

0.2 m, respectively. The heights (y-axis) of these obstacles had three different values, which

were 0.1 m, 0.2 m and 0.3 m. These constituted three different conditions for the experi-

ment. Each condition was repeated ten times for each scene. Thus, in total, there were thirty

objects in an experimental scene, with the order of the objects randomized. The distance

between the participant to the front face of the first obstacle was 5 m. The distance between

 60

the back face of an obstacle and the front face of its immediate successive obstacle was 3

m. This gave participants an adequate amount of distance to walk normally and adjust their

footsteps before stepping over the next obstacle. The total length of each walking path was

approximately 100 m. Participants were expected to perform constant speed linear walking

in the virtual environment.

Each walk through an experimental scene with a random order of generated obsta-

cles was considered as a single trial. Participants were first asked to perform two trials

under the stereoscopic viewing condition as practice to get familiar with the hardware and

the virtual environment. Then, participants were asked to perform two trials under the ste-

reoscopic viewing condition and two trials under the non-stereoscopic viewing condition.

The order of trials under the stereoscopic viewing condition and the non-stereoscopic view-

ing condition were counter-balanced to control for order effects. Five participants followed

an order of viewing conditions of SSNN, where S denotes the stereoscopic viewing condi-

tion and N denotes the non-stereoscopic viewing condition while another five participants

followed an order of NNSS. For the non-stereoscopic viewing condition, participants were

also asked to wear the PPT Eyes, but modeled distance between two eyes was set to zero.

4.3.3 Participants

Ten people (7 males, 3 females, age: 24 - 39, height: 1.59 - 1.90 m) participated in the

experiment. All had normal or corrected-to-normal vision. Stereo acuity of participants was

verified using the Randot Stereotest (Stereo Optical Company, Inc. Chicago IL). All had

 61

good stereo acuity (⩽ 50 seconds of arc). Informed consent was obtained from all partici-

pants in accordance with a protocol approved by the Human Participants Review Subcom-

mittee at York University.

4.3.4 Procedure

During experimental sessions, participants wore the PPT Eyes on their head and two IR

markers, one on each ankle, and stood on the treadmill. For a single experimental trial,

when the experiment was started, a ten-second countdown timer was shown on the WISE

and the data collection started at the same time. The belt of the treadmill automatically

began to move when the timer counted to zero. Then, the treadmill accelerated to 2 km/h

and maintained this speed through the experimental trial. Participants were asked to ac-

commodate their walking speed to the speed of the treadmill and step over obstacles when

they felt necessary. When the virtual viewpoint passed the last obstacle in the virtual scene,

Figure 4-4: Foot Trajectories on Stepping over Obstacles

 62

Figure 4-5: Gait Parameters on Stepping over Obstacles by Viewing Condition (red dots denote mean

values; the boxes of the number of strides and the number of collisions denote the data distribution of

that of all walking trials of each viewing condition across participants; for other gait parameters, the

boxes denote the data distribution from the gait parameters of all gait cycles that covered an obstacle

for each viewing condition)

Figure 4-6: Gait Parameters on Stepping over Obstacles by Height Level (red dots denote

mean values; the boxes of these gait parameters denote the data distribution from the gait

parameters of all gait cycles that covered an obstacle for each level of obstacle height)

L
e
n

g
th

 (
m

)

S
p
e
e

d
 (

m
/s

)

N

Stride Length Stride Height Lifting Distance Planting Distance Foot Clearance Mid Swing Speed Strides Collisions

L
e
n

g
th

 (
m

)

S
p
e
e

d
 (

m
/s

)

Stride Length Stride Height Lifting Distance Planting Distance Foot Clearance Mid Swing Speed

 63

another three-second countdown timer was shown on the WISE, informing participants

that the experiment would finish soon. The experiment ended when the timer counted to

zero, with the data collection and treadmill stopped simultaneously.

4.3.5 Results and Discussion

A segment of recorded foot trajectories when stepping over obstacles can be seen in Figure

4-4 for illustration. To analyze the experimental data, I applied the method described in

Section 4.2.2 on recorded foot positions to extract gait parameters using Matlab 2016a. I

then performed statistical analysis on the extracted gait parameters defined in Section 4.2.2

Table 4-1: Results of the Linear Mixed-Effects Models Analyses on Stepping over Obstacles (significant p-

values are in bold and shaded)
 𝑙𝑠 ℎ𝑠 𝑑𝑙 𝑑𝑝 𝑑𝑐 𝑠𝑓

Viewing Condition 𝐹(1,1185) 18.99 0.98 38.19 14.00 0.98 5.66

 𝑝 <0.001 0.322 <0.001 <0.001 0.322 0.017

 𝜂𝑝
2 0.016 0.001 0.031 0.012 0.001 0.005

Height Level 𝐹(2,1185) 9.19 111.58 3.73 2.39 325.68 2.29

 𝑝 <0.001 <0.001 0.024 0.092 <0.001 0.102

 𝜂𝑝
2 0.015 0.158 0.006 0.004 0.355 0.004

Viewing Condition × Height Level 𝐹(2,1185) 0.04 5.81 1.35 1.25 5.81 0.91

 𝑝 0.964 0.003 0.258 0.288 0.003 0.401

 𝜂𝑝
2 0.000 0.010 0.002 0.002 0.010 0.002

 𝑛𝑠 𝑛𝑐

Viewing Condition 𝐹(1,29) 5.99 0.81

 𝑝 0.021 0.376

 𝜂𝑝
2 0.171 0.027

 64

using R 3.4.2. The Linear Mixed-Effects Models analyses (Package NLME in R) were used

to study the effects of the experiment. Effect sizes were reported using partial eta squared

Figure 4-7: Interaction Effect on Stride Height (error bars denote the standard error of the mean)

Figure 4-8: Interaction Effect on Foot Clearance (error bars denote the standard error of the mean)

 65

𝜂𝑝
2 (estimated from repeated-measures ANOVA analyses of the same form as the

Linear Mixed-Effects Models analyses). The independent factors involved were viewing

conditions (stereoscopic and non-stereoscopic) and height levels (0.1 m, 0.2 m and 0.3 m)

of the obstacles while the dependent factors were the gait parameters. Post-hoc pairwise

comparisons were performed using Tukey’s range tests. Figure 4-5 and Figure 4-6 show

box plots on gait parameters and Table 4-1 summarizes the results of the Linear Mixed-

Effects Models analyses.

I found significant effects on stride length 𝑙𝑠 (𝐹(1, 1185) = 18.99, 𝑝 <

0.001, 𝜂𝑝
2 = 0.016) , foot lifting distance to obstacles 𝑑𝑙 (𝐹(1, 1185) = 38.19, 𝑝 <

0.001, 𝜂𝑝
2 = 0.031) , foot planting distance to obstacles 𝑑𝑝 (𝐹(1, 1185) = 14.00, 𝑝 <

0.001, 𝜂𝑝
2 = 0.012) and mid swing speed 𝑠𝑓 (𝐹(1, 1185) = 5.66, 𝑝 = 0.017, 𝜂𝑝

2 =

0.005). Under the stereoscopic viewing condition, stride length was smaller than for the

non-stereoscopic viewing condition. Stride length under stereoscopic viewing was more

accurate as a smaller stride was sufficient to cover an obstacle. In Figure 4-5, I found that

the mean value of the foot lifting distance to obstacles was smaller under stereoscopic

viewing condition than non-stereoscopic viewing condition. I also found that the mean

value of the foot planting distance to obstacles was larger under stereoscopic viewing con-

dition than non-stereoscopic viewing condition. The result showed stereoscopic viewing

was beneficial as, in reality, if we wish to safely step over an obstacle, we would step as

closely to the front side of the obstacle as possible with one foot and walk over it with the

other foot to plant far from the back side of the obstacle. It was obvious that stereopsis

 66

helped to realize this aim during walking. The mean value of mid swing speed was lower

under stereoscopic condition than non-stereoscopic condition.

Although there was no significant effect alone on stride height ℎ𝑠 between viewing

conditions, there was a significant interaction effect between viewing conditions and height

levels on stride height ℎ𝑠 (𝐹(2, 1185) = 5.81, 𝑝 = 0.003, 𝜂𝑝
2 = 0.010) (Figure 4-7),

which was consistent with the significant interaction effect between these factors on foot

clearance to obstacles 𝑑𝑐 (𝐹(2, 1185) = 5.81, 𝑝 = 0.003, 𝜂𝑝
2 = 0.010) (Figure 4-8). But

the interaction effects on both parameters were weak. For both stride height ℎ𝑠 and foot

clearance to obstacles 𝑑𝑐, Tukey’s range tests showed that there was a difference between

stereoscopic viewing vs non-stereoscopic viewing on height level 0.3 m for both stride

height ℎ𝑠 and foot clearance to obstacles 𝑑𝑐 but not for 0.1 m and 0.2 m obstacle height.

The mean value of the stride height ℎ𝑠 for the 0.3 m obstacle under stereoscopic viewing

was 0.27 m while the mean value under non-stereoscopic viewing was 0.25 m, which

showed that people tended to lift their feet higher under stereoscopic viewing condition

when they encountered obstacles with a height of 0.3 m. This may imply that fewer tripping

hazards would happen when walking with stereoscopic vision as their feet were lifted

higher. Similarly, I also found that the mean value of foot clearance to obstacles under

stereoscopic viewing was higher than non-stereoscopic viewing. However, there were no

interaction effects on other gait parameters. The mean value of stride height ℎ𝑠 under both

stereoscopic viewing and the non-stereoscopic viewing was generally insufficient for step-

 67

ping over obstacles. This may reflect that in virtual environments, there was no actual trip-

ping consequence when the stride height was lower than the height of obstacles. Alterna-

tively, when walking on a moving treadmill in a virtual environment, people may have

acted more cautiously to maintain their balance. Thus, their feet were not lifted high enough

for the obstacles with a height of 0.3 m.

A significant effect was found on number of strides 𝑛𝑠 between viewing conditions

(𝐹(1, 29) = 5.99, 𝑝 = 0.021, 𝜂𝑝
2 = 0.171). Walking under stereoscopic viewing resulted

in more strides compared to non-stereoscopic viewing (Figure 4-5). Given that the total

lengths of walking paths for all experimental trials were nearly the same, it suggested that

the cadence under stereoscopic viewing was higher than non-stereoscopic viewing. This

was also confirmed by shorter stride length under stereoscopic viewing compared to non-

stereoscopic viewing. In addition, there was no significant effect on number of collisions

𝑛𝑐 (𝐹(1, 29) = 0.81, 𝑝 = 0.376, 𝜂𝑝
2 = 0.027) , which suggested that avoiding collision

with obstacles was equally difficult between stereoscopic viewing and non-stereoscopic

viewing in virtual environments.

For height levels, I found significant effects on stride length 𝑙𝑠 (𝐹 (2, 1185) =

 9.19, 𝑝 < 0.001, 𝜂𝑝
2 = 0.015), stride height ℎ𝑠 (𝐹(2, 1185) = 111.58, 𝑝 < 0.001, 𝜂𝑝

2 =

0.158), foot lifting distance to obstacles 𝑑𝑙 (𝐹(2, 1185) = 3.73, 𝑝 = 0.024, 𝜂𝑝
2 = 0.006),

foot clearance to obstacles 𝑑𝑐 (𝐹(2, 1185) = 325.68, 𝑝 < 0.001, 𝜂𝑝
2 = 0.355) but not on

foot planting distances to obstacles 𝑑𝑝 (𝐹(2, 1185) = 2.39, 𝑝 = 0.092, 𝜂𝑝
2 = 0.004) and

mid swing speed 𝑠𝑓 (𝐹(2, 1185) = 2.29, 𝑝 = 0.102, 𝜂𝑝
2 = 0.004). In Figure 4-6, I found

 68

that for obstacles with a height of 0.3 m, participants’ feet were not lifted high enough as

the mean value of foot clearance was clearly negative. Tukey’s range tests revealed that

there were significant differences between three different height levels on stride height ℎ𝑠

and foot clearance to obstacles 𝑑𝑐; a significant difference between height level 0.1 m and

height level 0.3 m on stride length 𝑙𝑠; and significant differences between height level 0.1

Figure 4-9: The Setup of Experiment 4-2

Figure 4-10: Console View of Experiment 4-2

 69

m and height level 0.2 m and between height level 0.1 m and height level 0.3 m on foot

lifting distance to obstacles 𝑑𝑙. Thus, people adjusted their footsteps when they encoun-

tered obstacles with different heights.

4.4 Experiment 4-2: Stepping Over Gaps

4.4.1 Introduction

The goal of experiment 4-2 was to investigate whether stereopsis provides advantages

when people step over gaps in VR environments.

4.4.2 Design

In this experiment, I designed an indoor virtual environment that consisted of a ground

surface with gaps, two side walls and a celling shown in Figure 4-9. A console view of the

scene on the host machine is shown in Figure 4-10. These geometries were textured using

different stone images to create contrasts between the ground, walls and the ceiling. Here,

I referred the height of the ground surface to the bottom of the gaps as deepness (y-axis)

and the distance between the front edge of a gap to the back edge of a gap as depth (z-axis).

The width (x-axis) and the deepness (y-axis) of the gaps were fixed as 10 m and 0.5 m,

respectively. The depth (z-axis) of the gaps had three different values, which were 0.2 m,

0.3 m and 0.4 m. As in the previous experiment, each condition (i.e. depth) was repeated

ten times. Thus, in an experimental scene, there were thirty gaps in total and the order of

the gaps was randomized. The distance between the participant and the front edge of the

first gap was 5 m and the distance between the back edge of a gap and the front edge of its

 70

immediate successor was 3 m. The total length of each walking path was approximately

100 m. Participants were also expected to perform constant speed linear walking in the

virtual environment.

As in the previous experiment, each generated experimental scene was considered

as a single trial and participants were asked to perform two training trials under stereo-

scopic viewing condition, subsequently followed by two experimental trials under stereo-

scopic viewing condition and two experimental trials under non-stereoscopic viewing con-

dition, with the order of experimental trials counter-balanced as in the previous experiment.

4.4.3 Participants

Ten people (5 males, 5 females, age: 20 - 39, height: 1.58 - 1.79 m) participated in the

experiment. All had normal or corrected-to-normal vision. Stereo acuity of participants was

verified using the Randot Stereotest (Stereo Optical Company, Inc. Chicago IL). All had

good stereo acuity (⩽ 50 seconds of arc). Informed consent was obtained from all partici-

pants in accordance with a protocol approved by the Human Participants Review Subcom-

mittee at York University.

4.4.4 Procedure

Participants wore the PPT Eyes on their head and two IR markers, one on each ankle, and

stood on the treadmill. For a single experimental trial, when the experiment was started, a

ten-second countdown timer was shown on the WISE and the data collection started at the

same time. The belt of the treadmill automatically began to move when the timer counted

 71

to zero. Then, the treadmill accelerated to 2 km/h and maintained this speed through the

experimental trial. Participants were asked to accommodate their walking speed to the

speed of the treadmill and step over gaps when they felt necessary. When the virtual view-

point passed the last gap in the virtual scene, another three-second countdown timer was

shown on the WISE, informing participants that the experiment would finish soon. The

experiment ended when the timer counted to zero, with the data collection and treadmill

stopped simultaneously.

4.4.5 Results and Discussion

As in the previous experiment, I applied the method described in Section 4.2.2 on recorded

foot positions to extract gait parameters. I then performed the Linear Mixed-Effects Models

analyses (Package NLME) using R 3.4.2. Effect sizes were reported using partial eta

squared 𝜂𝑝
2 (estimated from repeated-measures ANOVA analyses of the same form as the

Linear Mixed-Effects Models analyses). The independent factors involved were viewing

Figure 4-11: Foot Trajectories on Stepping over Gaps

 72

conditions (stereoscopic and non-stereoscopic) and depth levels (0.2 m, 0.3 m and 0.4 m)

of the gaps and the dependent factors were the gait parameters. Post-hoc pairwise compar-

isons were performed using Tukey’s range tests. Figure 4-12 and Figure 4-13 show the box

plots on gait parameters and Table 4-2 summarizes the results of the Linear Mixed-Effects

Models analyses.

