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3 ABSTRACT 

 

PSYCHOPHYSIOLOGICAL ANALYSIS OF A PEDAGOGICAL 
AGENT AND ROBOTIC PEER FOR INDIVIDUALS WITH AUTISM 

SPECTRUM DISORDERS 

Mohammad Nasser Saadatzi 

November 18, 2016 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder 

characterized by ongoing problems in social interaction and communication, and 

engagement in repetitive behaviors. According to Centers for Disease Control and 

Prevention, an estimated 1 in 68 children in the United States has ASD. Mounting 

evidence shows that many of these individuals display an interest in social 

interaction with computers and robots and, in general, feel comfortable spending 

time in such environments. It is known that the subtlety and unpredictability of 

people’s social behavior are intimidating and confusing for many individuals with 

ASD. Computerized learning environments and robots, however, prepare a 

predictable, dependable, and less complicated environment, where the interaction 

complexity can be adjusted so as to account for these individuals’ needs. 

The first phase of this dissertation presents an artificial-intelligence-based 

tutoring system which uses an interactive computer character as a pedagogical 

agent (PA) that simulates a human tutor teaching sight word reading to individuals 

with ASD. This phase examines the efficacy of an instructional package comprised 
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of an autonomous pedagogical agent, automatic speech recognition, and an 

evidence-based instructional procedure referred to as constant time delay (CTD). 

A concurrent multiple-baseline across-participants design is used to evaluate the 

efficacy of intervention. Additionally, post-treatment probes are conducted to 

assess maintenance and generalization. The results suggest that all three 

participants acquired and maintained new sight words and demonstrated 

generalized responding. 

The second phase of this dissertation describes the augmentation of the 

tutoring system developed in the first phase with an autonomous humanoid robot 

which serves the instructional role of a peer for the student. In this tutoring 

paradigm, the robot adopts a peer metaphor, where its function is to act as a peer. 

With the introduction of the robotic peer (RP), the traditional dyadic interaction in 

tutoring systems is augmented to a novel triadic interaction in order to enhance the 

social richness of the tutoring system, and to facilitate learning through peer 

observation. This phase evaluates the feasibility and effects of using PA-delivered 

sight word instruction, based on a CTD procedure, within a small-group 

arrangement including a student with ASD and the robotic peer. A multiple-probe 

design across word sets, replicated across three participants, is used to evaluate 

the efficacy of intervention. The findings illustrate that all three participants 

acquired, maintained, and generalized all the words targeted for instruction. 

Furthermore, they learned a high percentage (94.44% on average) of the non-

target words exclusively instructed to the RP. The data show that not only did the 

participants learn nontargeted words by observing the instruction to the RP but 
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they also acquired their target words more efficiently and with less errors by the 

addition of an observational component to the direct instruction. 

The third and fourth phases of this dissertation focus on physiology-based 

modeling of the participants’ affective experiences during naturalistic interaction 

with the developed tutoring system. While computers and robots have begun to 

co-exist with humans and cooperatively share various tasks; they are still deficient 

in interpreting and responding to humans as emotional beings. Wearable 

biosensors that can be used for computerized emotion recognition offer great 

potential for addressing this issue. 

The third phase presents a Bluetooth-enabled eyewear – EmotiGO – for 

unobtrusive acquisition of a set of physiological signals, i.e., skin conductivity, 

photoplethysmography, and skin temperature, which can be used as autonomic 

readouts of emotions. EmotiGO is unobtrusive and sufficiently lightweight to be 

worn comfortably without interfering with the users’ usual activities. This phase 

presents the architecture of the device and results from testing that verify its 

effectiveness against an FDA-approved system for physiological measurement. 

The fourth and final phase attempts to model the students’ engagement 

levels using their physiological signals collected with EmotiGO during naturalistic 

interaction with the tutoring system developed in the second phase. Several 

physiological indices are extracted from each of the signals. The students’ 

engagement levels during the interaction with the tutoring system are rated by two 

trained coders using the video recordings of the instructional sessions. Supervised 

pattern recognition algorithms are subsequently used to map the physiological 
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indices to the engagement scores. The results indicate that the trained models are 

successful at classifying participants’ engagement levels with the mean 

classification accuracy of 86.50%. These models are an important step toward an 

intelligent tutoring system that can dynamically adapt its pedagogical strategies to 

the affective needs of learners with ASD. 
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CHAPTER 1 

1 INTRODUCTION 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder 

characterized by ongoing problems in social interaction and communication, and 

engagement in repetitive behaviors. According to Centers for Disease Control and 

Prevention, an estimated 1 in 68 children in the United States has ASD [1]. 

According to Centers for Disease Control and Prevention, an estimated 1 in 68 

children in the United States has ASD [2]. Autistic children typically demonstrate 

delays in language development and impaired ability for imitation, imaginative play, 

and non-verbal communication [3]. Early intervention, however, has been proven 

to bring about a positive long-term outcome. Therefore, one of the challenges is 

identification and development of appropriate rehabilitation methods for ASD. To 

address this need, technological facilities, including computers and robots, have 

been utilized as rehabilitation/assistive devices for autistic children [4]. Mounting 

evidence shows that many of these individuals display an interest in social 

interaction with these machines and, in general, feel comfortable spending time in 

such environments [5, 6]. 

Articles [7, 8] have shown that an interactive robot is more engaging for 

children with ASD than is an inanimate toy showing repetitive behavior. It is known 

that the subtlety and unpredictability of people’s social behavior are intimidating 

and confusing for these individuals [9, 10]. Computerized learning environments 
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and robots, however, prepare a predictable, dependable, and less complicated 

environment, where the interaction complexity can be adjusted so as to account 

for these individuals’ needs, and can be planned according to their improvement. 

Additionally, they have the potential to furnish resilient systems to automate the 

time-consuming, repetitive behavioral therapy sessions. 

Around one half of the ASD population does not develop any form of 

language, and the rest typically show delays in the onset and rate of development 

[11-13]. There have been several studies investigating the use and efficacy of 

computer-based instruction (CBI) of reading skills to individuals with ASD [14-20]. 

Although the results of these studies vary in terms of their positive gains, the overall 

results are quite favorable. They suggest that CBI may be highly motivating and 

effective for enhancing vocabulary acquisition for children with ASD. These studies 

also indicate that CBI typically results in benefits such as increased attention and 

enjoyment. It also has the potential to reach needy populations such as ASD 

individuals (ASDIs) at a broader scale because of the savings due to automation, 

resulting in a reduced demand for highly trained, costly therapists and allowing for 

broader dissemination of treatment, training, and education. 

Advances in artificial intelligence (AI) have provided new avenues to 

facilitate human learning through interaction with animated virtual characters 

known as pedagogical agents [21-23]. Instructional applications that embed 

pedagogical agents have the capability to deliver instructional content while 

simulating social interaction. In PA–based applications, a student acquires target 

skills/behaviors through interaction with a PA. A number of studies have indicated 
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the positive instructional effects of PAs on cognitive and motivational factors [14, 

24-28]. The results of these studies, albeit preliminary, represent important 

evidence that PA-based CBI is superior to less complex, auditory-alone CBI for 

language training. They suggest that students learn faster and remember better 

what they learn in the bimodal (voice and face) condition than in the unimodal 

(voice-only) condition [14, 27]. 

This dissertation research presents an AI-based tutoring system which uses 

an interactive computer character as a PA (Figure 1). This agent simulates a 

human tutor teaching sight word reading while demonstrating body and hand 

gestures, facial expression, and head nods. In order to facilitate learning through 

natural language, the agent delivers instructions through synthesized speech and 

receives learner’s responses via microphone and automatic speech recognition. 

 
Figure 1. Screen capture of PA, from left to right (a) PA gazing at the student, (b) PA 

pointing to the presented word, (c) PA clapping for the student 

The most widely used instruction arrangement for individuals with ASD is 

direct instruction from an adult in a highly structured and well-planned format 

delivered in a one-to-one (1:1) student-to-teacher ratio [29-31]. In direct 1:1 

intervention, the instructor delivers prompts to students to teach specified 

behaviors in a contained setting and isolated from peers, and the student responds 

to the prompts and is then differentially reinforced based on his response [32]. The 
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benefits of this type of intervention regarding behavior development and social 

functioning of children with ASD have been well-documented [29, 33-35]. 

This arrangement, however, consumes teachers’ time [36-38] and restricts 

instructional and social integration of these children because the child is removed 

from peers for instruction [39]. Another major concern is that it ignores natural 

instruction environment and does not offer opportunities for student-to-student 

interaction. Relying on 1:1 format may leave these individuals with deficiencies in 

social interaction skills which hinders their functioning in inclusive environments 

and general education classrooms where group instruction is the norm [40, 41]. 

Besides, the skills learned through this arrangement often fail to generalize to other 

settings and their peers [42-44]. 

An alternative arrangement to 1:1 direct instruction is small-group 

instruction (SGI) during which several students, usually two to five, are taught in 

close physical and temporal proximity [45-47]. SGI enables more efficient use of 

teacher’s time since more than one student is instructed at the same time [30, 41, 

48-52]. SGI also better prepares students to function in less restrictive 

environments which frequently use group arrangements [50, 51]. SGI facilitates 

normalization as it more closely resembles regular instruction settings [45]. In SGI, 

students may learn appropriate student-to-student interaction and improve their 

social and behavioral skills as it provides a context with higher chances of 

interactions among peers [41, 53-58]. Furthermore, students receive multiple and 

varied forms of the target behavior within this arrangement, and the skills acquired 

may better generalize to different people [45, 54, 59, 60]. 
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SGI provides a context in which a student can observationally learn a new 

response that is not directly instructed to him by observing teacher’s instruction to 

another student, the student’s response, and the subsequent teacher’s differential 

reinforcement according to the student’s correct or incorrect response. Therefore, 

simply by group participation, each student in the group has the opportunity to 

acquire skills targeted to other students even when he is not directly reinforced for 

his/her learning [61]. 

In this dissertation, a humanoid robot serves the instructional role of a peer 

for the student, augmenting the use of a PA. In this tutoring paradigm, the robot 

adopts a peer metaphor, where its function is to act as an emulated peer. With the 

introduction of a robotic peer, this dissertation suggests to augment the traditional 

dyadic interaction in tutoring systems to a novel triadic interaction (Figure 2), to 

enhance the social richness of the tutoring system, and to facilitate learning 

through observation. 

 
Figure 2. Triadic interaction among tutor, learner, and robotic peer 

Expert human tutors are proficient at detecting the emotional state of 

students, and taking actions accordingly in order to optimize their learning. Recent 

decades have seen increased recognition of the interplay between affect and 
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learning [62-64]. It has been argued that learning is accompanied and influenced 

by a set of affective states such as boredom [65, 66], confusion [64, 67], 

flow/engagement [65], and frustration [64, 68]. For example, boredom negatively 

influences learning, whereas confusion and engagement in the learning process 

are positively correlated with learning [69]. 

Several recent tutoring systems, designed for typically developing 

individuals, are increasingly incorporating affect responsiveness into their 

pedagogical strategies [70-73]. These tutoring systems were reported to lead to 

better learning outcomes and to higher levels of engagement than their non-affect-

responsive equivalent counterparts. To date, however, little effort has been made 

to investigate this approach and include affect responsiveness in technology-

based intervention of individuals with ASD. Recent trends emphasize the need to 

understand heterogeneity in ASD from an emotional perspective. Mazefsky and 

colleagues [74] have argued for the benefits of integrating traditional ASD emotion 

research with emotion regulation frameworks more widely applied to normative 

populations. 

In order for a tutoring system to respond to different affective states of 

learners, it must first provide a means to recognize those states. A number of 

modalities such as facial expression [75], voice prosody [76], body gestures [77], 

and physiology [78] have been investigated to assess affective states for typically 

developing individuals. However, ASDIs often have communicative difficulties 

regarding the expression of affective states [1] which limit traditional auditory and 
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visual approaches. Physiology, on the other hand, is not necessarily directly 

impacted by the impairments in emotional expressions in ASD [79-81]. 

Inspired by this idea, a wearable multi-sensorial biofeedback device, 

EmotiGO (Figure 3), is developed in this dissertation which is a pair of modified 

eyeglasses with three biosensors. The parameters measured are Galvanic Skin 

Response (GSR), Photoplethysmography (PPG), and Skin Temperature (SKT); a 

set of measurements useful for affect sensing. The collected signals are 

transmitted to a remote computer via Bluetooth Low Energy (BLE) communication 

in real time.  

 
Figure 3. EmotiGO 

Using the signals collected by EmotiGO during interaction with the 

developed tutoring system, a number of machine-learning-based computational 

models are trained in this dissertation that enable the tutoring system to track the 

affective experience of an individual with ASD based on his/her autonomic activity. 

This is an important step toward an intelligent tutoring system that can dynamically 

adapt its pedagogical strategies to the emotional needs of learners with ASD. 

The remainder of this dissertation is organized as follows. Chapter 2 

presents the state of the art and a survey of relevant literature on computer-based 
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and robotic interventions for ASD. Chapter 2 also covers several important building 

blocks of social interaction such as joint attention, imitation, and turn taking 

addressed by robotic intervention of ASD to date. 

Chapter 3 presents an instructional package which is comprised of an 

autonomous pedagogical agent, automatic speech recognition, and constant time 

delay (CTD). The pedagogical agent simulates a human tutor teaching sight word 

reading while demonstrating body and hand gestures, facial expression, and head 

postures. In order to facilitate learning through natural language, the agent delivers 

instructions by synthesized speech and receives learner’s responses via 

microphone and automatic speech recognition. Chapter 4 examines the effects of 

the instructional package during the instruction of reading sight words aloud to 

young adults with ASD. A concurrent multiple-baseline across-participants design 

is used to evaluate the efficacy of intervention. Additionally, post-treatment probes 

are conducted to assess maintenance and generalization. The results suggest that 

all three participants acquired and maintained new sight words and demonstrated 

generalized responding. 

Chapter 5 introduces EmotiGO which is a Bluetooth-enabled eyewear for 

unobtrusive acquisition of a set of physiological signals, i.e., galvanic skin 

response, photoplethysmography, and skin temperature, which can be used as 

autonomic readouts of emotions. EmotiGO integrates multiple sensors in a single 

device which is lightweight and small enough to be worn comfortably without 

interfering with the users’ usual activities. Thanks to its optimal low-power design, 

EmotiGO can be used for long-term in situ collection of PPG, SKT, and GSR 
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signals. Chapter 5 presents the architecture of the device and results from testing 

that verify its effectiveness against an FDA-approved system for measuring 

physiological signals. 

Chapter 6 describes the augmentation of the AI-based tutoring system 

developed and evaluated in Chapters 3 and 4 with an autonomous humanoid robot 

that serves the instructional role of a peer for the student. With the introduction of 

the robotic peer, this dissertation augments the traditional dyadic interaction in the 

tutoring system to a novel triadic interaction, to prepare a technology-based small-

group instruction arrangement and to facilitate observational learning. Chapter 6 

evaluates the feasibility and effects of using PA-delivered sight word instruction, 

based on a CTD procedure, within a small-group arrangement. To evaluate the 

efficacy and efficiency of the learning modes, Chapter 6 employs a multiple-probe 

across-word-sets design replicated among three participants. The findings 

illustrate that all three participants acquire, maintain, and generalize all the target 

words they receive direct instruction for. Furthermore, they observationally acquire 

a high percentage (94.44% on average) of the non-target words exclusively 

instructed to the robotic peer. 

Chapter 7 attempts to model the students’ engagement levels using their 

physiological signals wirelessly collected with EmotiGO during naturalistic 

interaction with the tutoring system developed in Chapter 6. The physiological 

signals are first preprocessed in order to remove measurement noise and any 

motion-induced artifact in the signals. Several physiological indices are then 

extracted from each of the signals. The students’ engagement levels during the 
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interaction with the tutoring system are rated by two trained coders using the video 

recording of the instructional sessions. The extracted features along with the 

engagement scores are subsequently input to two supervised pattern recognition 

algorithms, i.e., k-nearest neighbors and naïve Bayes. The results indicate that the 

trained classifiers are successful at classifying participants’ engagement levels. 

Additionally, in order to identify the most diagnostic physiological signal, a 

systematic analysis is conducted on multichannel physiological data using two 

classifiers and three physiological signals as well as their fusion. 

Finally, Chapter 8 concludes this dissertation research, discusses the 

limitations of the developed systems, and outlines future research directions.
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CHAPTER 2 

2 LITERATURE REVIEW 

This chapter is divided into two parts to cover background material 

supporting the technology-mediated instructional aspect of this research. Section 

2.1 contains a survey about computer-based instruction for autistic individuals. 

Section 2.2 reviews and discusses justification of the use of robotics as an 

intervention method for ASD, as well as the most important social interaction forms 

addressed by this technology to date. 

2.1 Computer-based Instruction 

Computer-based instruction (CBI) is perhaps the most studied technology-

based intervention for ASDIs, with a lengthy corpus of literature. To preserve 

readability, only studies related to the current dissertation, that is, vocabulary 

identification and reading skill, will be reviewed in the rest of this section. A variety 

of other skills, however, have been taught using CBI to these individuals, such as 

how to recognize other’s emotions [82-84], enhance problem solving [85], and 

enhance vocal imitation [86]. 

In one of the first endeavors in this field by Heiman and colleagues in 1995, 

[17], the use of an interactive computer program to teach basic reading skill to 11 

children with ASD (6:9 to 13:8 years of age1) was investigated. In the interactive 

computer program, reading and sentence syntax were instructed to the learners 

                                                      
1 year: month 
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using voice, animated figures, and video. The program also provided immediate 

corrective feedback to the users. The data demonstrated that the participants 

displayed significant improvements in reading ability. Strong positive changes in 

verbal expression were also reported. That is, the children talked significantly more 

during the final session than in the first lesson. In the posttest, it was also observed 

that the participants expressed positive feelings and enjoyment almost 100% more 

than in the pretest. 

In the study by Moore and Calvert in 2000, [19], the effects of CBI and 

teacher instruction on language acquisition of 14 children with ASD were 

compared. The computerized instruction included features such as sound effects 

and actions to attract the participants’ attention. The CBI group was observed to 

spend more time on task than those in the teacher-instructed group. The CBI group 

also showed stronger desire to continue with the program after study completion 

than the teacher-instructed group. 

Additional support for increased efficacy of CBI over more traditional 

methods was offered by [87]. In this study, development of reading skills in eight 

ASDIs was evaluated in two conditions; CBI and book-based instruction. The 

investigators found that at the end of CBI, five of the participants reliably identified 

at least three words when they failed to do so in the other condition. The 

participants were also reported to spend more time on and were less resistant to 

use reading material during CBI. 

In another study by Bosseler and Massaro in 2003, [14], a three dimensional 

(3D) computer-animated talking head was evaluated on the improvement of 
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vocabulary in eight ASDIs (7-12 years old). In an initial experiment, significantly 

more words were identified by the participants at post-test than at pre-test. 

Besides, 85% of the new vocabulary words were correctly identified by the 

participants one month after program completion, suggesting that gains 

maintained over time. Additionally, high levels of enjoyment while working with the 

talking head were observed in seven of the participants. 

In a follow-up study, [14], the same investigators evaluated the impact of 

the talking head program on language and skill generalization using a single-

subject, multiple-baseline design across six of the eight participants from the first 

study. The participants were reported to learn faster and remember better the 

words they had learned in the voice-and-face condition than in the voice-only 

condition. The results of this study provide preliminary but important evidence that 

audio-visual CBI has superior impact over auditory-alone CBI in language training. 

The study by Coleman-Martin and Heller in 2005, [16], reports an 

experiment on CBI conducted with three students one of which is a 12-year-old 

with ASD). This study included three conditions consisting of CBI only, teacher 

instruction only, and teacher plus computer-assisted instruction. The student with 

ASD reached criterion in each of the three conditions but had the fastest 

acquisition rate in the CBI only condition comparing to the other two conditions. 

In the study by Hetzroni and Shalem in 2005, [18], six children with ASD 

were trained to identify words taken from commercial logos of food items. The 

effects of the program were evaluated using a multiple-probe design across 

participants. At the end of the study, all the participants were able to identify the 
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target words. Additionally, they successfully generalized their knowledge to 

classroom settings. The investigators, after study completion, collected probe data 

on a weekly basis to test identification accuracy over time. The data indicated that 

the participants maintained what they had learned over time. In a more recent 

study, [20], the effects of a computer-based early reading program on accurate 

reading were evaluated over four word sets by a nine-year-old child with ASD. The 

results, in the context of a multiple-baseline design across the word sets, indicated 

improved reading accuracy. 

In a study on children with ASD [28], Tartaro and Cassell used an embodied 

software agent whose activities were manually controlled by an experimenter 

(Note – this is sometimes called Wizard-of-Oz approach). The experimenter 

observed the session from a different room and then chose the speech and 

gestures of the agent in an online manner, but manually, from a pre-recorded set 

of options. Two different conditions were studied, interaction with another child, or 

with the agent. The results indicated that the study participants increased their 

contingent discourse in the agent condition but failed to do so in the other one. It 

is noteworthy that this study is neither about sight words nor did it used any 

automated technology. The findings, however, suggest that embodied 

conversational agents can be useful tools for ASD intervention. 

2.1.1  Discussion 

The studies described in this section provide evidence for the potential of 

CBI to develop language and communication skills in ASDIs. This dissertation 

research takes advantage of the benefits and potential of CBI to teach sight words 
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to ASDIs. This follows studies such as [14, 27] which utilize embodied PAs, as they 

have demonstrated some superior gains for these individuals. 

The novelty of this part of the dissertation, however, is the implementation 

of a computer application for teaching sight words reading which operates 

autonomously. This computer application delivers instructions through synthesized 

speech and receives learners’ responses through automatic speech recognition. 

This autonomy can save teachers’ instruction or preparation time while providing 

an engaging learning environment for autistic learners. It also enables learners to 

work on their reading materials on their own (even in the comfort of their home) 

while their reading performance is recorded in a computer file which can be 

accessed and analyzed by their teachers later on. The detailed information about 

this PA-based tutoring system will be provided in Chapter 4. 

2.2  Robotic Intervention 

The origin of robotic endeavors in ASD therapy can be traced to the 1970s 

through a seminal work done by Weir and Emanuel in [88], where an autistic boy 

was introduced to a remote-controlled turtle. However, it was not until the late 

1990s and early 2000s, as ASD rates continued to escalate, that multiple labs 

adopted this topic for research. A socially interactive robotic system used in the 

field of ASD intervention is Robota doll (Figure 4). Robota dolls are a family of mini 

humanoid robots that can engage in interactions with humans, involving speech, 

vision, and body gesture [89]. They have existed since 1997 and were developed 

in order to investigate how a human can interact with a robot. The main body of 

the doll that contains the electronic boards and the motors is the plastic component 
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of a commercially available doll. The robot can react to touch by detecting passive 

motion of its limbs and head. 

Keepon (Figure 4) is a simple creature-like robot, which is capable of 

expressing its attention by orienting its face to a certain target, and expressing 

emotional states by rocking its body from side to side and by bobbing its body up 

and down. They are reported to prompt spontaneous play in children with 

developmental disorders, and to develop social communication of these 

individuals with the robot and a co-present adult [90]. 

 
Figure 4. From left to right: Robota, Keepon, Roball, Labo-1, and Infanoid (Images taken 

from [4, 91-94], respectively) 

Roball (Figure 4) is a spherical mobile robot that can generate various 

interplay situations with children in playroom environments. It autonomously 

wanders around in the environment and tries to initiate interaction with the child 

through some vocalizations [93]. Roball and a set of other robotic toys were 

designed to study effectiveness of different interactive capabilities of robots on 

engagement of children with ASD in playful interactions. 

