1,709 research outputs found

    Effectiveness of Virtual Reality for Children and Adolescents with Autism Spectrum Disorder: An Evidence-Based Systematic Review

    Full text link
    [EN] Autism Spectrum Disorder (ASD) is a neurodevelopmental disease that is specially characterized by impairments in social communication and social skills. ASD has a high prevalence in children, affecting 1 in 160 subjects. Virtual reality (VR) has emerged as an effective tool for intervention in the health field. Different recent papers have reviewed the VR-based treatments in ASD, but they have an important limitation because they only use clinical databases and do not include important technical indexes such as the Web of Science index or the Scimago Journal & Country Rank. To our knowledge, this is the first contribution that has carried out an evidence-based systematic review including both clinical and technical databases about the effectiveness of VR-based intervention in ASD. The initial search identified a total of 450 records. After the exclusion of the papers that are not studies, duplicated articles, and the screening of the abstract and full text, 31 articles met the PICO (Population, Intervention, Comparison and Outcomes) criteria and were selected for analysis. The studies examined suggest moderate evidence about the effectiveness of VR-based treatments in ASD. VR can add many advantages to the treatment of ASD symptomatology, but it is necessary to develop consistent validations in future studies to state that VR can effectively complement the traditional treatments.Mesa Gresa, P.; Gil Gómez, H.; Lozano Quilis, JA.; Gil-Gómez, J. (2018). Effectiveness of Virtual Reality for Children and Adolescents with Autism Spectrum Disorder: An Evidence-Based Systematic Review. Sensors. 18(8):1-15. https://doi.org/10.3390/s18082486S115188World Health Organizationhttp://www.who.int/en/news-room/fact-sheets/detail/autism-spectrum-disordersColombi, C., & Ghaziuddin, M. (2017). Neuropsychological Characteristics of Children with Mixed Autism and ADHD. Autism Research and Treatment, 2017, 1-5. doi:10.1155/2017/5781781Merriam-Websterhttps://www.merriam-webster.com/dictionary/virtual%20realityBird, M.-L., Cannell, J., Jovic, E., Rathjen, A., Lane, K., Tyson, A., … Smith, S. (2017). A Randomized Controlled Trial Investigating the Efficacy of Virtual Reality in Inpatient Stroke Rehabilitation. Archives of Physical Medicine and Rehabilitation, 98(10), e27. doi:10.1016/j.apmr.2017.08.084Albiol-Pérez, S., Gil-Gómez, J.-A., Muñoz-Tomás, M.-T., Gil-Gómez, H., Vial-Escolano, R., & Lozano-Quilis, J.-A. (2017). The Effect of Balance Training on Postural Control in Patients with Parkinson’s Disease Using a Virtual Rehabilitation System. Methods of Information in Medicine, 56(02), 138-144. doi:10.3414/me16-02-0004Garcia-Palacios, A., Herrero, R., Vizcaíno, Y., Belmonte, M. A., Castilla, D., Molinari, G., … Botella, C. (2015). Integrating Virtual Reality With Activity Management for the Treatment of Fibromyalgia. The Clinical Journal of Pain, 31(6), 564-572. doi:10.1097/ajp.0000000000000196Bekelis, K., Calnan, D., Simmons, N., MacKenzie, T. A., & Kakoulides, G. (2017). Effect of an Immersive Preoperative Virtual Reality Experience on Patient Reported Outcomes. Annals of Surgery, 265(6), 1068-1073. doi:10.1097/sla.0000000000002094Orlosky, J., Itoh, Y., Ranchet, M., Kiyokawa, K., Morgan, J., & Devos, H. (2017). Emulation of Physician Tasks in Eye-Tracked Virtual Reality for Remote Diagnosis of Neurodegenerative Disease. IEEE Transactions on Visualization and Computer Graphics, 23(4), 1302-1311. doi:10.1109/tvcg.2017.2657018Areces, D., Rodríguez, C., García, T., Cueli, M., & González-Castro, P. (2016). Efficacy of a Continuous Performance Test Based on Virtual Reality in the Diagnosis of ADHD and Its Clinical Presentations. Journal of Attention Disorders, 22(11), 1081-1091. doi:10.1177/1087054716629711Phé, V., Cattarino, S., Parra, J., Bitker, M.-O., Ambrogi, V., Vaessen, C., & Rouprêt, M. (2016). Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 13(2), e1740. doi:10.1002/rcs.1740Pulijala, Y., Ma, M., Pears, M., Peebles, D., & Ayoub, A. (2018). Effectiveness of Immersive Virtual Reality in Surgical Training—A Randomized Control Trial. Journal of Oral and Maxillofacial Surgery, 76(5), 1065-1072. doi:10.1016/j.joms.2017.10.002Jarrold, W., Mundy, P., Gwaltney, M., Bailenson, J., Hatt, N., McIntyre, N., … Swain, L. (2013). Social Attention in a Virtual Public Speaking Task in Higher Functioning Children With Autism. Autism Research, 6(5), 393-410. doi:10.1002/aur.1302Mishkind, M. C., Norr, A. M., Katz, A. C., & Reger, G. M. (2017). Review of Virtual Reality Treatment in Psychiatry: Evidence Versus Current Diffusion and Use. Current Psychiatry Reports, 19(11). doi:10.1007/s11920-017-0836-0Liu, X., Wu, Q., Zhao, W., & Luo, X. (2017). Technology-Facilitated Diagnosis and Treatment of Individuals with Autism Spectrum Disorder: An Engineering Perspective. Applied Sciences, 7(10), 1051. doi:10.3390/app7101051Van Bennekom, M. J., de Koning, P. P., & Denys, D. (2017). Virtual Reality Objectifies the Diagnosis of Psychiatric Disorders: A Literature Review. Frontiers in Psychiatry, 8. doi:10.3389/fpsyt.2017.00163Provoost, S., Lau, H. M., Ruwaard, J., & Riper, H. (2017). Embodied Conversational Agents in Clinical Psychology: A Scoping Review. Journal of Medical Internet Research, 19(5), e151. doi:10.2196/jmir.6553Lau, H. M., Smit, J. H., Fleming, T. M., & Riper, H. (2017). Serious Games for Mental Health: Are They Accessible, Feasible, and Effective? A Systematic Review and Meta-analysis. Frontiers in Psychiatry, 7. doi:10.3389/fpsyt.2016.00209Parsons, S. (2016). Authenticity in Virtual Reality for assessment and intervention in autism: A conceptual review. Educational Research Review, 19, 138-157. doi:10.1016/j.edurev.2016.08.001Den Brok, W. L. J. E., & Sterkenburg, P. S. (2014). Self-controlled technologies to support skill attainment in persons with an autism spectrum disorder and/or an intellectual disability: a systematic literature review. Disability and Rehabilitation: Assistive Technology, 10(1), 1-10. doi:10.3109/17483107.2014.921248Ip, H. H. S., Wong, S. W. L., Chan, D. F. Y., Byrne, J., Li, C., Yuan, V. S. N., … Wong, J. Y. W. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers & Education, 117, 1-15. doi:10.1016/j.compedu.2017.09.010Chen, C.-H., Lee, I.-J., & Lin, L.-Y. (2016). Augmented reality-based video-modeling storybook of nonverbal facial cues for children with autism spectrum disorder to improve their perceptions and judgments of facial expressions and emotions. Computers in Human Behavior, 55, 477-485. doi:10.1016/j.chb.2015.09.033Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D., & Chapman, S. (2016). Virtual Reality Social Cognition Training for children with high functioning autism. Computers in Human Behavior, 62, 703-711. doi:10.1016/j.chb.2016.04.033Lorenzo, G., Lledó, A., Pomares, J., & Roig, R. (2016). Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Computers & Education, 98, 192-205. doi:10.1016/j.compedu.2016.03.018Wade, J., Zhang, L., Bian, D., Fan, J., Swanson, A., Weitlauf, A., … Sarkar, N. (2016). A Gaze-Contingent Adaptive Virtual Reality Driving Environment for Intervention in Individuals with Autism Spectrum Disorders. ACM Transactions on Interactive Intelligent Systems, 6(1), 1-23. doi:10.1145/2892636Ke, F., & Lee, S. (2015). Virtual reality based collaborative design by children with high-functioning autism: design-based flexibility, identity, and norm construction. Interactive Learning Environments, 24(7), 1511-1533. doi:10.1080/10494820.2015.1040421Chen, C.-H., Lee, I.-J., & Lin, L.-Y. (2015). Augmented reality-based self-facial modeling to promote the emotional expression and social skills of adolescents with autism spectrum disorders. Research in Developmental Disabilities, 36, 396-403. doi:10.1016/j.ridd.2014.10.015Cheng, Y., Huang, C.-L., & Yang, C.