Table 4-2: Results of the Linear Mixed-Effects Models Analyses on Stepping over Gaps (significant p-

values are in bold and shaded)
 𝑙𝑠 ℎ𝑠 𝑑𝑙 𝑑𝑝 𝑠𝑓

Viewing Condition 𝐹(1,1185) 13.01 4.87 1.94 8.68 5.35

 𝑝 <0.001 0.028 0.164 0.003 0.021

 𝜂𝑝
2 0.011 0.004 0.002 0.007 0.004

Depth Level 𝐹(2,1185) 29.12 6.31 17.36 1.27 0.09

 𝑝 <0.001 0.002 <0.001 0.281 0.913

 𝜂𝑝
2 0.047 0.011 0.028 0.002 0.000

Viewing Condition × Depth Level 𝐹(2,1185) 0.24 0.68 0.91 1.22 1.87

 𝑝 0.789 0.508 0.404 0.297 0.154

 𝜂𝑝
2 0.000 0.001 0.002 0.002 0.003

 𝑛𝑠 𝑛𝑐

Viewing Condition 𝐹(1,29) 0.25 0.35

 𝑝 0.618 0.561

 𝜂𝑝
2 0.009 0.012

 73

Figure 4-12: Gait Parameters on Stepping over Gaps by Viewing Condition (red dots denote

mean values; the boxes of the number of strides and the number of collisions denote the data

distribution of that of all walking trials of each viewing condition across participants; for other

gait parameters, the boxes denote the data distribution from the gait parameters of all gait

cycles that covered an gap for each viewing condition)

Figure 4-13: Gait Parameters on Stepping over Gaps by Depth Level (red dots denote mean

values; the boxes of these gait parameters denote the data distribution from the gait param-

eters of all gait cycles that covered an gap for each level of gap depth)

Stride Length Stride Height Lifting Distance Planting Distance Strides Collisions

L
e
n

g
th

 (
m

)

N

S
p
e
e

d
 (

m
/s

)

Mid Swing Speed

L
e
n

g
th

 (
m

)

S
p
e
e

d
 (

m
/s

)

Stride Length Stride Height Lifting Distance Planting Distance Mid Swing Speed

 74

In terms of viewing conditions, I found significant effects on stride length 𝑙𝑠

(𝐹(1, 1185) = 13.01, 𝑝 < 0.001, 𝜂𝑝
2 = 0.011), stride height ℎ𝑠 (𝐹(1, 1185) = 4.87, 𝑝 =

0.028, 𝜂𝑝
2 = 0.004) , foot planting distance to gaps 𝑑𝑝 (𝐹(1, 1185) = 8.68, 𝑝 =

0.003, 𝜂𝑝
2 = 0.007) and mid swing speed 𝑠𝑓 (𝐹(1, 1185) = 5.35, 𝑝 = 0.021, 𝜂𝑝

2 =

0.004) but not on foot lifting distance to gaps 𝑑𝑙 (𝐹(1, 1185) = 1.94, 𝑝 = 0.164, 𝜂𝑝
2 =

0.002). As can be seen in Figure 4-12, stereoscopic viewing condition tended to result in

larger stride height and stride length. By common sense, this was advantageous as larger

stride length and stride height would help people to avoid stepping into gaps. Although the

analysis on foot planting distance did not reach statistical significance, the mean value of

the parameter under stereoscopic condition was generally smaller than non-stereoscopic

condition, which meant that participants tried to step as close to the front edges of gaps as

possible before walking over them. The result was consistent with that of Experiment 4-1.

I also found that foot planting distance to the back edges of gaps was also larger under

stereoscopic viewing condition than non-stereoscopic viewing condition. The result was

meaningful in the sense that if we wish to safely step over a gap, a reasonable strategy is

to first step as close to the front edge of the gap as possible with a foot, then make a stride

to go over the gap with the other foot and plant the foot as far as possible to the other edge

of the gap to avoid being tripped or trapped. The result verified that stereoscopic vision

supported this strategy. I speculated that if the distance between the front edge and back

edge of gaps were designed larger with a treadmill that has a longer belt, the effect on

lifting distance to gaps might be significant as participants would have to step near the front

 75

edge of the gaps more closely and accurately to make strides long enough to cover gaps.

The mean value of mid swing speed 𝑠𝑓 was lower under stereoscopic condition than non-

stereoscopic condition.

Similarly, for depth levels, there were significant effects on stride length 𝑙𝑠

(𝐹(2, 1185) = 29.12, 𝑝 < 0.001, 𝜂𝑝
2 = 0.047), stride height ℎ𝑠 (𝐹(2, 1185) = 6.31, 𝑝 =

0.002, 𝜂𝑝
2 = 0.011) , foot lifting distance to gaps 𝑑𝑙 (𝐹(2, 1185) = 17.36, 𝑝 <

0.001, 𝜂𝑝
2 = 0.028) but not on foot planting distance to gaps 𝑑𝑝 (𝐹(2, 1185) = 1.27, 𝑝 =

0.281, 𝜂𝑝
2 = 0.002) and mid swing speed 𝑠𝑓 (𝐹(2, 1185) = 0.09, 𝑝 = 0.913, 𝜂𝑝

2 =

0.000). Tukey’s range tests revealed that there were significant differences between depth

level 0.2 m and 0.4 m and between depth level 0.3 m and 0.4 m on stride length 𝑙𝑠; and

significant differences between depth level 0.2 m and 0.3 m and between depth level 0.2

m and 0.4 m on stride height ℎ𝑠 and foot lifting distance to gaps 𝑑𝑙. Therefore, people ad-

justed their footsteps for gaps with different depths.

There was no interaction effect between viewing conditions and depth levels on

gait parameters and there were no significant effects on number of strides 𝑛𝑠 (𝐹 (1, 29) =

 0.25, 𝑝 = 0.618, 𝜂𝑝
2 = 0.009) and number of collisions 𝑛𝑐 (𝐹(1, 29) = 0.35, 𝑝 =

0.561, 𝜂𝑝
2 = 0.012) between viewing conditions. The result on number of collisions sug-

gested that it was equally difficult to avoid collisions with gaps under stereoscopic viewing

and non-stereoscopic viewing in virtual environments.

 76

4.5 General Discussion

Comparing the results of gait performance on stepping over obstacles and stepping over

gaps, I found that stereoscopic viewing increased the number of strides significantly when

stepping over obstacles but did not have a significant effect on cadence while stepping over

gaps. I suspected that stepping over obstacles was a more stressful and challenging task

than stepping over gaps, hence making smaller strides increased the flexibility in adjusting

footsteps before stepping over obstacles. Stereopsis helped people to make smaller strides

to perform more accurate movements. I also found that for both cases, mid swing speed

was significantly slower under stereoscopic viewing than non-stereoscopic viewing. This

probably meant that stereopsis gave better control of lower limbs, which resulted in lower

mid swing speed. In addition, stereopsis shortened the foot lifting distance to the front of

obstacles and gaps and increased the foot planting distance to the back of obstacles and

gaps. This generally increased the chance to successfully step over obstacles or gaps, as

given limits on the maximum stride length that a person can make, shortening the lifting

distance to obstacles or gaps makes it more likely to plant the foot successfully after obsta-

cles or gaps. Finally, I found that avoiding collision with obstacles or gaps was equally

difficult in virtual environments under stereoscopic viewing and non-stereoscopic viewing

conditions. Although people were able to make a stride with enough length and height, the

trajectories of their feet may still collide with the bounding boxes of obstacles or gaps. A

probable reason was that force feedback or other types of feedback, including visual or

sound, were lacking in the VR system. People were not aware when their feet collided with

 77

the bounding boxes, so it was not possible or necessary for people to make improvement

on their stepping.

In addition to treadmills, other walking platforms such as the Virtuix Omni or the

Cyberith Virtualizer could be integrated with the WISE. These allow people to turn and to

walk with self-selected speed in VR. More complex experiment scenarios can be designed

based on these platforms. A branch of locomotion techniques that does not require me-

chanical devices to reposition users to the centers of immersive projection-based VR sys-

tems are Walking-in-Place (WIP) techniques (Slater et al., 1995; Templeman et al., 1999;

Yan et al., 2004; Feasel et al., 2008; Wendt et al., 2010; Williams et al., 2011; Wilson et

al., 2014; Bruno et al., 2017). As several different WIP algorithms have been developed

and they are important for practical VR approaches, it may be worthwhile to investigate

how stereopsis affects walking performance with these techniques.

Matthis and Fajen (2014) found that walkers relied on visibility of the ground at

least two steps ahead to locomote normally. If the visibility is less than two steps, walkers

will have problems in avoiding obstacles. Their experimental approach was to project color

blobs onto floor with different levels of visibility range in real-time while participants were

walking. A limitation was that the projected color blobs were planar and therefore these

were different from volumetric obstacles people encounter in their daily lives. For future

research, I could examine the effects of occluded visual field on gait performance by mask-

ing the projected image on the display using the VR paradigm presented in this dissertation.

 78

In this chapter, I presented two VR walking experiments to investigate the role of

binocular vision in continuous walking. my results showed that stereopsis helped people to

step over obstacles and gaps more accurately. I also found that stereopsis helped people to

lift their feet higher for obstacles with a height of 0.3 m. Further research should investigate

the threshold of the height of obstacles that enabled stereopsis to influence stride height.

To conclude, the current study suggests that providing binocular cues to VR dis-

plays is essential to design VR systems as binocular cues make stepping movements more

accurate. One type of VR locomotion game, where this would be important, requires users

to walk or run in virtual environments while avoiding obstacles using a locomotion inter-

face for physical exercise or for fun, one can expect that by using a VR display with bin-

ocular cues, such gaming experience will resemble the experience in the real-world, mak-

ing VR locomotion games more interesting and appealing to people.

 79

Chapter 5
Recognition of Head Gestures and Hand Gestures and

their Application for Interaction in Virtual Reality

5.1 Introduction

The goal of the research was to develop an algorithm for real-time head gesture recognition

on HMDs. Such an algorithm could be useful for interaction in both virtual environments

and real worlds. For instance, in virtual reality systems, users usually need to interact with

avatars. To answer Yes/No questions asked by avatars, users could simply make their re-

sponses by nodding and shaking heads through a head gesture interface. One possible ap-

plication is to use the interface to interact with virtual tour guides in augment reality (AR)

based tours (Abate et al., 2011). It is also very common that a virtual reality system itself

may raise questions to users and ask users to confirm or reject certain options; in this case,

the user can also respond through a head gesture interface by nodding and shaking. Re-

cently, there is a growing interest for teleoperation of robots, such as quadcopters, using

head motions tracked by HMDs (Mollet and Chellali, 2008; Martins and Ventura, 2009;

Higuchi et al., 2013; Teixeira et al., 2014; Pittman and LaViola, 2014). First-person views

of robots are often presented directly through the display panels of HMDs. In the case of

the quadcopter control, a quadcopter can be maneuvered by head spatial translations (Hi-

guchi et al., 2013) or the head orientation can be used to manipulate the attitude of the

quadcopter to fly it (Pittman and LaViola, 2014). Adding a head gesture interface in such

applications will enable users to perform more complex operations. For example, users

 80

could nod their head to perform mode switching to switch flight control from auto-pilot to

head motion control. Head gesture interfaces also can be applied to AR devices, such as

the Google Glass and the Microsoft HoloLens. Such an interface would enable users to

perform actions, such as browsing, with head rotation, head tilting, nodding and shaking

without touching the glasses. A head gesture recognition method is beneficial to research-

ers who investigate human locomotion or driving behaviors, etc. In such activities, users

usually have to make head movements for observing the environment around them. A head

gesture recognition method can be used to count the number, the type and the duration of

each head movement. These parameters may differ significantly given different experi-

mental conditions, such as restricted field of views and complexity of the environment.

Without such an approach for recognizing head gestures, researchers have to manually de-

termine the number, the type and the duration of each head movement from the collected

data of head movements. Lastly, a head recognition module also can be integrated to driver

assistance systems of automobiles to monitor the driving behaviors of drivers (Kang,

Figure 5-1: The Coordinate System of the Oculus Rift DK2

X

Y

Z







 81

2013). While the present study focused on a specific HMD - the Oculus Rift DK2, the

proposed method is general and can be adapted to work with VR systems that use head

tracking glasses or other types of systems in which a user's head motion is tracked by fast

and accurate tracking systems.

5.2 Method

5.2.1 Head Gesture Interface

A. The Tracking System of the Oculus Rift DK2

The Oculus Rift DK2 uses a six Degree-of-Freedom (DOF) hybrid optical-inertial tracker

to track a user's head motion at approximately 75 Hz. The coordinate system of the Oculus

Rift DK2 is illustrated in Figure 5-1. The hybrid tracker consists of an external camera with

an infrared filter to track the infrared LED array on the front and side panels of the Oculus

Rift DK2 and an embedded inertial measurement unit (IMU) (LaValle et al., 2014). The

tracking data that can be accessed through the VR software WorldViz Vizard 5.0 are posi-

tion, acceleration, Euler angles and angular velocities. To recognize head gestures, I only

used the angular velocities of head motions as angular velocities directly reflect whether a

user's head is moving and in which direction. An advantage is that it does not assume that

a user’s head is in neutral position. When a user performs head gestures with their head

tilted at certain angles, head gestures can still be recognized. I represented the angular ve-

locity as a 3-D vector 𝜔 = (Ψ̇, Θ̇, Φ̇), where Ψ̇, Θ̇, Φ̇ are yaw velocity, pitch velocity and

roll velocity, respectively. A sequence of angular velocities can be denoted as

 82

𝑊 = 𝜔1𝜔2…𝜔𝑖, where 𝑖 is the index for a 3-D vector 𝜔. Another option for monitoring

head movements is to use quaternions to represent the head angular velocity but extra time

will be taken to convert head angular velocities to quaternions.

B. Definition of Head Gestures

I defined nine classes of head gestures. Seven are simple gestures: Being Idle (remaining

still), Rotating Left, Rotating Right, Tilting Upward, Tilting Downward, Leaning Left,

Leaning Right. Two are complex head gestures: Shaking, Nodding.

The motivation behind the definition of complex gestures is that Shaking can be

represented a sequence of three simple head gestures, which are Being Idle, Rotating Left

and Rotating Right. Similarly, Nodding can be represented by a sequence of simple ges-

tures: Being Idle, Tilting Upward and Tilting Downward. I associated each class of head

gesture with a class label 𝑙, with 𝑙 ∈ {1,2, … ,9}.

C. Cascaded Hidden Markov Models

To recognize and classify the simple and complex head gestures, I used Cascaded Hidden

Markov models. An HMM (Rabiner, 1989) is governed by the following parameters: 𝑁

the number of hidden states, 𝑀 the number of observation symbols and the model param-

eter 𝜆 = (𝐴, 𝐵, 𝜋), where 𝐴 is the matrix that represents the transition probability between

states, 𝐵 the matrix that represents the emission probability of a symbol observed from a

specific state and 𝜋 the initial state probabilities. Similar to the speech recognition ap-

proach (Rabiner, 1989), I modeled each head gesture with a left-right HMM, where 𝑙 is the

 83

class label of a head gesture associated with the HMM 𝜆. In a left-right HMM, only tran-

sitions between adjacent states from left to right and transitions from a state to itself are

allowed. This makes it possible for the proposed structure to be completely pipelined. A

set of trained HMMs for the nine classes of head gestures can be represented as 𝛬 ,

𝛬 = {𝜆1, 𝜆2, … , 𝜆9}. The HMMs I used were discrete HMMs and discrete HMMs only ac-

cept discrete observation symbols as inputs. Thus, given an sequence of sampled angular

velocities 𝑊, before feeding the sequence 𝑊 into an HMM 𝜆𝑙, I used the K-Means algo-

rithm during training step and the minimum distance classifier (Lin and Venetsanopoulos,

1993) during testing step as the vector quantization (VQ) procedure to quantize the se-

quence of angular velocities 𝑊 into an observation sequence 𝑆 that consists of discrete ob-

servation symbols with 𝑆 = 𝑂1𝑂2…𝑂𝑖, where 𝑖 is the index of the observation symbol 𝑂

in the sequence 𝑆. To predict how likely it is a sequence 𝑆 belongs to a certain class 𝑙 of a

Figure 5-2: The Structure of the CHMMs for Real-time Head Gesture Recognition

Vector

Quantization

Being Idle

Rotating Left

Rotating Right

Tilting Up

Tilting Down

Leaning Left

Leaning Right

Shaking

Nodding

Output

Selection

Recognized

Gesture





Complex GesturesSimple Gestures

 84

head gesture, I used a set of trained HMMs 𝛬 and the forward procedure of the HMM to

calculate the posterior probabilities 𝑃𝑎 for all HMMs, with 𝑃𝑎 =

{𝑃(𝑆 | 𝜆1), 𝑃(𝑆 | 𝜆2), … , 𝑃(𝑆 | 𝜆9)}. An output selection procedure resolves the class label

𝑙 of the given observation sequence 𝑆 from the posterior probabilities 𝑃𝑎. As simple ges-

tures require much less data to give a reliable estimate than complex gestures do, to effi-

ciently recognize simple and complex head gestures, I organized the set of HMMs 𝛬 into

the CHMM structure. The structure has two dedicated layers for recognizing simple ges-

tures and complex gestures respectively. For training and testing the CHMM, two HMM

algorithms were used. One is the Baum–Welch algorithm, which was used to train a left-

right HMM 𝜆𝑙. The other is the forward procedure of the HMM, which calculates the pos-

terior probability 𝑃(𝑆 | 𝜆𝑙) of an observation sequence 𝑆 given an HMM 𝜆𝑙. These two al-

gorithms are available in Matlab 2014a as hmmtrain() and hmmdecode(). Detailed descrip-

tions of the algorithms can be found in the work by Rabiner (1989).