Labo-1 (Figure 4) is a non-humanoid mobile robot which consists of infrared 

sensors for obstacle avoidance and pyro-electric sensors, using which it can 

engage autistic children in chase-and-escape plays. Also, by means of a voice 



 

17 
 

production device, it can make utterances in certain situations and communicate 

with the children [4, 8, 95, 96]. 

Infanoid is a robot which was designed as a possible naturalistic 

embodiment for human-robot interaction (Figure 4) Infanoid possesses a complex 

mechanical design and a humanoid physical appearance. This robot has been 

used in contingency-detection games, where the robot engages in social 

interaction with autistic children, reacting to any social cues, as well as trying to 

elicit these from children by producing social cues [94]. 

KASPAR (Figure 5) is a minimally expressive child-sized humanoid robot. 

KASPAR's head, arms, and face can perform different movements, while its legs 

do not move. The face is made from a silicon rubber mask that covers a metal 

frame containing electromechanical parts. The eye lids and mouth can open and 

close. KASPAR is able to show minimal bodily expressions (e.g. waving or 

drumming a toy tambourine), facial expressions (e.g. happy, neutral, sad, and 

surprise), and gestures to interact with a human [97]. Case study evaluations 

suggest that KASPAR can encourage children to engage in social interactions with 

peers or adults [98-101]. 

Bandit (Figure 5) an upper-torso humanoid with two arms, a pan-tilt neck, 

an expressive face, and a mobile base has been used during free-play 

observations with children with ASD [102]. The robot moves autonomously around 

the room, and is able to make gestures, non-verbal vocalizations, and blow 

bubbles. The behavior of the robot is programmed to foster social interaction and 

communication of autistic children by turning the head, making 
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encouraging/disappointed utterances, blowing bubbles, moving towards the child, 

and rotating in place [103, 104]. 

IROMEC (Figure 5) is composed of a mobile platform, an application 

module, and a number of additional components that modify the appearance and 

behavior of the robot. The body has a main digital screen that displays graphical 

interface elements. The head has a smaller digital display that shows basic facial 

expressions like happiness and fear. The robot can engage in a number of play 

scenarios that are developed according to the needs of the target users group [98, 

99]. Also, NAO, the humanoid robot used in this dissertation as the robotic peer, 

is reported to have the capability to engage autistic children in interactive behavior 

through speech, body movements, and touch. NAO has been recently used within 

researches in ASD [105]. 

 
Figure 5. From left to right: KASPAR, Bandit, IROMEC, and AIBO (Images taken from 

[98, 101, 103, 106], respectively) 

AIBO (Figure 5) is a robotic dog widely used for education and research 

purposes. The effectiveness of using AIBO to improve social skills of eleven 

children with ASD was evaluated in [106]. The examiner compared the effects of 

playing with AIBO versus a toy dog. The results revealed that the robotic dog 

stimulated longer play interactions and more spoken communication. Furthermore, 
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the results showed that dyadic interaction (between child and object) and authentic 

triadic interaction (between child, object, and examiner) occurred more frequently 

in the AIBO condition compared to the toy condition. 

The researchers investigating robotic intervention for ASDIs envisage 

design and construction of systems that can guide these individuals from very 

simple forms of interaction towards more complicated ones, as those in social 

human-human interactions, by slowly increasing the system’s behavior repertoire 

as well as its complexity, duration, frequency, and unpredictability. At first, in a very 

simple context, the system demonstrates a small set of behavior plans, specifically 

for those individuals with intense deficiencies. After a while, in a gradual basis, the 

system features a larger behavior repertoire and plans its behavior, based on an 

agenda that is therapeutically relevant. The most important forms of social 

interaction are joint attention, imitation, and turn taking. In the following, the 

literature in the field of robotic intervention for ASD is reviewed according to these 

interaction forms. 

2.2.1  Joint Attention 

Joint attention (JA) is defined as the shared action of two people looking at 

the same object or pointing at it. JA skills are deemed to be the most essential 

building block of social communication [107]. In social life, the competency to 

participate in activities needing shared attention is a fundamental element to 

understand other people and to cooperate upon this understanding [108]. These 

skills appear between 9 and 18 months of age in typically developing children. 

Impairment in JA skills, however, is one of the first symptoms observed in children 
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with ASD [96, 109, 110]. JA deficits have serious consequences in development 

and learning language in these individuals [107]. 

Due to their inherent attractiveness and salience, robots or computer 

characters can be served as foci for JA, catalyzing interaction between autistic 

child and a co-present adult (e.g. teacher, parent) or child (e.g., peer, typical child) 

[91, 111]. Keepon has been utilized to improve basic JA skills in autistic children 

through certain play scenarios. Keepon, which is controlled manually (i.e., WOZ 

mode), alternates its gaze between a child’s face, the caregiver’s face, and 

sometimes a close toy. It produces a positive emotional response by bobbing its 

body and producing a happy-sounding utterance in reaction to any positive activity 

by the child, e.g., eye contact, touch, or vocalization. During the trials, autistic 

children were able to approach Keepon and gradually establish physical and social 

contact with it. Some of the children, furthermore, extended their dyadic 

interactions with the robotic toy into triadic ones by including a co-present adult 

into the interactional context [90, 94, 112]. 

In the study by Robins et al. in 2005, [91], JA skills in triadic interactions 

involving Robota, a child, and a second person were studied. The children were 

brought into the room two at a time, to participate in approximately five-minute 

sessions. The trials took place over several months and were designed to 

progressively move from very simple to more complex exposure to the robot. 

During the later trials, the investigator verbally encouraged the children to show 

each other how they could interact with the robot. In one play scenario, Robota 

mediated physical contact between the children, which is very unusual amongst 
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children with autism. In another play scenario, to improve the combination of JA 

and imitation (IM) skills, in addition to moving according to a request, the children 

sometimes positioned themselves appropriately even when not asked to do so. 

Sometimes, as a response to the robot’s movement, the children simultaneously 

imitated the actions of Robota. The robot encouraged a full body experience for 

the children, stretching themselves, and exploring their own balances, while 

interacting with each other. 

In another study by the same research group, [113], Robota operated as a 

preprogrammed dancing toy. In this mode, it moved its arms, legs, and head to the 

beat of pre-recorded music. Three autistic children, 5-10 years old, participated in 

nine three-minute-long trials during a period of 12 weeks. The children were 

brought to the room one at a time in the presence of the investigator. During the 

trials, the investigator did not initiate communication or interaction with the child, 

but did respond when addressed by the child. Results highlighted different ways 

where the robot provided a context in which the autistic children displayed 

embodied triadic JA interaction. 

The study by Robins and Dautenhahn reported in [114] provides a case 

study where Robota mediated both indirect and direct triadic interactions between 

three children with autism and the experimenter. The robot was connected to a 

laptop and operated in WOZ mode, i.e. as a tele-operated puppet. In this mode, 

the investigator is the puppeteer and moves the robot’s arms, legs, or head by a 

simple press of buttons on the laptop. The children engaged in an imitation (IM) 

game with the robot wherein the investigator mirrored their movements with the 
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robot. After a few turns of correct IM, the experimenter introduced a mistake in the 

robot’s IM, which caused the children to giggle and talk to the robot with affection 

that this is wrong. When the children realized that the experimenter was operating 

the robot, it became a game between the experimenter and them. The children 

were knowingly sharing their enjoyment with the experimenter in JA framework. 

Three children who participated in a study by Robins et al. reported in [100] 

suffered from severe ASD and verbal disabilities. The robot used in this study was 

KASPAR, operated via a wireless remote control. The trials lasted over several 

months for two of the children, but took place as a one-shot session for the third. 

The first child was reported to stretch out her hand, reaching for the experimenter’s 

hand. The second child, in later stages of the study, started to touch and explore 

his own eyes, KASPAR’s eyes and eye lids, as well as his teacher’s eyes and face. 

The third child also started to share his excitement with his teacher, reaching out 

to her, and non-verbally asking her to join in the game. During the games, he 

learned to look at his therapist to see how she imitated KASPAR. Finally, the 

children succeeded in using the robot as an item of shared attention in order to 

play simple IM games together. 

2.2.2  Imitation 

Imitation, ranging from vocal responses for learning language to bodily 

mimics for learning movements and other physical activities, plays an essential 

role in child development and adulthood. It is a powerful means of signaling interest 

in another person, used for purposes of communication and interaction [115]. 

However, generally, autistic individuals are less capable of imitating actions and 

gestures [116]. The research carried out in [117] shows significant correlation 
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between IM and positive social behavior. Furthermore, [118] suggests that autistic 

children improve their social responsiveness, when they are being imitated. 

In autism research, several studies have investigated the use of interactive 

technologies in teaching IM skills to children with ASD. In [4], Labo-1 is utilized by 

Dautenhahn and Werry to engage such individuals in simple, imitative interaction 

games. Four children who participated in the study were between 8–12 years of 

age, and included non-verbal children. The children played chasing game with the 

robot. They reached out and touched the robot, thereby making it approach them. 

When the robot was very close, the child took several steps backwards and again 

waited for the robot to follow them. Through these simple IM games, the interaction 

levels of the children with the robot are reported to significantly increase. 

The research by Robins and Dautenhahn reported in [7] provides a case 

study wherein four autistic children, 5-10 years of age, participated in an average 

of nine trials each. The average duration of trials was approximately three minutes. 

By moving their limbs, the investigator showed the children how Robota could 

imitate their movements. The children, by themselves, could then continue the 

interaction with the robot, which was operating in the puppet mode hidden from 

them. In the last couple of trials, the children were not given any instructions or 

encouragement to interact with the robot, and were left to interact and play IM 

games on their own initiative. 

In the study by Stribling et al. reported in [119], a high-functioning child with 

ASD was encouraged to interact with a robot that imitated the child’s behavior. 

Although it was not the major focus of the study, the investigators collected a 
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sufficient number of samples of perseverative speech from the child-robot 

interaction to conduct conversational analysis on the interchanges. The 

preliminary data suggested that robot-child interactions might be useful for eliciting 

characteristic behaviors such as perseverative speech. 

The study by Iacono et al. reported in [98] was carried out over six months 

with ten autistic children, with the average age of eight years. The robots used in 

this study are IROMEC and KASPAR. Each child performed the same play 

scenarios with each robot separately. The length of each session was 

approximately 20 minutes. The movements in interaction with KASPAR, which was 

operated by the investigator via remote control, consisted of touching the face, 

opening and closing the eye lids, and raising the arms in sequence or together. 

Also the experimenter sometimes gave the remote control to the child; in these 

cases, the child chose which of KASPAR’s behaviors she would like to imitate. 

During the IM game with IROMEC the child was asked to look at IROMEC's 

movements and to imitate them. IROMEC performed a sequence of movements 

of traveling right, left, and straight. The scenarios based on IM seemed to work 

better with KASPAR than with IROMEC. 

Two other studies found increased imitation speed to robot models in 

comparison to human models [120, 121]. The study by Bird et al, [120], reported a 

speed advantage in adults with ASD imitating robotic hand movements over 

human hand movements. In a rather similar study, [121], Pierno and colleagues 

found that children with ASD had significantly faster movements to grasp a ball 

when they saw a robotic arm perform the movement first than when they viewed a 
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human arm first. These studies suggest that ASDIs might benefit from tasks that 

involve imitating robots in comparison to imitating humans. 

The study by Duquette et al. reported in [122] examined the use of a 

humanoid robot to help a group of four children with ASD practice imitation 

behaviors in a series of intervention sessions. In this experiment a human mediator 

or the humanoid robot performed role of a partner. The interaction partner 

performed a behavior, asked the child to imitate the behavior, and if the child was 

successful, provided positive reinforcement by raising arms and positive auditory 

feedback. Proximity and interactions were found more frequently in children paired 

with the robot mediator than in children paired with the human mediator. 

2.2.3 Turn Taking 

The main educational objectives addressed with turn-taking (TT) scenarios 

in ASD therapy are improvement of spatial and body awareness, sense of self, 

creativity, leadership and the taking of initiative in autistic children. Moreover, it has 

been suggested that TT and IM games allow infants to identify people separate 

from other objects, and distinguish between different persons [123]. 

The study done by Wainer and Dautenhahn reported in [101] describes an 

experiment in which six children with ASD played a dyadic video game 

alternatingly with an adult and KASPAR, in four 25-minute sessions over a period 

of three weeks. The two players had to stand on opposite sides of a single flatbed 

computer monitor, while taking turns and communicating with each other, either 

verbally or by pressing buttons, to decide which of the many shapes on the screen 

both of them would select. Each player would then use their handheld wireless 

controller to move one of two orthogonal lines about on the screen, making their 
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line intersect with the agreed-on shape. The players would then have to collaborate 

with each other to synchronize pressing the buttons on their controllers. When this 

was done successfully, the players were briefly rewarded by their controllers 

vibrating, a pleasant sound playing from nearby speakers, and the selected shape 

flashing and spinning around. During this experiment, it is observed that the 

children’s actively collaborative behaviors between the first and second sessions 

of playing with the human partner increases significantly. 

In the study by Iacono et al. reported in [98], several TT scenarios were 

conducted with IROMEC and KASPAR, in addition to IM games discussed in the 

previous subsection. In the first scenario, TT was carried out using IROMEC. While 

playing with the moving robot, the two players sat on the floor or stood a certain 

distance away from each other. The first player turned IROMEC toward the second 

player and touched the digital fur on its main visual display causing the robot to 

move forward. When IROMEC reached the second player it stopped and gave 

him/her an appropriate feedback (visual and sound). The second player then 

turned the robot towards the first player and sent the robot back to the first player. 

This procedure was repeated multiple times. 

The second TT scenario in the study by Nadel et al, [117], was performed 

with IROMEC stationary while the two players sat on the floor close to it. During 

the game two different colors (red and yellow) appeared on IROMEC body display 

as two sets of ladybugs. There were two buttons (red and yellow), one for each 

player. The goal of the game was to summon animated digital ladybugs onto the 

body display and make them flap their wings by taking turns in pressing buttons. 
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Each player selected a different button, and pressed this button once during their 

turn. When a button was pressed a ladybug of the same color appeared and began 

to flap its wings. The game continued until three yellow ladybugs and three red 

ladybugs appeared on IROMEC's back. At the end of the game an audio reward 

(short melody) and a visual reward (flying ladybugs) were given. 

The third TT scenario carried out with KASPAR, in the study by Michaud et 

al. in [93], is a collaborative play activity based on playing a drum. In this scenario, 

two identical drums were used, one placed on KASPAR's lap and the second given 

to the child. Both the child and the experimenter sat in front of KASPAR. The 

experimenter operated KASPAR with the remote control device. The child was 

asked in their turn to play their drum in the same way KASPAR had played before. 

During the scenario the experimenter sometimes asked the child to switch roles 

with KASPAR and to show it how to play the drum. In this case, the child was the 

one who initiated the drumming for the robot to imitate. Furthermore, the 

experimenter sometimes gave the remote control to the child to operate KASPAR. 

For some children, waiting for their turn to control the robot was an important 

incentive to participate in this TT activity. 

The study by Lehmann et al. reported in [99] describes the use of KASPAR 

and IROMEC in a six-month-long study with autistic children. In this study the two 

players were a child and an adult. The objectives covered the improvement of the 

awareness of one’s own body, spatial awareness, the understanding of cause and 

effect, the improvement of the ability to focus on a single task, the ability to 

establish JA, and the ability to understand and apply the rules of interaction. This 
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scenario with IROMEC consisted of clapping the hands to make IROMEC move 

around in the space. By clapping hands once it goes straight. To change the 

direction of IROMEC, left or right, or to keep the robot moving, the child has to clap 

their hands two or three times. This play scenario is played in the WOZ modality. 

A second experimenter operates the robot’s movements using a button. 

Also in the same study, [99], a TT scenario with KASPAR was examined 

wherein the goal was to clap hands to raise KASPAR’s arms. The children were 

asked to clap their hands once, twice, or three times for KASPAR to lift up its right 

arm, left arm, and both arms respectively. The experimenter controlled KASPAR’s 

movements in the WOZ mode. In some cases, the experimenter gave the remote 

control to the child. The experimenter instructed the children to do the same 

movements KASPAR did or to clap their hands in order to reinforce the feedback. 

In the study by Kozima et al. reported in [92], a series of longitudinal 

observations were made to examine how autistic children interacted with Keepon 

in TT as well as IM scenarios. Keepon was placed in a playroom at a day-care 

center where autistic children, 2.4 years old on average, their parents, and nursing 

staff interact with each other. In the playroom, Keepon was one of the toys 

scattered over the floor. During the remedial session of about three hours, the 

children played with Keepon whenever they wished. This study observed 

interactions of autistic children with Keepon during 500 sessions, over 18 months 

of study. This study reports emergence of dyadic social interactions with Keepon 

that gradually converted to triadic forms with their parents as well as other children 
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after several months. These social interactions emerged through unconstrained 

individual or organized group activities of touching and playing with Keepon. 

2.2.4 Discussion 

The studies described in this section suggest that robots have the capacity 

to play important roles as therapeutic tools for children with ASD. They can 

enhance their quality of life and social integration, and bear the potential to furnish 

real-time, multi-modal, and embodied social interactions. Interaction with a robot 

lies between the complexity of interacting with a software agent and that of 

interacting with a real person. Robots foster interaction dynamics that closely 

reflect the real time nature of human-human interaction and naturally support multi-

modal interaction. 

This dissertation research studies the effects of using a humanoid robot in 

facilitating reading sight words for individuals with ASD. If ASDIs show preferences 

for robots, then one prediction would be that performance on tasks could improve 

if the same actions were modeled by a robot in comparison to a human. In this 

scheme, along with learner with ASD, a humanoid robot will attend the tutoring 

sessions as an RP. Learning through such triadic interaction requires the learner 

to apply and practice social interaction skills such as JA, IM, and TT. According to 

the literature reviewed in this section, robots can play important roles in fostering 

JA, IM, and TT skills in ASDIs. 

For example, when RP is addressed by PA, it serves as a focus of JA 

between PA and the learner. Utilizing RP can catalyze interaction between the 

autistic learner and PA (because of its intrinsic attractiveness) and bring about 

higher engagement levels and time-on task which, in turn, result in higher learning 
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gains. Similarly, TT skill can be practiced when the learner and RP attend a 

learning session in which PA addresses them in turns. This approach also provides 

a medium in which the learner repeatedly mimics a behavior (IM) while actually 

learning how to read and identify words. The robot in this instance is directly active 

in modeling a specific behavior for the child. 

RP can also provide feedback (reinforcement, etc.) or produce a positive 

emotional response through gesture and utterance to positive social or cognitive 

activities by the learner while involved in learning through interaction with PA. The 

use of a robot rather than a human to serve as a peer here fits with technology-

oriented preferences of ASDIs. 
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CHAPTER 3 

3 ONE-TO-ONE INSTRUCTIONAL ARRANGEMENT: 
AUTONOMOUS PEDAGOGOCAL AGENT 

This chapter presents an AI-based tutoring system which uses an 

interactive computer character as a pedagogical agent (PA). This agent simulates 

a human tutor teaching sight word reading (SWR) while demonstrating body and 

hand gestures, facial expression, and head postures (i.e., nods and shakes). In 

order to facilitate interaction using natural language, the agent delivers instructions 

through synthesized speech and receives learner’s responses via microphone and 

automatic speech recognition (ASR). 

Reading ability is an essential component of language competency [124], 

and a fundamental skill for independent living [125, 126]. When learning to read, 

however, many individuals with ASD find difficulties that are attributed to specific 

cognitive deficits [127, 128]. Limited ability to interact during and lower time in 

literacy activities, as well as lack of self-confidence, attention, and motivation may 

also contribute to this deficiency [127, 129]. It may, as well, be due to 

ineffectiveness of conventional instruction methods for this population. ASD 

individuals (ASDIs) usually have deficits in phonemic awareness and word 

decoding which renders phonetic-based reading instruction less effective for these 

individuals [127, 130, 131]. 

Some researchers, hence, have advocated supplementing phonetic-based 

instruction with sight word instruction [132-134]. Sight words are frequent 
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vocabulary that one can read without any decoding strategies and phonetic 

analysis [135]. SWR can help these individuals survive and be safe within society 

[136], and improve their functioning with school- and work-related tasks [136-139]. 

SWR can also boost their confidence in reading ability, and improve their affective 

experience (e.g., by reducing anxiety) and, thereby, their attitude towards learning 

to read [132, 140, 141]. Sight word instruction for individuals with ASD has been 

reported effective in the literature [131, 142]. 

Many individuals with ASD find more comfort and joy in interacting with 

computers than with humans, and feel an affinity with them [5, 143, 144], 

suggesting that computer-based instruction (CBI) can be an effective intervention 

method for them. There have been several studies investigating the use and 

efficacy of CBI of language skills to these individuals [15-20]. Although the reported 

positive gains vary, the overall results are quite favorable. CBI can provide learning 

environments that are individualized, highly controlled and structured, and can 

include a variety of modalities, such as text, sound, and images. CBI enhances 

motivational and attentional factors, and increases engaged time and enjoyment 

in individuals with ASD [5, 87]. CBI also has the potential to reach needy 

populations, such as people on the autism spectrum, at a broader scale because 

of the savings due to automation. 

In a recent endeavor in using computers to instruct SWR, Mechling et al. 

[145] used PowerPoint slides on a Smart Board with three participants with 

intellectual disability (ID). The successful results of this research strongly support 

effectiveness of computer-assisted instruction (CAI) of SWR to individuals with ID. 
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The proposed method, however, still involved the teacher in the process of 

instruction for advancing the PowerPoint slides, delivering task directions, verbally 

modeling the target words, as well as providing praise and feedback for their 

correct and incorrect responses, respectively. The researchers also mentioned 

that the program required the teacher to have some computer skills such as the 

use of PowerPoint and Smart Board. 

Yaw et al. [142] used PowerPoint slides to teach SWR to a sixth-grader with 

ASD. In their proposed method, the target words appeared on the screen, one at 

a time, for two seconds. The student was to read the word before it disappeared 

and the word was modeled (pre-recorded using the experimenter’s voice). The 

successful results of this study encourages the use of computers in SWR 

instruction to individuals with ASD. Coleman et al. [146] compared the efficiency 

of CAI and teacher-directed instruction of SWR to three students with ID. In the 

CAI condition, the words were taught through teacher-developed PowerPoint 

slides including the target words as well as pre-recorded audio (using the teacher’s 

voice) providing task directions, controlling prompts, verbal models of the words, 

and non-contingent verbal praise at the completion of each session. CAI of SWR 

was proved effective, though just slightly less efficient, compared to the teacher-

directed condition, in terms of number of trials to criterion. 

The involvement of teachers in the proposed instruction methods of Yaw et 

al. [142] and Coleman et al. [146] is relatively less than that of Mechling et al. [145], 

although it comes at the expense of contingent reinforcement and feedback to 

students. Such reinforcement and feedback, however, play vital roles in instructing 
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individuals with ASD. With timely and accurate feedback, learners realize their 

mistakes and can correct them immediately [147]. A non-contingent response 

should reduce the cost-effectiveness of CBI against human instruction. 

Recent advances in ASR can play a big role in automation of instruction to 

students with and without disabilities. ASR technology has the potential to furnish 

a learning environment where students read to the tutoring software and their 

reading performance is assessed automatically. ASR can provide a cost-efficient 

method to automate instruction, facilitate data collection, and expedite the 

turnaround period for receiving scores. ASR is not a new technology, and it has 

been used in navigation systems and customer service applications, just to name 

a few. In the field of special education, Raskind and Higgins [148, 149] compared 

the impact of general computer instruction against computer instruction 

augmented by ASR to students with Dyslexia. The results indicated significant 

improvements in word recognition, spelling, and reading comprehension. 