-S. (2015). Using a 3D Immersive Virtual Environment System to Enhance Social Understanding and Social Skills for Children With Autism Spectrum Disorders. Focus on Autism and Other Developmental Disabilities, 30(4), 222-236. doi:10.1177/1088357615583473Kim, K., Rosenthal, M. Z., Gwaltney, M., Jarrold, W., Hatt, N., McIntyre, N., … Mundy, P. (2014). A Virtual Joy-Stick Study of Emotional Responses and Social Motivation in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 45(12), 3891-3899. doi:10.1007/s10803-014-2036-7Parsons, S. (2015). Learning to work together: Designing a multi-user virtual reality game for social collaboration and perspective-taking for children with autism. International Journal of Child-Computer Interaction, 6, 28-38. doi:10.1016/j.ijcci.2015.12.002Bai, Z., Blackwell, A. F., & Coulouris, G. (2015). Using Augmented Reality to Elicit Pretend Play for Children with Autism. IEEE Transactions on Visualization and Computer Graphics, 21(5), 598-610. doi:10.1109/tvcg.2014.2385092Bekele, E., Crittendon, J., Zheng, Z., Swanson, A., Weitlauf, A., Warren, Z., & Sarkar, N. (2014). Assessing the Utility of a Virtual Environment for Enhancing Facial Affect Recognition in Adolescents with Autism. Journal of Autism and Developmental Disorders, 44(7), 1641-1650. doi:10.1007/s10803-014-2035-8Escobedo, L., Tentori, M., Quintana, E., Favela, J., & Garcia-Rosas, D. (2014). Using Augmented Reality to Help Children with Autism Stay Focused. IEEE Pervasive Computing, 13(1), 38-46. doi:10.1109/mprv.2014.19Finkelstein, S., Barnes, T., Wartell, Z., & Suma, E. A. (2013). Evaluation of the exertion and motivation factors of a virtual reality exercise game for children with autism. 2013 1st Workshop on Virtual and Augmented Assistive Technology (VAAT). doi:10.1109/vaat.2013.6786186Maskey, M., Lowry, J., Rodgers, J., McConachie, H., & Parr, J. R. (2014). Reducing Specific Phobia/Fear in Young People with Autism Spectrum Disorders (ASDs) through a Virtual Reality Environment Intervention. PLoS ONE, 9(7), e100374. doi:10.1371/journal.pone.0100374Stichter, J. P., Laffey, J., Galyen, K., & Herzog, M. (2013). iSocial: Delivering the Social Competence Intervention for Adolescents (SCI-A) in a 3D Virtual Learning Environment for Youth with High Functioning Autism. Journal of Autism and Developmental Disorders, 44(2), 417-430. doi:10.1007/s10803-013-1881-0Bekele, E., Zheng, Z., Swanson, A., Crittendon, J., Warren, Z., & Sarkar, N. (2013). Understanding How Adolescents with Autism Respond to Facial Expressions in Virtual Reality Environments. IEEE Transactions on Visualization and Computer Graphics, 19(4), 711-720. doi:10.1109/tvcg.2013.42Cai, Y., Chia, N. K. H., Thalmann, D., Kee, N. K. N., Zheng, J., & Thalmann, N. M. (2013). Design and Development of a Virtual Dolphinarium for Children With Autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 208-217. doi:10.1109/tnsre.2013.2240700Ke, F., & Im, T. (2013). Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism. The Journal of Educational Research, 106(6), 441-461. doi:10.1080/00220671.2013.832999Lorenzo, G., Pomares, J., & Lledó, A. (2013). Inclusion of immersive virtual learning environments and visual control systems to support the learning of students with Asperger syndrome. Computers & Education, 62, 88-101. doi:10.1016/j.compedu.2012.10.028Modugumudi, Y. R., Santhosh, J., & Anand, S. (2013). Efficacy of Collaborative Virtual Environment Intervention Programs in Emotion Expression of Children with Autism. Journal of Medical Imaging and Health Informatics, 3(2), 321-325. doi:10.1166/jmihi.2013.1167Wang, M., & Reid, D. (2013). Using the Virtual Reality-Cognitive Rehabilitation Approach to Improve Contextual Processing in Children with Autism. The Scientific World Journal, 2013, 1-9. doi:10.1155/2013/716890Milne, M., Luerssen, M. H., Lewis, T. W., Leibbrandt, R. E., & Powers, D. M. W. (2010). Development of a virtual agent based social tutor for children with autism spectrum disorders. The 2010 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn.2010.5596584Loomes, R., Hull, L., & Mandy, W. P. L. (2017). What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 56(6), 466-474. doi:10.1016/j.jaac.2017.03.013Mesa-Gresa, P., Lozano, J. A., Llórens, R., Alcañiz, M., Navarro, M. D., & Noé, E. (2011). Clinical Validation of a Virtual Environment Test for Safe Street Crossing in the Assessment of Acquired Brain Injury Patients with and without Neglect. Lecture Notes in Computer Science, 44-51. doi:10.1007/978-3-642-23771-3_4Spreij, L. A., Visser-Meily, J. M. A., van Heugten, C. M., & Nijboer, T. C. W. (2014). Novel insights into the rehabilitation of memory post acquired brain injury: a systematic review. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00993Pietrzak, E., Pullman, S., & McGuire, A. (2014). Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review. Games for Health Journal, 3(4), 202-214. doi:10.1089/g4h.2014.001