In Figure 5-2, I present the proposed CHMM structure. Here I describe the real-

time operation of the CHMM and leave the explanation of the training and testing proce-

dures to Section 5-1. During real-time operation, the system continuously reads angular

velocity 𝜔𝑖 for processing. A sampled angular velocity 𝜔𝑖 is given into the vector quanti-

zation module and the vector quantization module produces an observation symbol 𝑂𝑖

based on the Euclidean distance between cluster centers 𝐶𝑗 and the vector 𝜔𝑖 using the min-

imum distance classifier (Lin and Venetsanopoulos, 1993): the index 𝑗 of cluster center 𝐶𝑗

 85

that gives the shortest Euclidean distance is assigned as the observation symbol to the vec-

tor 𝜔𝑖:

𝑂𝑖 = argmin
𝑗

(‖𝐶𝑗 − 𝜔𝑖‖2)
(5.1)

where 𝑂𝑖 is the assigned observation symbol and cluster centers 𝐶𝑗 were obtained by K-

Means during training. The observation symbol 𝑂𝑖 generated by the vector quantization

module is buffered using an array until the number of observation symbols 𝑂𝑖 reaches the

length 𝐿𝐵. When the number of observation symbol 𝑂𝑖 reaches 𝐿𝐵, the sequence of obser-

vation symbols 𝑆 is sent to the modules classifying simple gestures to calculate the poste-

rior probabilities 𝑃𝑠, with 𝑃𝑠 = {𝑃(𝑆 | 𝜆1), 𝑃(𝑆 | 𝜆2),… , 𝑃(𝑆 | 𝜆7)}. The buffer is then im-

mediately cleared and waits for new observation symbols 𝑂𝑖. If a recognized simple gesture

𝑙 is in the category of Being Idle, Rotating Left, Rotating Right, Tilting Up or Tilting Down,

they will be considered as observation symbols 𝑂𝑖′ for the layer of complex gestures and

will be further buffered using a queue of a length 𝐿𝑄. Each time the queue performs a

dequeue and an enqueue operation, the buffered sequence in the queue will be sent to the

module of complex gestures to calculate the posterior probabilities 𝑃𝑐 of complex gestures,

with 𝑃𝑐 = {𝑃(𝑆 | 𝜆8),𝑃(𝑆 | 𝜆9)}. I empirically set 𝐿𝐵 = 10 and 𝐿𝑄 = 10 to make the array

contain 0.13 s of data and the queue contain 1.3 s of data at the sampling rate of 75 Hz. I

found such choice of values gave a relatively fast response for recognizing simple gestures

and reliable length of data for recognizing complex gestures. The last step is to resolve the

class label 𝑙 of the head gesture based on the calculated posterior probabilities 𝑃𝑠 and 𝑃𝑐.

 86

The posterior probabilities of simple gestures 𝑃𝑠 and the posterior probabilities of complex

gestures 𝑃𝑐 are not directly comparable as a complex gesture consists of symbols repre-

sented by simple gestures. To solve this problem, I proposed an output selection procedure

to estimate the class label 𝑙 from the posterior probabilities of simple gestures 𝑃𝑠 and com-

plex gestures 𝑃𝑐 using the function:

where 𝜏𝑛 and 𝜏𝑠 are the thresholds that indicate a complex gesture shaking or nodding may

exist if either the posterior probability 𝑃(𝑆 | 𝜆8) or 𝑃(𝑆 | 𝜆9) is larger than their corre-

sponding thresholds 𝜏𝑛 or 𝜏𝑠; 𝑙 is the class label associated with a HMM 𝜆 of a specific ges-

ture and 𝑙 is the estimated class label.

5.2.2 Hand Gesture Interface

Marin et al. (2016) proposed a set of robust features for recognizing static hand gestures

with the hand skeletons tracked by the Leap Motion sensor. The specific feature descriptor

selected from the set for my implementation was:

 𝑃𝑖
𝑥 = (𝐹𝑖−𝐶) ∙ (𝑛 × ℎ)

𝑃𝑖
𝑦
= (𝐹𝑖 − 𝐶) ∙ ℎ (5.3)

 𝑃𝑖
𝑧 = (𝐹𝑖−𝐶) ∙ 𝑛

where 𝐹𝑖 is the position of the fingertip and 𝑖 is the index of a finger, 𝐶 the position of the

palm center, 𝑛 the normal vector emanating from the palm and ℎ the vector from the palm

𝑙 =

{

argmax
𝑙

(𝑃𝑐) 𝑖𝑓 𝑃(𝑆 | 𝜆8) > 𝜏𝑛 𝑜𝑟

 𝑖𝑓 𝑃(𝑆 | 𝜆9) > 𝜏𝑠

argmax
𝑙

(𝑃𝑠) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.2)

 87

center to the direction of the fingers. These parameters are directly available from the

tracked hand skeleton of the Leap Motion Sensor. 𝑃𝑖
𝑥, 𝑃𝑖

𝑦
 and 𝑃𝑖

𝑧 are the extracted features.

∙ is the dot product and × is the cross product. As pointed out by the authors, the set of

equations normalize fingertip positions with respect to hand position and orientation. Fin-

gertip angles, positions and elevations are embedded in the extracted features 𝑃𝑖
𝑥, 𝑃𝑖

𝑦
 and

𝑃𝑖
𝑧. The extracted features can be used to train classifiers such as the Support Vector Ma-

chine (SVM) (Chang and Lin, 2011) to recognize static gestures.

Initially, I defined three types of hand gestures. The OK gesture represents Yes, the

extended hand gesture means No. The fist gesture was also defined as the standby gesture

for resting.

A problem using only the static hand gesture recognition algorithm is that it is dif-

ficult to determine whether users intend to confirm their responses as static hand gestures

are continuously recognized and a response can be determined before users finishing mak-

ing their intended gestures. Thus, I included two HMMs to monitor the trajectory of the

Figure 5-3: Hand Gesture Interface

Normalization

SVMs

Calculate Velocity

HMMs

Fusion

Hand Centres Finger Tip Positions

Recognized Hand Gesture

 88

hand velocity to detect if users are waving their hands or not. The outputs from the SVMs

and the HMMs are fused by a set of rules to generate the final gesture: if the user waves a

hand with an OK gesture, then the algorithm will confirm that the response from the user

is Yes; similarly, if the user waves an extended hand, the response will be confirmed as

No; otherwise, the algorithm considers that there are no meaningful responses given by

users. Therefore, the types of hand gestures in the hand gesture interface were extended to

six types, including: static OK gesture, static extended hand, static fist, waving OK gesture,

waving extended hand and waving fist. The structure of the hand gesture recognition algo-

rithm is illustrated in Figure 5-3.

An advantage of the proposed hand gesture recognition framework is that it can be

further extended to recognize combinations of different static hand gestures and different

shapes of hand velocity trajectories. Thus, it has the potential to deal with more complex

gesture recognition scenarios.

Figure 5-4: Gamepad Interface

Button 5

Yes

Button 6

No

 89

5.2.3 Gamepad Interface

The gamepad interface (Figure 5-4) was implemented based on a Logitech Dual Action

gamepad to be compared with the head gesture interface and the hand gesture interface.

Specifically, users pressed button 5 on the gamepad for Yes and pressed button 6 for No.

5.3 Experiment 5-1: Training and Testing of the Head Gesture Interface

In this experiment, I trained the CHMM and evaluated its offline classification perfor-

mance. As there was no publicly available head gesture dataset for the Oculus Rift DK2, I

developed a custom application, using the Vizard 5.0, that can simultaneously collect and

label head gestures for training and testing the proposed CHMM structure. Nineteen people

(age: 20 - 38) participated in the experiment and informed consents were obtained from all

participants in accordance with a protocol approved by the Human Participants Review

Subcommittee at York University. In the experiment, the participants wore the Oculus Rift

DK2 and sat approximately 60 cm in front of the tracking camera of the Oculus Rift DK2,

which was mounted on the monitor of the host machine (Windows 7, an Intel i7 2.8 GHz.

CPU, 4 GB memory and an AMD Radeon HD 6850 graphics card). There were nine types

(classes) of head gestures that needed to be collected. For each type of head gesture, the

researcher pressed the corresponding button on the control panel (visible only to the re-

searcher on the computer monitor) of the custom application and a prompt (visible to both

participants on the HMD and the researcher on the computer monitor) indicating the type

 90

of head gesture that a participant needed to perform was shown in the view of the HMD.

A countdown timer was also started at the same time to count from two to zero by seconds.

A participant was expected to complete the head gesture within 2 seconds with their

preferred head movement speed. Labeling of the head gesture was done at the same time

by the custom application within the 2-second interval. I collected each type of head gesture

twice for each participant. In total, I had 342 head gesture samples from nineteen partici-

pants. The training and testing procedures were fully automated and performed using

Matlab 2014a. I used multi-class precision (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀), multi-class recall (𝑅𝑒𝑐𝑎𝑙𝑙𝑀) and

Table 5-1: The Average Accuracy of the Simple Gesture Layer from a Training Session (Unit: Per-

centage, M: The Number of Discrete Symbols in HMMs, N: The Number of Hidden States in HMMs;

The Highest Average Accuracy is in Bold and Shaded)

 N

 2 3 4 5 6

 7 87.6 85.7 87.6 86.1 88.1

 8 90.1 90.1 92.7 90.3 90.4

 9 95.9 95.9 95.9 95.9 96.2

 10 92.6 91.6 97.4 94.0 96.1

 11 95.2 97.0 97.0 97.4 98.4

 12 97.2 96.2 97.3 98.6 98.7

 13 97.5 98.8 99.0 98.7 98.7

 14 98.6 98.7 98.4 98.7 98.3

M 15 97.0 99.0 99.1 98.8 98.7

 16 98.7 98.9 98.8 99.0 99.1

 17 98.6 99.2 99.0 99.0 99.1

 18 98.9 98.4 99.1 99.0 98.9

 19 97.6 98.9 99.0 98.9 98.9

 20 98.7 99.1 97.3 97.5 99.0

 21 98.8 97.4 97.5 99.0 98.9

 22 97.6 99.0 97.2 98.8 98.7

 23 97.4 97.5 97.3 97.8 97.4

 24 97.5 97.6 97.7 97.4 97.0

 25 97.4 97.5 97.8 97.6 97.2

 91

the average accuracy (Sokolova and Lapalme, 2009) as the metrics to evaluate the perfor-

mance of training and testing. I divided the training of the CHMM into three phases that

trained the modules of vector quantization, simple gesture layer and complex gesture layer

separately. Given the collected head gesture dataset from nineteen participants, I directly

ran the K-means algorithm to quantize each angular velocity vector 𝜔𝑖 into an observation

symbol 𝑂𝑖. The cluster centers 𝐶𝑗 obtained from K-Means training were stored for the test-

ing step for the vector quantization module. The cluster number 𝐾 of K-Means and the

number of observation symbols 𝑀 of HMMs were equated (𝑀 = 𝐾). Seven types of ob-

servation symbols, with 𝑀 ≥ 7, were needed to represent seven simple gestures. The head

gesture dataset was then divided in halves into a training set and a testing set. For each

sequence of head gestures other than being idle, I removed redundant symbols that indicate

a user’s head is remaining still as the redundant symbols were not useful for training.

The second step was to train the layer of simple gestures and evaluate its classifi-

cation performance. To represent a simple head gesture, such as rotating left, at least two

hidden states 𝑁 are needed, with 𝑁 ≥ 2. The Baum–Welch algorithm was used for train-

ing. Since I chose 𝐿𝐵 = 10 for real-time evaluation, I partitioned each sequence in the

Table 5-2: Head Gesture Recognition Latencies (Unit: s)
 RL RR TU TD LL LR S N

P1 0.213 0.253 0.173 0.120 0.200 0.240 0.720 0.653

P2 0.173 0.173 0.147 0.120 0.107 0.160 0.747 0.733

P3 0.107 0.093 0.133 0.173 0.227 0.253 0.813 0.667
P4 0.267 0.080 0.093 0.200 0.253 0.120 0.773 0.680

P5 0.280 0.280 0.173 0.147 0.080 0.173 0.667 0.733

P6 0.267 0.133 0.160 0.200 0.120 0.120 0.693 0.693
Mean 0.218 0.169 0.147 0.160 0.164 0.178 0.736 0.693

Std 0.068 0.083 0.030 0.037 0.071 0.058 0.054 0.034

 92

training set into short sequences of length 10 and used the short sequences to train its each

associated HMM 𝜆𝑙, 𝑙 ∈ {1, 2, … ,7}, to obtain the parameters of the transition matrix 𝐴 and

the emission matrix 𝐵. The initial state probabilities 𝜋 were not considered as a head ges-

ture always starts with the state of the head being remaining still. The information can be

learned during training and stored in the emission matrix 𝐵. There were two tunable pa-

rameters: 𝑁 the number of hidden states in the model, 𝑀 the number of observation sym-

bols in an HMM and I knew that 𝑁 ≥ 2 and 𝑀 ≥ 7. To obtain the best classification per-

formance, I wished to find the optimal values of 𝑁 and 𝑀 that maximize the average accu-

racy for the layer of simple gestures, with smallest 𝑀 and 𝑁 possible. The smaller 𝑁 and

𝑀 are, fewer additions and multiplications are involved in the forward procedure of the

HMM; hence the faster real-time performance for head gesture recognition. The upper

bounds for 𝑁 and 𝑀 were set to 6 and 25 empirically. The evaluation of the classification

performance of the simple gesture layer was conducted after each training cycle with a

combination of 𝑁 and 𝑀. I partitioned each sequence in the testing set into the short se-

quences of length 10 and used the forward procedure to calculate the posterior probabilities

𝑃𝑠 based on short sequences. The class label 𝑙 of a simple head gesture was estimated using

the equation:

𝑙 = argmax
𝑙

(𝑃𝑠) (5.4)

Since the K-means is initialized randomly, the training results may differ even if I

run the same algorithm on the same training set. Thus, I ran the training procedure for the

 93

layer of simple gestures for five different sessions. In each session, the training was per-

formed with different combinations of 𝑁 and 𝑀 such that 2 ≤ 𝑁 ≤ 6,𝑁 ∈ ℤ and 7 ≤

𝑀 ≤ 25,𝑀 ∈ ℤ. The highest average accuracy I was able to obtain from a specific train-

ing session was 99.2% when 𝑁 = 3 and 𝑀 = 17 (Table 5-1) and the corresponding

multi-class precision and multi-class recall were 97.9% and 96.6%, respectively.

To train the complex gesture layer and evaluate the classification performance, I

first partitioned the sequence of nodding and shaking in the head gesture datasets into short

sequences of length 10 (since 𝐿𝑄 = 10). I then used the trained HMMs 𝛬𝑠 = {𝜆1, 𝜆2, … , 𝜆7}

of simple gestures to classify the short sequences of complex gestures into observation

symbols 𝑂𝑖′ that consists of classified simple gestures. Specifically, the classification was

done by first using the forward procedure of the HMM to calculate the posterior probabil-

ities of each short sequence of complex gestures and assigning the short sequence with the

class label of the simple gesture with the highest posterior probability using equation (5.4).