Most current CBI software rely on keyboard and mouse usage for their 

users, while people with ASD often have low tactile sensory tolerance and poor 

development in both fine and gross motor skills. Incorporating ASR into CBI could 

address these issues and accommodate for sensory preferences, thereby catering 

to more users. In the current chapter, the author sets out to integrate ASR into the 

tutoring software that teaches SWR to students with ASD. The software evaluates 

the students’ responses on the reading material in order to collect data on their 

performance as well as to provide contingent, immediate reinforcement and 

feedback, which are essential in treating children with ASD [150]. Besides, the 
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developed tutoring software talks back to the students via a text-to-speech (TTS) 

engine. The TTS engine enables the tutoring system to deliver the instructional 

tasks, controlling prompts, verbal praises, and feedback to the students using 

natural language. 

The use of ASR and TTS in the educational software brings about an 

autonomous interaction that flows based on human terms. This autonomy can 

save teachers’ instruction and preparation time while providing an engaging 

learning environment. It also enables students to practice independently while their 

performance is recorded in a computer file which can be accessed and analyzed 

by their teachers later on. 

Social interaction, a deficient area in individuals with ASD, can be promoted 

while working on computers, provided that proper social arrangements are made 

[151]. Advances in computer graphics have opened up new avenues for human 

learning through interaction with pedagogical agents (PAs) rather than 

disembodied voices. PAs are virtual characters incorporated in learning 

environments [22, 152]. What makes PA-based learning environments unique 

from conventional ones is that they support multimodal human interaction. In PA-

based environments, a student acquires the target skill while interacting with a PA 

equipped with social and emotional manifestations (e.g., gaze, joint attention, and 

facial expressions). PAs can provide this population with learning environments 

that are less socially intensive than human-based instruction [153, 154]. 

Positive effects of PAs on motivational, attentional, and cognitive factors in 

individuals with ASD have been demonstrated in the literature. Tartaro and Cassell 
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[28, 155] used a virtual agent, Sam (Figure 6), to enhance social skills, such as 

turn-taking, gaze behavior, and social discourse in children with ASD. Sam is a 

virtual agent whose activities were manually controlled by an experimenter via a 

control panel (i.e., Wizard of Oz approach). The experimenter observed the 

session from a different room and then chose the speech and gestures of the agent 

in an online manner from a pre-recorded set of options. 

 
Figure 6. Screen shot of Sam educational environment (courtesy of Tartaro and Cassell 

[28, 155]) 

Two different conditions were studied for building collaborative narratives; 

interaction with another child or interaction with Sam. The authors reported that 

Sam was intuitive and motivating for the study participants. After interaction with 

Sam for an extended period of time, the participants scored higher on language 

tests, and displayed improvement in social behaviors. The results also indicated 

that the participants increased their contingent verbalization over the course of 

interaction in the agent condition but failed to do so in the other one. The 

participants were, more importantly, able to transfer the acquired skills to realistic 

settings and with their human peers. It is noteworthy that this study is neither about 
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reading instruction, nor did it use any automated technology. The findings, 

however, suggest that embodied virtual agents can be useful tools for ASD 

intervention. 

Bosseler and Massaro [14, 27] examined a computer-animated talking 

head, Baldi (Figure 7), to instruct vocabulary recognition and grammar to children 

with ASD. In an initial experiment, significantly more words were recognized by the 

participants at post-assessment than at pre-assessment. Besides, 85% of the new 

words were correctly identified by the participants one month after program 

completion, suggesting that gains were maintained over time. Further, the 

participants displayed high levels of enjoyment while interacting with Baldi. In a 

follow-up study, the investigators evaluated the impact of Baldi on language and 

skill generalization. The study participants were reported to learn words faster and 

maintain them better while interacting with the tutoring software in his voice-plus-

face mode than in the voice-only mode. The results of this investigation are 

preliminary but a promising indication that PAs may have superior impact over 

auditory-alone CBI in language training. 

 
Figure 7. Screen shot of Baldi educational environment (courtesy of Bosseler and 

Massaro [14, 27]) 
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Milne et al. [156] created another instance of PA-based educational 

software, Thinking Head, which has life-like agents with the capability to 

demonstrate facial expressions. They developed two modules for this agent 

platform (Figure 8); one to instruct how to deal with bullying and one for basic 

conversation skills. The autistic participants of this study were reported to find the 

agents enjoyable and useful, and their post-test scores on the knowledge of those 

two topics were significantly higher than the pre-test ones. They also found the 

interaction with the agents positive and non-threatening. 

 
Figure 8. Screen shots of Thinking Head software (courtesy of Milne et al. [156]) 

Mower at al. [157] developed an interactive educational software, Rachel 

system (Figure 9), which included an agent along with emotionally evocative 

scenarios to elicit affective and social behavior in children with ASD. The agent 

which had a peer-like appearance was manually operated in the Wizard-of-Oz 

mode. The authors used the Rachel system to instruct the participants about 

emotional causes as well as to coach them through empathetic exercise. The 

findings of this study illustrated that the system was successful at eliciting socio-

emotional interaction from children with ASD. 

The results of these studies, albeit preliminary, provide important evidence 

that PA-based tutoring systems may be superior to auditory-alone systems. They 
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are effective in eliciting social and emotional behaviors in these individuals, and 

have the potential to provide engaging, motivating, and enjoyable learning 

environments for this population. Particularly exciting evidence in most of these 

studies is that they report skill generalization to novel contexts, an area of difficulty 

for ASD intervention. 

 
Figure 9. Screen shot of Rachel system (courtesy of Mower et al. [157]) 

The results of these studies, albeit preliminary, provide important evidence 

that PA-based tutoring systems are superior to auditory-alone systems. They are 

effective in eliciting social and emotional behaviors in individuals with ASD, and 

have the potential to provide engaging, motivating, and enjoyable learning 

environments for this population. Particularly exciting evidence in most of these 

studies is that they report skill generalization to novel contexts, an area of difficulty 

for ASD intervention. 

In the next section, the details of the developed educational software and 

the adopted instructional strategy are presented. 

3.1 Instructional Strategy and Software 

The developed tutoring system relies only on proven instructional strategies 

for individuals with ASD. Various instructional strategies have been examined by 
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researchers to find the most effective and efficient ones for this population, 

including time delay [158], system of least prompts [159, 160], and least-to-most 

prompting [161], among others. A procedure is considered efficient when it results 

in high amount of learning in a short amount of time and provides high density of 

reinforcement. 

The developed tutoring system, embeds an evidence-based instruction 

procedure called constant-time delay (CTD), as it has been shown to be an 

effective and efficient strategy for this population [158]. Successful application of 

the CTD procedure in ASD intervention includes instruction of social phrases [162], 

social play skills [163], and sight words [164, 165]. Furthermore, the structured 

format of CTD lends itself nicely to be implemented as a computerized procedure. 

Previous research has reported successful implementation of computerized CTD 

to teach multiplication facts [166], grocery words [145], functional sight words 

[146], and Dolch sight words [142]. 

CTD involves stimulus presentation, task delivery, controlling prompt, 

reinforcement, and feedback. Initially, the stimulus and task are immediately 

followed by the controlling prompt to ensure correct response by the student. After 

several trials of this drill, the controlling prompts are systematically faded on a time 

dimension by introducing a constant delay before the prompts in order to allow the 

learner to emit the response on their own. The instructor delivers reinforcement 

and corrective feedback for correct and incorrect responses, respectively [167]. 

Reinforcement and feedback play important roles for learning the target skill in the 

CTD procedure. 
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The developed software which is a desktop virtual reality (VR) application 

integrates a PA, a virtual classroom, a TTS engine, and an ASR engine. The 

application was created in a commercially-available VR design package, namely 

Vizard from Worldviz [168]. The PA is a 3-D full-bodied agent, rather than a face-

only, shoulder-up, or waist-up character, for two main reasons. First, a virtual agent 

in full body can use its arms and body orientation to model pointing gestures more 

easily than in other demonstrations. Pointing has a great potential for capturing 

attention and directing one’s gaze to a location in space. 

Individuals with ASD often exhibit extreme deficiency in gaze following and 

joint attention. Joint attention is the coordination of gaze among two people on an 

object. In responding to one’s joint attentional bids, the respondent is required to 

follow the gaze direction of the initiator [107]. Alcorn et al. [169] studied how gaze 

following and joint attention can be best stimulated, if at all possible, from 

individuals with ASD by an embodied virtual agent. The study’s participants were 

to pick a target flower, among three, that the agent indicated using its gaze with or 

without pointing gestures (Figure 10). The participants were successful in following 

the agent’s joint attentional bids, and it was the conjunction of gaze and pointing 

cues that resulted in significantly higher joint attention elicitation compared to the 

single cues. The employed full-body PA uses the combination of pointing cues, 

eye gaze, and head orientation in order to better capture users’ attention and help 

direct their gaze toward the reading material. The author believes that a full-bodied, 

animated agent with gestural cues can become a part of the teaching scenario, 

and better draws students’ attention to text which is to be read. 
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Figure 10. Agent uses different joint attentional bids to direct participant’s gaze (courtesy 

of Alcorn et al. [169]) 

Second, social distance, characterized by the distance between two people, 

plays an important role in their social interaction [170, 171]. While interacting with 

a PA, a close view of the agent’s face and upper torso may simulate an invasive 

social distance, which is considered an intimate space [170, 172], and has been 

reported in the literature to elicit uncomfortable feelings, attempts to increase the 

distance [170], and anxiety in these individuals [173]. In this educational software, 

by using a full-body representation of the agent, it is intended to simulate a social 

distance that provides a more comfortable conversation and avoids inducing 

anxiety, as anxiety is not conducive to learning [64] and perhaps is a hallmark of 

ASD [174]. 

The developed tutoring software simulates a classroom setting with a chalk 

board on which the sight words are shown in written form, one at a time (Figure 1). 

A real-time behavior and character algorithm is implemented to produce verbal and 

expressive attributes of the agent. When the student answers correctly (captured 

by ASR), the PA nods its head, smiles, and provides verbal praise (using the TTS 

engine) in order to deliver non-verbal and verbal reinforcement. On the other hand, 
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it shakes its head and provides the correct answer when the learner is incorrect. 

When there is no answer given by the student, it merely models the word without 

any expressive movements. 

To ensure robust speech recognition, an advanced, proprietary engine with 

high recognition accuracy was used. Since this is a feasibility study and has an 

exploratory nature, instead of purchasing a desktop license for an ASR engine, the 

author readily used the accessible engine within a NAO robot available at our 

laboratory.  NAO, which is a humanoid robot from Softbank Robotics [175], has 

microphones, and comes with a built-in ASR engine from Nuance [176]. The 

educational software was programmed in a way that it communicates with NAO in 

real time during the instructional sessions over a wireless network, to receive the 

recognized speech by its engine from the participants. In instructional sessions, 

NAO was inconspicuously placed behind the participants, while they were 

interacting with the PA, in a way that their voices can be reliably captured by NAO’s 

microphones without distracting them. The participants were led to believe that 

they were conversing with the PA, while the actual speech recognition was 

performed with the robot behind them. 

Further, as the author intended the interactions to be very human-like, a 

TTS engine from Sitepal [177] was utilized. This engine produces synthesized 

speech highly similar to human speech, rather than a machine-like voice. A natural 

human voice ensures that words are modeled with correct pronunciations. 

Therefore, although the developed tutoring system can utilize Microsoft's TTS 

engine, the PA’s speech (including prompts, words, verbal praises, etc.) was 
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recorded using Sitepal’s trial version which is freely available online. The author 

particularly intended the speech to be synthesized, rather than by, for example, his 

voice, in order to investigate its effectiveness in such a context. Realistic tutoring 

software will eventually need to rely on a TTS engine so as to provide a completely 

hands-off method for teachers and parents. 

In the following chapter, details of a case study with three autistic 

participants, using one-to-one computer-based sight word instruction are 

presented.
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CHAPTER 4 

4 CASE STUDY FOR ONE-TO-ONE SIGHT WORD READING 
INSTRUCTION TO STUDENTS WITH ASD USING AN 

AUTONOMOUS PEDAGOGICAL AGENT 

The current chapter examines the effects of the instructional package 

developed in the previous chapter, comprised of an autonomous PA, ASR and 

TTS technology, and CTD during the instruction of reading sight words aloud to 

young adults with ASD. A concurrent multiple-baseline across-participants design 

was employed to evaluate the efficacy of intervention and conduct post-treatment 

probes to assess maintenance and generalization. The findings suggest that all 

three participants acquired and maintained new sight words and demonstrated 

generalized responding. 

4.1 Method 

4.1.1 Participants 

Participants were recruited from a public school transition program on the 

university’s campus. Consent forms were sent to parents of students with ASD 

based on clinical diagnosis and the teacher’s recommendation. Criteria for 

selection were (a) being verbal, (b) ambulatory (as they had to commute from their 

classroom to the experiment room), and (c) being on the sight word reading level. 

Having some a priori sight word reading skill is necessary, as it assures that the 

person is not completely impaired in that aspect, and could potentially learn more 

words. Three students were permitted by their parents to participate. They were 
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all male, with age range of 19-20 years, demonstrated delays in all academic areas 

including literacy, and had previous general exposure to computers in their 

classroom and at home. Student J was a 20-year-old African-American male with 

Functional Mental Disability (FMD), Multiple disabilities (MD) of FMD, and 

Orthopedic Impairment. He demonstrated autism-like characteristics and his IQ 

was 53. Student A was a 20-year-old white male with ASD and MD (FMD and 

Attention Deficit Hyperactivity Disorder). His full scale IQ was 49. Student M was 

a 19- year-old African-American male with ASD and FMD. His full scale IQ was 40. 

All three participants demonstrated delays across all academic areas including 

literacy, and had previous general exposure to computers in their classroom and 

at home. 

Before approaching the students and their teacher, approval from the 

university’s institutional review board (IRB) as well as the county public schools’ 

IRB were obtained. 

4.1.2 Settings and Materials 

Sessions with the educational software were conducted in a one-to-one 

instructional arrangement in an experiment room in our laboratory. The virtual 

classroom and the PA were displayed on a 26-inch computer screen. During the 

sessions, the participant sat on a chair and directly faced the screen, which was 

located on a table, with properly-adjusted height for his eye level. Words were 

displayed with a 90 pt. Arial style font and with high contrast to insure visibility. 

Words were presented in lower case letters since that is how they most frequently 

occur in books and reading materials. As the developed educational software is 

equipped with ASR technology, and communicates through natural language with 
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users, neither a mouse nor a keyboard were provided for the participant. A 

webcam was mounted on the screen top to record the interactions throughout the 

experiment for the purposes of offline analysis, inter-observer reliability, and 

procedural integrity. The computer’s sound volume was set at a comfortable level 

via a built-in loud speaker at the back of the screen. 

Connected to the same computer, there was a second screen placed one 

meter away from, and perpendicular to, the first screen, in a way that the participant 

could not see its content. At the beginning of each session, using this screen, an 

experimenter launched the educational software (to be displayed on the first 

screen), and an application which was responsible for recording the video/audio 

stream coming from the webcam. Along with that stream, the researcher 

simultaneously recorded the content of the first screen (the PA and virtual 

classroom) in a picture-in-picture format, which enabled post-analysis of the PA’s 

activities as well as the participant’s reactions and answers. On these recordings, 

the reading material presented to the participants and their response could be 

observed at the same time. 

4.1.3 Screening 

The target words were chosen from Dolch and Brigance functional word 

lists [178, 179]. Prior to the experiment, each participant went through a series of 

tests to screen out words that he was already able to correctly read. The first stage 

of screening was performed by the participants’ teacher in a one-to-one format. 

She presented the words, printed on flash cards, one-by-one to him, and asked 

“what word?”, and noted down the words that the participant either read incorrectly 

or did not read at all. During screening, the participants did not receive corrective 
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feedback or reinforcement for their answers. For each participant, the words were 

selected from word lists higher than their reading ability level. 

The second stage of screening was performed in the experiment room by 

one of the researchers. The words identified by the teacher as unknown to each 

participant were again presented to them, similar to the previous stage. The only 

differences were that the words were displayed on the computer screen, instead 

of flash cards, and the task (“what word?”) was delivered by the researcher. 

Similarly, no feedback was provided. The words order was random each session. 

This stage was repeated three times on three different days to ensure the words 

were unknown to the participants. Repeated assessment is important since one 

may know a skill but for whatever reason does not show the knowledge in that 

specific occasion. From the words that were never read correctly, the researcher 

randomly chose four for each participant to be included in the study. At the end of 

screening sessions, each participant had a unique set of four words appropriate to 

his reading level that he could not read correctly. The teacher agreed not to instruct 

these words to the participants for the duration of this experiment. 

4.1.4 Experimental design 

To evaluate the efficacy of the proposed educational software, a concurrent 

multiple-baseline across-participants design [180] was employed. In this 

experimental design, the researcher started by collecting baseline data on reading 

performance by the participants. After three data points across three days, the 

tutoring software was presented only to one of the participants, while still collecting 

baseline for the other two. As soon as the first participant reached the criterion and 

the performance was stable, the researcher began delivering instruction by the 
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software to the second participant, and continued collecting baseline data from the 

third. This procedure was carried on until the third student reached the criterion as 

well. The criterion was defined as scoring 100% accuracy for three consecutive 

sessions. 

This experimental design proves the experimental control when the 

performance improves only with the introduction of instruction, while the 

performance remains stable at the baseline level without intervention. Such 

staggered introduction of instruction and continuous measure are meant to control 

threats to internal validity of the intervention, and attributes any significant 

improvement in the target behavior to the intervention itself rather than other 

external sources to acquire the skill. 

4.1.5 Baseline sessions 

Each baseline session consisted of four trials, one trial for each target word. 

During baseline, the actual PA and virtual classroom were first presented to the 

participants. The experimenter launched the application and entered the 

participant’s name. The PA started by greeting the participant with his name, and 

telling him “we are reading some words today. I need your attention.” After 3 

seconds, it presented one of the words in random, and asked “what word?” The 

word was displayed for 5 seconds on the board, in order to give enough time for 

the participant to emit his answer, and then disappeared. No feedback or 

reinforcement were provided to the participants. Before the PA advanced to the 

next word, there was a 1-second inter-trial interval. This procedure continued until 

all four words were presented to the participant. While so, the experimenter silently 

collected data on the participant’s reading performance, and did not comment 
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about accuracy. The recorded videos were also checked at the end of each 

session to insure reliability. 

4.1.6 Instructional sessions 

Instructional sessions were implemented based on a 0-5-second CTD 

procedure. Each session had 12 trials, 3 trials for each target word; one 0-second 

trial and two 5-second trials. Similar to the baseline sessions, the PA started with 

greeting and obtaining the participant’s attention. After a 3-second pause, the PA 

started the first round of trials which included a 0-second trial for each target word. 

The procedural steps in the first round were (a) task delivery (“what word?”) and 

presentation of stimulus (appearance of the target word), (b) immediately modeling 

the word to solicit student practice, (c) up-to-5-second latency, (d) corrective 

feedback (modeling the word again) or reinforcement (“good work,” “excellent,” 

“nice job,” etc.), and (e) 1-second inter-trial delay. In the first round, this procedure 

occurred exactly the same for all four words, one-by-one. During the second and 

third rounds of trials, the target words were not modeled immediately after the 

presentation of stimulus. Therefore, the steps were (a) task delivery and stimulus 

presentation, (b) up-to-5-second latency, (c) corrective feedback or reinforcement, 

and (d) 1-second inter-trial delay. Order of words were randomized across 

sessions in order to prevent participants learning the order. Each session 

concluded by the PA providing non-contingent praise, such as “you are doing 

great!” or “keep up the good work”, while clapping for the participant, to promote 

general motivation. 

During the instructional sessions, the researcher sat in front of the second 

screen to observe performance and did not intervene in any way, since participants 
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were expected to work independently. He silently collected data on the 

participant’s reading performance and double checked with the recorded videos 

after each session. An answer was only recorded as correct if the participant read 

the word correctly in the provided 5-second time slot. 

4.1.7 Assessment sessions 

After each participant reached criterion, an assessment phase was 

conducted which lasted at least three sessions for each participant. Each 

assessment session was exactly identical to the baseline sessions, where the 

participants were required to read the presented stimuli and did not receive any 

sort of word modeling, feedback, or reinforcement from the PA. This phase was 

specifically carried out in order to investigate whether the reading performance 

remained as accurate without further training. In other words, the researcher 

intended to see if they can actually read the words on their own without receiving 

models from the PA. Since the participants got used to receiving praise from the 

PA when they read correctly over the instructional sessions, at the beginning of 

the assessment phase, in order to avoid any confusion, the researcher notified the 

participant that “she” (the PA) was only checking which words he could read. 

Again, the words were presented randomly across sessions. 

4.1.8 Maintenance sessions 

An additional follow-up maintenance probe was conducted eight weeks 

after completion of the assessment sessions. The procedure was identical to the 

baseline and transfer assessment sessions. The goal was to examine whether the 

participants maintained the acquired words. 

4.1.9 Generalization session 
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A final probe was conducted for each participant at their regular classroom 

and with their teacher in order to test whether the acquired words would transfer 

outside the experiment room. This session was identical to the screening session 

performed by the teacher before the experiment began. The teacher presented the 

words printed on flash cards, one-by-one, and recorded correct and incorrect 

responses. 

4.1.10 Dependent measures 

Two variables were defined as dependent measures: percentage of words 

read correctly (i.e., percent reading accuracy) and number of sessions to reach 

criterion. These two measures are indications of effectiveness and efficiency of the 

proposed tutoring software, respectively. Data on the first dependent measure 

were collected by the experimenter in an online manner, and were double checked 

after each session using the recorded videos in order to guarantee reliability. 

4.1.11 Procedural reliability 

In experiments that involve human instructors, a procedural reliability (also 

known as treatment fidelity or intervention integrity) evaluation is performed on the 

instructors’ behavior to examine their adherence to the planned intervention. A 

researcher scores their step-by-step behavior using a checklist on items such as 

task delivery, presentation of the target stimulus, waiting the outlined latency, 

presentation of the controlling prompt, etc. This procedure is calculated as the 

percentage of correct behaviors out of planned behaviors [181].Inspired by this 

idea, an evaluation was performed for the tutoring system to ensure that the 

computer program ran properly. The video recordings were inspected to see 

whether the tutoring software implemented the procedure correctly according to 
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the instructional hierarchy. Not surprisingly, because it is a computerized 

procedure, almost all (all but one) items received 100% agreement between the 

planned and performed behaviors. A main characteristic of computer algorithms is 

that, in following a step-by-step procedure, they deliver a very high fidelity. This 

fact is actually one of the main incentives of using CBI as it can deliver highly-

controlled, reliable procedures. The only item that the educational software did not 

receive an impeccable 100% agreement was, expectedly, due to the ASR engine. 

The speech recognition accuracy was 94.5%. 

4.1.12 Inter-observer agreement 

Twenty percent of the recorded videos were judged independently by a 

second observer. Results, calculated by inspecting point-by-point comparison 

between the two observers’ judgements, indicated an agreement of 100%. 

4.2 Results 

The percent reading accuracies of participants across baseline, 

instructional, and transfer assessment sessions are displayed in Figure 11 Visual 

analysis of data indicates that participants succeeded in reaching the criterion 

although the number of instructional sessions varied. Intervention averaged 7.33 

instructional sessions to criterion. Further, it is noted that performance showed a 

quick improvement immediately after introduction of the intervention until 

asymptotic knowledge was obtained. As expected, the reading accuracies during 

baseline sessions remained stably zero, as it was made sure the participants did 

not know the words in two different settings and four screening sessions. Following 

intervention, the participants read consistently with 100% accuracy and maintained 

mastery of the skill. 
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Students J, A, and M reached criterion in 6, 5, and 11 sessions, 

respectively. Follow-up maintenance and generalization data could not be 

collected from student A because he stopped attending school due to a family 

issue a month before the maintenance session. The other two students maintained 

the words with 100% accuracy. Furthermore, they successfully generalized the 

acquired words to an independent assessment by their teacher in a classroom 

setting. 
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Figure 11. Percentage of correct responses during baseline, instruction, and assessment 

sessions. 