    A Virtual Conversational Agent for Teens with Autism: Experimental Results and Design Lessons

    Full text link
    We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in real-time, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility

    Planning-based Social Partners for Children with Autism

    Get PDF
    This paper describes the design and implementation of a planning-based socially intelligent agent built to help young children with Autism Spectrum Conditions acquire social communication skills. We explain how planning technology allowed us to satisfy agent’s design requirements that we identified through our consultations with children and carers and through a review of best practices for autism intervention.We discuss the design principles implemented, the engineering challenges faced and the lessons learned from building our pedagogical agent. We conclude by presenting substantial experimental results concerning the agent’s efficacy

    Multicriteria Decision Analysis and Conversational Agents for children with autism

    Get PDF
    Conversational agents has emerged as a new means of communication and social skills training for children with autism spectrum disorders (ASD), encouraging academia, industry, and therapeutic centres to investigate it further. This paper aims to develop a methodological framework based on Multicriteria Decision Analysis (MCDA) to identify the best , i.e. the most effective, conversational agent for this target group. To our knowledge, it is the first time the MCDA is applied to this specific domain. Our contribution is twofold: i) our method is an extension of traditional MCDA and we exemplify how to apply it to decision making process related to CA for person with autism: a methodological result that would be adopted for a broader range of technologies for person with impairments similar to ASD; ii) our results, based on the above mentioned method, suggest that Embodied Conversational Agent is most appropriate conversational technology to interact with children with ASD

    Attention-Based Applications in Extended Reality to Support Autistic Users: A Systematic Review

    Get PDF
    With the rising prevalence of autism diagnoses, it is essential for research to understand how to leverage technology to support the diverse nature of autistic traits. While traditional interventions focused on technology for medical cure and rehabilitation, recent research aims to understand how technology can accommodate each unique situation in an efficient and engaging way. Extended reality (XR) technology has been shown to be effective in improving attention in autistic users given that it is more engaging and motivating than other traditional mediums. Here, we conducted a systematic review of 59 research articles that explored the role of attention in XR interventions for autistic users. We systematically analyzed demographics, study design and findings, including autism screening and attention measurement methods. Furthermore, given methodological inconsistencies in the literature, we systematically synthesize methods and protocols including screening tools, physiological and behavioral cues of autism and XR tasks. While there is substantial evidence for the effectiveness of using XR in attention-based interventions for autism to support autistic traits, we have identified three principal research gaps that provide promising research directions to examine how autistic populations interact with XR. First, our findings highlight the disproportionate geographic locations of autism studies and underrepresentation of autistic adults, evidence of gender disparity, and presence of individuals diagnosed with co-occurring conditions across studies. Second, many studies used an assortment of standardized and novel tasks and self-report assessments with limited tested reliability. Lastly, the research lacks evidence of performance maintenance and transferability.Comment: [Accepted version] K. Wang, S. J. Julier and Y. Cho, "Attention-Based Applications in Extended Reality to Support Autistic Users: A Systematic Review," in IEEE Access, vol. 10, pp. 15574-15593, 2022, doi: 10.1109/ACCESS.2022.314772

    Psychophysiological analysis of a pedagogical agent and robotic peer for individuals with autism spectrum disorders.