As a complex gesture is represented by three simple gestures, I set the number of observa-

tion symbols 𝑀 = 3. The number of hidden states was set as 𝑁 = 3, which was same as

that of the simple gesture layer. I then used the Baum–Welch algorithm to train the layer

of complex gestures and obtained the parameters for the transition matrix 𝐴 and the emis-

sion matrix 𝐵 for HMMs of complex gestures 𝛬𝑐 = {𝜆8, 𝜆9}. As with the training of the

simple gesture layer, the initial state probabilities 𝜋 were not considered. To determine the

thresholds 𝜏𝑛 and 𝜏𝑠, I used the forward procedure and the HMMs 𝛬𝑐 = {𝜆8, 𝜆9} to calcu-

late the posterior probabilities 𝑃𝑐 of all sequences of complex head gestures in the training

 94

set. I selected the smallest values as the thresholds 𝜏𝑛 and 𝜏𝑠 for shaking and nodding, re-

spectively, with 𝜏𝑛 = -6.93 and 𝜏𝑠 = -7.54 (on a logarithmic scale). The last step was to test

the layer of complex gestures. I calculated the posterior probability 𝑃𝑐 , 𝑃𝑐 =

{𝑃(𝑆 |𝜆8), 𝑃(𝑆 | 𝜆9)}, of each complex gesture sequence in the testing set, compared the

posterior probabilities 𝑃𝑐 with the thresholds 𝜏𝑛 and 𝜏𝑠 I obtained during the training pro-

cedure and estimated the class label of each sequence using the equation:

where -1 will be given as an invalid class label when both 𝑃(𝑆 | 𝜆8) and 𝑃(𝑆 | 𝜆9) were

lower than their corresponding thresholds 𝜏𝑛 and 𝜏𝑠.

The multi-class precision, the multi-class recall and the average accuracy were

100%, 96.4% and 98.5%, respectively, for the layer of complex gestures.

5.4 Experiment 5-2: Estimating the Latency of the Head Gesture Inter-

face to Recognize Head Gestures

For real-time evaluation of the latency of the head gesture recognition framework, I imple-

mented the proposed CHMM structure and the forward procedure of the HMM using py-

thon 2.7 in Vizard 5.0. My goal was to estimate the latency for the algorithm to recognize

a head gesture. In practice, I found it necessary to further tune the parameters 𝜏𝑛 and 𝜏𝑠

such that 𝜏𝑛 = −5 and 𝜏𝑠 = −4. This helped the CHMM avoid confusing fast head rota-

tion and tilting with Shaking and Nodding during real-time recognition. Each computation

𝑙 =

{

argmax
𝑙

(𝑃𝑐) 𝑖𝑓 𝑃(𝑆 | 𝜆8) > 𝜏𝑛 𝑜𝑟

 𝑖𝑓 𝑃(𝑆 | 𝜆9) > 𝜏𝑠

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.5)

 95

cycle of the CHMM takes approximately 1 ms and thus the proposed approach meets the

target real-time requirement of completing a computation cycle within 13 ms at the sam-

pling rate of 75 Hz. Nine people (age: 22 - 31) participated in the experiment and none had

participated in Experiment 5-1. Informed consents were obtained from all participants in

accordance with a protocol approved by the Human Participants Review Subcommittee at

York University. In Experiment 5-2, participants also wore the Oculus Rift DK2 and sat

60 cm in front of the tracking camera of the Oculus Rift DK2. Participants were asked to

perform the following head gesture sequence with their preferred speed three times from

the initial neutral position with a head gesture of Being Idle (BI):

▪ Rotating Left (RL);

▪ Move Back to Neutral Position;

▪ Rotating Right (RR);

▪ Move Back to Neutral Position;

▪ Tilting Upward (TU);

▪ Move Back to Neutral Position;

▪ Tilting Downward (TD);

▪ Move Back to Neutral Position;

▪ Leaning Left (LL);

▪ Move Back to Neutral Position;

▪ Leaning Right (LR);

▪ Move Back to Neutral Position;

 96

▪ Nodding (N);

▪ Move Back to Neutral Position;

▪ Shaking (S);

▪ Move Back to Neutral Position;

The estimated head gesture labels and head angular velocities during real-time op-

eration were recorded for latency analysis (Figure 5-5). I defined the latency for head ges-

tures, except Being Idle, as the time interval between the index of the frame 𝑖𝑖𝑛𝑖𝑡 when the

Euclidean norm of a user's head angular velocity ‖𝜔‖ is equal to or higher than a threshold

𝜔𝑖𝑛𝑖𝑡 = 0.1 rad / s, to the index of the frame 𝑖𝑡𝑟𝑖𝑔𝑔𝑒𝑟 at which a head gesture was recog-

nized. Then the latency 𝑡𝐿 can be estimated as:

𝑡𝐿 =
𝑖𝑡𝑟𝑖𝑔𝑔𝑒𝑟 − 𝑖𝑖𝑛𝑖𝑡

𝑓𝑠
(5.6)

Figure 5-5: An Exemplar Real-time Recognition Result from a Participant

0 200 400 600 800 1000 1200 1400 1600 1800 2000

BI

RL

RR

TU

TD

LL

LR

N

S

Frames

G
e

s
tu

re
 L

a
b

e
l

Yaw

Pitch

Roll

Gesture

-4

-2

0

2

4

6

8

A
n

g
u

la
r

V
e

lo
c

it
y

 (
R

a
d

 /
 S

)

 97

where 𝑓𝑠 is the sampling frequency of the Oculus Rift DK2 and 𝑓𝑠 = 75 Hz.

Three participants were unable to follow the gesture sequence given above as they

did not remember the sequence they needed to perform. Thus, I only used the data of the

remaining six participants (age: 22 - 31) and the researcher selected one specific sequence

among the three that a participant performed to estimate the latency. The selected sequence

was the clearest pattern compared with that of other two sequences. The other two se-

quences might not have the states of BI between other recognized head gesture states due

to users’ continuous head movements, which made it more difficult to estimate the latency.

In Table 5-2, I present the result of the estimated head gesture recognition latencies of six

participants (P1 – P6). The mean value and the standard deviation of the latencies of all

participants were also calculated. I found that for simple gestures, the latency had a mean

value of 0.17 s and for complex gestures the latency had a mean value of 0.71 s.

5.5 Experiment 5-3: Training and Testing of Hand Gesture Interface

I collected hand gesture samples from twelve participants (age: 20 - 33) for the six types

of gestures. Informed consent was obtained from all twelve participants in accordance with

a protocol approved by the Human Participants Review Subcommittee at York University.

Each participant was asked to perform four sessions of data collection. In each session, a

participant was asked to perform the six types of hand gestures separately and each type of

hand gesture was recorded for four seconds.

 98

The features 𝑃𝑖
𝑥, 𝑃𝑖

𝑦
 and 𝑃𝑖

𝑧extracted from the collected samples were used to train

three SVMs using the one against one approach (Hsu and Lin, 2002). To recognize a ges-

ture during real-time operation, a voting strategy was used, meaning that the type of gesture

(a) Initialization Stage

(b) Memorization Stage

(c) Question Stage

(d) Response Made

 Figure 5-6: Experiment Stages

Table 5-3: The User Interface Questionnaire

1. The interface is easy to learn.

2. The interface is easy to use.

3. The interface is natural and intuitive to use.

4. The interface helps make the task fun.

5. Using the interface is tiring.

6. The interface helps me respond quickly.

7. The interface helps me make accurate responses.

Countdown for memorization

Countdown between Questions

 99

that received the highest number of the votes given by SVMs was the winner. The average

accuracy for recognizing static hand gestures was 99.6%. To handle moving hands, Two

HMMs were trained using hand velocity data calculated from the hand centers. Specifi-

cally, one HMM was trained using hand velocities of static gestures while the other was

trained using hand velocities while hands were waving. During operation, the HMM that

gives the highest probability was chosen as the output. The average accuracy for recogniz-

ing a waving hand is 98.1%. The theoretical average accuracy for recognizing dynamic

hand gestures was 97.7% by multiplying the average accuracy for recognizing static hand

gestures (99.6%) and the average accuracy for detecting moving hands (98.1%).

5.6 Experiment 5-4: Comparing Head Gesture, Hand Gesture and

Gamepad Interfaces for Answering Yes/No Questions in Virtual En-

vironments

5.6.1 Introduction

The goal of the experiment was to evaluate and compare performance and user preference

of the head gesture interface, the hand gesture interface and the gamepad interface for an-

swering Yes/No questions in virtual environments. To achieve the goal, a memorization

task was designed. The task asked participants to memorize the objects presented in a vir-

tual room with a 30-s exposure period. Then, these objects were removed, and participants

were asked whether they saw a specific object by answering Yes or No through a given

interface. In Figure 5-6 (a) – (c), I show the three stages of the experiment, including ini-

 100

tialization stage, memorization stage and question stage. When a participant made a re-

sponse, a confirmation (Yes/No) was prompted as shown in Figure 5-6 (d). The experiment

application and the algorithms for three interfaces were implemented in the Worldviz Viz-

ard 5.0 using Python 2.7.

5.6.2 Metrics

The metrics consisted of objective measures and subjective measures. The objective

measures were: Response Time, which is the interval between when a question was

prompted and when a response was made and Real-Time Accuracy, which is the percent-

age of the objects that were correctly classified as present or not during real-time operation.

The objective measures were applied on the recorded experiment data to extract the corre-

sponding parameters. The subjective measures were: Ease-to-Learn, Ease-to-Use, Natural-

to-Use, Fun, Tiredness, Responsiveness and Subjective Accuracy.

The subjective measures were evaluated using a user interface questionnaire mod-

ified from the one by Nabiyouni et al. (2015). The items given in the questionnaire are

shown in Table 5-3. The seven-point Likert scale (from Strongly Disagree to Strongly

Agree) was used to rate each factor.

5.6.3 Participants

Informed consent was obtained from all twelve participants (age: 20 - 38) in accordance

with a protocol approved by the Human Participants Review Subcommittee at York Uni-

versity. Twelve participants were divided into six groups. To order the testing of the three

 101

interfaces, each group covered a permutation of the gesture interfaces. Thus, six groups

covered all six permutations of the three gesture interfaces. For each interface, four trials

were conducted. The first trial was for training and was not considered for the data analysis

while the remaining three trials were the actual experiments.

Figure 5-7: Response Time

Figure 5-8: Real-Time Accuracy

 102

5.6.4 Procedure

During experiment sessions, participants wore the Oculus Rift DK2 and sat 60 cm in front

of the computer monitor, on which the tracking camera of the Oculus Rift DK2 was

mounted. The Leap Motion sensor was attached onto a stand and was placed 30 cm in front

of the participants. At the beginning of a trial, a participant was exposed to a virtual room,

facing a bench placed in the front of the room. After the researcher pressed the start button,

twenty objects were randomly selected from a list of thirty objects. The list consisted of

everyday objects, including a camera, a cellphone and a chair, etc. The 3-D models of the

objects were obtained from www.turbosquid.com. Among the selected objects, ten were

placed onto the bench with a random order and participants were given thirty seconds to

memorize the presence of these objects. Another ten objects were not presented in the room

and were only used for generating questions. After the thirty-second memorization period,

the presented objects were removed from the room. Participants were sequentially asked

Figure 5-9: Subjective Measures

 103

about the existence of the twenty objects with a random sequence. Questions had the form

“Did you see a cellphone?” (Figure 5-6 (c)). Each time the participant made a response

through the given interface, a three-second waiting period was introduced before the next

question was prompted. The object names, the timestamps when the questions were

prompted, the timestamps when the responses were made, the actual existence of objects

and the responses of the participants were recorded for data analysis. After participants

completed four trials for a given interface, they were asked to complete the user interface

questionnaire to evaluate the interface they used.

5.6.5 Results

I performed the data analysis in Matlab 2016a. One-way repeated-measures ANOVA anal-

yses were applied on each factor of the objective measures and subjective measures to

reveal whether there were significant effects between the types of interfaces. Post-hoc pair-

wise comparisons were performed using Tukey’s range tests. Effect sizes were reported

using partial eta squared 𝜂𝑝
2.

I found a significant effect on Response Time (𝐹(2,22) = 50.84, 𝑝 <

 0.001, 𝜂𝑝
2 = 0.822). On average, the head gesture interface had the highest response time

and the gamepad interface had the lowest while the hand gesture was in the middle. A

Tukey’s range test confirmed that the gamepad interface was significantly faster than the

head gesture interface and the hand gesture interface in terms of response time and there

was no significant difference between the head gesture interface and the hand gesture in-

terface. The results (Figure 5-7) were expected since the head gesture interface required

 104

nodding or shaking for at least one cycle. This typically took longer time than pressing a

button on the gamepad or waving hands in front of the Leap Motion sensor. I also found a

significant effect on Real-Time Accuracy (𝐹(2,22) = 16.70, 𝑝 < 0.001, 𝜂𝑝
2 = 0.604).

A Tukey’s range test showed that the hand gesture interface was significantly less accurate

than that of the gamepad interface and the head gesture interface. The objective accuracies

for three interfaces are shown in Figure 5-8. The factor is primarily determined by the

accuracy of memorization of the objects, the control of the interfaces and the recognition

performance of the interfaces. Although, in theory, the gamepad interface should have the

best recognition performance as Yes/No are recognized by two buttons, I found the head

gesture had a slightly higher real-time accuracy than that of the gamepad interface assum-

ing that the memorization of objects by participants across three interfaces was the same.

This suggested that using the head gesture interface was less error-prone than the gamepad

Figure 5-10: Total Score

 105

interface. The hand gesture interface had the lowest real-time accuracy, which suggested

that using hand gesture interface might introduce more errors into responses.

For subjective measures (Figure 5-9, error bars denote standard deviation), the

gamepad interface was rated better than other interfaces in terms of Ease-to-Use, Fun,

Tiredness, Responsiveness and Subjective Accuracy while the head gesture was rated

slightly higher for Ease-to-Learn and Natural-to-Use. The hand gesture interface was not

preferred for any measure except Tiredness as the head gesture interface was considered

as the most tiring interface. I found a significant effect on Ease-to-Use (𝐹(2,22) = 7.00,

𝑝 = 0.004, 𝜂𝑝
2 = 0.389) and a Tukey’s range test showed that the gamepad was signifi-

cantly easier to use than the hand gesture interface. A significant effect was also found on

Tiredness (𝐹(2,22) = 4.22, 𝑝 = 0.028, 𝜂𝑝
2 = 0.277) and a Tukey’s range test showed

that the gamepad interface was significantly less tiring than the head gesture interface.

However, I did not find significant effects on other measures: Ease-to-Learn (𝐹(2,22) =

 2.27, 𝑝 = 0.13, 𝜂𝑝
2 = 0.171), Natural-to-Use (𝐹(2,22) = 2.18, 𝑝 = 0.14, 𝜂𝑝

2 =

 0.165), Fun (𝐹(2,22) = 0.65, 𝑝 = 0.53, 𝜂𝑝
2 = 0.056), Responsiveness (𝐹(2,22) =

 2.89, 𝑝 = 0.08, 𝜂𝑝
2 = 0.208) and Subjective Accuracy (𝐹(2,22) = 2.84, 𝑝 =

0.08, 𝜂𝑝
2 = 0.208).

One interesting finding was that Responsiveness and Subjective Accuracy in the

subjective measures did not agree with Response Time and Real-Time Accuracy in the

objective measures respectively. For example, although subjectively participants indicated

 106

that the gamepad interface was more accurate than the head gesture interface, this was not

the case when the accuracy was assessed objectively. Similarly, the head gesture interface

took the longest time for making responses on average in the objective measure, but par-

ticipants indicated that the hand gesture interface was less responsive than the head gesture.

The total scores of each interface rated by all participants were produced by sum-

ming the subjective scores and are shown in Figure 5-10. The score for the factor Tiredness

was inverted (Strongly Agree received one point and Strongly Disagree received seven

points) to indicate how positive participants’ attitudes were towards Tiredness. By total

score, I found that the gamepad interface was preferred by six participants, while the head

gesture interface was preferred by five participants. Only one participant opted for the hand

gesture interface. Three paired t-tests were performed to further test the preference of these

three interfaces in terms of total scores. Effect sizes were reported using Cohen’s 𝑑𝑎𝑣

(Lakens, 2013). I found that for the gamepad interface vs. the hand gesture interface, there

was a significant difference (𝑡(11) = 3.427, 𝑝 = 0.006, 𝑑𝑎𝑣 = 1.214), which showed

that the gamepad interface was much preferred than the hand gesture interface. However,

I did not find a significant difference between the gamepad interface vs. the head gesture

interface (𝑡(11) = 1.253, 𝑝 = 0.236, 𝑑𝑎𝑣 = 0.562) and between the head gesture inter-

face vs. the hand gesture interface (𝑡(11) = 1.655, 𝑝 = 0.126, 𝑑𝑎𝑣 = 0.487).