4.3 Discussion 

In this chapter, the effectiveness of an autonomous tutoring system 

developed for individuals with ASD was investigated. The software incorporates 

an autonomous PA that simulates a human tutor teaching SWR. The PA 

demonstrates body and hand gestures, facial expression, as well as head nods 
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and head shakes. The agent delivers instructions through synthesized speech and 

receives learner’s responses via microphone and ASR. The proposed software 

allows for students to experience the words as spoken as well as written, and to 

hear themselves say the word. 

The tutoring software was carefully constructed only based on proven 

techniques for individuals with ASD in order to optimally gain their attention (via 

the PA’s gaze, head orientation, and pointing gesture), motivate them through 

timely reinforcement, and promote their learning via contingent corrective 

feedback. The results, obtained through a concurrent multiple-baseline across-

participants experimental design, indicate that the tutoring software was 

successful in teaching SWR to the participants. The students also retained the 

obtained words after eight weeks, and generalized their skill outside the laboratory 

setting. 

The tutoring software embeds an evidence-based instruction strategy, CTD, 

which is an effective and efficient method with a proven track record of success in 

ASD intervention [158, 162-165]. The CTD procedure includes immediate 

contingent reinforcement and appropriate feedback. In order to remain true to the 

original strategy, the developed software follows the steps with no changes. Too 

many deviations would result in an unreliable strategy which is incomparable with 

the original one. 

A novelty of the proposed tutoring software is to integrate ASR technology 

to realize such contingency based on reading performance, doing so while 

furnishing a completely hands-off experience for teachers and parents. To the best 
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of the author’s knowledge, the independent proficiency of the presented tutoring 

software is unlike all other CBI for individuals with ASD. The software 

autonomously deals with correct and incorrect reading responses, and provides 

appropriate, consistent verbal and non-verbal consequences by the PA. Such an 

autonomy means that instruction may be done by untrained providers even in the 

comfort of their homes, while collecting data on the student’s performance. This 

data could be used internally by the tutoring software to plan future sessions, and 

to introduce new vocabulary by replacing words that the student mastered, thereby 

providing even more autonomy in instructing longer lists of words to the students. 

The data collected can also be accessed by teachers and caregivers for further 

analysis of a child’s progress over time. 

An issue had to be addressed in order to successfully integrate ASR in the 

current tutoring software. Children with ASD often lack the self-regulation to wait 

for the PA to stop talking and then emit their response. In a pilot study, children 

sometimes appeared to start reading the presented word before the PA finished 

the task delivery (i.e., “what word?”), especially when they got used to the 

program’s predictability, and also when they had learned the word. In order to 

avoid simultaneous speech by the PA and the participant, which degrades the 

speech recognition accuracy, a possible solution could be to provide additional 

verbal prompts to help a participant respond at the appropriate time (e.g., “wait 

until she stops talking.”) or perhaps the use of a beep sound (e.g., “wait until you 

hear the beep.”). In order to provide a less confusing, natural interaction, though, 

the author used a more intuitive approach in which the word appeared on the chalk 
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board as soon as the task delivery finished. In this approach the PA verbally 

delivered the task while gesturally starting to point to the spot where the word 

would appear, by orienting its head, body, and hand. These two verbal and non-

verbal cues were carefully synchronized in a way that they finished at the same 

time, and were immediately followed by the word appearing in written form. This 

approach not only resolved the simultaneous speech issue naturally but also may 

have made the sudden appearance of the word more gaze-capturing for the 

participants. In this method, the ASR engine launched its process for converting 

the participant’s verbal response to text as soon as the PA stopped its speech and 

the word appeared, hence leaving no chance for speech interference. It was a 

simple but delicate timing of the task delivery and stimulus presentation, which 

proved completely effective. 

In implementation of the computerized CTD procedure, another benefit of 

using ASR was that the tutoring software eliminated unnecessary pauses after 

each student’s response. In other words, the latency provided by the software was 

not a fixed 5-second interval but rather the procedure was advanced to the next 

step (reinforcement, feedback, or a next word, accordingly) as soon as the 

participant emitted his response. This immediate reaction to the participant’s 

response decreases the time-to-criterion measure by cutting the time that would 

be wasted otherwise and may result in the participants ’s potential disengagement 

and boredom during the inactive period. It also brings about a more responsive 

PA, and, hence, a natural interaction. 



 

59 
 

Individuals with ASD often struggle to generalize skills acquired during an 

intervention to novel settings and people [182, 183]. They may become adept at a 

trained skill but fail to transfer that knowledge to everyday life. This makes 

development of interventions for these individuals extremely challenging. The 

ability to generalize skills, however, can be promoted by providing a naturalized 

learning environment to facilitate transition to natural situations [184]. In the 

proposed tutoring system, the instructions are delivered in a simulated classroom 

by a virtual tutor that communicates with students through speech, facial 

expression, and gesture resembling a human teacher. The PA creates mutual 

gaze by looking out from the screen into a viewer’s eyes. It then initiates joint 

attentional bids by rotating its gaze direction, head orientation, and pointing 

towards the reading material in order to optimally capture a participant’s attention. 

The author believes that such multi-modal interaction (through gaze and 

body gesture as well as voice and facial expression) not only enhances the 

participants’ engagement and attention but also promotes better generalization of 

the acquired words. The results of this study demonstrated that the participants 

transferred their knowledge, acquired through meaningful communication with the 

PA in a simulated naturalized environment, to their classroom. 

In order to encourage generalization even further, other methods can be 

integrated in such a PA-based tutoring system that are worth future research, 

including changing the virtual environment and using multiple agents with different 

appearances and voices. With such a variety, learners are less likely to associate 

the tasks to a constant setting or a single presenter. It is important, however, to 
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perform these changes gradually over the course of several sessions, as these 

individuals have a preference for sameness. Sameness brings about predictability 

in which they find great comfort. On the other hand, randomization and variability 

help generalization but may cause anxiety. 

Another challenge in developing interventions for individuals with ASD is to 

take into account sensory overload as it poses a major pressure on some of these 

individuals. To avoid sensory overload, the author designed the virtual 

environment to be simple, and avoided clutter and excessive use of sound. 

Further, the PA’s motion, appearance, and expressions were kept intuitive and 

friendly, thereby avoiding confusion, distraction, and anxiety. The instructional 

strategy adopted, CTD, is a predictable and repetitive procedure, preferable to this 

population. Each session is less than three minutes long which is ideal for those 

with a short attention span, especially children who are likely to get bored relatively 

quickly. 

Upon completion of the experiment, the participants completed a survey 

regarding their interaction with the tutoring software. According to this survey, they 

found the task easy to understand and interacting with the PA enjoyable. On the 

recorded videos, there were numerous instances of the participants smiling and 

showing excitement due to the reinforcement from the PA. At the end of each 

session, when the PA praised and clapped, one of the students verbally 

commented on his own performance such as “excellent job,” “fantastic,” “I did it,” 

or “it sure was fun!”, and shared his excitement with the experimenter. With a 

successful, friendly reciprocal social interaction, a PA may establish a good rapport 
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with the students. In the survey, in response to the question “what did you like most 

in this game?”, he said “she loves to talk to me.” Their teacher also mentioned 

several observations of the students talking with each other in the classroom about 

the tutoring system — a social practice not common among people on the autism 

spectrum. These observations demonstrate the potential of PAs for ASD 

intervention as engaging and rewarding tools to practice social interaction during 

the intervention and to mediate interaction with a social partner. 

The current chapter illustrates the promise of CBI, and PAs in particular, to 

supplement conventional techniques in teaching SWR to ASDIs in a cost-effective 

manner. The developed autonomous software affords extensive one-to-one 

practice with no teacher supervision, thereby allowing more efficient use of the 

teacher’s time. Further, with access to the software, students can practice 

repeatedly at home at their own pace, without potential embarrassment in front of 

classmates. Instruction is available any time of the day, which is helpful for those 

with irregular sleep patterns. The software also automatically records the data on 

the child’s performance such as the amount of time spent on the task, errors, and 

correct responses. It is a useful time-saving feature as teachers often need to 

collect and report progress of students. 

This study expands the literature in several ways, including the CTD 

procedure, sight word instruction, use of ASR technology in CBI, and PAs. A main 

limitation of this study, however, is the small number of participants and absence 

of female participants. Therefore, the findings, although very encouraging, should 

be deemed preliminary, and cannot be declared to be generalizable to all 
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individuals with ASD. Certainly, larger studies are needed to verify the results and 

to examine participants with a variety of disabilities. Besides, the relationship 

between individual differences (such as chronological age, language age, and IQ) 

and the system’s effectiveness must be investigated. Additionally, longitudinal 

studies with longer word lists are needed to examine and better understand 

students’ progress over long-term training. 
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CHAPTER 5 

5 EMOTIGO: BLUETOOTH-ENABLED EYEWEAR FOR 
UNOBTRUSIVE PHYSIOLOGY-BASED EMOTION RECOGNITION 

While machines (e.g., computers, tablets, cellphones, robots) have begun 

to co-exist with humans and cooperatively share various tasks; they are still 

deficient in interpreting and responding to humans as emotional beings. Wearable 

biosensors that can be used for computerized emotion recognition have great 

potential for addressing this issue. This chapter introduces a wearable sensor – 

EmotiGO – for unobtrusive acquisition of a set of physiological signals, i.e., 

galvanic skin response, photoplethysmography, and skin temperature, which can 

be used as autonomic readouts of emotions. This chapter presents the architecture 

of the device and results from testing that verify its effectiveness against an FDA-

approved system for measuring physiological signals. 

5.1  Introduction 

Recent years have seen a large increase in research in the field of Affective 

Computing (AC) to fill the communicative gap between machine and the emotional 

human [185]. One main goal of AC is to develop computational systems that 

reliably detect humans’ emotional cues, and alter machines’ internal/external 

behavior based on their affective states (e.g., emotions). Affect-sensitive systems 

are being developed in a number of domains. For instance, in intelligent tutoring 

systems, an affective paradigm can be adopted to automatically recognize and 

pertinently respond to the student’s emotional experience (e.g., frustration, 
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boredom) which, in turn, could optimize learning gains [69, 186]. AC has many 

applications such as in gamification [187], personalized robot companions [188], 

autism therapy [189], and healthcare [190]. 

The most prevalent techniques for automatic emotion recognition are based 

on facial expression [191], speech prosody [192], and more recently, physiology 

[193]. Less effort has been done to infer emotional states using physiological 

signals compared to the other methods. Reasons for this contrast are physiological 

sensors are relatively expensive and sensitive to motion artifacts. Physiological 

signals, however, have a number of promising advantages. They can be 

continuously collected during daily life which makes physiology-based emotion 

recognition suited for a wide range of real-world applications. Besides, they are 

more difficult to suppress compared to audiovisual emotion channels − hence 

could be a more reliable reflection of inner feelings [194]. There is a strong 

correlation among physiological indices and affective states. For instance, when 

someone is frightened, her heart rate increases; her muscles contract; she 

breathes faster and tends to sweat more. These physiological patterns can be 

monitored to automatically recognize emotions. 

Most contemporary affective computing prototypes, however, make use of 

inflexible sensors, and still tether the user to their computers in an unnatural, 

obtrusive manner. Lack of comfortable, unobtrusive physiological sensors has 

limited widespread use of affect-sensitive systems. However, recent advances in 

the field of wearable technology can facilitate monitoring physiological signals in 

real life settings over extended periods of time. 
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This rest of this chapter presents a wearable multi-sensorial biofeedback 

device, EmotiGO (Figure 3), which is a pair of modified eyeglasses to include three 

biosensors. The parameters measured are Galvanic Skin Response (GSR), 

Photoplethysmography (PPG), and Skin Temperature (SKT); a set of 

measurements useful for affect sensing. The collected signals are then transmitted 

to a remote computer via Bluetooth Low Energy (BLE) communication in real time. 

The general layout of this chapter is as follows. The next section overviews related 

work and recently developed biosensors for affect sensing purposes. Section 5.3 

discusses design challenges in wearable biosensors and how they are addressed 

in EmotiGO’s design. In Section 5.4, the physiological signals measured by 

EmotiGO are described. Section 5.5 presents the general system architecture. 

Section 5.6 outlines the procedure and details on sensor testing and evaluation. 

And finally, conclusions are presented in Section 5.7. 

5.2 Related work 

In spite of enhancements in physiology-measuring technology, most of the 

research in the field of affect sensing has been limited to short-term studies in 

laboratory settings. There are a number of commercial physiological data 

acquisition systems which offer high-quality recordings such as the MP150 from 

Biopac Inc. [195]. MP150 is a general purpose acquisition system for collecting 

various physiological signals. The electrodes are attached to the subject’s body 

and then wired to a central collecting unit. The collecting unit is connected to a 

computer by USB or Ethernet cable. MP150 lacks wireless capabilities to transmit 

data to the host computer, and tethers the subject with wired electrodes. It is 

accompanied by proprietary software only through which users can access and 
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analyze collected data. Additionally, its high cost, bulky form factor, and tethering 

nature make it impractical for large-scale and long-term applications. 

A very important physiological signal in AC is GSR, also known as 

electrodermal activity (EDA) or Skin Conductance (SC), which is of particular 

interest in monitoring arousal levels of subjects. Researchers at the MIT Media Lab 

developed one of the first wearable biosensors, Galvactivator, which collects a 

wearer’s GSR signal [196]. Galvactivator’s components are embedded in a glove 

that is worn on the left hand, and two electrodes collect the GSR signal from the 

wearer’s palm. Galvactivator has no wireless capabilities but there is a small jack 

that allows the collection of the amplified signal by a host computer in a cabled 

approach. 

HandWave [197] is a Bluetooth wristband device that measures one’s GSR 

signal from one’s fingers or palm via external leads and electrodes. The external 

leads and the electrodes’ position render HandWave encumbering and highly 

prone to motion and pressure artifacts. PET GSR is similar but is a commercial 

wireless GSR sensor from Brainquiry [198]. PET GSR suffers from the same 

drawbacks as the HandWave’s. Furthermore, PET GSR’s wireless equipment is 

only compatible with proprietary software. 

MARSIAN [199] is a wrist-mounted device with a glove. It includes four 

physiological sensors of GSR, skin potential, heart rate, and SKT. The glove 

embeds the sensing elements, and the wrist device includes the electronics and 

battery. EREC-II [200] is also a glove-based biosensor which embeds SKT and 

GSR sensors. The analog circuitry and battery is placed inside a wrist pocket, and 
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the sensing elements are embedded in a cycling glove. Similar to MARSIAN, 

EREC-II’s form factor is rather large, and the electrodes’ positions are not suitable 

for pervasive mobile applications. 

iCalm [201] is a wireless wearable set of physiological sensors designed for 

affect-sensing applications. This device can measure either heart rate or GSR, as 

well as environmental temperature and physical activity. In the version of iCalm 

which measures GSR, instead of typical metal electrodes, conductive fabrics have 

been used. Conductive material facilitates comfortable integration of the electronic 

parts and the sensing circuitry into various wearable garments such as a wrist 

band, ankle sensor band, or sock. Poh et al. [202] developed a wristband device 

that measures the GSR signal from the ventral side of a wearer’s distal forearm. 

This device as well as iCalm are big steps towards unobtrusive affect sensing. 

However, they provide either heart rate data or a GSR signal, not both. 

Furthermore, their placement on body locations involving high physical activity 

(i.e., hand and leg) exposes them to vigorous motion, which inevitably introduces 

artifacts in the collected data. 

E3, designed by Empatica [203], is a commercial wearable set of 

biosensors that has a form factor of a wristwatch. E3 includes four embedded 

sensors to measure PPG, SKT, and GSR signals as well as physical activity. E3 

measures a wearer’s PPG signal from the dorsal area of the wrist, while the GSR 

and SKT sensors’ collection site is the ventral area of the wrist. E3 utilizes a 

proprietary technique including software and hardware to enhance the PPG signal 
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quality against motion artifacts in the data, although the GSR sensor is still not 

guarded against artifacts. 

Having reviewed recently-developed wearable biosensors for affect sensing 

purposes, the next section discusses general challenges in the design of wearable 

biosensors for pervasive applications. 

5.3 Design Challenges 

Most current sensor systems, such as Biopac MP150, use electrodes 

attached to the subjects with Velcro fasteners or tape and are directly wired to the 

collecting unit. These constraints on data collection may be irritating to some 

subjects and can be a hindrance to their natural movement. EmotiGO is innovative 

in that it includes multiple biosensors in a single device all integrated through non-

standard placement of measurement elements, and miniaturized to a level where 

the whole system is enclosed in an inconspicuous, lightweight, comfortable form 

factor. Such integration eliminates the need to use distributed multiple sensors 

(e.g., heart rate chest strap and finger-placed GSR sensor), thus resulting in a 

significant decrease of the overall system’s size. Additionally, the novel collection 

site and the unencumbering enclosure facilitate monitoring of physiological signals 

without interfering with the users’ usual activities. 

EmotiGO uses BLE for real-time data transmission of the collected data. 

The BLE technology consumes only a small fraction of the power of the classic 

Bluetooth. This fact, along with the aggressive low-power design techniques 

applied, allow EmotiGO to operate for many hours on a small lithium-ion battery. 

BLE’s advanced adaptive frequency hopping technology allows multiple 

EmotiGOs to reliably operate close to each other even in noisy environments [204]. 



 

69 
 

EmotiGO’s real-time data transmission is also an important advantage as it allows 

online collection and analysis of measured signals. SInce all the electronics and 

electrodes are invisibly integrated in a garment usually worn by people (i.e., 

eyeglasses), EmotiGO is user-friendly and is likely to be quickly accepted by users. 

EmotiGO collects the signals from one’s face. Hence, it is intrinsically less 

prone to motion artifacts, since head movements are much less, both in amplitude 

and frequency, compared to arm and leg movements. In general, GSR signal is 

measured via application of conductive gel on the skin and attachment of metal 

electrodes [205]. EmotiGO, however, does not require application of conductive 

gel, which makes it feasible for everyday usage. 

Currently, most devices employ proprietary software which make them 

impractical for widespread use. Additionally, the collected data can only be 

accessed and displayed using the manufacturer’s software and are not accessible 

instantly to other applications and third-party products. The hardware itself, also, 

can be commanded (such as on/off states and, if at all selectable, desired sampling 

frequency) through the provided proprietary and closed software. A desired feature 

of such measurement devices would be an open protocol which provides the 

capability of controlling the device and accessing data directly and instantly for 

external applications. EmotiGO’s software is designed based on an application 

programming interface (API) which makes it very easy for developers to design 

external applications to interact with the device (i.e., externally control the device 

and immediately access the data) without worrying about the underlying 

architecture. 
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EmotiGO’s API is a portable binary-based communication protocol 

designed specifically to simplify application development on various host 

environments using different programming languages. Through the API, 

application developers can scan for all EmotiGOs within a certain distance and 

connect to a specific one or all of them simultaneously; set the sampling frequency; 

select the signals’ measurement range, and hence the resolution of sensors; 

start/stop data acquisition when desired; access data immediately; change the 

transmission power and range; read the battery level; and disconnect and make 

EmotiGO go to sleep. The open architecture and data format allows software 

developers to rapidly adopt EmotiGO and easily incorporate it into their systems 

as an input device. EmotiGO has been developed with friendliness in mind − from 

the end users’ point of view as well as the developers’. 

5.4 Physiological Signals 

EmotiGO has been designed to measure bodily reactions to infer users’ 

emotional states. Fusion of multiple channels, compared to a single measure, can 

increase the confidence level in emotion recognition. In this dissertation, the 

following set of biosignals are considered for affect inference: GSR, PPG, and 

SKT. 

5.4.1 Galvanic Skin Response 

Skin sweat is a weak electrolyte and a good conductor of electricity. When 

someone is exposed to cognitive, physical, or emotional stressors, eccrine sweat 

glands in the skin produce ionic sweat which elevates GSR [205]. This signal is a 

well-studied physiological measure, previously employed in monitoring emotional 

states [206, 207]. GSR signal has two components; tonic and phasic. The tonic 
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component, also known as Skin Conductivity Level (SCL), is a slowly-changing 

baseline level and is due to the general psychophysiological skin activation. The 

phasic component, also known as Skin Conductivity Response (SCR), 

superimposes on top of SCL and has a higher frequency nature [205]. 

The most common sites for recording GSR are the medial and distal 

phalanxes of the ring and index fingers, as well as the thenar and hypothenar 

eminences of palm. The magnitude of GSR depends on the density, size, and 

distribution of sweat glands [208] which varies between different measurement 

sites. The highest density of eccrine sweat glands is estimated to be on the palms 

and soles (600 to 700 glands/cm2) [209, 210]. In different body locations, lower 

densities of the eccrine sweat glands are found such as on the forehead (181 

glands/cm2) and forearm (108 glands/cm2) [209, 210]. Several investigations have 

studied different collection sites such as forehead [211, 212], cheeks [211], and 

wrist [201, 202]. 

Tronstad et al. [211] investigated sweating patterns of the abdomen, the 

hypothenar area of the palm, the neck, and the forehead on 24 subjects during 

relaxation and intense physical activity. Interestingly, forehead showed higher 

GSR than the hypothenar area of palm (followed by abdomen and neck). This 

finding is not in line with the order of eccrine gland densities. However, other than 

the density, various factors including the distribution of dermatomes, and the 

innervations of sweat glands also influence GSR magnitudes and the similarity 

between readings at different locations [212]. In [212], GSR readings at 16 different 

body positions were compared on 17 subjects while watching emotional film clips. 
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Findings indicated that forehead, foot, finger, and shoulders had the highest SCL 

and SCRs. Surprisingly, none of the wrist collection sites were amongst the four 

locations with the highest SCL and SCRs. This fact is of a high significance as 

many recently developed wearable devices, such as iCalm and E3, tend to collect 

GSR from the user’s wrist. 

Since both hands are needed for manipulation, placing the GSR electrodes 

on the hands is impractical for a wearable device, as it interferes with daily activities 

and introduces motion artifacts. Therefore, embedding the GSR sensor in devices 

worn on highly active body parts, such as wrist, is not optimal either. Hence, the 

author sets out to design the wearable biosensor to collect GSR signal from the 

user’s face. EmotiGO discreetly collects GSR from the user’s temple. Findings in 

[211, 212] suggest forehead as a viable collection site for GSR signal with high 

SCL and SCR readings. Because temple and forehead are close, the author 

hypothesizes that the temple shows acceptable SCL and SCR readings as well. 

5.4.2 Photoplethysmography 

One’s heart rate elevates in reaction to various stimuli such as physical 

activity, affective states, sexual arousal, and mental effort [213]. Using a well-

acquired PPG signal, one can measure heart rate variability (HRV) as well as blood 

volume pulse. PPG sensors usually emit light to the tissue (using an LED), and 

measure the light reflected by the blood vessels. Unfortunately, PPG is notorious 

for being highly susceptible to motion artifacts. In most cases, these motion-

induced artifacts have their highest energy within the same frequency band of PPG 

signal, rendering noise filtration very challenging. Therefore, for the same reasons 
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mentioned for the GSR sensor, recording PPG signal at one’s wrist is not optimal 

due to vigorous hand movements as well as frequent local wrist motions. 