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by ongoing problems in social interaction and communication, and engagement in repetitive behaviors. According to Centers for Disease Control and Prevention, an estimated 1 in 68 children in the United States has ASD. Mounting evidence shows that many of these individuals display an interest in social interaction with computers and robots and, in general, feel comfortable spending time in such environments. It is known that the subtlety and unpredictability of people’s social behavior are intimidating and confusing for many individuals with ASD. Computerized learning environments and robots, however, prepare a predictable, dependable, and less complicated environment, where the interaction complexity can be adjusted so as to account for these individuals’ needs. The first phase of this dissertation presents an artificial-intelligence-based tutoring system which uses an interactive computer character as a pedagogical agent (PA) that simulates a human tutor teaching sight word reading to individuals with ASD. This phase examines the efficacy of an instructional package comprised of an autonomous pedagogical agent, automatic speech recognition, and an evidence-based instructional procedure referred to as constant time delay (CTD). A concurrent multiple-baseline across-participants design is used to evaluate the efficacy of intervention. Additionally, post-treatment probes are conducted to assess maintenance and generalization. The results suggest that all three participants acquired and maintained new sight words and demonstrated generalized responding. The second phase of this dissertation describes the augmentation of the tutoring system developed in the first phase with an autonomous humanoid robot which serves the instructional role of a peer for the student. In this tutoring paradigm, the robot adopts a peer metaphor, where its function is to act as a peer. With the introduction of the robotic peer (RP), the traditional dyadic interaction in tutoring systems is augmented to a novel triadic interaction in order to enhance the social richness of the tutoring system, and to facilitate learning through peer observation. This phase evaluates the feasibility and effects of using PA-delivered sight word instruction, based on a CTD procedure, within a small-group arrangement including a student with ASD and the robotic peer. A multiple-probe design across word sets, replicated across three participants, is used to evaluate the efficacy of intervention. The findings illustrate that all three participants acquired, maintained, and generalized all the words targeted for instruction. Furthermore, they learned a high percentage (94.44% on average) of the non-target words exclusively instructed to the RP. The data show that not only did the participants learn nontargeted words by observing the instruction to the RP but they also acquired their target words more efficiently and with less errors by the addition of an observational component to the direct instruction. The third and fourth phases of this dissertation focus on physiology-based modeling of the participants’ affective experiences during naturalistic interaction with the developed tutoring system. While computers and robots have begun to co-exist with humans and cooperatively share various tasks; they are still deficient in interpreting and responding to humans as emotional beings. Wearable biosensors that can be used for computerized emotion recognition offer great potential for addressing this issue. The third phase presents a Bluetooth-enabled eyewear – EmotiGO – for unobtrusive acquisition of a set of physiological signals, i.e., skin conductivity, photoplethysmography, and skin temperature, which can be used as autonomic readouts of emotions. EmotiGO is unobtrusive and sufficiently lightweight to be worn comfortably without interfering with the users’ usual activities. This phase presents the architecture of the device and results from testing that verify its effectiveness against an FDA-approved system for physiological measurement. The fourth and final phase attempts to model the students’ engagement levels using their physiological signals collected with EmotiGO during naturalistic interaction with the tutoring system developed in the second phase. Several physiological indices are extracted from each of the signals. The students’ engagement levels during the interaction with the tutoring system are rated by two trained coders using the video recordings of the instructional sessions. Supervised pattern recognition algorithms are subsequently used to map the physiological indices to the engagement scores. The results indicate that the trained models are successful at classifying participants’ engagement levels with the mean classification accuracy of 86.50%. These models are an important step toward an intelligent tutoring system that can dynamically adapt its pedagogical strategies to the affective needs of learners with ASD
    corecore