 107

5.7 Discussion

Gamepads or other hand-held devices are traditional interfaces for people to play games

and have a long history for interaction in VR systems, console gaming and PC gaming. For

example, joysticks have been used for flying in virtual environments as a method for loco-

motion (Robinett and Holloway, 1992). Because of people’s familiarity and previous ex-

perience with these devices, it is possible that even when new interfaces appear, they would

still prefer these traditional devices as such devices may be more reliable. In addition, hand-

held devices are more familiar and would not take extra effort for people to learn how to

use them. In Figure 5-10, six participants preferred the gamepad interface to other two

interfaces. This showed that gamepads or hand-held devices are still important devices for

VR interactions.

Responding Yes/No through head nodding and shaking is a natural means of the

interaction between people in the real-world. In Figure 5-9, the rating of Natural-to-Use

was higher than that of other interfaces. Perhaps if would be particularly natural for inter-

action with agents or avatars. Similarly, the interface was rated easier to use than other

interfaces. As has been discussed, the primary problem with the interface is the heaviness

of the HMD, which probably made people consider the head gesture interface the most

tiring one. I expect that by using an HMD or tracking glasses with lower weight or using

computer vision systems for tracking, the tiredness for using the interface would be low-

ered. But given tiredness as the primary limitation, the interface was still preferred by five

participants.

 108

The hand gesture interface was only preferred by one participant probably because

the definition of Yes/No using a waving OK gesture and a waving extended hand was not

natural or unfamiliar to participants. To make a response, the hand of a participant needed

to make a two-step movement. First, they needed to make an OK gesture or extend their

hands. Then, then they needed to wave their hands to confirm their responses. It was obvi-

ous that more efforts were required when using the hand gesture interface than other two

interfaces, which required only a one-step movement, such as pressing a button or shaking

their heads. As shown in Figure 5-9, the hand gesture was the most difficult to learn and

most difficult to use. The factors Fun, Responsiveness and Subjective Accuracy were also

lower than other two interfaces. It was only considered better than the head gesture inter-

face in terms of Tiredness. I expect that by defining better gestures for Yes and No for the

hand gesture interface, people may have more positive attitudes towards the interface.

Another option to implement the functionality to answer Yes/No questions in VR

systems is to use speech recognition algorithms as interfaces to recognize people’s voice.

The performance and user preference of the speech recognition interface also can be stud-

ied and compared to the motion-based interfaces presented in this study. In practice, I can

also design a multi-modal interface that integrates the head gesture interface, the hand ges-

ture interface, the gamepad interface and the speech recognition interface into a single sys-

tem and let users choose their preferred interface during actual usage.

Limitations of the experiment design of the memorization task were that extra time

was taken for participants to recall the objects they memorized when responding to Yes/No

 109

questions using a given interface; and the ability of the participants to memorize the given

objects might also affect the results of the real-time accuracy.

In this chapter, I first presented a CHMM structure for real-time head gesture recog-

nition. The proposed structure is scalable and modules for other types of gestures can be

added or the existing modules can be removed based on the application needs. A distinct

advantage of the proposed pipelined structure is that the structure can be more easily im-

plemented on Field Programmable Gate Arrays (FPGAs) and Application-specific Inte-

grated Circuits (ASICs) compared with the cyclic structure described by Terven et al.

(2014), as a cyclic structure is iterative and non-deterministic. Such modules can be inte-

grated into head wearable devices, such as the Google Glass and the Microsoft HoloLens,

as a dedicated module for fast head gesture recognition. A limitation with the user study

based real-time evaluation is that it is impossible to ask the user to perform head motions

with precise velocity and duration. Thus, the real-time classification performance of the

proposed approach needs to be further evaluated with a robotic head since the velocity and

the duration of a head gesture performed by a robotic head can be easily controlled by

programming. This will enable me to compare the timings of head movements with that of

the real-time classification results and determine the classification performance.

I also proposed to use the head gesture interface and the hand gesture interface to

answer Yes/No questions in virtual environments. I evaluated their performance and user

preference through a memorization task and compared them to the traditional gamepad

 110

interface. I showed that the head gesture interface was comparable to the gamepad inter-

face. As adding the head gesture interface to a VR system usually does not require addi-

tional tracking devices, I suggest adding the head gesture interface to VR systems that

require users to answer Yes/No questions. I believe that interaction techniques using head

gestures and hand gestures in VR systems is still underexplored. Thus, the utility of these

interfaces in VR systems is worth further investigation.

 111

Chapter 6
The Effects of Visual and Control Latency in a Head

Motion Controlled Quadcopter

6.1 Introduction

Recently, there has been growing interest in remotely operating robots and aerial vehicles

using head motion tracked by an HMD. A typical teleoperation approach for such vehicles

maps the tracked head orientation by an HMD to the attitude of the vehicles for maneuver-

ing it and first-person views from the perspective of the vehicles are usually captured by

onboard cameras and presented onto the display panels of HMDs (Martins and Ventura,

2009; Higuchi et al., 2013; Pittman and LaViola, 2014; Teixeira et al., 2014). Such settings

give users an egocentric, immersive and intuitive way of teleoperation compared with con-

ventional control methods using hand-held devices, such as a joystick. However, a major

difference between head motion control methods and conventional control methods is that,

in the former case, head motion is coupled with visual updates. As the motion of a vehicle

is constrained by its dynamics, appreciable visual and control latency always exists be-

tween the issue of control commands by head movements and the visual feedback received

at the completion of the attitude adjustment. This causes a discrepancy between the in-

tended motion, the vestibular cue and the visual cue and may potentially result in simulator

sickness. In most VR applications, the major source of latency in HMDs comes from the

motion-to-photon latency. However, the motion-to-photon (end-to-end) latency (Iribe,

2013) in HMDs, such as the Oculus Rift DK2, is estimated to be only a few milliseconds

 112

(Raaen and Kjellmo, 2015; Kijima and Miyajima, 2016). This is minimal compared to the

latency introduced by dynamics in vehicles, which is dependent on the hardware and the

controller used. Additional latency may be introduced if the head motion of the user is not

properly mapped to the motion of vehicles. An example is the threshold technique, in which

the vehicle starts to move or stop when Euler angles of a user’s head pass certain thresholds,

or the movement of the vehicle is triggered by certain gestures. I consider this as a type of

discrete ON/OFF control input. A more responsive approach is to continuously map head

motions to the motion of the vehicle so that the latency introduced in the motion mapping

is minimal. For example, to fly a quadcopter, head orientation can be mapped to the tilt of

the quadcopter and the quadcopter moves when it is tilted. I refer this type of operation as

continuous inputs. Other sources of latency in head motion controlled vehicles include net-

work transmission (Allison et al., 2004) and computations, but these were not considered

in the present study as I focused on visual and control latency, which dominates in the

envisioned scenarios. There has been no previous research on how visual and control la-

tency introduced by dynamics in head motion controlled vehicles affect a user’s perfor-

mance and well-being. A common upper bound for tolerable latency in VR systems is usu-

ally taken as 20 ms (Allison et al., 2001) but visual and control latency introduced by dy-

namics is usually much higher. Thus, it is uncertain whether such head motion controlled

vehicles affect performance and whether they are comfortable for users as these techniques

may elicit simulator sickness. Therefore, in the present study, I simulated head motion

 113

controlled quadcopter scenarios using HMDs in a virtual environment. The VR paradigm

enabled me to experimentally control the degree of latency and systematically assess the

effects of latency in head motion controlled quadcopters.

Figure 6-1: Circuit Diagrams (Left: Photodiode Circuit, Right: Potentiometer Circuit)

Figure 6-2: The Setup of the Experiment

5V

5V

-5V-5V

5V

-5V

PR
= MR 12

= MR 13

uFC 1.01 =

= MR 11

1D
1VOut

2VOut
1A 2A

uFC 1.02 =

Rotary Potentiometer

Pendulum

Oculus

Camera

USB-DAQ

 114

The VR paradigm offers several advantages compared to experiments using real

quadcopters. Firstly, latency can be easily controlled by setting appropriate gains in the

simulation equations of quadcopters. Secondly, I avoid losing or damaging a drone when

users are unable to control the quadcopter due to technical failures or potential simulator

sickness caused by experiments. Third, complex testing environments can be easily set up

and flight data can be conveniently and accurately logged.

The goal of the present research is (1) to estimate the end-to-end latency in the Ocu-

lus Rift DK2, verify the results of latency estimation done by (Raaen and Kjellmo, 2015;

Kijima and Miyajima, 2016) and determine if the motion-to-photon latency plays dominant

role in eliciting simulator sickness; (2) to assess users’ flight performance and the degree

of simulator sickness given various levels of the visual and control latency introduced by

the aerial dynamics of simulated quadcopters. I also aimed to investigate whether people

feel comfortable teleoperating a quadcopter using an HMD and whether they can adapt to

the latency with practice. The results of the research may serve as guidelines on the design

of head motion controlled vehicles.

6.2 Method

6.2.1 Estimating the Motion-to-Photon Latency

The Oculus Rift DK2 was mounted on the swing arm of a pendulum to introduce a damped

sinusoidal motion to the HMD. The luminance of the display presented on the HMD was

modulated either by the roll angle or the lateral translation of the HMD for rotational la-

 115

tency estimation and translational latency estimation, respectively. I used a rotary potenti-

ometer to capture the physical motion of the pendulum, and a photodiode was used to

measure the changes of the intensity of the gradient stimulus rendered on the HMD during

pendulum swing. The motion-to-photon latency was estimated by using the Fast Fourier

Transform (FFT) algorithm to estimate the phase shift between these two signals at the

frequency of the pendulum swing.

I present the circuit diagrams for the experiment in Figure 6-1. The current from

the photodiode 𝐷1 (Osram SFH206K) was amplified by an operational amplifier 𝐴1 (Texas

Instrument LF411-N) in transimpedance mode. The photodiode was negatively biased (-5

V). Since the amplification circuit introduced phase lag to the photodiode signal, I intro-

duced the same phase lag to the signal of the potentiometer 𝑅𝑃 (Novotechnik P4500) by

implementing an active first order low-pass filter with a second LF411-N 𝐴2 operating in

inverting mode. I verified the phase lag of both circuits in the circuit simulation software

MPLAB Mindi and measured the time delay of the physical circuits by giving both circuits

a sinusoidal input of 0.7 Hz and verifying the phase lag.

I rendered the stimulus and capturing signals with a custom C++ application in

Visual Studio 2013 with DirectX 11, the Oculus 0.5.5 SDK and the Universal Library of

the USB-DAQ module for the Micro Computing USB-1208LS. For rotational latency es-

timation, I mapped the roll angle 𝛷 of the Oculus Rift DK2 to the intensity I of the gray-

scale image rendered on the display using the equation:

𝐼 = (𝛷 + 90°) 180°⁄ (6.1)

 116

with 0 ≤ 𝐼 ≤ 1.0 and −90° ≤ 𝛷 ≤ 90°.

For translational latency estimation, I first mapped the ratio between the lateral

translation 𝑥 of the Oculus Rift DK2 and the length 𝑙 of the swing arm to the roll angle

using the asind() function; then, the calculated roll angle was mapped to the intensity 𝐼 of

the grayscale image on the display:

𝐼 = (𝑎𝑠𝑖𝑛𝑑(𝑥 𝑙⁄) + 90°) 180°⁄ (6.2)

with −0.49 𝑚 ≤ 𝑋 ≤ 0.49 𝑚 and 𝐿 = 0.49 𝑚.

The mapped intensity was presented with the function ClearRenderTargetView()

in DirectX 11. Thus, the stimulus presented on the display was essentially a motion-de-

pendent gradient stimulus and the mapping was done for each rendering cycle. The custom

application was hosted on a computer running Windows 7 with an Intel i7 2.8 GHz CPU,

4 GB memory and an AMD Radeon HD 6850 graphics card.

The captured periodic damped sinusoidal signals of photodiode and rotary potenti-

ometer were analyzed using the following method. I first estimated the period of the pen-

dulum swing 𝑇 for each measurement by applying auto-correlation on the signal of the

rotary potentiometer. I then performed the FFT transform on both signals of the photodiode

and the rotary potentiometer. In the frequency domain, I determined that the bin with the

maximum magnitude is the frequency component that corresponds to the frequency of the

pendulum swing (Di Luca, 2010), which is approximately 0.7 Hz. Finally, I calculated the

phases of the frequency components of both signals that correspond to the pendulum swing

frequency.

 117

Figure 6-3: HUD for the Quadcopter

Figure 6-4: Testing Environment

Figure 6-5: Waypoint and Its Coordinate

Figure 6-6: Experiment Setup

Table 6-1: Latency Levels
Latency Level 1 2 3 4 5

Gains 𝑘𝛩, 𝑘𝛷 32.5 15.6 10.5 7.9 6.5

Latency (s) 0.2 0.4 0.6 0.8 1.0

Table 6-2: Experimental Session Order
Participant Day 1 Day 2 Day 3 Day 4 Day 5

P1 Training, Latency 3 Latency 5 Latency 1 Latency 2 Latency 4

P2 Training, Latency 1 Latency 4 Latency 5 Latency 3 Latency 2

P3 Training, Latency 1 Latency 2 Latency 5 Latency 3 Latency 4

P4 Training, Latency 5 Latency 3 Latency 2 Latency 1 Latency 4

P5 Training, Latency 5 Latency 2 Latency 1 Latency 3 Latency 4

P6 Training, Latency 5 Latency 4 Latency 1 Latency 3 Latency 2

P7 Training, Latency 2 Latency 3 Latency 4 Latency 1 Latency 5

P8 Training, Latency 3 Latency 4 Latency 5 Latency 2 Latency 1

P9 Training, Latency 4 Latency 2 Latency 3 Latency 1 Latency 5

Horizontal Line
Pitch

Roll

HUD

Waypoint

Oculus

Camera

Testing Scene

 118

The latency 𝐿 was obtained by subtracting the phases and the time delay was cal-

culated by dividing the phase shift by 2π and multiplying the result with the period of the

potentiometer signal:

𝐿 = (𝜃𝑑 − 𝜃𝑝) 2𝜋 ∗ 𝑇 ⁄ (6.3)

where 𝜃𝑑 and 𝜃𝑝 are the phases (in radians) of the signals of the photodiode and the rotary

potentiometer respectively.

6.2.2 Simulating a Head Motion Controlled Quadcopter

A. Software

The visual and control latency for head motion controlled quadcopters is defined as the

time interval between when a desired tilt angle of the quadcopter is given by the pitch and

roll of a user’s head and when the tilt angle of the quadcopter reaches the desired tilt angle.

To isolate how the visual and control latency elicits simulator sickness and affects flight

performance, I focused on the simulation of a quadcopter that only allowed tilt (pitch and

roll) and translation while yaw and altitude control were disabled. The application for sim-

ulating a head motion controlled quadcopter was developed using Python 2.7 based on the

helicopter transport method in the Worldviz Vizard 5.0.

The position of a quadcopter flying at a fixed height can be represented by 𝑷 =

 (𝑥, 𝑧). The attitude can be represented by 𝜣 = (𝛩,𝛷), where 𝛩 and 𝛷 are the pitch and

the roll of the quadcopter. The control input to a quadcopter can be defined as 𝒖 =

(𝛩𝐷 , 𝛷𝐷), which are the desired pitch and the desired roll of the quadcopter given by the

 119

roll and the pitch of a user’s head tracked by an HMD. To translate, a quadcopter first tilts

itself. The tilt of the quadcopter at a fixed height can be simulated by the following set of

equations:

{
�̇� = 𝑘𝛩(𝛩𝐷 − 𝛩)

 �̇� = 𝑘𝛷(𝛷𝐷 − 𝛷)
(6.4)

The angular rates of the pitch and the roll (�̇� and �̇�) are proportional to the differ-

ences between the setpoints (pitch setpoint 𝛩𝐷 and roll setpoint 𝛷𝐷) and their actual instan-

taneous values (pitch 𝛩 and roll 𝛷). The constants of proportionality are the respective

gains 𝑘𝛩 and 𝑘𝛷. These gains control how fast the actual pitch 𝛩 and roll 𝛷 converge to

their setpoints 𝛩𝐷 and 𝛷𝐷.

The simple dynamics equations allowed me to easily set the latency for simulation

by modifying the gains 𝑘𝛩 and 𝑘𝛷. I measured the latency as the rise time of the step re-

sponses of the tiled angles (𝛩 and 𝛷) from 0˚ to 10˚ given the corresponding step inputs

from 0˚ to 10˚. In Table 6-1, I present the five different latency levels used in the experi-

ment and their corresponding gains. The latency values for the experiments were within

the normal range of the step response of attitude control of a quadcopter. For example, the

measured rise time of pitch and roll of a real quadcopter were approximately 0.2 s and 0.4

s respectively, when 10˚ step inputs were given during indoor flight (Kugelberg, 2016).