Site selection for measuring the PPG signal is also a critical design 

consideration regarding the power consumption. Wrist has a relatively low density 

of superficial blood vessels, which calls for use of brighter LEDs with higher current 

consumption. The investigation in [214] compared the amplitude and quality of the 

PPG signals recorded from forehead and wrist. The investigators used LEDs with 

relatively low brightness in the sensor. They observed that a considerable amount 

of external pressure on the sensor was required in order to measure a discernable 

PPG signal from the wrist. On the contrary, their sensor obtained significantly 

stronger and less noisy PPG signal from the forehead using minimal contact 

pressure. 

EmotiGO measures the PPG signal from the temple which is a highly 

vascular region due to the temporal artery. Temporal artery is readily accessible 

lying just 1-2 mm under the skin surface. Besides, the temporal artery is trapped 

between the skin and the skull. The temple bone, which is covered only by a 

relatively thin layer of skin, has a strong light reflection. Because of these 

advantages and the fact that the temple is very close to the forehead, the author 

hypothesizes that EmotiGO’s PPG recordings will be of high quality. 

5.4.3 Skin Temperature  

The relation between SKT and affective states has been investigated in 

several studies. For instance, it has been shown that the finger temperature 

decreases with stress [215], while it increases in relaxation [216]. EmotiGO uses 

a micro temperature sensor that contacts the wearer’s temple and measures SKT 
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on top of the temporal artery. Temporal artery, lying just underneath the skin 

surface, carries blood directly from the heart and is located a short distance from 

it, thereby providing a better indicator of the core body temperature [217] – 

compared to distal locations such as the fingertip. Moreover, because the temporal 

artery is not significantly influenced by thermoregulatory changes and has very 

little vasomotor activity, it is highly perfused and a steady flow of blood is assured 

[218]. 

5.5 System Architecture 

The architecture of a wearable system that collects and wirelessly transmits 

physiological signals generally consists of three main components: a wearable 

device, a base station, and a host application. In the rest of this section, these main 

components are described. 

5.5.1 Wearable Device 

In the developed tutoring system, EmotiGO plays the role of the wearable 

device for real-time collection of the physiological signals from students. EmotiGO 

includes a BLE module, an analogue-to-digital converter (ADC), a PPG sensor, a 

GSR sensor, an SKT sensor, and a rechargeable battery (Figure 12). The main 

component of EmotiGO is its BLE module which is the BLE113 from Bluegiga 

[219]. BLE113 is based on a relatively powerful CC2541 chip from Texas 

Instruments (TI) [220]. BLE113 is a Bluetooth Smart module that integrates 

Bluetooth radio, software stack, and an 8051-compatible CPU core. The CPU only 

handles the communication protocol, hence, it is idle most of the time. In EmotiGO, 

the author uses this idle time to execute the application code. Therefore, EmotiGO 

is a standalone device without a separate microcontroller. 
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Figure 12. EmotiGO’s architecture 

Although BLE113 has internal 12-bit ADCs, the author uses an external low-

power 16-bit ADC from TI, ADS1115, to achieve much higher resolution. ADS1115 

features four input channels that EmotiGO uses for sampling PPG, GSR, and SKT 

signals as well as the battery charge level. Data are transferred to the BLE113 via 

an I2C interface. An onboard programmable gain amplifier (PGA) on the ADC can 

be dynamically controlled which allows measurement of both large and small 

signals with high resolution. In EmotiGO, this gain can be set programmatically, 

which renders EmotiGO a nicely customizable measurement device. ADS1115 

has a single-shot conversion mode that allows EmotiGO to sample the 

physiological signals very efficiently. In this mode, the ADC performs one 

conversion of the input signal and transfers it to the BLE113 module upon its 
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request. The ADC then automatically enters a low-power shutdown mode which 

only consumes 0.5μA. 

To measure the GSR signal, EmotiGO applies a small constant voltage to 

the left temple using two small medical grade silver/silver-chloride disk electrodes. 

The small current that flows from one electrode to the other is then boosted by a 

low-pass filter with a 1-Hz cut-off frequency. The ADC samples the filtered signal, 

and sends it to the BLE113 module. EmotiGO can measure GSR signals between 

0 and 40 µSiemens. Based on the high resolution of ADS1115 and its PGA, 

EmotiGO offers very high and customizable resolution of GSR measurement that 

can be set programmatically (through the API). 

In the PPG sensor, a single infra-red LED with the peak wavelength of 850 

nm is used. There is a small photo diode (PD) adjacent to the LED that converts 

the light reflected from the wearer’s skin to a very small current. This current is 

then conditioned by a transimpedance amplifier. The amplifier is a low-pass filter 

with the cut-off frequency of 3 Hz. The output of the transimpedance amplifier is 

sampled by the ADC and sent to the BLE113 module. The skin temperature is 

measured using LM94022 which is an extremely small, precise, analog 

temperature sensor from TI. LM94022 has a typical supply current of merely 5.4µA. 

The output of this sensor is filtered by a passive low-pass filter with a cut-off 

frequency of 1 Hz. 

As depicted in Figure 13, the components are placed very densely on two 

separate printed circuit boards (PCBs) which are of two different sizes; a smaller 

one and a larger one. The smaller PCB contains the sensing elements (i.e., the 
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GSR electrodes, the temperature sensor, LED and PD) which need to be in direct 

contact with the wearer’s skin surface. The space surrounding the elements is 

covered with resin for electrical isolation. Furthermore, the resin is chosen to be 

black to prevent external light disturbances and multiple scatterings of the LED’s 

light. All the elements on the smaller PCB and the resin coating are of equal height 

(1 mm), sitting smoothly against the skin. The rest of the components are tightly 

placed on the larger PCB. The two PCBs are electrically connected through a 

number of header pins. 

 
Figure 13. EmotiGO’s PCBs 

Because EmotiGO is to be worn as eyewear for long-term measurement, 

the battery has to be as lightweight as possible. EmotiGO has a rechargeable 

lithium-ion CR2450 coin cell with the nominal voltage of 3.6V and the capacity of 

only 120mAh. With the EmotiGO’s small battery capacity in mind, rigorous low-

power design techniques are adopted in all aspects of EmotiGO. EmotiGO’s 

components are put to sleep when they are unused. For instance, the ADC enters 

a low-power shutdown mode after each conversion. This technique provides 

significant power savings during idle periods between the conversions. Depending 
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on EmotiGO’s sampling frequency, the power consumption of the ADC can be a 

few hundred times more efficient using this technique. The BLE module itself is 

programmed to sleep after a certain amount of inactive time, where its current 

consumption is merely 500nA. 

Choosing BLE technology for the wireless capability of EmotiGO 

contributes considerably in EmotiGO’s consumption reduction. Such a low 

consumption level required by EmotiGO, however, cannot be obtained by the radio 

hardware alone; it also calls for smart design of the rest of the hardware as well as 

the software. In EmotiGO, there is no separate microcontroller to run the 

application code. The application code is efficiently executed right on the same 

module that handles the Bluetooth communication, thereby eliminating the need 

for an extra CPU. This elimination brings about drastic improvements in size, 

power consumption, weight, and cost of EmotiGO. 

In a typical PPG sensor, the power consumption of the LED constitutes a 

major portion of the total consumption because the LED must be bright enough so 

that the light can reach the blood vessels beneath the LED. In EmotiGO, however, 

the LED does not need to be as bright because the human temple is a highly 

vascular area with a thin covering of skin as well as a bone with strong light 

reflection. In EmotiGO, the LED consumes less than 2mA. Furthermore, because 

the sampling frequency of EmotiGO as well as its transmission range are 

customizable, users can adjust them according to their needs, thereby avoiding 

waste of power. All this customization comes through the use of APIs, explained 

in the next subsection. 
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5.5.2  Base Station 

In order to receive the data collected on EmotiGO, one remote computer 

needs to be BLE compatible. However, many computers still do not have built-in 

BLE transceivers. To address this issue, the author used a BLE dongle from 

Bluegiga, BLED112, which integrates Bluetooth Smart features. BLED112 is 

based on TI’s CC2540 chip and has an 8051-compatible core as well as a USB 

interface. 

BLED112 is a general-purpose BLE dongle that comes with a set of 

predefined APIs. Since BLE technology is not designed for high data rates, this set 

of pre-defined APIs is unnecessarily comprehensive and too heavy for this 

application. Therefore, the author erased the code on this dongle entirely (using 

TI’s CC-debugger) and reprogrammed it with different software that handles a 

customized set of APIs optimally designed for communicating with EmotiGO. In 

the following, the modified dongle and the set of APIs are referred to as EmotiGO 

dongle and EmotiGOAPI, respectively. 

The EmotiGOAPI is simply a transport protocol which is used to implement 

applications on a separate host such as a computer. The transport protocol is 

designed to control the Bluetooth stack on the dongle in order to transmit 

measurement parameters to and receive data from EmotiGO. The EmotiGOAPI is 

a binary-based communication protocol designed specifically for ease of host 

application development. 

The Bluetooth communication between EmotiGO and EmotiGO dongle is 

based on a client-server architecture. EmotiGO, which is the server, exposes 

information including measurement parameters and collected data. EmotiGO 
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dongle, on the other hand, is the client through which a host application can set 

the measurement parameters and receive the data collected on EmotiGO. 

EmotiGO also acts as a slave which advertises and is connectable. EmotiGO 

dongle, on the other hand, is the master which scans for advertising EmotiGOs. 

The EmotiGOAPI is a command-response-event protocol. First, a 

command is submitted by the host application to the EmotiGO dongle using an API 

code. Based on the command, some sort of activity occurs on the dongle and the 

response is sent back to the host application. Besides, some activities by EmotiGO 

trigger events on the dongle that are forwarded to the host for further decision 

making. A simple example is provided below. 

 The user switches on the EmotiGO and puts it on. EmotiGO is programmed 

to start in advertising mode as soon as it comes on. 

 Then an application is launched on a computer which commands the 

dongle, using an API code, to start scanning for the EmotiGOs in range. 

 The dongle starts the scan process. Among all Bluetooth devices around, it 

searches for a specific universally unique identifier that is chosen for all 

EmotiGOs. The dongle keeps sending IDs of any advertising EmotiGOs 

back to the host application until it receives another API code to stop 

scanning. 

 After the host application receives the IDs of available EmotiGOs, it 

commands the dongle to connect to a specific EmotiGO, via an API code 

that includes the desired ID. 
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 When the dongle receives the code, it initiates a connection request to the 

desired EmotiGO. As soon as the connection between the EmotiGO and 

the dongle is established, an event is triggered on the dongle itself which is 

forwarded to the host application as an indication of successful connection. 

 Having established the connection, the host application can set parameters 

such as sampling frequency, measurement range of the GSR sensor, and 

Bluetooth transmission power via a set of API codes. 

 As soon as all the parameters are set by the host application, it then 

commands the dongle to start the collection. EmotiGO, therefore, launches 

the collection and wirelessly transmits them to the dongle in real time. The 

dongle receives data and forwards them to the host in a certain format that 

can be parsed by the host application. As soon as new data comes in, the 

host application can store them, display them, perform online analysis, etc. 

 This process goes on until the host application commands the dongle, via 

an API code, to stop the data collection. 

This architecture provides a seamless communication link between the host 

application, the EmotiGO dongle, and the EmotiGO, while the whole process is 

transparent to the end application. Furthermore, the bi-directional wireless 

communication between the host and EmotiGO allows for greater flexibility during 

deployment. 

5.5.3  Host Application 

Host applications can be designed with any programming language using 

the EmotiGOAPI. The author developed a graphical user interface (GUI) to 
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streamline the process of real time collection of physiological signals (Figure 14). 

The GUI has been developed in MATLAB and allows researchers to interact with 

the wearable device in a friendly manner. Using menus, the GUI allows the 

researcher to select and attach to any EmotiGO dongle that is plugged into the 

computer USB ports. When a dongle is attached, by the host application, the 

researcher can scan for available EmotiGOs in range and connect to a specific 

one. The measurement options (e.g., sampling frequency, transmission power) 

can also be selected on the GUI. When all the parameters are set, the researcher 

can initiate the data collection. The GUI then records the incoming data in real time 

and displays them in dynamic graphs. The graphs are zoomable and scrollable. 

After the collection is over, the data can be saved in different formats for future 

analysis. On the GUI, pre-stored data can also be displayed for manual inspection. 

 
Figure 14. EmotiGO GUI 
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5.6 Sensor Testing and Validation 

In this section, several trials are performed in order to validate EmotiGO’s 

functionality. The goal is to examine the feasibility of simultaneous collection of 

PPG, GSR, and SKT signals using one centralized measuring unit from the 

wearers’ temples. The author intends to confirm that the temple is a viable 

collection site for the aforementioned physiological signals. There are a number of 

factors about EmotiGO that call for extensive validation and testing. First, the 

temple is not a standard location to collect GSR signal. GSR readings depend on 

several skin characteristics such as concentration, distribution, and size of sweat 

glands at each specific measurement site. To the best of the author’s knowledge, 

there is no study that investigates the measurement of GSR signal at this location. 

Another factor that renders EmotiGO’s GSR sensor even more unusual is that 

EmotiGO is intended to function without conductive gel. This characteristic 

considerably contributes to EmotiGO’s usability in real-life applications although it 

warrants precise examination and validation. 

Second, PPG and GSR signals are susceptible to motion artifacts. Because 

EmotiGO is developed for natural applications, it is required to evaluate its 

performance while partaking in high physical activities. Besides, the temple and 

palm belong to different body regions regarding the skin thermoregulatory 

functionality. Therefore, the temple’s SKT must be compared to that of palm in 

order to have a better understanding of this signal’s variations at different body 

locations. 

In this section, the quality and characteristics of the signals collected by 

EmotiGO are evaluated. The validity tests were carried out against Biopac MP150, 
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which is an FDA-approved system, while the participants engaged in a physical 

task, startle test, and a cognitive task. 

5.6.1  Participants 

Three participants (two male and one female), average age 32 years, 

consented to complete the experiments. This study was approved by the University 

of Louisville Institutional Review Board (IRB). 

5.6.2 Procedure 

Before EmotiGO is worn by the participants, they washed their faces with 

lukewarm water and patted their skin dry. There was no pretreatment of the temple 

such as Ethanol or conductive gel. MP150’s GSR electrodes were attached to the 

distal phalanxes of index and ring fingers with conductive gel. The SKT and PPG 

sensors were also attached to the distal phalanxes of thumb and middle finger, 

respectively. The wires were affixed to their wrist so that there was no wire drag. 

The sampling frequency of Biopac’s sensors and that of EmotiGOs’ were chosen 

to be 1000 and 62.5 Hz, respectively. 

After the attachment of Biopac sensors and wearing EmotiGO, each 

participant sat on a stationary bike, and rested their left hand on a cart next to the 

bike. Because the collected signals on Biopac are the gold standard reference, the 

participants were asked to keep their left arms as still as possible, thereby avoiding 

introduction of motion artifacts into the gold reference. The participants were asked 

to sit quietly and relax with eyes open to collect five minutes of baseline data. After 

the baseline, as the physical task, each participant started to pedal on the 

stationary bike for five minutes while maintaining a speed of 12 mph at a fixed 

resistance level of eight. A three-minute recovery period followed the physical 
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activity. Right after the recovery period, the startle test started [221]. During this 

stage, a very loud noise (air-horn sound) was played on the computer speaker 

every one minute for five times. This test is to elicit a defensive response from the 

participants, known as startle response, which is associated with negative affect. 

After the fifth burst, there was another one-minute recovery period, followed 

by a Stroop word–color matching test [222]. The Stroop test, which creates a 

conflict between an incompatible color and word (for instance, the word RED in 

font color blue), is a psychology test used to study cognition and emotion. This test 

continued for 2.5 minutes. After completion of the Stroop test, participants 

remained seated during a 10-minute recovery period. 

5.6.3  Results 

Several algorithms were written to investigate the performance 

characteristics of EmotiGO against Biopac MP150 for each of PPG, GSR, and SKT 

signals. 

PPG signal: The algorithm that analyzes PPG signals from EmotiGO and 

MP150, applies a low-pass filter on both signals to remove measurement noise. 

After noise removal, the algorithm measures the time difference between every 

two consecutive systolic points in order to calculate instantaneous heart rates. The 

series of these instantaneous heart rates constructs a staircase signal known as 

HRV. The HRV signal collected from EmotiGO’s PPG signal shows less than 2% 

error on average compared to that of Biopac MP150. By taking into account that 

the participants did not limit their head and body movements (other than their left 

hands) during the tests, the author believes the results are quite satisfactory. If 

necessary, one can apply further signal processing techniques to improve the 
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calculated HRV signals. The main goal, however, was to observe the performance 

of EmotiGO and study the quality of raw PPG signals collected at the temple during 

tasks that best resemble true daily activities. 

GSR signal: The collected GSR signals from EmotiGO and MP150 are 

shown for one of the participants in Figure 15. At the first sight, the two signals 

look significantly different. This difference stems from a slow rise in the SCL signal 

collected at the temple after the beginning of physical exercise. This slope affects 

the general shape of the signal. To have a better understanding of the nature of 

the signals in shorter time intervals, an 80-second snapshot of the signals are 

depicted in Figure 16. Evident by this figure, the two signals are in rather high 

agreement, although collected at different locations. 

 
Figure 15. GSR signals collected by EmotiGO (top) and MP150 (bottom) 

The increase in the SCL signal collected by EmotiGO is probably due to the 

use of dry electrodes. Dry electrodes may need longer times so that enough 

moisture accumulates between the electrodes and the skin, and establish stable 

electric connection. Since conductive gel is used at the fingertips, the connection 
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reaches steady state much faster; hence the increasing trend is not significant in 

the GSR signals collected at the fingertips. Despite the slow increase in the tonic 

level of EmotiGO’s signal, the average Pearson’s correlation coefficient for the 

filtered recordings is 0.71, indicating high similarity between the signals. 

 
Figure 16. Typical GSR signals collected by EmotiGO (top) and MP150 (bottom) 

Physical activity, stress, and mental tasks can increase SCL and elicit 

SCRs. In this experiment, the collected data at the fingertips and temple showed 

the increase of SCL from baseline in response to physical activity, startle and 

Stroop tests. Expectedly, many SCRs were also induced by the tasks. When the 

tasks ended, for all the participants, GSR signals slowly settled to a plateau during 

the final recovery period. 

SKT signal: The SKT signals recorded by EmotiGO and MP150 (Figure 

17) collected at the temple and the thumb, respectively, show weak correlation of 

0.11 on average. This discrepancy, however, is in line with literature on the relation 

between SKT responses at different body locations. The literature shows that the 

measurement site for SKT signal substantially affects the magnitude and direction 
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of SKT changes. For instance, the participants in [223] were exposed to a stress-

inducing activity while their skin temperature was being simultaneously collected 

at several body locations. The results showed that, due to stress, temperature 

significantly increased on the neck over time compared to the control condition, 

while it significantly decreased on the fingertip. 

 
Figure 17. SKT signals collected by EmotiGO (top) and MP150 (bottom) 

5.7 Conclusion 

The current chapter introduced EmotiGO which is a wireless biofeedback 

device designed for unobtrusive affect-sensing applications. EmotiGO integrates 

multiple sensors in a single device which is lightweight and small enough to be 

worn comfortably without interfering with the users’ usual activities. Thanks to its 

optimal low-power design, EmotiGO can be used for long-term in situ collection of 

PPG, SKT, and GSR signals. EmotiGO is relatively invulnerable to motion artifacts 

because of its novel collection site. EmotiGO’s open software and API protocol 

provide an easy way for developers to immediately access data and design custom 

applications. Another novelty of this device is the use of the nontraditional temple 
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area as the collection site. In Chapter 7, EmotiGO will be used to wirelessly 

measure autonomic activities of three children with Autism while they interact with 

the developed tutoring system. The signals collected will be subsequently utilized 

to model engagement levels of the students. 
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CHAPTER 6 

6 SMALL-GROUP INSTRUCTION: PEDAGOGICAL AGENT AND 
ROBOTIC PEER 

In the current chapter, the traditional dyadic interaction in the PA-based 

tutoring system (described in Chapters 3 and 4), is augmented to a triadic 

interaction by including a robotic peer. 

Individuals with ASD receive intervention in various teaching arrangements. 

The most widely used instruction arrangement for these individuals is direct 

instruction from an adult in a highly structured and well-planned format delivered 

in a 1:1 student-to-teacher ratio [29-31, 34]. In direct 1:1 intervention, the instructor 

delivers prompts to students to teach specified behaviors in a contained setting 

and isolated from peers. The student responds to the prompts and is then 

differentially reinforced based on his response [32]. The benefits of this type of 

intervention regarding behavior development and social functioning of children 

with ASD have been well-documented [29, 33-35]. This arrangement, however, 

consumes teachers’ time [36-38] and restricts instructional and social integration 

of these children because the child is removed from peers for instruction [39]. 

Another major concern is that it ignores natural instruction environment and does 

not offer opportunities for student-to-student interaction. Relying on 1:1 format may 

leave these individuals with deficiencies in social interaction skills which hinders 

their functioning in inclusive environments and general education classrooms 
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where group instruction is the norm [40, 41]. Besides, the skills learned through 

this arrangement often fail to generalize to other settings and their peers [42, 44]. 

An alternative arrangement to 1:1 direct instruction is small-group 

instruction (SGI) during which several students, usually two to five, are taught in 

close physical and temporal proximity [45, 46]. SGI enables more efficient use of 

teacher’s time since more than one student is instructed at the same time [30, 41, 

48-52]. SGI also better prepares students to function in less restrictive 

environments which frequently use group arrangements [50, 51]. SGI facilitates 

normalization as it more closely resembles regular instruction settings [45]. In SGI, 

students may learn appropriate student-to-student interaction and improve their 

social and behavioral skills as it provides a context with higher chances of 

interactions among peers [41, 53-58]. Furthermore, students receive multiple and 

varied forms of the target behavior within this arrangement, and the skills acquired 

may better generalize to different people [45, 54, 59, 60]. 

As a result of exposure to other students’ behaviors in the group, an 

advantage of SGI as compared to 1:1 arrangement is the opportunity for students 

to acquire new skills/responses through imitation of peers [224-226]. From a 

behavioral perspective, imitation, which is a type of observational learning (OL), is 

defined as a child’s behavior that is contiguous in time and similar to that of a model 

[227-230]. For instance, if one shows a thumbs-up in front of a child for the first 

time and the child emits a similar gesture with his hand immediately following the 

modeled behavior, it would be considered an imitative performance. An imitative 

performance may be strengthened through direct reinforcement. 
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Another benefit of SGI arrangement is the opportunity for students to 

acquire novel skills or refine behaviors by observing the “consequences” delivered 

to the peers for their correct or incorrect responses/behaviors [165]. This type of 

learning, which is another category of OL, is called Vicarious Learning (VL). VL 

involves children observing others come in contact with stimulus-response 

contingencies [30, 165, 231, 232], and, thus, learn without directly receiving 

consequences. An important difference between imitation and VL is that the latter 

may cause behavior suppression as a result of observing non-preferred 

consequences received by a model due to a behavior. For instance, a child may 

vicariously learn not to throw a basketball at a peer after he sees the negative 

reactions of other students to another peer doing so [233]. Early studies done by 

Bandura et al. [234-238] demonstrated that children who observed a model 

received punishment following his aggressive behavior were less likely to match 

the response of the model and to engage in that kind of behavior. Imitation, on the 

other hand, can only include an observer’s behavior matching that of a model2. 