The gains were determined based on a rate of 75 Hz for updating the equations. However,

it should be noted that the latency with a given gain is dynamic. For example, if a user tilts

head for 1˚, the duration for the quadcopter to adjust its attitude to reach the setpoint is

much smaller than if the user tilts head for 10˚. Thus, the latency is also dependent on users’

 120

behavior to tilt their heads and the gains only set the upper bounds for the latency values.

When a quadcopter is tilted, it starts to translate. The translation motion is simulated by:

{
�̈�𝐵 = (𝛷 𝛷𝑚𝑎𝑥)⁄ 𝑎 − �̇�𝐵𝑑

�̈�𝐵 = (𝛩 𝛩𝑚𝑎𝑥)⁄ 𝑎 − �̇�𝐵𝑑
(6.5)

The first terms in the equations of �̈�𝐵 and �̈�𝐵 show that the translation accelerations

of the quadcopter are proportional to the tilt angles of the quadcopter scaled by 𝑎 (𝑎 =

10 𝑚/𝑠2), which are the maximum translational accelerations of the quadcopter. Drag

terms �̇�𝐵𝑑 and �̇�𝐵𝑑 – proportional to the velocities (�̇�𝐵 and �̇�𝐵) scaled by a factor 𝑑 (𝑑 =

0.05) – were introduced to give inertia to the acceleration of the quadcopter. The maximum

tilt angles 𝛷𝑚𝑎𝑥 and 𝛩𝑚𝑎𝑥 of a quadcopter are limited (𝛷𝑚𝑎𝑥 = 10˚ and 𝛩𝑚𝑎𝑥 = 10˚). Dur-

ing real-time simulation, the accelerations and the angular rates were integrated over time

at the rate of 75 Hz and consequently the quadcopter moved in the virtual environment.

During my initial trials, I found that one difficulty operating the quadcopter from a

first-person view was to judge the attitude of the quadcopter. People had difficulty in hov-

ering the quadcopter and making precise maneuvers. To address this issue, I designed a

simple Heads-Up Display (HUD), as shown in Figure 6-3, which indicates the attitude of

the quadcopter. The horizontal line represents the pitch by moving up and down and the

roll by tilting.

I designed an experiment scene (Figure 6-4) that contained a stone-textured ground

and a skydome. Similar to the experiment environment by Pittman and LaViola (2014),

which used archways, I placed 100 square waypoints (Figure 6-5) in the scene at a height

of 5 m and the altitude of the quadcopter was fixed at 6 m. The inner dimension of each

 121

waypoint was 2 m (W) × 2 m (H) × 0.1 m (D). The longitudinal distances (z-axis) between

these waypoints were 5 m. The lateral positions (x-axis) were randomized in the interval

of ± 5 m.

B. Hardware

I used the Oculus Rift DK2 to track the users’ head motion and present the simulated drone

control scenario. This HMD uses a hybrid optical-inertial tracker (LaValle et al., 2014),

which consists of an inertial measurement unit and a camera with an infrared lens, to track

users’ head motion at a sampling rate of approximately 75 Hz. The simulation was hosted

on a computer running Windows 7 with an Intel i7 2.8 GHz CPU, 4 GB memory and an

AMD Radeon HD 6850 graphics card. Figure 6-6 presents the experiment setup.

6.3 Experiment 6-1: Estimating the Motion-to-Photon Latency in

HMDs

6.3.1 Introduction

The goal of the experiment is to estimate the motion-to-photon latency in the Oculus Rift

DK2.

6.3.2 Procedure

Figure 6-2 shows the setup-up of the experiment. The shafts of the rotary potentiometer

and the pendulum were coupled to measure the motion of pendulum swing. The Oculus

Rift DK2 was mounted on the swing arm of the pendulum. I took out the left lens of the

Oculus Rift DK2 and the photodiode was mounted into the opening with approximately

 122

0.5 cm to the display panel. The signals from the photodiode and the rotary potentiometer

were wired to two analog measurement channels of the data acquisition module. The dis-

tance from the front surface of the mounted Oculus Rift DK2 to the lens of its tracking

Figure 6-7: Exemplar Data Traces

Table 6-3: Results of Estimated Latencies (DP - Dynamic Prediction and TW - Time

Warping)
Angle DP TW Translation (ms) Rotation (ms)

60° OFF OFF 2.7 ± 0.3 1.0 ± 0.4

 ON OFF 2.7 ± 0.8 1.0 ± 0.5

 OFF ON 3.1 ± 0.3 0.9 ± 0.3

 ON ON 4.0 ± 0.2 1.3 ± 0.7

75° OFF OFF 4.4 ± 0.5 4.3 ± 0.4

 ON OFF 5.0 ± 1.3 5.2 ± 1.4

 OFF ON 5.3 ± 0.4 5.0 ± 1.4

 ON ON 5.3 ± 0.4 4.8 ± 1.0

90° OFF OFF 6.5 ± 1.1 9.7 ± 0.7

 ON OFF 6.3 ± 0.8 10.3 ± 0.9

 OFF ON 5.6 ± 1.2 9.6 ± 0.8

 ON ON 7.2 ± 0.5 9.7 ± 1.5

0 2000 4000 6000 8000 10000
-3

-2

-1

0

1

2

3

4

Frames

V
o

lt
a

g
e

 (
V

)

Photodiode Signal

Potentiometer Signal

 123

camera was 76 cm. The tracking camera was enabled throughout the experiment. To per-

form one measurement, I first pressed a key on the keyboard to initiate 16 s of data collec-

tion at 600 samples per second per channel and immediately dropped the pendulum after-

wards. The signal capture automatically stopped when the 16 s duration elapsed. I repeated

the measurement procedure for all combinations of (a) different initial roll angles of 60°,

75° and 90°, (b) Dynamic Prediction on or off and (c) Time Warping on or off. The latter

two features were designed to reduce latency for predictable signals. Both the translational

latency and the rotational latency were estimated in separate trials. Thus, in total, there

were twenty-four conditions. For each condition, I repeated the measurements eight times.

The method described in Section 6.2.1 was applied on captured signals in Matlab 2014a to

estimate the motion-to-photon latency in each condition.

6.3.3 Results

Figure 6-7 presents exemplar data traces of the captured photodiode and potentiometer

signals. These two signals were normalized to show that the phase lag between the photo-

diode signal and potentiometer signal is minimal. Thus, it is nearly impossible to manually

determine the latency by examining the indices of the data components and the FFT anal-

ysis is needed. Table 6-3 summarizes the latency estimates from the FFT analysis. I can

see that latencies are proportional to the roll angles from which the pendulum was dropped.

Thus, performing sudden and rapid head movements may elicit stronger disorientation to

users in VR environments than slower head movements do. Given different roll angles, the

rotation latency seems to have a steeper slope than translation latency does. In all cases,

 124

turning on both Dynamic Prediction and Time Warping did not reduce the latency. A major

difference between the present study compared with those by (Raaen and Kjellmo, 2015;

Kijima and Miyajima, 2016) is that I did not use a virtual scene for estimating latency. I

cleared each frame with the function ClearRenderTargetView(). Thus, there were no vertex

shader and pixel shader involved. This may be one reason why Dynamic Prediction and

Time Warping did not reduce the latency.

6.4 Experiment 6-2: Effects of Visual and Control Latency on Piloting

Quadcopters using HMDs

6.4.1 Introduction

The goal of my experiment was to investigate the flight performance of the participants

and the degree of simulator sickness as a function of various levels of latency. I hypothe-

sized that higher latency would degrade flight performance and elicit more simulator sick-

ness. I reasoned that flight performance may improve and simulator sickness may relieve

across sessions.

I adopted a repeated-measures design for the experiment. The independent factor for

experiment was the latency of dynamics controlled by setting the gains 𝑘𝛩 and 𝑘𝛷 in the

simulation equations of the quadcopter in (6.5), which resulted in different latency values

(Table 6-1). To balance the order effect of treatments, I randomized the order of latency

levels for each participant as shown in Table 6-2.

 125

6.4.2 Participants

Ten people participated in the experiment (age: 20 - 38). All had normal or corrected-to-

normal vision and were naïve to the goals of the experiment. Informed consent was ob-

tained from all participants in accordance with a protocol approved by the Human Partici-

pants Review Subcommittee at the University.

6.4.3 Procedure

The experiments were conducted on five different days. On each experiment day, a partic-

ipant completed one experiment session. The five experiment sessions for each participant

were completed within two weeks. Simulator sickness questionnaires (SSQs) (Kennedy et

al., 1993) were completed before and after each session.

During the experiment sessions, the participant wore the Oculus Rift DK2 and sat

approximately 60 cm in front of the monitor, on which the camera of the HMD was at-

tached. A researcher sat beside the participant and observed the virtual scene the participant

saw on the computer monitor. At the beginning of an experiment session, a calibration

procedure was conducted using the HUD (Figure 6-3). Participants were asked to level

their head by observing the horizontal line that indicated the pitch and the roll of their heads

on the HUD such that the horizontal line overlapped with the three short horizontal lines.

This indicated that the yaw and the pitch of the participant’s head was close to zero. When

calibration was completed, the researcher pressed the start button to initiate the flight and

the data recording started immediately. The goal for participants was to pass through the

centers of all waypoints and they were only allowed to move the quadcopter by pitch and

 126

roll movements. In case that they missed a waypoint, they were advised not to backtrack.

Participants were required to enter a pink bounding volume when they reached the last

waypoint. Upon entering the pink bounding volume, the data recording stopped immedi-

ately, and the task was considered as completed. On the first day (as shown in Table 6-2),

a training session was conducted to teach participants the operation of the quadcopter using

the HMD. The training scene was a simplified version of the actual experiment scene and

only consisted of one waypoint and a pink bounding volume. The latency value was set to

zero by directly mapping the pitch setpoint 𝛩𝐷 and the roll setpoint 𝛷𝐷 given by users’

tracked head orientation to the pitch 𝛩 and the roll 𝛷 of the quadcopter, respectively. Pre-

experiment SSQs were completed after the training session for the first day. The experi-

ment application collected the timestamps, the positions and the Euler angles of the quad-

copter for data analysis.

6.4.4 Metrics

The data collected from the experiment enabled me to extract a wide range of parameters

to assess the degree of simulator sickness and flight performance of participants. Specifi-

cally, I used the following parameters as the measures:

▪ SSQ Scores:

The standard SSQ was used as the subjective measure to evaluate the degree of simu-

lator sickness elicited by the experiment.

▪ Task completion time 𝑻 (𝒔):

The duration from the start of the flight to the end of the flight.

 127

▪ Average flight speed 𝑺 (𝒎/𝒔):

The average flight speed computed by dividing the total length of the flight path by

task completion time T.

▪ Smoothness of the flight path 𝑫 (𝒎):

The mean value of the lateral distance (x-axis) of the actual flight path to the optimal

flight path. I defined the optimal flight path as the shortest distance between the centers

of two adjacent waypoints.

▪ Number of waypoints passed 𝑵𝒘:

The number of waypoints that participants successfully passed. Since I had 9 partici-

pants, the ideal value of the total number 𝑺𝒘 of the waypoints passed by all participants

was nine hundred.

▪ Number of collisions 𝑵𝒄:

The number of the collisions with the frames of the waypoints. I assumed the quadcop-

ter had a dimension of 0.3 m (W) × 0.1 m (H) × 0.3 m (D), which is a typical size of a

civilian quadcopter. Participants were required to pass through the centers of waypoints

as they were unable to judge whether the quadcopter would collide with the waypoints

from the first-person view. The collisions were determined by computing the intersec-

tion of the bounding boxes of the quadcopter and the frames of the waypoints. The total

number of collisions by all participants is denoted as 𝑺𝒄.

 128

Figure 6-8: SSQ Score Increase by Latency

Figure 6-9: SSQ Score Increase by Session

Figure 6-10: Task Completion Time by Latency

Figure 6-11: Task Completion Time by Ses-

sion

Figure 6-12: Average Flight Speed by Latency

Figure 6-13: Average Flight Speed by Ses-

sion

Figure 6-14: Path Smoothness by Latency

Figure 6-15: Path Smoothness by Session

 129

Figure 6-16: Total Number of Waypoints Passed by La-

tency

Figure 6-17: Total Number of Waypoints Passed

by Session

Figure 6-18: Total Number of Collisions by Latency

Figure 6-19: Total Number of Collisions by Ses-

sion

Table 6-4: Results of Three-way ANOVA Analyses (significant p-values are in bold and shaded)
 𝑆𝑆𝑄 𝑇 (𝑠) 𝑆 (𝑚/𝑠) 𝐷 (𝑚) 𝑁𝑤 𝑁𝑐

Participant 𝐹(8,28) 8.93 3.60 3.47 16.29 2.41 2.54

 𝑝 <0.001 0.005 0.007 <0.001 0.04 0.03

 𝜂𝑝
2 0.719 0.507 0.498 0.823 0.408 0.421

Session 𝐹(4,28) 8.85 6.96 6.33 6.19 1.25 1.7

 𝑝 <0.001 <0.001 <0.001 0.001 0.31 0.18

 𝜂𝑝
2 0.559 0.498 0.475 0.469 0.151 0.196

Latency 𝐹(4,28) 2.09 3.12 2.04 1.56 0.49 0.97

 𝑝 0.11 0.03 0.12 0.21 0.74 0.44

 𝜂𝑝
2 0.230 0.309 0.226 0.182 0.065 0.122

 130

6.4.5 Results

One person withdrew from the experiment after attending the training session due to sim-

ulator sickness. Thus, I had valid data from nine participants (age: 20 - 38, 7 males, 2

females).

I grouped the extracted parameters by latency levels and by the order of experiment

sessions to show whether the extracted parameters are more related to latency levels or

session orders (error bars in Figure 6-8 - Figure 6-15) denote standard deviation.

Since the SSQ scores either remained the same or increased after the completion of

an experiment session, I took absolute values of the differences between pre- and post-

experiment SSQ scores for all sessions to remove pre-experiment biases. In general, SSQ

scores were high when latency levels were high (Figure 6-8), which showed that high la-

tency increased simulator sickness. Because of the continuous mapping between the head

orientation and the tilt of the quadcopter, the degree of simulator sickness was subtle for

all five latency conditions. In terms of sessions, I found that people adapted across experi-

ment sessions and the SSQ scores gradually declined as more experiment sessions were

completed by participants (Figure 6-9).

High latency values also increased task completion time 𝑇 (𝑠) (Figure 6-10) and

reduced average flight speed 𝑆 (𝑚/𝑠) (Figure 6-12). There were two reasons. First, when

latency was high, the tilt motion of the quadcopter is slow. Hence, the acceleration of the

quadcopter was also slow as the acceleration is dependent on the tilt of the quadcopter.

Second, when latency was high, participants could have much difficulty in maneuvering

 131

the quadcopter. Participants may have to perform more rolls to point the quadcopter to the

center of a waypoint before flying it through. Due to learning and adaptation effects, task

completion time gradually shortened (Figure 6-11) and average flight speed also increased

(Figure 6-13) as participants attended more experiment sessions.

Different latency conditions slightly affected the smoothness of the flight path

𝐷 (𝑚) (Figure 6-14). High latency generally led to less smooth flight paths. I also found

that as more experiment sessions were conducted, flight path also became smoother (Figure

6-15). This indicated that participants performed fewer rolls, which also can be attributed

to learning and adaptation effects.

The total number of waypoints passed 𝑆𝑤 and the total number of collisions 𝑆𝑐

were coarse parameters compared with previous four parameters. These two parameters

were only affected when participants deviated too much from the centers for the waypoints,

which resulted in missing or colliding with the waypoints. Thus, I did not observe any

meaningful trends when grouping these two parameters by latency (Figure 6-16 and Figure

6-18). But both these parameters improved in terms of sessions (Figure 6-17 and Figure

6-19), which indicated that participants became more skilled in controlling quadcopters

with more practice.

In general, when latency was higher, the standard deviation of an extracted parameter

was usually large. This showed that the tolerance of high latency differed between partici-

pants. Similarly, I also observed that the standard deviations of the extracted parameters of

the first sessions were high. This indicated that some people were initially good at piloting

 132

a quadcopter using an HMD while others were not. Standard deviations decreased in later

sessions, which indicated the performance between participants became similar.

In Table 6-4, I summarized the results of the Three-way ANOVA analyses using the

function anovan() in Matlab to study the effects of the extracted parameters. The model

included Session and Latency as fixed factors while Participant was treated as a random

factor. This is similar to the model presented by Blissing et al. (2016). Effect sizes were

reported using partial eta squared 𝜂𝑝
2. In general, Participant had significant effects on all

parameters, which demonstrated that tolerance and skills to the quadcopter control scenario

differed between participants. Session had significant effects on SSQ scores, task comple-

tion time 𝑇 (𝑠), average flight speed 𝑆 (𝑚/𝑠) and smoothness of the flight path 𝐷 (𝑚) due

to learning and adaptation. Latency had a significant effect on task completion time 𝑇 (𝑠).

One reason that Latency did not influence other parameters was that participants consist-

ently adapted to the quadcopter scenario as they attended more experiment sessions and

the latency effects were therefore mitigated. Second, the visual and control latency is dy-

namic and dependent on how users tilt their heads. Moving heads in small angles with slow

motion results in lower latency compared to making abrupt head movements in large angles.

Pairwise comparisons on fixed factors were conducted using Tukey’s range tests.

These tests showed that for the factor Session, there were significant differences between

the first session and the rest four sessions on SSQ scores, task completion time 𝑇 (𝑠) and

smoothness of the flight path 𝐷 (𝑚). A significant difference was also found on average

flight speed 𝑆 (𝑚/𝑠) between the first session and the last three sessions. This may suggest

 133

that participants made substantial progress in adapting to the quadcopter scenario after they

completed the first session. In terms of the factor Latency, there was a significant difference

between the latency condition of 0.2 s and the latency condition of 1 s on task completion

time 𝑇 (𝑠), which suggested that high latency increased task completion time 𝑇 (𝑠).

6.5 Discussion

In this chapter, I first presented a method for estimating the motion-to-photon latency of

HMDs. Similar to the results reported by Raaen and Kjellmo (2015) and Kijima and

Miyajima (2016), my method also showed that the Oculus Rift DK2 has a very low latency,

which could be the result of the prediction algorithms described by LaValle et al. (2014).

While the present study focused on estimating the latency of the Oculus Rift DK2, the

proposed method is general and can be applied to estimate the latency of other HMDs. A

limitation of the proposed method is that the frequency of the pendulum is fixed. To test

whether the latency of the Oculus Rift DK2 is frequency-dependent, a motorized platform

is needed (Di Luca, 2010). In addition, the accuracy of the proposed estimation approach

needs to be addressed in future research. This study also showed that the motion-to-photon

latency is only responsible for a small portion of the overall latency in head motion con-

trolled quadcopter scenarios and visual and control latency plays a dominant role in such

cases.

I then presented a VR paradigm to systematically evaluate the effects of the visual

and control latency introduced by dynamics of quadcopter. I showed that a latency value

with an upper bound of 1 s only elicits subtle simulator sickness when head motion was

 134

continuously mapped to the motion of the quadcopter. In addition, high latency values re-

sulted in worse flight performance and higher level of simulator sickness. I also showed as

participants attended more experiment sessions, they became more tolerant to the head

motion controlled drone scenarios. Lower SSQ scores were reported and flight perfor-

mance also improved. These results have verified my hypotheses that higher latency would

degrade flight performance and elicit more simulator sickness and that tolerance to the

quadcopter scenario and flight performance may differ between participants.

The present study suggests piloting a quadcopter using an HMD is feasible in terms

of tolerance to visual and control latency, but training is needed for people to efficiently

and comfortably operate the quadcopter with the interface. Selecting people inherently

good at the quadcopter control scenario as pilots facilitates the training process. In addition,

using a quadcopter that has a fast response to changing tilt commands would both improve

the flight performance and reduce simulator sickness. Additional recommendations in de-

signing such systems are to use the HMDs with low motion-to-photon latency and to con-

tinuously map head motion to quadcopter motion.

Watanabe and Takahashi (2018) presented a user study that assessed simulator sick-

ness using videos presented on an HMD that simulated a hovering quadcopter disturbed by

winds. Further research should study flight performance and simulator sickness when a

quadcopter is subject to air disturbance when users perform flight maneuvers using VR. In

addition, the influence of the yaw and the altitude control of a quadcopter on flight perfor-

mance and simulator sickness also needs to be studied. In the current study, the scene setup

 135

was relatively simple, so it also will be interesting to investigate the relationship between

scene complexity and simulator sickness. Finally, an experiment with real quadcopters also

needs to be conducted.

 136

Chapter 7
Conclusion and Future Work

The overall aim of the dissertation was to contribute to the improvement of the naturalness

and the intuitiveness of the interaction between humans and virtual environments through

the design of new interfaces for VR and performing related user studies.

To realize the aim, this dissertation presented two interaction techniques in VR.

The first one is a locomotion technique interacting with a large-scale projective display,

known as the WISE while the second technique is a head gesture recognition approach on

HMDs to interact with VR. I evaluated these two approaches through novel user studies.

For the locomotion technique, I designed a target pursuit task that had participants to pursue

a rolling ball in a virtual scene. The head gesture recognition technique was first evaluated

in terms of its offline classification performance and the latency to recognize head gestures.

Then, its usability and user preference were compared with a dynamic hand gesture recog-

nition approach proposed in the dissertation as well as a conventional gamepad approach

through a Yes/No task in virtual environments.

This dissertation also presented two psychophysical studies concerning the role of

stereopsis in avoiding virtual obstacles during walking in VR and the effects of visual and

control latency in piloting a quadcopter using an HMD. These studies have revealed some

interesting results. For example, I found that stereopsis helped participants to make more

accurate movements when stepping over obstacles and gaps. I also found that high visual

and control latency worsened people’s flight performance and elicited simulator sickness,

 137

but people were able to adapt to the control scenario through practice, which led to im-

proved flight performance and lessened simulator sickness. As part of the latter project, I

also proposed a method for estimating the motion-to-photon latency in HMDs. The method

is general and can be used to estimate the motion-to-photon latency in other HMDs with

minimal hardware design and programming efforts.

While previous studies on treadmill speed adaptation built their own walking speed

estimation model (Yoon et al., 2012; Wiens et al., 2017) to adapt the speed of a treadmill,

the work in this dissertation showed that it is possible to use a machine learning approach

to classify mid-swing speed of foot motion to implement a locomotion interface for users

to walk in VR. Although the current approach was implemented based on a linear treadmill,

it also can be integrated to the control of multi-dimensional treadmills to potentially im-

prove the control performance of such treadmills. To validate the extension, the perfor-

mance of the proposed controller needs to be compared with existing controllers on the

same hardware (treadmills and trackers) in future research.

Previous research on the role of stereopsis was primarily conducted on tasks related

to hand-eye coordination (Fielder and Moseley, 1996) and on walking tasks conducted in

limited physical space (Patla et al., 2002; Loomis et al., 2006; Hayhoe et al., 2009; Chap-

man et al., 2012). My research showed that stereopsis also helped people to step over vir-

tual obstacles and gaps more accurately under constant motion during continuous walking

in virtual environments. One implication of the results is that it reinforces the importance

 138

of rendering stereoscopic images to users during continuous locomotion tasks in VR. Ren-

dering stereoscopic images to both eyes requires additional rendering passes from two dif-

ferent eye positions, and my research showed it is beneficial to render stereoscopic images

despite the additional computational expenses as stereoscopic images enable users to per-

form more accurate walking movements in virtual environments. For users themselves,

walking under the stereoscopic viewing condition is more similar to real-life experience

compared to walking under the non-stereoscopic viewing condition.

The head gesture interface presented in the dissertation was the first head gesture

recognition algorithm that has been implemented on HMDs using the Cascaded Hidden

Markov Models to interact with VR. A major contribution of this work is that it offers VR

researchers and designers with an additional choice of VR interface. Since nearly all VR

systems are head-tracked and head angular velocity data are readily available, this head

gesture interface can be easily integrated into existing VR systems as it only requires head

angular velocity data to work. As the head gesture interface was implemented in a fully-

pipelined structure, it also can be easily implemented on hardware platforms on FPGAs

and ASICs. To compare the head gesture interface, I also proposed a dynamic hand gesture

recognition algorithm based on a static hand gesture recognition algorithm (Marin et al.,

2016). Although my result showed that the hand gesture interface was not preferred com-

pared to the head gesture interface and the gamepad interface, I speculated that the rejection

of the interface might be related to the choice of the hand gestures representing Yes and

 139

No. For future research, it is necessary to compare different hand gestures and determine

what hand gestures are more preferred by users.

I implemented a simulation of head motion controlled quadcopter and, through user

studies, found that the visual and control latency in such control scenarios resulted in sim-

ulator sickness and degraded flight performance. I pointed out that the visual and control

latency is a different factor in head motion controlled vehicles compared to the visual la-

tency and the control latency related to driving cars (Blissing et al., 2016) and piloting

helicopters (Jennings et al., 2004). In the two latter cases, the latency is related to the time

interval between hand motion and the resulting visual update on displays while in the for-

mer case, the visual and control latency are both related to the coupling between users’

head motion and visual update on displays. The results of the research serve as guidelines

for researchers or engineers to design such head motion controlled vehicles - it is important

to select a quadcopter that is fast in response to control commands; and users are able to

adapt to the control scenarios with practice and training.

To conclude the dissertation, I proposed the following future research topics:

▪ Locomotion with the Wide Immersive Stereo Environment (WISE) that Sup-

ports Turning. In Chapter 3, I presented a locomotion technique using the WISE

and a linear treadmill based on a machine learning method. A limitation with the

approach is that the it does not support turning during walking. To make the loco-

motion technique support turning, one can implement the sidestepping technique

 140

or the head rotation technique developed by Vijayakar and Hollerbach (2002). An-

other approach to implement a turning strategy with the WISE using a turntable is

currently underway. The basic idea of the approach is to use a turntable to re-orient

a user to the center of the WISE when users make turns, which is similar to the idea

of Redirected Walking in Place (Razzaque et al., 2002). In the technique of Redi-

rected Walking in Place, a user is re-oriented to the center of a CAVE by manipu-

lating the image contents presented in the CAVE to guide a user to re-orient while

the turntable approach physically re-orient a user to the center of the WISE by mon-

itoring their facing direction and mechanically re-orient a user. Walking on the

turntable can be implemented based on existing Walking-in-Place (WIP) tech-

niques (Templeman et al., 1999; Yan et al., 2004; Feasel et al., 2008; Wendt et al.,

2010; Bruno et al., 2013; Wilson et al., 2014; Tregillus and Folmer, 2016; Bruno

et al., 2017).

▪ Avoiding Virtual Obstacles with Obstructed Visual Field. In Chapter 4, I pre-

sented two VR experiments to investigate the role of stereopsis in avoiding virtual

obstacles while walking. The experiment setup in the study can be further extended

to study human walking behavior in avoiding virtual obstacles when visual fields

are obstructed. The extension of the experiment setup is relatively simple - graphics

shaders can be programmed to mask out the exterior of images presented on the

WISE, resulting in field of views of various sizes. This will allow us to verify the

results by Matthis and Fajen (2014) that walkers relied on visibility of the ground

 141

at least two steps ahead to locomote normally. While their experiments were con-

ducted using color blobs projected onto floors for participants to avoid, a VR ex-

periment conducted using the WISE enables to investigate human walking behavior

when avoiding volumetric objects, which are more similar to obstacles people en-

counter in their daily lives than planar objects.

▪ Utility of the Head Gesture Interface and the Hand Gesture Interface. In Chap-

ter 5, I presented a head gesture interface and a hand gesture interface. A user study

was conducted to demonstrate their utility in answering Yes/No questions in virtual

environments. But these two interfaces may have broader utility that is worth fur-

ther investigation. For example, one research direction is to investigate user prefer-

ence to interact with virtual avatars using these two interfaces. A speech recognition

interface also can be developed and compared with these two interfaces or a multi-

modal interface that integrates the head gesture interface, the hand gesture interface

and the speech interface can be developed. In addition, these interfaces may serve

as input methods to virtual environments to complete certain tasks, including

browsing and giving confirmation. Finally, a hardware implementation of the head

gesture interface based on FPGAs or ASICs can be developed to allow hardware

centric head gesture recognition.

▪ The Effects of Visual and Control Latency on a Real Quadcopter Piloted by

an HMD. In Chapter 6, I studied the effects of visual and control latency on piloting

a quadcopter using an HMD in simulation. It is still necessary to study this topic on

 142

real quadcopters and compare the effects with that of simulation. There are a few

challenges to perform an experiment on real quadcopters. Firstly, the experiment

needs a real quadcopter that can be programmed with different controllers that re-

sult in different latency values to set up experiment conditions. Or one can select a

few quadcopters that are inherently different in designs that give different latency

values. The concerns with the second approach are that the cost is high to buy mul-

tiple quadcopters than a single quadcopter and that more programming efforts are

needed to adapt these quadcopters to support control and viewing by an HMD. Sec-

ondly, it is challenging to setup experiment scenes in the real world. Waypoints can

be set up by balloons in the air, but due to factors such as the expense, the size of

experiment site and weather conditions, the experiment setup in the real-world will

be simpler than that in simulation. Thirdly, data logging is more difficult in the real-

world. This needs to be done by GPS (Global Positioning System) modules embed-

ded in quadcopters and waypoints (which are balloons) to record the positions of

quadcopters and waypoints to allow further data analysis on the flight performance

of users. Video cameras also may be used to monitor the flying path of quadcopters

and positions of waypoints.

 143

Bibliography

Abate, A.F., Acampora, G., Ricciardi, S., 2011. An interactive virtual guide for the AR

based visit of archaeological sites. Journal of Visual Languages & Computing 22,

415–425.

Allison, R.S., Harris, L.R., Jenkin, M., Jasiobedzka, U., Zacher, J.E., 2001. Tolerance of

temporal delay in virtual environments, in: Proceedings of IEEE Virtual Reality

2001. pp. 247–254.

Allison, R.S., Harris, L.R., Jenkin, M., Pintilie, G., Redlick, F., Zikovitz, D.C., 2000. First

steps with a rideable computer, in: Proceedings of IEEE Virtual Reality 2000. pp.

169–175.

Allison, R.S., Zacher, J.E., Wang, D., Shu, J., 2004. Effects of network delay on a collab-

orative motor task with telehaptic and televisual feedback, in: Proceedings of

VRCAI 2004. pp. 375–381.

Bentley, J.L., 1975. Multidimensional Binary Search Trees Used for Associative Search-

ing. Commun. ACM 18, 509–517.

Blissing, B., Bruzelius, F., Eriksson, O., 2016. Effects of visual latency on vehicle driving

behavior. ACM Trans. Appl. Percept. 14, 5:1–5:12.

Bruno, L., Pereira, J., Jorge, J., 2013. A new approach to walking in place, in: INTERACT

2013, Lecture Notes in Computer Science. pp. 370–387.

 144

Bruno, L., Sousa, M., Ferreira, A., Pereira, J.M., Jorge, J., 2017. Hip-directed walking-in-

place using a single depth camera. International Journal of Human-Computer Stud-

ies 105, 1–11.

Campbell, L.W., Becker, D.A., Azarbayejani, A., Bobick, A.F., Pentland, A., 1996. Invar-

iant features for 3-D gesture recognition, in: Proceedings of the Second Interna-

tional Conference on Automatic Face and Gesture Recognition. pp. 157–162.

Chang, C., Lin, C., 2011. LIBSVM: A library for support vector machines. ACM Trans.

Intell. Syst. Technol. 2, 27:1–27:27.

Chapman, G.J., Scally, A., Buckley, J.G., 2012. Importance of binocular vision in foot

placement accuracy when stepping onto a floor-based target during gait initiation.

Experimental Brain Research 216, 71–80.

Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J., 2009. Factorial HMM and parallel HMM

for gait recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews) 39, 114–123.

Cheng, H., Yang, L., Liu, Z., 2016. Survey on 3D hand gesture recognition. IEEE Trans-

actions on Circuits and Systems for Video Technology 26, 1659–1673.

Choi, I., Hawkes, E.W., Christensen, D.L., Ploch, C.J., Follmer, S., 2016. Wolverine: A

wearable haptic interface for grasping in virtual reality, in: 2016 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems. pp. 986–993.