SGI provides a context in which a student can vicariously learn a new 

response that is not directly instructed to him by observing teacher’s instruction to 

another student, the student’s response, and the subsequent teacher’s differential 

reinforcement according to the student’s correct or incorrect response. Therefore, 

simply by group participation, each student in the group has the opportunity to 

                                                      
2 Merriam-Webster dictionary defines vicarious as “experienced or felt by watching, 
hearing about, or reading about someone else rather than by doing something yourself.” 
Historically, the terms “vicarious learning” and “observational learning” have been used 
interchangeably, although vicarious learning, originally coined by Bandura in 1962 is 
technically only a subcategory of observational learning which is a broader term also 
including imitation, delayed imitation, etc. 
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acquire skills targeted to other students even when he is not directly reinforced for 

his learning [61]. SGI can be made more efficient if instruction procedures are 

carefully designed to ensure VL occurs [52, 60, 61, 239-242]. 

SGI has been shown an effective and efficient arrangement for children with 

special needs. For instance, Favell, Favell and McGimsey [41] compared the 

relative effectiveness and efficiency of instructing sight words to participants with 

developmental disabilities (DD) in a 1:1 format versus in a group format. The 

results of the study showed that participants in the 1:1 arrangement acquired 11 

words in 36.5 hours while the other group acquired 15 words in 15 hours on 

aggregate. The results showed that not only was the SGI arrangement effective 

but also more efficient than the 1:1 arrangement in instructing sight words to 

people with DD. 

Stinson, Gast, Wolery & Collins [243] used a time-delay procedure in an 

SGI format to instruct sight words to four individuals with moderate mental 

retardation. The results of the study showed that all participants learned their own 

target words as well as at least half of the words targeted to other students in the 

group through vicarious learning. In another study in 2008 [165], Ledford, Gast, 

Luscre, and Ayres instructed sight words to six children with ASD. They delivered 

the instructions to the participants in groups of two via a CTD procedure. The 

results demonstrated that all participants acquired all of their target words and five 

participants vicariously learned all of the non-target words presented to the other 

participant in their group. Research supports efficacy and benefits of SGI 

arrangement to instruct a number of skills to individuals with ASD including sight 
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words [55, 165], expressive labels [244], social skills [245, 246], job functions [244], 

play [247, 248], inference [244], reading [249], food and drink preparation [250], 

picture to word/word to picture matching [249], and sign language [251]. 

For those students with ASD who have the prerequisite skills for group 

participation, SGI is an effective and efficient instructional arrangement. Certain 

prerequisite skills are required for a successful inclusion, efficient progress in 

group settings, and VL including attending to multiple cues such as the target 

stimulus, the model performing the task, and the corresponding consequences 

[252, 253]. Many individuals with ASD, however, show restricted interest [254], 

inattentiveness to surroundings [255, 256], and deficits in sustaining attention [233, 

257-259]. These characteristics may narrow the pool of relevant details of the 

environment, observed behaviors, and consequences, thereby adversely 

influencing these individuals’ proper advancement in such arrangement. These 

deficits could also result in social exclusion for those individuals in spite of increase 

in opportunities for social interaction and other potential benefits of group 

instruction [260, 261]. 

Robotic instruction has been shown to increase motivation, attention, and 

time on task in individuals with ASD, which can be particularly helpful in directing 

these individuals’ attention to relevant cues in an SGI arrangement and improving 

their interest and engagement with the instructional material. In this chapter, the 

developed autonomous tutoring system, described in the third and fourth chapters, 

is augmented by inclusion of a humanoid robot that serves the instructional role of 

a peer for the student. In this tutoring paradigm, the robot adopts a peer metaphor, 
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where its function is to act as an emulated peer. With the introduction of the robotic 

peer (RP), the author suggests to augment the traditional dyadic interaction to 

triadic interaction, to prepare a technology-based SGI arrangement and to facilitate 

VL. 

6.1 Problem Statement and Research Questions 

In the remainder of the current chapter, a study is conducted in which a child 

with ASD as well as the RP attend instructional sessions together (Figure 18). The 

sessions are guided by the PA which teaches SWR to both group attendants, that 

is the student and the robotic peer, using a CTD procedure. A group of unknown 

words is selected for the student from a screening group of words. From this group, 

two lists of words, L1 and L2, each containing four words, are selected for the 

student and the RP, respectively. These lists are defined as L1 = {Γ1, Γ2, Δ1, Δ2}, 

and L2 = {Γ1, Γ2, Π1, Π2}, where Γ1 and Γ2 are two different words that are 

common between the student and the RP. Δ1 and Δ2 are unique to the student, 

whereas, Π1 and Π2 are unique to the RP. These two lists are comprised of six 

different words all unknown to the student. 

 
Figure 18. The experimental setup 
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The PA instructs the words in L1 when it addresses the student. Similarly, 

the words from L2 are exclusively instructed to the RP. During the instruction of 

these words, and because the student and the RP participate the tutoring sessions 

at the same time, three different modes of sight word learning may occur as 

discussed below. 

Experiential Learning (EL): Δ words defined as {Δ1, Δ2} are unique to the 

student and serve as experiential words, in that, they are not instructed to the RP. 

Therefore, the student may learn these words only through direct dyadic interaction 

with the PA. 

Vicarious Learning (VL): Π words defined as {Π1, Π2} are exclusive to the 

RP. The RP simulates learning of these words over time through dyadic interaction 

with the PA. Since both the student and the RP attend the sessions together, the 

student sees the words instructed exclusively to the RP, that is, Π words. The 

student can also hear the RP read those words, and observe the consequences 

(reinforcement or corrective feedback) delivered to the RP. Therefore, Π words 

may be vicariously learned by the student only while watching these words being 

instructed to the RP but not through direct experiential interaction with the PA. 

Experiential plus Vicarious Learning (EVL): Γ words, {Γ1, Γ2}, are 

common between the student and RP. Therefore, the student may acquire these 

words both experientially through dyadic interaction with the PA, and vicariously 

through watching the PA instructing them to the RP. These words can be acquired 

by the student through triadic interaction with the PA and the RP. 



 

97 
 

This chapter addresses the following research questions. Would the use of 

PA-delivered instruction and a 5-s CTD procedure taught within a small group 

arrangement including one autistic student and the RP result in young children with 

ASD: 

(a) reading the target words exclusive to themselves (Δ words) through 

direct interaction with the PA (EL mode); 

(b) reading the target words exclusive to the RP (Π words) through vicarious 

learning (VL mode); and 

(c)  reading the target words common between themselves and the RP (Γ 

words) through direct interaction with the PA as well as vicarious 

learning (EVL mode)? 

Additionally, the questions regarding the relative efficiency of EL and EVL 

modes, as well as the generalization and maintenance of words acquired though 

the three learning modes are addressed. 

6.2 Method 

6.2.1 Participants 

Three children with ASD were recruited for this study. They were all male, 

with age range of 6-8 years. Student I was a biracial boy of 8 years and 4 months 

of age at the beginning of the study. He was administered, at the age of 4 years, 

the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III) and 

obtained a standard score of 75 for verbal IQ and 49 for performance IQ. He was 

also diagnosed with Anxiety Disorder Not Otherwise Specified and a moderate to 

severe receptive-expressive language delay. 
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Student J was a biracial boy of 8 years and 6 months of age. He was 

administered the WPPSI-III at the age of 3. His performance IQ score was 82. He 

demonstrated below average cognitive skill. On the development profile 3 (DP3), 

he scored 103, 61, and below 50 for adaptive behavior, social emotional, and 

cognitive tests, respectively. Student V was a white boy of 6 years and 11 months 

of age. He was administered the Autism Diagnostic Observation Schedule (ADOS-

2) and the WPPSI-IV at the age of 5. He was diagnosed with high functioning 

autism and full scale IQ of 107. Approval to conduct the current study was obtained 

from the university’s institutional review board. 

6.2.2 Settings and Materials 

The researcher conducted all sessions within a one-to-one instructional 

arrangement in a room within our laboratory. The experimental sessions occurred 

two to three times a week over a 4-month period. The virtual classroom and the 

PA were displayed on a 26-inch computer screen. During the sessions, the 

participant and the RP sat on chairs faced the screen with a little orientation toward 

each other to ensure the student can see both the screen and RP. The computer 

screen was located on a table and adjusted to an appropriate height for the 

participant’s eye level. Words were displayed with a 90 pt. Arial style font and with 

high contrast to insure visibility. The Words were presented in lower case letters 

to simulate their most common occurrence in books and reading materials. As the 

proposed educational software is equipped with ASR technology, and 

communicates through natural language with users, neither a mouse nor a 

keyboard were provided for the participant. A webcam was mounted on the screen 

top to record the interactions throughout the experiment for the purposes of offline 
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analysis, inter-observer reliability, and procedural integrity. The computer’s sound 

volume was set at a moderate level via a built-in speaker at the back of the screen. 

At the beginning of each session, the experimenter launched the 

educational software and an application which was responsible for recording the 

video/audio stream coming from the webcam. Along with that stream, the 

researcher simultaneously recorded the content of the screen (the PA and virtual 

classroom) in a picture-in-picture format. On these recordings, one can observe 

the reading material presented to the participants and their response, at the same 

time. 

Although the autonomous tutoring system was capable of automatically 

recognizing words read by the participants, a researcher monitored the sessions 

and advanced the instruction by listening and manually determining whether the 

participants read the words presented correctly or not. Since the author planned 

to compare the efficiency of EL and EVL modes, a high procedural integrity of the 

experiment was highly desired. This capability was added to the software 

developed previously in order to avoid any confounding variables in the data, since 

the accuracy of automatic speech recognition was less than perfect, as shown in 

the results in the fourth chapter. All other activities of the tutoring system, including 

the PA’s activities (i.e., body gestures, facial expressions, delivering feedback and 

reinforcement, etc.) and the RP’s activities (i.e., body gestures, reading words, 

etc.) were still autonomous as the tutoring system was capable of delivering perfect 

procedural integrity in those domains. 

6.2.3 Screening 
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The target words were selected from the Dolch and Brigance functional 

word lists [178, 179]. Prior to the experiment, each participant went through a 

series of tests to identify words that would be targeted during intervention. The first 

stage of screening was performed by the researcher in a one-to-one format in the 

experiment room. The researcher presented the words, printed on flash cards, and 

asked “What word?”, and noted the words that the participants either read 

incorrectly or did not read at all. During screening, the participants did not receive 

reinforcement or feedback for their responses.  

In the second stage of screening, the words identified in the previous stage 

as unknown to each participant were again presented to them, similar to the 

previous stage. The only difference was that the words were displayed on the 

computer screen, instead of flash cards. Similarly, no feedback was provided. This 

stage was repeated three times on three different days to ensure the words were 

unknown to the participants. The words order was randomized each session. From 

the words that were never read correctly, the researcher randomly chose 18 for 

each participant to be included in the study. Since the experiment was conducted 

during summer, there was no concern about the participants receiving instruction 

of those words at school. Additionally, the parents agreed not to instruct these 

words to the participants at home for the duration of this experiment. The parents 

were also kept blind to the study hypotheses. 

6.2.4 Experimental Design 

To evaluate the efficacy and efficiency of the learning modes, a multiple-

probe across-word-sets design, replicated among three participants, was 

employed [262]. Instruction was staggered across word sets. For each participant, 
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the researcher started by collecting baseline data on reading performance across 

all three word sets. After three data points across three days, the instruction started 

only on one of the word sets. As soon as the participant reached criterion on the 

first set, the researcher started collecting data on all three sets for three sessions. 

Upon completion of this stage, the researcher began delivering instruction on the 

second word set. This procedure was carried on until the participant reached 

criterion on the third word set. After the participant reached criterion on the third 

word set, the researcher went through another data collection on all three word 

sets. The criterion was defined as scoring 100% accuracy for three consecutive 

sessions. Additionally, a pre/posttest design was employed to assess participant’s 

ability to maintain over time and to generalize the words acquired to a non-

laboratory setting. Furthermore, to evaluate the acquisition level of words through 

vicarious learning (i.e., Π words through VL mode), a pre/posttest experimental 

design was designed. 

6.2.5 Dependent Measures 

Three primary dependent variables were collected: percentage of words 

read correctly (i.e., percent reading accuracy) acquired through EL, VL, and EVL 

modes, number of sessions to criterion, and number of errors made by the 

participant. A word was scored as correct, if the student stated the word presented 

by the PA within 5 seconds. Sessions to criterion were scored as the number of 

session from the first intervention session to the participants third consecutive days 

at 100%. Incorrect response and no response were both counted as error. 

Additionally, several secondary measures were collected such as generalization 
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and maintenance of words obtained through EL, VL, and EVL modes. Data was 

collected by the researcher in the experiment room. 

6.2.6 Feet-wet Session: 

Prior to the beginning of baseline sessions, to address the novelty factor, 

the actual PA, virtual classroom, and the RP were presented to the participant. The 

researcher described the procedures and the role of PA and RP to him. The 

participant was taken to the experiment room and introduced to the RP and its 

capabilities for the first time. A 10-minute long demonstration of the robot 

capabilities including speech, regular body movements, playing music and dance 

was prepared for the participant. The participant was then allowed to touch the 

robot and familiarize himself with it. 

6.2.7 Baseline Sessions 

Each baseline session consisted of 18 trials, one trial for each word. At the 

beginning of each baseline session, the researcher launched the application and 

entered the participant’s name. The PA started by greeting the participant by 

name, and stating “we are reading some words today. I need your attention.” After 

3 seconds, it presented one of the words at random, and asked, “What word?” The 

word was displayed for 5 seconds on the PA’s chalkboard and then disappeared. 

No feedback or reinforcement were provided to the participant. Before the PA 

advanced to the next word, there was a 1-second inter-trial interval. This procedure 

continued until all 18 words were presented. During the baseline sessions, the RP 

was seated beside the participant and programmed to do nothing. 

6.2.8 Instructional Sessions 
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During instruction, the PA implemented a CTD procedure to instruct sight 

words to the participant and the RP in turn. In each session, the PA presented 

three trials per each of the four words dedicated to each group attendant (i.e., one 

0-s delay trial, two 5-s delay trials). Therefore, each group attendant (i.e., the 

participant and the RP) received 12 trials in each session. 

The PA started with a greeting and obtaining the RP’s attention by asking 

“NAO, are you ready?” At this moment, the RP responded back “Yes.” Then, the 

PA asks the same question from the participant by calling his name (e.g., Alex). 

When the participant responds, the PA emitted a group attentional cue by saying 

“Alright, everybody, look at me.” After a 1-second pause the PA started the first 

round of trials (i.e., 0-s delay) for each word and group attendant. A word randomly 

chosen from list L2 (e.g., “help”) appeared on the PA’s chalkboard while the PA 

stated “NAO, what word?”, followed by an auditory model, and waited 5 seconds 

for the RP to respond. The RP was programmed to randomly choose among 3 

options, read the word correctly, read the word incorrectly, or say nothing. Rather 

than always correctly reading the words presented, the RP was programmed to 

demonstrate learning of the words over time to simulate the most natural situation 

in a real group setting. Therefore, the likelihood of reading the words correctly was 

increased over time. The PA responded to correct responses with verbal praise 

(e.g., “good work,” “excellent,” “nice job”) and to errors or no response with 

corrective feedback (modeling the word again). In case of receiving reinforcement 

from the PA, the RP was programmed to demonstrate happy gestures. This 

differential reaction was programmed into the RP’s behavior repertoire in order to 
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draw the participant’s attention and to facilitate discrimination of consequences for 

the participant, and thereby vicarious learning. 

After the first trial for the RP and a 1-second inter-trial interval, a word 

randomly chosen from list L1 appeared on the chalkboard and the PA stated “Alex, 

what word?” The PA then waited 5 seconds for the participant to respond. 

Subsequently, the PA reacted to correct responses with verbal praise and to errors 

or no response with corrective feedback. 

The PA then carried on this procedure alternatingly with the RP and the 

participant until all the words of list L1 and list L2 were instructed to the RP and the 

participant, respectively. After a 1-second pause, at the beginning of the second 

round of trials, the PA emitted another group attentional cue by saying “Everybody, 

look at me.” During the second and third rounds of trials, the PA used procedures 

identical to those used with the first round, with the exception that a 5-s delay 

interval followed the PA’s presentation of the words. Across sessions, the 

presentation of words was randomized to prevent participants from memorizing 

the words by their order. Each session concluded by the PA providing non-

contingent verbal praise to the participant, such as “You are doing great!” or “Keep 

up the good work”, while clapping for him. The RP also delivered non-contingent 

praise to the participant by orienting his head toward him and saying “Good job.” 

During the instructional sessions, the experimenter observed the interaction 

and silently collected data on the participant’s reading performance and advanced 

the instructional trials by determining whether the participant read the words 

presented correctly or not. He did not intervene in any way since the participant 
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was expected to work independently. A response was only recorded as correct if 

the participant read the word correctly in the provided 5-second time slot. 

6.2.9 Post-instruction Probes 

When the participant reached criterion on each word set, an assessment 

phase was conducted which lasted three sessions. Each assessment session was 

exactly identical to the baseline sessions, where the participant was required to 

read the presented stimuli and did not receive any word modeling, feedback, or 

reinforcement from the PA. This phase was specifically carried out in order to 

investigate whether the reading performance remained as accurate without further 

training. These probes were repeated after the participant reached criterion for 

each word set. 

6.2.10 Maintenance Session 

An additional follow-up maintenance probe was conducted two months after 

completion of the last post-assessment session for the third word set. The 

procedure was identical to the baseline sessions. The goal was to examine 

whether the participants maintained the acquired words over time. 

6.2.11 Generalization Session 

A final probe was conducted at the participant’s home and with his parent 

in order to test whether the acquired words would transfer outside the experiment 

room. This session was similar to the screening session performed done by the 

researcher before the experiment began. The parent was instructed to present the 

words printed on flash cards, one-by-one, and to record correct and incorrect 

responses without delivering feedback or reinforcement. 

6.3 Results 
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EVL and EL words: Percent reading accuracies for EVL and EL words 

across baseline, CTD instructional sessions, and post-instruction probes are 

displayed in Figure 19, Figure 20, and Figure 21 for students I, J, and V, 

respectively. Visual analysis of these figures reveal that prior to the intervention 

none of the participants verbally identified the words, neither the EL nor the EVL 

words. Upon introduction of the small-group PA-delivered instruction, the percent 

accuracies showed an immediate change in the therapeutic direction for all three 

word sets and all the participants. 

The participants met criterion in relatively small number of sessions. 

Student I reached criterion for the first set of EVL and EL words in 4 and 5 sessions, 

respectively. He reached criterion for both EVL and EL words in the second set in 

5 sessions. He also reached criterion for the EVL and EL words in the third set in 

8 and 7 sessions, respectively. He made 11 errors in total in the EL mode and 20 

errors in the EVL mode. Among the participants, student I was the only one that 

his EVL mode was worse than his EL mode, mainly because he was not learning 

one of the EVL words in the third word set for several sessions until finally he 

started reading the word correctly. Although at the beginning of the study words 

with equal difficulty were chosen, one could only hope that the words are actually 

equally hard for an individual. 

Student J met criterion for EVL and EL words of the first set in 5 and 7 

sessions, respectively. He did so for the second set in 4 and 6 sessions while it 

took 5 and 7 sessions for him to reach criterion for the EVL and EL words in the 

third set. He made 21 errors in total in the EL mode and 11 errors in the EVL mode. 
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Student V reached criterion for EVL and EL words of the first set in 4 and 5 

sessions, respectively. He reached criterion for both word types of the second and 

third sets in 5 sessions although with a faster pace for the EVL words in both sets. 

He made 13 errors in total in the EL mode and 6 errors in the EVL mode. This 

pattern depicts experimental control in a multiple-probe across-word-sets design. 

As depicted in these figures, 5-second CTD procedure delivered in the SGI 

arrangement using a PA and an RP was effective in instruction of sight words to 

three children with ASD. During the maintenance and generalization probes, all 

three participants read the words they acquired through EL and EVL learning (i.e., 

Δ and Γ, respectively) with 100% accuracy. 

VL words: Table I, Table II, and Table III summarize the responding 

percentage of sight words by the participants presumably acquired through 

vicarious learning. Data in the white section and gray section represent reading 

accuracy before and after the instruction to the RP, respectively. The instruction 

(to the RP) on each word set began at the verge of white-gray shading. During the 

pretest, all participants consistently identified VL words (which were later taught 

exclusively to the RP) at 0% accuracy. 
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Figure 19. Percentage of student I’s correct responses during baseline, CTD 

instructions, and assessment probes. 

0

2
0

4
0

6
0

8
0

1
0
0

Word Set 1

0

2
0

4
0

6
0

8
0

1
0
0

Percentage of Words Read Correctly

Word Set 2

 

 

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

2
0

4
0

6
0

8
0

1
0
0

S
e
s
s
io

n

Word Set 3

E
V

L
 w

o
rd

s

E
L
 w

o
rd

s

S
tu

d
e
n
t 

I

B
a
s
e
lin

e
C

T
D

P
ro

b
e
 1

C
T

D
P

ro
b
e
 2

C
T

D
P

ro
b
e
 3



 

109 
 

 

 

Figure 20. Percentage of student J’s correct responses during baseline, CTD 
instructions, and assessment probes. 
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Figure 21. Percentage of student V’s correct responses during baseline, CTD 
instructions, and assessment probes. 
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Table I. Student I’s correct responding percentage of VL words 

Word 

Set 

Pre-

test 

Probe 

1 

Probe 

2 

Probe 

3 
Maintenance Generalization 

1 0% 100% 100% 100% 100% 100% 

2 0% 0% 100% 100% 100% 100% 

3 0% 0% 0% 50% 50% 50% 

 
Table II. Student J’s correct responding percentage of VL words 

Word 

Set 

Pre-

test 

Probe 

1 

Probe 

2 

Probe 

3 
Maintenance Generalization 

1 0% 100% 100% 100% 100% 100% 

2 0% 0% 100% 100% 100% 100% 

3 0% 0% 0% 100% 100% 100% 

 
Table III. Student V’s correct responding percentage of VL words 

Word 

Set 

Pre-

test 

Probe 

1 

Probe 

2 

Probe 

3 
Maintenance Generalization 

1 0% 100% 100% 100% 50% 50% 

2 0% 0% 100% 100% 100% 100% 

3 0% 0% 0% 100% 100% 100% 

According to Table I, Table II, and Table III, all participants acquired some 

of the RP’s exclusive words (i.e., Π words) through vicarious learning of PA-

delivered instruction to the RP. Although student I did not do as well in his EVL 

words as in his EL words, he performed quite well in his VL words. Student I 

acquired 5 of the 6 VL words for which he demonstrated perfect maintenance and 

generalization. Student I’s reading accuracy in maintenance session was 83.33% 

on average. 
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Interestingly, student J learned, maintained, and generalized all the Π 

words. Student V acquired all the VL words although he did not show 

generalization and maintenance for one of the Π words in the third set. Student J 

and V maintained their Π words (acquired through VL) with 100% and 83.33% 

accuracy, respectively. All three participants generalized, to their home setting, all 

the Π words they had maintained. 

6.4 Discussion 

A main goal of the study in this chapter was to determine the feasibility and 

effects of using PA-delivered SWR instruction, based on a CTD procedure, taught 

within a small-group arrangement consisting of one child with ASD and a robotic 

peer. The data illustrated that all three participants acquired, maintained for two 

months, and generalized to natural context, all the words they were instructed 

through EL and EVL modes. 

Furthermore, although a functional relationship was not established 

(because of the nature of the experiment), all three participants were able to 

acquire a high percentage (94.44% on average) of the non-target words (Π words) 

that were exclusively instructed to the RP through vicarious learning. In addition, 

the results indicated that the participants successfully maintained and generalized 

a substantial amount of the non-target words (88.88%). It is noteworthy that, even 

though the participants did not learn all the non-target words, they may probably 

acquire these words more efficiently when those words are targeted for direct 

instruction to them. 