 145

Coomer, N., Bullard, S., Clinton, W., Williams, B., 2018. Evaluating the Effects of Four

VR Locomotion Methods: Joystick, Arm-cycling, Point-tugging, and Teleporting,

in: Proceedings of the 15th ACM Symposium on Applied Perception. pp. 7:1–7:8.

Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., 1993. Surround-screen Projection-based Vir-

tual Reality: The design and implementation of the CAVE, in: Proceedings of the

20th Annual Conference on Computer Graphics and Interactive Techniques. pp.

135–142.

de Vries, S.C., Padmos, P., 1997. Remotely controlled flying aided by a Head-slaved cam-

era and HMD, TNO-report TM-97-B024. TNO Human Factors Research Institute.

Di Luca, M., 2010. New method to measure end-to-end delay of virtual reality. Presence:

Teleoperators and Virtual Environments 19, 569–584.

Dodiya, J., Alexandrov, V.N., 2007. Perspectives on potential of sound in virtual environ-

ments, in: 2007 IEEE International Workshop on Haptic, Audio and Visual Envi-

ronments and Games. pp. 15–20.

Doisy, G., Ronen, A., Edan, Y., 2017. Comparison of three different techniques for camera

and motion control of a teleoperated robot. Applied Ergonomics 58, 527–534.

Feasel, J., Whitton, M.C., Wendt, J.D., 2008. LLCM-WIP: Low-Latency, Continuous-Mo-

tion Walking-in-Place, in: 2008 IEEE Symposium on 3D User Interfaces. pp. 97–

104.

Fielder, A.R., Moseley, M.J., 1996. Does stereopsis matter in humans? Eye 10, 233–238.

Gamble, J.G., Rose, J., 1994. Human walking, 2nd ed. Baltimore : Williams & Wilkins.

 146

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision, 2nd ed.

Cambridge University Press.

Hayhoe, M., Gilliam, B., Chajka, K., Vecello, E., 2009. The role of binocular vision in

walking. Visual neuroscience 26, 73–80.

Higuchi, K., Fujii, K., Rekimoto, J., 2013. Flying head: A head-synchronization mecha-

nism for flying telepresence, in: 2013 23rd International Conference on Artificial

Reality and Telexistence. pp. 28–34.

Hollerbach, J.M., 2002. Locomotion interfaces, in: Handbook of Virtual Environments:

Design, Implementation, and Applications. Lawrence Erlbaum Associates, Inc., pp.

239–254.

Hossain, M., Jenkin, M., 2005. Recognizing hand-raising gestures using HMM, in: The

2nd Canadian Conference on Computer and Robot Vision. pp. 405–412.

Hsu, C., Lin, C., 2002. A comparison of methods for multiclass support vector machines.

IEEE Transactions on Neural Networks 13, 415–425.

Iribe, B., 2013. Virtual reality – a new frontier in computing.

Iwata, H., 1999. Walking about virtual environments on an infinite floor, in: Proceedings

IEEE Virtual Reality. pp. 286–293.

Iwata, H., Yano, H., Nakaizumi, F., 2001. Gait Master: a versatile locomotion interface for

uneven virtual terrain, in: Proceedings IEEE of Virtual Reality 2001. pp. 131–137.

Jennings, S., Reid, L.D., Craig, G., Kruk, R.V., 2004. Time delays in visually coupled

systems during flight test and simulation. Journal of Aircraft 41, 1327–1335.

 147

Kalman, R.E., 1960. A new approach to linear filtering and prediction approach. Journal

of Basic Engineering 82, 35–45.

Kang, H., 2013. Various approaches for driver and driving behavior monitoring: A review,

in: 2013 IEEE International Conference on Computer Vision Workshops. pp. 616–

623.

Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G., 1993. Simulator Sickness

Questionnaire: An enhanced method for quantifying simulator sickness. The Inter-

national Journal of Aviation Psychology 3, 203–220.

Kijima, R., Miyajima, K., 2016. Measurement of Head Mounted Display’s latency in rota-

tion and side effect caused by lag compensation by simultaneous observation —

An example result using Oculus Rift DK2, in: 2016 IEEE Virtual Reality. pp. 203–

204.

Kitson, A., Hashemian, A.M., Stepanova, E.R., Kruijff, E., Riecke, B.E., 2017. Comparing

leaning-based motion cueing interfaces for virtual reality locomotion, in: 2017

IEEE Symposium on 3D User Interfaces. pp. 73–82.

Kugelberg, I., 2016. Black-box modeling and attitude control of a quadcopter. Linköping

University.

Lakens, D., 2013. Calculating and reporting effect sizes to facilitate cumulative science: a

practical primer for t-tests and ANOVAs. Front. Psychol. 4.

https://doi.org/10.3389/fpsyg.2013.00863

 148

Langbehn, E., Lubos, P., Steinicke, F., 2018. Evaluation of locomotion techniques for

room-Scale VR: Joystick, teleportation, and redirected walking, in: Virtual Reality

International Conference.

LaValle, S.M., Yershova, A., Katsev, M., Antonov, M., 2014. Head tracking for the Oculus

Rift, in: 2014 IEEE International Conference on Robotics and Automation. pp.

187–194.

LaViola, J.J., Jr., Feliz, D.A., Keefe, D.F., Zeleznik, R.C., 2001. Hands-free multi-scale

navigation in virtual environments, in: Proceedings of the 2001 Symposium on In-

teractive 3D Graphics. pp. 9–15.

Lin, H., Venetsanopoulos, A.N., 1993. A weighted minimum distance classifier for pattern

recognition, in: Proceedings of Canadian Conference on Electrical and Computer

Engineering. pp. 904–907.

Liu, K., Chen, C., Jafari, R., Kehtarnavaz, N., 2014. Multi-HMM classification for hand

gesture recognition using two differing modality sensors, in: 2014 IEEE Dallas Cir-

cuits and Systems Conference. pp. 1–4.

Loomis, J.M., Beall, A.C., Macuga, K.L., Kelly, J.W., Smith, R.S., 2006. Visual control of

action without retinal optic flow. Psychological Science 17, 214–221.

Marin, G., Dominio, F., Zanuttigh, P., 2016. Hand gesture recognition with jointly cali-

brated Leap Motion and depth sensor. Multimed Tools Appl 75, 14991–15015.

 149

Martins, H., Ventura, R., 2009. Immersive 3-D teleoperation of a search and rescue robot

using a head-mounted display, in: 2009 IEEE Conference on Emerging Technolo-

gies Factory Automation. pp. 1–8.

Matsukura, H., Yoshida, H., Nakamoto, T., Ishida, H., 2010. Synchronized presentation of

odor with airflow using olfactory display. Journal of Mechanical Science and Tech-

nology 24, 253–256.

Matthis, J.S., Fajen, B.R., 2014. Visual control of foot placement when walking over com-

plex terrain. Journal of Experimental Psychology. Human Perception and Perfor-

mance 40, 106–115.

McKee, S.P., Levi, D.M., Bowne, S.F., 1990. The imprecision of stereopsis. Vision Re-

search, Optics Physiology and Vision 30, 1763–1779.

Medina, E., Fruland, R., Weghorst, S., 2008. Virtusphere: Walking in a human size VR

“Hamster Ball.” Proceedings of the Human Factors and Ergonomics Society 52nd

Annual Meeting 52, 2102–2106.

Mollet, N., Chellali, R., 2008. Virtual and augmented reality with head-tracking for effi-

cient teleoperation of groups of robots, in: 2008 International Conference on Cyber-

worlds. pp. 102–108.

Morimoto, C., Yacoob, Y., Davis, L., 1996. Recognition of head gestures using hidden

Markov models, in: Proceedings of 13th International Conference on Pattern

Recognition. pp. 461–465.

 150

Morphew, M.E., Shively, J.R., Casey, D., 2004. Helmet-mounted displays for unmanned

aerial vehicle control, in: Proc. SPIE 5442, Helmet- and Head-Mounted Displays

IX: Technologies and Applications. pp. 93–103.

Nabiyouni, M., Saktheeswaran, A., Bowman, D.A., Karanth, A., 2015. Comparing the per-

formance of natural, semi-natural, and non-natural locomotion techniques in virtual

reality, in: 2015 IEEE Symposium on 3D User Interfaces. pp. 3–10.

Nilsson, N.C., Serafin, S., Laursen, M.H., Pedersen, K.S., Sikström, E., Nordahl, R., 2013.

Tapping-In-Place: Increasing the naturalness of immersive walking-in-place loco-

motion through novel gestural input, in: 2013 IEEE Symposium on 3D User Inter-

faces. pp. 31–38.

Noma, H., Sugihara, T., Miyasato, T., 2000. Development of ground surface simulator for

Tel-E-Merge system, in: Proceedings of IEEE Virtual Reality 2000. pp. 217–224.

Park, H.J., Lee, H.J., Kang, T.H., Moon, J.I., 2015. Study on automatic speed adaptation

treadmills, in: 2015 15th International Conference on Control, Automation and Sys-

tems. pp. 1898–1900.

Park, J., Patel, A., Curtis, D., Teller, S., Ledlie, J., 2012. Online pose classification and

walking speed estimation using handheld devices, in: Proceedings of the 2012

ACM Conference on Ubiquitous Computing. pp. 113–122.

Patla, A.E., Niechwiej, E., Racco, V., Goodale, M.A., 2002. Understanding the contribu-

tion of binocular vision to the control of adaptive locomotion. Experimental Brain

Research 142, 551–561.

 151

Pittman, C., LaViola, J.J., Jr., 2014. Exploring head tracked head mounted displays for first

person robot teleoperation, in: Proceedings of the 19th International Conference on

Intelligent User Interfaces. pp. 323–328.

Raaen, K., Kjellmo, I., 2015. Measuring latency in virtual reality systems, in: Entertain-

ment Computing - ICEC 2015, Lecture Notes in Computer Science. pp. 457–462.

Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE 77, 257–286.

Razzaque, S., Kohn, Z., Whitton, M.C., 2001. Redirected walking, in: Eurographics 2001

- Short Presentations.

Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A., 2002. Redirected walking

in place, in: Proceedings of the Workshop on Virtual Environments 2002. pp. 123–

130.

Robinett, W., Holloway, R., 1992. Implementation of flying, scaling and grabbing in vir-

tual worlds, in: Proceedings of the 1992 Symposium on Interactive 3D Graphics.

pp. 189–192.

Sarbolandi, H., Lefloch, D., Kolb, A., 2015. Kinect range sensing: Structured-light versus

Time-of-Flight Kinect. Computer Vision and Image Understanding 139, 1–20.

Seo, M., Choi, S., Lee, S., Oh, E., Baek, J., Kang, S., 2017. Photosensor-based latency

measurement system for head-mounted displays. Sensors 17, 1112.

 152

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A.,

Blake, A., 2011. Real-time human pose recognition in parts from single depth im-

ages, in: CVPR 2011. pp. 1297–1304.

Slater, M., Steed, A., Usoh, M., 1995. The virtual treadmill: a naturalistic metaphor for

navigation in immersive virtual environments, in: Virtual Environments. pp. 135–

148.

Smolyanskiy, N., Gonzalez-Franco, M., 2017. Stereoscopic first person view system for

drone navigation. Frontiers in Robotics and AI 4.

Sokolova, M., Lapalme, G., 2009. A systematic analysis of performance measures for clas-

sification tasks. Information Processing & Management 45, 427–437.

Souman, J.L., Robuffo Giordano, P., Frissen, I., De Luca, A., Ernst, M.O., 2010. Making

virtual walking real: Perceptual evaluation of a new treadmill control algorithm.

ACM Transactions on Applied Perception 7, 1–14.

Souman, J.L., Robuffo Giordano, P., Schwaiger, M., Frissen, I., Thümmel, T., Ulbrich, H.,

De Luca, A., Bülthoff, H.H., Ernst, M.O., 2008. CyberWalk: Enabling uncon-

strained omnidirectional walking through virtual environments. ACM Trans. Appl.

Percept. 8, 25:1–25:22.

Steed, A., 2008. A simple method for estimating the latency of interactive, real-time

graphics simulations, in: Proceedings of the 2008 ACM Symposium on Virtual Re-

ality Software and Technology. pp. 123–129.

 153

Su, S.W., Wang, L., Celler, B.G., Savkin, A., 2005. Heart rate control during treadmill

exercise, in: Proceedings of the 27th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society. pp. 2471–2474.

Sutherland, I., 1968. A head-mounted three dimensional display, in: Proceedings of Fall

Joint Computer Conference. pp. 757–764.

Taylor, R.M., II, Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T., 2001.

VRPN: A Device-independent, Network-transparent VR Peripheral System, in:

Proceedings of the ACM Symposium on Virtual Reality Software and Technology.

pp. 55–61.

Teixeira, J.M., Ferreira, R., Santos, M., Teichrieb, V., 2014. Teleoperation using Google

Glass and AR, Drone for structural inspection, in: 2014 XVI Symposium on Virtual

and Augmented Reality. pp. 28–36.

Templeman, J.N., Denbrook, P.S., Sibert, L.E., 1999. Virtual locomotion: Walking in Place

through virtual environments. Presence 8, 598–617.

Terven, J.R., Salas, J., Raducanu, B., 2014. Robust head gestures recognition for assistive

technology, in: Pattern Recognition, Lecture Notes in Computer Science. pp. 152–

161.

Tregillus, S., Folmer, E., 2016. VR-STEP: Walking-in-Place using inertial sensing for

hands free navigation in mobile VR environments, in: Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems. pp. 1250–1255.

 154

Vijayakar, A., Hollerbach, J.M., 2002. A proportional control strategy for realistic turning

on linear treadmills, in: Proceedings 10th Symposium on Haptic Interfaces for Vir-

tual Environment and Teleoperator Systems. pp. 231–238.

von Zitzewitz, J., Bernhardt, M., Riener, R., 2007. A novel method for automatic treadmill

speed adaptation. IEEE transactions on neural systems and rehabilitation engineer-

ing 15, 401–409.

Vu, D., Kövecses, J., Gosselin, C., 2017. Trajectory planning and control of a belt-driven

locomotion interface for flat terrain walking and stair climbing, in: 2017 IEEE

World Haptics Conference. pp. 189–194.

Ware, C., Arthur, K., Booth, K.S., 1993. Fish tank virtual reality, in: Proceedings of the

INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Sys-

tems. ACM, pp. 37–42.

Watanabe, K., Takahashi, M., 2018. Control System Design of a Quadrotor Suppressing

the Virtual Reality Sickness, in: 2018 AIAA Modeling and Simulation Technolo-

gies Conference, AIAA SciTech Forum, (AIAA 2018-1916).

Wendt, J.D., Whitton, M.C., Brooks, F.P., 2010. GUD WIP: Gait-Understanding-Driven

Walking-In-Place, in: 2010 IEEE Virtual Reality Conference. pp. 51–58.

Wiens, C., Denton, W., Schieber, M.N., Hartley, R., Marmelat, V., Myers, S.A., Yentes,

J.M., 2017. Reliability of a feedback-controlled treadmill algorithm dependent on

the user’s behavior, in: 2017 IEEE International Conference on Electro Information

Technology. pp. 545–550.

 155

Williams, B., Bailey, S., Narasimham, G., Li, M., Bodenheimer, B., 2011. Evaluation of

walking in place on a Wii balance board to explore a virtual environment. ACM

Trans. Appl. Percept. 8, 19:1–19:14.

Wilson, P.T., Nguyen, K., Harris, A., Williams, B., 2014. Walking in Place Using the Mi-

crosoft Kinect to Explore a Large VE, in: Proceedings of the 13th ACM

SIGGRAPH International Conference on Virtual-Reality Continuum and Its Appli-

cations in Industry. pp. 27–33.

Woodman, O.J., 2007. An introduction to inertial navigation, Technical Report 696. Uni-

versity of Cambridge.

Xu, D., 2006. A neural network approach for hand gesture recognition in virtual reality

driving training system of SPG, in: 18th International Conference on Pattern

Recognition. pp. 519–522.

Yan, L., Allison, R.S., Rushton, S.K., 2004. New simple virtual walking method - walking

on the spot, in: 8th Annual Immersive Projection Technology Symposium Elec-

tronic Proceedings.

Yoon, J., Park, H., Damiano, D.L., 2012. A novel walking speed estimation scheme and its

application to treadmill control for gait rehabilitation. Journal of Neuroengineering

and Rehabilitation 9, 62.

Zielasko, D., Horn, S., Freitag, S., Weyers, B., Kuhlen, T.W., 2016. Evaluation of hands-

free HMD-based navigation techniques for immersive data analysis, in: 2016 IEEE

Symposium on 3D User Interfaces. pp. 113–119.