Other than one EVL word for student I, the data show that not only did the 

participants learn extra words through vicarious learning but also sight words may 
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be acquired more efficiently and with less errors by addition of a vicarious 

component to experiential learning. The promising results of this study, and the 

positive effects of vicarious component of the instructional package in particular, 

may be explained by the addition of the robot which may have increased the 

saliency of the required response and reinforcement by drawing the participants’ 

attention, interest, and motivation. This possibility is of paramount importance 

since children with ASD show deficits in attending to the relevant elements of the 

instruction. 

During the instructional sessions, the participants followed the routine 

established by the PA, practiced turn taking, demonstrated patience while waiting 

for their turn without any inappropriate behavior such as speaking or reading the 

words directed to the RP. No behavior management problems were encountered. 

Although it is rather unusual for this population, upon completion of the session 

and when the RP verbally praised their performance, there were numerous times 

when the participants showed their appreciation by responding “Thank you” or 

“Nice job”, etc. One of the participants almost always greeted the robot when he 

arrived at the experiment room, touched the robot eyes and fingers, and hugged 

and kissed the robot goodbye when he was leaving the room. Another participant 

gradually began imitating the RP’s happy gestures with him and also when he, 

himself, was reinforced by the PA for his correct responding. His parent confirmed 

that he had not shown these gestures before this experiment. Observation of such 

an imitative behavior is particularly interesting since he was not instructed or 

reinforced for such behavior. 
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For those students with ASD who have the prerequisite skills for group 

participation, SGI is an effective and efficient instructional arrangement. Certain 

prerequisite skills are required for a successful inclusion and efficient progress in 

group settings including attending to the teacher and peers, imitation, tolerating 

intermittent attention, contingent turn-taking, waiting without disruptive behavior 

(e.g., leaving group and inappropriate verbalization), staying on-task and 

maintaining attention, and compliance [30]. Many individuals with ASD, however, 

show deficits in at least some of these skills [230, 239, 252, 263-270] which, in 

turn, could adversely influence proper advancement of not only themselves but 

that of other group members as well in such arrangement. 

There is evidence that many individuals with ASD do not readily learn by 

imitation [230] and are deficient in many areas associated with VL [233, 271]. VL 

involves observing and imitating a model but also, importantly, requires simple and 

complex discriminations among consequences received by the model [61, 230, 

233, 239, 252, 264, 265, 272-274]. Twenty-one studies reviewed in [230] 

concluded that some children with ASD appear to be deficient in imitative skills. 

They also show poor visual attending and may be deficient in making simple and 

complex visual and auditory discriminations [239, 264, 265, 275-277]. These 

deficits would result in poorer performance and social exclusion for those 

individuals in spite of increase in opportunities for social interaction and other 

potential benefits of group instruction [260, 261]. 

For example, Koegel and Rincover [54] studied the effects of transferring 

students with ASD from a 1:1 instruction format to a group instruction format. They 
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first instructed a number of basic group behaviors assumed necessary for group 

participation (such as attending to the teacher upon command and imitation) to 

eight children with ASD in a 1:1 format, and then transferred them to a group 

arrangement. The investigators found that the behaviors acquired in the 1:1 setting 

were minimally and variably performed in the group format, even in a group as 

small as one teacher and two students. Additionally, even prolonged group 

participation did not seem to produce much change as the students failed to 

acquire new behaviors during a month-long participation in the group setting. The 

investigators argued that this failure may be due to poor generalization skills and 

stimulus over-selectivity [278-282] in individuals with ASD. 

Although group instruction can be an effective and efficient instructional 

arrangement for individuals with ASD, it seems necessary to pay careful attention 

to how to transit from 1:1 to group settings. Special procedures should be identified 

and be employed to ensure a smooth shift and avoid abrupt transition for many of 

these individuals. Added emphasis must be placed on developing strategies that 

prepare these individuals for group learning and equip them with skills required for 

multi-student contexts [283]. The developed system in this chapter presents an 

intelligent tutoring system that resembles a small-group instruction arrangement 

for children with ASD. Previous literature [182, 283] suggests that generalization 

is enhanced when instruction setting is similar to extra-training setting. Therefore, 

learning through interaction with this system may properly prepare these 

individuals for group participation. This system provides ample opportunity to 
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practice group skills which, in turn, increases the likelihood for generalization of 

those skills to group learning arrangements. 

In this study the RP was programmed to show gradual acquisition of target 

words to resemble the most frequent situation in a natural group setting. Some 

interesting questions that may be addressed in future are (a) how would skill 

acquisition and vicarious learning be affected if the RP simulated a competent 

model which would result in higher number of reinforcement than corrective 

feedback, and (b) how, if possible at all, can a sense of competition be stimulated 

in the students while attending a small group arrangement including a robotic peer. 

Future studies should investigate the feasibility and effects of other 

instructional procedures (e.g., other response prompting strategies) to instruct 

sight word reading as well as other skills/behaviors to children with ASD through 

such small-group interaction system. Furthermore, the effectiveness and efficiency 

of other responding methods such as choral responding can be studied and 

compared against individual responding. Future investigations should include 

larger number of participants and with wider spectrum of behavioral characteristics 

and different diagnoses to strengthen the extension of these findings to more 

versatile populations. With all the current questions regarding how to include 

children with ASD in regular instructional settings, and considering the importance 

of vicarious learning, an enhanced understanding of how these individuals acquire 

skills in such arrangements and through vicarious learning seems to be of 

substantial importance for future research.
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CHAPTER 7 

7 PHYSIOLOGY-BASED MODELING OF ENGAGEMENT DURING 
NATURALISTIC INTERACTION WITH TUTORING SYSTEM 

Recent decades have seen increased recognition of the interplay between 

affect and learning [62-64]. A number of researches have argued for a set of 

affective states that influence learning such as boredom [65, 66], engagement [65], 

and frustration [64, 68]. These affective states are believed to accompany and 

influence learning. For example, increased levels of boredom are negatively 

correlated with learning, whereas increased levels of engagement in the learning 

process are positively correlated with learning [69]. Given this link between affect 

and learning, a learning environment that’s sensitive to a learner’s affective states 

will presumably enrich learning by increasing motivation and engagement. 

Several tutoring systems, designed for typically-developing individuals, are 

increasingly incorporating affect responsiveness into their pedagogical strategies 

[70-73]. An example is Affective AutoTutor [72] which is an affect-responsive 

dialogue-based tutoring system for computer literacy. Affective AutoTutor was 

designed to detect students’ emotions and use this information to guide response 

selection to help children regulate their emotions during learning [71]. This tutoring 

system was reported to lead to better learning outcomes and to higher levels of 

engagement than its non-affect-aware counterpart. 

An affect-responsive tutoring system can be more effective specifically for 

individuals with ASD who exhibit deficits in emotion regulation and expression 
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[275, 284]. To build an affect-responsive tutoring system, one must first enable the 

system to detect user’s affective states. Several modalities such as facial 

expression [75], vocal intonation [76], gestures [77], and physiology [78] have been 

utilized to evaluate affective states for typical individuals. However, individuals with 

ASD often have communicative impairments (both nonverbal and verbal) 

particularly regarding the expression of affective states [79, 80, 275]. These 

vulnerabilities place limits on traditional auditory and visual methodologies. 

Physiological signals, however, are not necessarily directly impacted by the 

difficulties in emotional expressions in people on the autism spectrum [81, 285, 

286]. 

Individuals with ASD often react outwardly in ways unlike their typically-

developing counterparts. They, for example, might smile when they are actually in 

pain, or might show a neutral expression when they are enjoying an activity. These 

individuals usually have problems expressing their stress, frustration, and 

emotions in general. It is well accepted that these individuals may have different 

emotional expressions than what is truly happening on the inside. An autistic 

person can appear very calm outwardly while his/her heart rate is unusually high 

[287]. An individual with ASD can be highly aroused, according to his/her 

electrodermal activity measurements, without any outward signs of stress [288]. In 

the case of ASD, to know what is truly going on, relying on what is shown on the 

outside could be misleading. Monitoring physiological signals, however, is an 

avenue to receive emotional information that may not be apparent through outward 

expressions. 
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The literature supports creating affective models for individuals with ASD 

using their physiological signals [189, 289]. In [289], physiological signals from six 

children with ASD were used to infer high and low levels of three affective states, 

i.e. anxiety, liking, and engagement. Various features of several physiological 

signals including cardiovascular, electrodermal, and electromyogram activities 

were examined. The physiological signals were recorded when children interacted 

with computer tasks such as pong and anagram. The indices were derived by 

applying a series of signal processing algorithms on the collected signals. For 

training the models, the affective labels were derived from subjective reports 

provided by a therapist experienced in working with autistic individuals. After 

applying machine learning algorithms, the investigators reported reliable prediction 

with approximately 83% accuracy on average across all participants and affective 

states. 

In a follow-up study [189], the same investigators designed an affect-

sensitive robot-based basketball, wherein a robot adapted its behaviors in real time 

according to the preference of a child with ASD. An undersized basketball hoop 

was attached to the end-effector of a robotic manipulator, which could move the 

hoop in different directions with different speeds. The children were instructed to 

shoot a required number of baskets into the moving hoop within a given time. Three 

robot behaviors were designed with different speeds and directions of the 

manipulator and background music. Using the affective models, created in the 

previous study, the robot implemented a session of affect-sensitive robot-based 

basketball specific to each child with regard to the game configuration. The robot 
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kept learning each participant’s preference over time using a reinforcement 

learning algorithm according to the records of the robot’s actions and the 

consequent liking level of each participant. It selected appropriate behaviors to 

present in the task to maintain the child at a high level of liking during the session. 

The results indicated that the individual’s preference was learned by the robot with 

high probability across all the participants. The robot chose the most preferred 

behavior 72.5% of the time on average across all the participants. The moderately 

preferred and least preferred behaviors were also chosen 16.7% and 10.8% of the 

time, respectively. Furthermore, the liking level of five of the participants was 

significantly higher in the affect-sensitive robot-based basketball sessions 

comparing to the non-affect-sensitive sessions (i.e., when the robot selected 

behaviors randomly). 

In this chapter, the author sets out to extend the seminal work done by Liu 

et. al in [289] with the focus on the user’s engagement level based on the 

physiological signals collected by EmotiGO during the triadic interaction with the 

tutoring system including the PA and RP. A main difference of the study in the 

current chapter and the work done in [289] is that, instead of using wired collection 

of data through a tethered interaction with the system, the author utilized the newly 

developed and validated measurement system, EmotiGO, to unobtrusively collect 

autonomic activity of the participants. Tethering participants to a computer station 

with sticky electrodes and dangling wires may in itself influence their affective 

experience [290]. During the instructional sessions, EmotiGO was worn by the 

participants and collected their physiological signals without interfering with their 



 

121 
 

usual activities while interacting with the tutoring system. Another major difference 

of the current study and [289] is that this chapter focuses on the feasibility of 

affective modeling and accuracy of the models based on a smaller set of 

physiological signals, i.e., PPG, SKT, and GSR signals only. 

Finally, in the current chapter, for the purpose of training affective models, 

spontaneous (as opposed to experimentally-induced) affective experiences are 

used. These affective states arose in the participants as a consequence of 

naturalistic interaction with the developed tutoring system. Most of the previous 

literature in the field of affect classification rely on experimental methods to 

artificially induce emotion. It is, however, not clear whether the classification 

performances achieved using models trained based on experimentally-induced 

affect will generalize to naturalistic situations [291]. The present chapter attempts 

to collect such naturalistic corpus of affect/physiological data, and investigate the 

feasibility of and challenges involved in such affective modeling approach. 

7.1 Procedure and Data Collection 

The participant wore EmotiGO 15 minutes ahead of their instructional 

sessions, allowing enough time for EmotiGO sensors to acclimate and settle to a 

steady-state condition. After the adaptation period, the participant was seated in a 

chair in front of the screen adjusted to his eye level. The researcher asked the 

participant to relax quietly. He then launched the EmotiGO GUI for the collection 

of physiological signals from the participant, and collected a 5-minute baseline of 

physiological data. As soon as the baseline was over, at the beginning of the 

instructional session, the experimenter launched the educational software and the 

application responsible for recording the video/audio stream coming from the 
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webcam. The instructional sessions were videotaped using the webcam placed on 

top of the screen for the purpose of offline coding of the participants’ engagement 

levels. All physiological data points as well as video frames were timestamped in 

order for data synchronization and post-processing. 

7.2 Engagement Ratings 

The definition of engagement is context-specific. However, in the learning 

domain, engagement is typically defined as sustained attention to the instructional 

material. Engagement is an important factor for students with ASD to acquire 

various communication and social skills, and is positively correlated with their 

learning gains in academic settings [292]. 

Assessing one’s ability to read and recall a list of words is a relatively 

straightforward process. With somewhat more difficulty, one can also test 

maintenance of those words across time and their generalization to different 

settings. It is much harder, though, to assess how one feels during a certain task 

(for example, his/her engagement level in this case). Affective experiences are 

typically rated using questionnaires and self-reports (e.g., [293, 294]). Despite the 

general acceptance of questionnaires, for children with ASD, self-reporting affect 

is never considered highly valid due to their incapability in reliable identification 

and expression of their affective states [295]. Furthermore, questionnaires cannot 

be used unobtrusively and continuously as they require interrupting the learning 

experience. 

An alternative approach to assessing engagement levels is through 

analyzing gaze behavior. For example, in the context of market research, gaze 

fixation duration has been used as an indicator of engagement level of people with 
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certain stimuli [296]. Similarly, in the context of conference meetings, head pose 

orientation (as an index of where the person looks at) has been used to identify 

the focus of attention [297, 298]. In the context of learning, gaze direction is an 

important signal to study the focus of attention and measure the learner’s 

engagement level. When the learner is on task, the gaze is mainly directed toward 

the instructional material, whereas it usually wanders off from the instructional 

material in an off-task state. Other eye-related behaviors have also been studied 

and utilized as autonomic indices of engagement such as spontaneous eye-blink 

rate [299-301] and changes in pupil diameter [302]. In this study, the author used 

duration of gaze fixation on instructional material as an indicator of engagement 

level with the underlying assumption that participants are engaged with the 

material they are staring at. 

For the purpose of rating gaze fixation duration, the video recordings of 

each instructional session were segmented to 1-second intervals. The sessions 

were coded by scoring on-task if the participant looked at the screen or the RP. It 

was, on the other hand, coded as off-task if the participant’s gaze fell on anything 

else. The scores were then summed up over windows with the length of 20 

seconds to produce the total number of occurrences of these behaviors and the 

total duration of the participant’s engagement. The on-task durations were 

subsequently normalized over the total number of possible occurrences to yield 

the final ratings of the participant’s engagement level during a specific window as 

a number in the interval of 0% to 100%. For more information about this approach 

refer to [303, 304]. 
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Two human coders with relevant expertise in this domain, were recruited to 

rate the participant’s engagement levels using the videos recorded from the 

instructional sessions. They were first trained to obtain perfect agreement over 

several videos recorded during a pilot study with a different group of people. All 

video recordings from the instructional sessions were then rated by one of the 

coders to train affective models. In order to verify the reliability of the coding and 

to ensure inter-rater reliability, 30% of the video dataset was selected (evenly 

randomized among the three participants), and independently coded by the 

second coder. The agreement level of the two coders was 95.08%. 

7.3 Physiological Features 

Quick sensor movements usually induce motion artifacts that are of high 

frequency nature. This kind of artifacts typically happens when the user touches 

the bio-sensor. For instance, there were a number of instances where one of the 

participants touched EmotiGO’s frame while rubbing his eye. This kind of 

disturbances is usual in naturalistic settings where the participants are not required 

to limit their body movements. Therefore, prior to the analysis of physiological data, 

all three signals underwent low-pass filtration with cut-off frequency of four Hz to 

remove any motion-induced artifact in the signals as well as measurement noise. 

After noise and artifact removal, various features were individually computed from 

each physiological signal (i.e., PPG, SKT, and GSR) using the Augsburg Biosignal 

Toolbox [305] for MATLAB. Below, features extracted from each signal are 

described. 

7.3.1 GSR 
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The Augsburg Biosignal Toolbox (AuBT) applies a number of preprocessing 

steps such as low-pass filtering and normalization. After the preprocessing stage, 

this toolbox decomposes the GSR signal to its tonic and phasic responses using 

the deconvolution approach proposed by Benedek and Kaernbach in [306]. The 

phasic component of GSR, also known as skin conductance response (SCR), is 

the quick changes in the signal. SCR is considered to carry affect information as it 

signifies responses to internal/external stimuli. The tonic level, also known as skin 

conductance level (SCL), on the other hand, changes slowly and exists in the 

absence of any specific environmental or external event. Figure 22 depicts a 

typical instance of GSR waveform consisting of both SCL and SCR components. 

The decomposition algorithm detrends the GSR signal by connecting every two 

consecutive local minima of the GSR signal together, and creating a piece-wise 

linear estimation of the SCL signal. By subtracting the computed SCL from the 

original signal, the SCR signal is obtained. In Figure 22, the decomposition of the 

GSR signal into its SCL and SCR components is illustrated. 

 
Figure 22. Decomposition of a GSR signal to its SCL and SCR components. (Top) GSR 

and SCL, (bottom) SCR 
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Upon decomposition of these two components, the toolbox computes a 

bunch of statistical features such as mean, median, standard deviation, minimum, 

maximum, and the number of peaks from the SCR signal as well as from its first 

and second differences. This toolbox extracts a total of 21 features from the GSR 

signal. For more information about this toolbox refer to [305]. 

7.3.2 PPG 

AuBT does not specifically support PPG signal but rather has library support 

for Electrocardiography (ECG) signal. Both PPG and ECG signals are pseudo-

periodic waveforms that carry heart-rate variability (HRV) information. It is 

therefore, straightforward to modify the ECG algorithms in AuBT in order to extract 

features from PPG. 

To calculate HRV, AuBT first derives heart rate time series from the ECG 

signal by detecting the length of time between every two consecutive R-peaks in 

the signal. The modified algorithm, instead, measures the time difference between 

every two consecutive systolic points in the PPG signal for the calculation of 

instantaneous heart rates. 

Upon computing the HRV signal, identical to AuBT, several features are 

extracted including the mean, median, standard deviation, minimum, maximum, 

and range of the derived HRV signal. A number of other features such as pRR50 

were also extracted from the HRV signal following AuBT algorithms. pRR50 is the 

fraction of inter-beat intervals (IBI) that differ by more than 50ms from the previous 

IBI [307]. For more information regarding this toolbox refer to [305]. Similar to the 

GSR signal, the mean, median, standard deviation, minimum, and maximum of the 
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raw PPG signal as well as its first and second time differences are extracted. A 

total of 67 features was extracted from the PPG signal. 

7.3.3 SKT 

No special signal processing was necessary for the SKT signal. The author 

simply calculated the aforementioned statistical features from this signal as well as 

from its first and second time differences. A total of 21 features was extracted from 

the SKT signal. 

7.4 Classification 

Although the original goal of this study was to classify fine-grained 

engagement levels of the participants while naturalistically interacting with the 

developed tutoring system, a major complication with the dataset was 

encountered. The distribution of engagement ratings was very unbalanced, 

thereby rendering the classification problem extremely challenging. Since the 

tutoring system (including the PA and RP) was designed to be as engaging as 

possible for the participants, this was no surprise that most of the engagement 

ratings came out very high. The distribution of engagement ratings for students I, 

J, and V are depicted in Figure 23, Figure 24, and Figure 25 respectively. When a 

dataset is highly unbalanced, the classifier cannot appropriately model all the 

classes, and it ends up ignoring the class with least number of occurrences. As 

can be seen in these figures, the majority of the ratings, for all three participants, 

are close to perfect engagement (i.e., 100%). Although this is a positive sign 

indicative of the tutoring system being highly engaging for the participants, it 

renders the classification problem very complicated. This complication points out 
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a limitation of the present study but also highlights the great challenge of training 

affective models in naturalistic settings. 

 
Figure 23. Distribution of engagement ratings for student I 

 
Figure 24. Distribution of engagement ratings for student J 

In order to attenuate this issue and start exploring the feasibility of 

automatically classifying the participants’ engagement level based on their 

physiological signals, the observations with less than 80% engagement scores 
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collected during the baselines was labeled as “low engagement.” This assumption 

was made based on the fact that the participants were instructed to sit quietly and 

do nothing during the baseline. It was assumed that this stage induced a state of 

disengagement/boredom in the participants. 

 
Figure 25. Distribution of engagement ratings for student V 

This technique rendered the classification problem as a binary classification 

with a near-balanced distribution of classes. Figure 26 shows the distribution of 

engagement levels for each participant. The augmented datasets have 386, 386, 

and 309 observations for students I, J, and V, respectively. This variation is a result 

of the differences in the number of instructional sessions for each student (i.e., the 

length of interaction with the tutoring system before they reached the criterion) as 

well as the number of observations removed from each participant’s dataset. 
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Figure 26. Distribution of engagement levels used in classification 

For modeling the participants’ engagement levels, a user-dependent 

approach was taken to account for the person-stereotypy phenomenon and the 

diverse affective characteristics of the individuals with ASD. The person stereotypy 

is due to the fact that different individuals may express the same emotion with 

different characteristic response patterns under the same contexts [308]. Individual 

differences in responding to emotional stimuli are attributed to factors such as age, 

sex, culture, and personality traits [309, 310]. Asendorpf and Scherer [311] showed 

that individuals with two contrasting personality traits differed in their subjective 

responses to an arousing situation. The user-dependent approach accommodates 

the differences encountered in affective expression. 

For the classification problem, two different supervised pattern recognition 

algorithms were employed, namely k-Nearest Neighbors (k-NN) [312] and Naïve 

Bayes (NB). In addition, for the testing and training of classifiers a 10-fold cross-

validation protocol was used. Also, classification accuracy (the percentage of 
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correct recognitions) was utilized as the performance metric since the datasets are 

fairly balanced. 

In order to avoid overfitting and also reducing the computational intensity of 

the models, the author incorporated the sequential forward feature selection 

(SFFS) method [313]. SFFS is a wrapper which uses the classifier itself for the 

evaluation of a specific feature. SFFS performs a non-exhaustive search on the 

feature space by iteratively adding features. It usually starts with an empty set of 

features and then picks the feature which improves the classification performance 

the most in every iteration. SFFS stops iterating when either a desired number of 

features is reached or there remains no more features that improve performance. 

SFFS reduces the computational cost and improves generalization of the trained 

models to unseen events (by avoiding overfitting), but also improves the 

classification performance by removing noisy features [313]. 

To identify which physiological signal is more diagnostic of engagement 

levels, the author analyzed the performance of the models trained based on 

individual signals. The combination of all three signals was also studied to 

investigate whether the fusion of signals would result in better recognition 

performance. 

7.5 Results 

Table IV shows the classification performance achieved using each of the 

physiological signals as well as all three combined for the NB classifier. Similarly, 

Table V, Table VI, and Table VII tabulate the classification accuracies obtained 

using each of the physiological signals as well as all three of them combined, for 

3-NN, 5-NN, 7-NN, and 9-NN classifiers for students I, J, and V, respectively. 
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Table IV. NB’s classification accuracies for individual students 

Physiological Signal Student I Student J Student V 

PPG 77.84% 68.13% 81.82% 

SKT 71.65% 63.47% 68.88% 

GSR 70.10% 62.18% 67.48% 

PPG+SKT+GSR 79.12% 72.02% 84.97% 

Table V. k-NN’s classification accuracies for student I 

Physiological Signal 3-NN 5-NN 7-NN 9-NN 

PPG 77.58% 77.06% 76.55% 76.03% 

SKT 75.00% 75.26% 75.52% 73.97% 

GSR 78.35% 78.87% 78.35% 78.35% 

PPG+SKT+GSR 86.08% 87.11% 84.54% 83.25% 

Table VI. k-NN’s classification accuracies for student J 

Physiological Signal 3-NN 5-NN 7-NN 9-NN 

PPG 67.62% 66.32% 67.36% 68.39% 

SKT 66.58% 66.32% 67.88% 67.62% 

GSR 77.72% 77.98% 76.17% 76.42% 

PPG+SKT+GSR 85.23% 82.64% 81.35% 80.31% 

Table VII. k-NN’s classification accuracies for student V 

Physiological Signal 3-NN 5-NN 7-NN 9-NN 

PPG 82.87% 83.92% 82.52% 82.87% 

SKT 70.98% 72.03% 72.03% 73.08% 

GSR 90.21% 88.81% 86.71% 83.57% 

PPG+SKT+GSR 93.70% 92.30% 91.61% 89.86% 

A repeated analysis of variance (ANOVA) was performed on the 

classification accuracies in order to assess the effects of classifiers, physiological 

channels, and students. The ANOVA problem was a 2x4x3 (classifier, 

physiological channel, and student) randomized complete block design with four 

replications of each combination. The two levels of the classifier factor were k-NN 

and NB. The four levels for physiological channels were PPG, SKT, GSR, and 
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PSG (PPG+SKT+GSR). The three levels for student factor were I, J, and V. The 

author specifically searched for significant differences in different levels of the 

three factors with Tukey tests. 

Significant differences were found for all three factors (p-value<0.001). k-

NN had significantly higher accuracies than NB with the classification accuracy 

means of 78.64% and 71.67%, respectively. According to the ANOVA results, 

physiological signals were ranked in the order of PSG (with the mean of 82.14%), 

PPG (with the mean of 75.31%), GSR (with the mean of 73.60%), and SKT (with 

the mean of 69.59%). Also, the classifiers were more successful at classifying the 

engagement levels of the students in the order of V (with the mean of 79.23%), I 

(with the mean of 76.66%), and J (with the mean of 69.58%). The ANOVA results, 

furthermore, demonstrated that the combination of k-NN classifier and PSG 

physiological channels (i.e., using all the physiological signals) results in 

significantly the highest classification accuracy with the mean accuracy of 86.50% 

(p-value<0.001) across participants. 

7.6 Discussion 

The results indicate that the models were successful in discriminating 

between high and low levels of participants’ engagement using their physiological 

signals collected by EmotiGO while they interacted with the tutoring system. The 

author believes this is a significant result at it signifies the feasibility of developing 

an automatic physiology-based classifier of naturalistic expressions using a 

comfortable, inconspicuous biofeedback device. The participants never appeared 

to be distracted by EmotiGO or to show any discomfort. In many occasions, they 

forgot to take off their glasses when the session was over, and the researcher had 
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to remind them to remove their EmotiGOs. This observation is particularly 

promising considering the fact that many individuals with ASD are extra sensitive 

to touch, and, yet, all the participants wore EmotiGO for the length of the 

instructional sessions without any complaints. 

Steps were taken to ensure that the introduction to the novel instructional 

setting (the experiment room, PA, and RP) and the measuring equipment 

(EmotiGO) did not alter the participants’ affective experience during the 

instructional sessions. Prior to the physiology and engagement data collection 

stage, the participants had several chances to visit the instructional setting and 

repeatedly try EmotiGO on during the word screening and word baseline sessions. 

Although EmotiGO was designed with robustness against motion artifact in mind, 

for the duration of physiological data collection, the participants were seated in a 

comfortable chair without any major body movements. The classification results, 

hence, are believed not to be influenced by any motion-induced disturbances in 

the collected signals. 

In this study, in order to identify the most diagnostic physiological signal, a 

systematic analysis was conducted on multichannel physiological data using two 

classifiers and three physiological signals and their combinations. According to the 

classifiers’ performances, all three physiological signals (PPG, SKT, and GSR) 

carried information regarding the participants’ engagement levels. The results 

showed that the high and low levels of engagement can be recognized with 

accuracies significantly higher than random. Among the individual signals, PPG 

features were significantly more discriminating regarding engagement levels than 
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were GSR features, and GSR features significantly more than that of SKT signal. 

The fusion of the features extracted from all three signals, however, outperformed 

individual signals with substantially higher recognition performance. More 

specifically, the k-NN classifier along with the concatenated feature sets seem to 

perform significantly better than all the other combinations of classifiers and 

physiological signals. Additionally, the fusion approach provided the most robust 

results since the best individual signal differed among different participants while 

the fusion model outperformed every individual channel in any of the two classifiers 

and any participant. 

The potential impacts by endowing the tutoring system with the capability 

of real-time tracking of an autistic learner’s engagement level could be various. For 

instance, when the engagement level is drifted low, the tutoring system could 

change its pedagogical strategies (using its instructional agents – the PA and RP) 

or by introduction of interesting activities to retain the learner’s attention. 

Additionally, system designers could optimize/redesign the whole pedagogical 

approach by analyzing the record of activities and the consequent student’s 

engagement. The tutoring system, itself, could deliver a highly customized tutoring 

system by learning these patterns over time for each student, and automatically 

choose strategies that would result in the highest likelihood of student’s 

engagement and, thereby improve learning gains. 

In future studies, different fusion techniques such as decision-level fusion 

(as opposed to feature-level fusion) can be studied. In a decision-level fusion 

approach, one could train separate classifiers for each individual physiological 
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signal, and subsequently fuse the models together according to some rule (e.g., 

voting or Bayesian fusion) to produce an ensemble of classifiers for the whole set 

of physiological signals. In this study, the author adopted 20-second windows for 

the physiological signals. Since different signals may have different temporal 

dynamics, an alternative approach for sensory fusion could consider windows with 

different lengths, or even windows with varying lengths for each physiological 

channel. All these concepts warrant further investigation.
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CHAPTER 8 

8 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

Autism spectrum disorders are neurodevelopmental disorders 

characterized by impaired social interaction and communication, and by restricted 

and repetitive behavior. The number of people diagnosed with ASD has increased 

dramatically since the 1980s. However, there is a lack of appropriate intensive 

intervention resources in most communities at the present time. Autistic children 

exhibit chronic and robust deficits like delays in language development and 

impaired ability for imitation, imaginative play, and non-verbal communication. 

Early intervention, however, has been proven to bring about a positive long-term 

outcome. Therefore, a challenge is identification and development of advanced 

rehabilitation methods for ASD. In this dissertation, the suthor developed two 

technology-based instructional packages to teach sight word reading to individuals 

with ASD, a wearable biofeedback device to log their autonomic activity, and a 

number of computational algorithms to model their engagement levels while 

interacting with the developed tutoring system. In the reminder of this chapter, 

summaries of these endeavors as well as insight into future directions are 

provided. 

8.1 Dyadic interaction: Autonomous Pedagogical Agent  

In Chapters 3 and 4, the author examined the effects of an instructional 

package comprised of an autonomous pedagogical agent, automatic speech 
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recognition, text-to-speech capability, and constant time delay during the 

instruction of reading sight words aloud to young adults with ASD. The tutoring 

software was carefully constructed only based on proven techniques for individuals 

with ASD in order to optimally gain their attention (via the PA’s gaze, head 

orientation, and pointing gesture), motivate them through timely reinforcement, 

and promote their learning via contingent corrective feedback. 

The findings indicate that the tutoring software was successful in teaching 

SWR to the participants. The participants also maintained performance for eight 

weeks, and generalized performance outside of the laboratory setting to written 

stimuli within a classroom setting. These findings are compelling in that the 

participants met criterion with a limited amount of time spent in receipt of 

instruction. 

The novel application of autonomous instructional technology may offer 

many potential benefits to teachers of and students with ASD. First, participants 

made gains in the absence of a human instructional agent. This is critical in that 

many students with ASD and other disabilities may require higher teacher to 

student ratios than available in some educational contexts [314]. The use of a PA 

during periods of instruction may assist teachers in increasing these ratios. In 

addition, this technology may be used for instruction outside of classroom settings, 

whereas a trained teacher may not be available. Parents, community support 

personnel, and other providers might use the technology to teach new skills 

germane to their specific environments. Second, it is important to note that though 

the use of computer-based instruction for students with ASD is not new, previous 
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technologies required students to use a keyboard, mouse, or switch to respond to 

software directives. In the current investigation, students responded to the PA 

queries by speaking their responses. This use of ASR technology may increase 

access to computer-based instruction by students with motor impairments or 

deficits in keyboarding/mouse skills. 

The autonomous tutoring system was designed to resemble the 

participants’ naturalistic instructional settings. Commonly used discrete trial 

training procedures were employed that typically occurred within the participants’ 

educational program. Since the students’ teacher was female, the author 

programmed a female PA to deliver commonly-used instructions and praise 

statements. Furthermore, the PA exhibited typical body and hand gestures, head 

nods, and changing facial expressions. The use of instructional stimuli common to 

the natural environments has long been recommended as a way to promote 

generalization [283], and may have contributed to students’ generalized 

responding in the current study. Future research on automatic tutoring software 

might incorporate other generalization strategies, such as the use of multiple PAs, 

or thinning schedules of reinforcement to those present in natural environments. 

 The study conducted in Chapters 3 and 4 illustrates the promise of 

computer-assisted instruction, and PAs in particular, to supplement conventional 

techniques in teaching SWR to students with ASD. Several existing technologies 

were combined to create an effective package that reflects a new direction in 

automated instructional software. The autonomous software afforded extensive 

one-to-one practice with the capacity to collect student data with minimal teacher 



 

140 
 

supervision. This innovation may help teachers increase their instructional 

efficiency and support students’ active engagement during literacy instruction or 

students may use the software to practice at home, at their own pace, and in the 

absence of potential negative feedback from peers. 

The preliminary findings, although encouraging, should be viewed in the 

context of several limitations. First, a multiple-baseline design across a small 

number of participants was employed. This design allowed for a single 

demonstration of effect for each participant (i.e., inter-subject replication) and in 

light of small number of stimuli taught, the author acknowledges the limited 

generalizability of the findings. Furthermore, the participants in the current study 

had extensive experience in the SWR instruction using CTD. It may have been the 

case that students less experienced in discrete trial SWR instruction would not 

have performed as well. Finally, participants spent a limited time interacting with 

the PA. It is not known whether extended period of PA delivered instruction might 

enhance or negatively impact student motivation and ultimately responding. 

Several other features of this innovative program warrant further discussion. 

Since the software was able to detect and react to different student vocal 

responses, it also has the capacity to collect data and monitor student progress. 

In the current study, the tutoring software was able to discriminate between correct 

and incorrect responses with high levels of reliability. This finding suggests that 

teachers may be able to rely on the tutoring software to collect data during similar 

instructional contexts. Furthermore, the software may be able to make decisions 

about whether a student has mastered a skill and subsequently introduce new 
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stimuli. This automated process might reduce teacher errors around data-based 

decision making. Future research should assess the efficacy and feasibility of such 

automated data collection systems. 

8.2 EmotiGO: Wireless, Unobtrusive Logging of Autonomic Activity 

Chapter 5 introduced EmotiGO which is a wireless biofeedback device 

designed for pervasive affect-sensing applications. EmotiGO is innovative in that 

it includes multiple biosensors in a single device all embedded through non-

standard placement of measurement elements, and miniaturized to a level where 

the whole system is enclosed in an inconspicuous, lightweight, comfortable form 

factor. EmotiGO integrates three sensors into a single centralized device 

eliminating the need to use distributed multiple sensors (e.g., heart rate chest strap 

and finger-placed GSR sensor), thus resulting in significant decrease of the overall 

system’s size. Additionally, the novel collection site and the unencumbering 

enclosure facilitate monitoring of physiological signals without interfering with the 

users’ usual activities. 

EmotiGO can be used for long-term in situ monitoring of bio-signals thanks 

to its low power consumption and wireless nature which permits users’ mobility. 

EmotiGO’s real-time data transmission is also an important advantage as it allows 

online collection and analysis of measured signals. Since all the electronics, 

electrodes, and battery are invisibly integrated in a garment usually worn by people 

(i.e. eyeglasses), EmotiGO is user friendly and is likely to be quickly accepted by 

users. 

EmotiGO collects the signals from one’s face. Since head movements are 

much less (both in amplitude and frequency) compared to arm and leg movements, 
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EmotiGO is intrinsically less exposed to motion artifacts. Novel design of the 

enclosure guarantees robust contact of the sensing elements to the user’s skin. It 

also prevents uncontrolled sensing conditions (e.g., loose contact and electrode 

slippage, variable electrode pressure and position) through fixed positioning of the 

sensing elements on the collection site. In general, GSR signal is measured via 

application of conductive gel on the skin and attachment of metal electrodes. 

EmotiGO, however, does not require application of conductive gel, which makes it 

feasible for everyday usage, and eliminates the uncertainty caused by different 

amounts of conductive gel applied on different days. 

EmotiGO uses BLE for real-time data transmission of the collected data. 

The BLE technology consumes only a small fraction of the power of the classic 

Bluetooth. This fact, along with the aggressive low-power design techniques 

applied, allow EmotiGO to operate for many hours on a small coin cell battery. 

BLE’s advanced adaptive frequency hopping technology allows multiple 

EmotiGOs to reliably operate close to each other even in noisy environments. The 

use of popular Bluetooth technology allows for portability and rapid market 

adoption due to easy communication with the preexisting devices equipped with a 

Bluetooth transceiver. 

Currently-available devices employ proprietary software and protocols 

which make them impractical for widespread use. Additionally, the collected data 

can only be accessed and displayed using the manufacturer’s software and are 

not accessible instantly to other applications and third-party products. The 

hardware itself, also, can be commanded through the provided proprietary and 
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closed software. EmotiGO’s software is designed based on an API set which 

makes it very easy for developers to design external applications to interact with 

the device (i.e., externally control the device and immediately access the data) 

without worrying about the underlying architecture. EmotiGO’s API is a portable 

binary-based communication protocol designed specifically to simplify application 

development on various host environments using different programming 

languages. The open architecture and data format allows software developers to 

rapidly adopt EmotiGO and easily incorporate it into their systems as an input 

device. EmotiGO was developed with friendliness in mind - from the end users’ 

point of view as well as the developers’. 

In Chapter 5, the author benchmarked EmotiGO against an FDA-approved 

device for measuring autonomic activity, and showed that the physiological signals 

can be reliably and simultaneously measured from the temple. At this point, an 

EmotiGO dongle can be connected to one EmotiGO at a time. In other words, to 

work with two EmotiGOs, two dongles are required, although several EmotiGOs 

can operate simultaneously in close vicinity of each other. This, however, does not 

mean that a specific dongle is dedicated to a specific EmotiGO. An un-connected 

dongle can connect to any un-connected EmotiGOs. A path to extending 

EmotiGO’s capabilities is to enable EmotiGO dongles to handle simultaneous 

communications with several EmotiGOs. 

8.3 Triadic Interaction: Pedagogical Agent and Robotic Peer 

Chapter 6 investigated the feasibility and efficacy of using PA-delivered 

SWR instruction, based on a CTD procedure, taught within a small-group 

arrangement consisting of one child with ASD and a robotic peer. The results 
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indicate that the participants acquired their target words in a limited amount of time 

spent in receipt of instruction. They also maintained the acquired target words for 

two months, and generalized performance outside of the laboratory to written 

stimuli within their home setting. 

Furthermore, although a functional relationship was not established (due 

the nature of the experiment), all participants vicariously acquired a high 

percentage (94.44% on average) of the non-target words that were exclusively 

instructed to the robotic peer. In addition, the results indicate that the participants 

successfully maintained and generalized a substantial amount of the non-target 

words (88.88% on average). The comparison of the efficiency data (i.e., number 

of sessions to criterion) for the words acquired through EL and EVL reveals that 

only 11.11% of target words were acquired faster through EL than through the EVL 

mode. These data show that not only did the participants learn extra words through 

vicarious learning but also sight words acquisition may become more efficient by 

addition of a vicarious component to direct instruction. These promising findings 

may be explained by the addition of the RP which may have increased the saliency 

of the required responses and reinforcement by drawing the participants’ attention, 

interest, and motivation. This possibility is of paramount importance since children 

with ASD show deficits in attending to the relevant elements of instruction. 

Although group instruction can be an effective and efficient instructional 

arrangement for individuals with ASD, it seems necessary to pay careful attention 

to how to transit from 1:1 to group settings. Special procedures should be identified 

and be employed to ensure a smooth shift and avoid abrupt transition for many of 



 

145 
 

these individuals. Added emphasis must be placed on developing strategies that 

prepare these individuals for group learning and equip them with skills required for 

multi-student contexts. The system developed in Chapter 6 presents an intelligent 

tutoring system that resembles a small-group instruction arrangement for children 

with ASD. Previous literature suggests that generalization is enhanced when the 

instructional setting is similar to the extra-training setting. Therefore, learning 

through interaction with this system may properly prepare these individuals for 

group participation. This system provides ample opportunity to practice group skills 

which, in turn, increases the likelihood for generalization of those skills to multi-

student contexts. The goal of this small-group technology-assisted instruction is 

not to only instruct sight words to children with ASD but also to engage them in 

socially appropriate behaviors such as eye contact, joint attention, and turn taking 

while doing so. The students can practice group/classroom skills while learning 

sight words in an environment free from peer teasing and without fear of failure. 

In Chapter 6, the RP was programmed to show gradual acquisition of target 

words to resemble the most frequent situation in a natural group setting. Some 

questions of interest that may be addressed in the future are (a) how would skill 

acquisition and vicarious learning be affected if the RP simulated a competent 

model which would result in a higher number of reinforcement than corrective 

feedback, and (b) how, if possible at all, can a sense of competition be stimulated 

in the students while attending a small group arrangement including an RP. 

Future studies should investigate the feasibility and effects of other 

instructional procedures (e.g., other response prompting strategies) to instruct 
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sight word reading as well as other skills/behaviors to children with ASD through 

such a small-group interaction system. Furthermore, the effectiveness and 

efficiency of other responding methods such as choral responding can be studied 

and compared against individual responding. In Chapter 6, the PA delivered 

instruction to the RP and student in a predictable order (i.e., one after the other). 

In future investigations, the effects of unpredictable order should also be studied. 

Unpredictable order of instruction might result in higher attention of each student 

to the instructional material which would, in turn, bring about higher acquisition rate 

at least in vicarious mode. 

Future investigations should include a larger number of participants, 

especially female students, and with a wider spectrum of behavioral characteristics 

and different diagnoses to strengthen the extension of these findings to more 

versatile populations. With all the current questions regarding how to include 

children with ASD in regular instructional settings, and considering the importance 

of vicarious learning, an enhanced understanding of how these individuals acquire 

skills in such arrangements and through vicarious learning seems to be of 

substantial importance for future research. Future studies may also attempt to 

instruct other skills (including functional academic and social behaviors) to children 

with ASD using a small-group technology-assisted arrangement. 

8.4 Physiology-based Affective Modeling 

Chapter 7 attempted to model high and low engagement levels of the 

participants using their physiological signals. The participants wore EmotiGO while 

they interacted with the tutoring system described in Chapter 6. The physiological 

signals collected wirelessly by EmotiGO were first preprocessed in order to remove 
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measurement noise and any motion-induced artifact in the signals. Several 

features were then extracted from each of the signals. The participants’ 

engagement levels during the interaction with the tutoring system were rated by 

two trained coders using the video recording of the instructional sessions. The 

extracted features along with the engagement scores were subsequently input to 

two supervised pattern recognition algorithms, i.e., k-nearest neighbors and naïve 

Bayes. 

The results indicate that the trained classifiers are capable of discriminating 

between high and low levels of participants’ engagement with recognition 

accuracies significantly higher than chance. The author believes this is a significant 

result as it signifies the feasibility of developing an automatic physiology-based 

classifier of naturalistic expressions using a comfortable, inconspicuous 

biofeedback device. 

In Chapter 7, in order to identify the best physiological signal, a systematic 

analysis was conducted on multichannel physiological data using two classifiers 

and three physiological signals (PPG, SKT, and GSR). Among these signals, PPG 

features were significantly more discriminating regarding engagement levels than 

were GSR features, and GSR features significantly more than that of the SKT 

signal. The fusion of the features extracted from all three signals, however, 

outperformed individual signals with substantially higher recognition performance. 

More specifically, the k-NN classifier along with the concatenated features seem 

to perform significantly better than all the other combinations of classifiers and 

physiological signals. Additionally, the fusion approach provided the most robust 
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results since the best individual signal differed among different participants while 

the fusion model outperformed every individual channel in any of the two classifiers 

and any participant. 

The potential impacts by endowing the tutoring system with the capability 

of real-time tracking of an autistic learner’s engagement level could be various. For 

instance, when the engagement level has drifted low, the tutoring system could 

change its pedagogical strategies (using its instructional agents - PA and RP) or 

by introduction of interesting activities to retain the learner’s attention. Additionally, 

system designers could optimize/redesign the whole pedagogical approach by 

analyzing the record of activities and the student’s consequent engagement. The 

tutoring system, itself, could deliver a highly customized tutoring system by 

learning these patterns over time for each student, and automatically choose 

strategies that would result in the highest likelihood of the student’s engagement 

and, thereby, improve learning gains. 

In future studies, different fusion techniques such as decision-level fusion 

(as opposed to feature-level fusion) can be studied. In a decision-level fusion 

approach, one could train separate classifiers for each individual physiological 

signal, and subsequently fuse the models together according to some rule (e.g., 

voting or Bayesian fusion) to produce an ensemble of classifiers for the whole set 

of physiological signals. Chapter 7 adopted 20-second windows for the 

physiological signals. Since different signals may have different temporal 

dynamics, an alternative approach for sensory fusion could consider windows with 
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different lengths, or even windows with varying lengths for each physiological 

channel. All these concepts warrant further investigation.
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10 APPENDIX A 

AC   Affective Computing 

ADC   Analog-to-digital Converter 

ADOS   Autism Diagnostic Observation Schedule 

AI   Application Program Interface 

ANOVA  Analysis of Variance 

API  Application Programming Interface 

ASD  Autism Spectrum Disorders 

ASDI  ASD Individual 

ASR   Automatic Speech Recognition 

AuBT   Augsburg Biosignal Toolbox 

BLE   Bluetooth Low Energy 

CAI   Computer-assisted Instruction 

CBI   Computer-based Instruction 

CTD  Constant Time Delay 

DD   Developmental Disabilities 

DP   Development Profile  

ECG  Electrocardiography 

EDA   Electrodermal Activity 

EL   Experiential Learning 

EVL   Experiential-plus-vicarious Learning 
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FMD   Functional Mental Disability 

GSR   Galvanic Skin Response 

GUI   Graphical User Interface 

HRV  Heart Rate Variability 

IBI   Inter-beat Interval 

ID   Intellectual Disability 

IM  Imitation 

IQ   Intelligence Quotient 

IRB  Institutional Review Board 

JA   Joint Attention 

k-NN  k-Nearest Neighbors 

LED   Light-emitting Diode 

MD  Mental Disability 

NB   Naïve Bayes 

OL   Observational Learning 

PA   Pedagogical Agent 

PCB   Printed Circuit Board 

PD   Photo Diode 

PGA   Programmable-gain amplifier 

PPG   Photoplethysmography 

PSG   PPG+SKT+GSR 

RP   Robotic Peer 

SC   Skin Conductance 



 

182 
 

SCL  Skin Conductivity Level 

SCR   Skin Conductivity Response 

SFFS   Sequential Forward Feature Selection 

SGI   Small-group Instruction 

SKT   Skin Temperature 

SWR   Sight Word Reading 

TI   Texas Instruments 

TT   Turn Taking 

TTS  Text to Speech 

VL   Vicarious Learning 

VR   Virtual Reality 

WOZ  Wizard of Oz 

WPPSI  Wechsler Preschool and Primary Scale of Intelligence
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