16 research outputs found

    Development of a coupled wave-flow-vegetation interaction model

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Computers & Geosciences 100 (2017): 76–86, doi:10.1016/j.cageo.2016.12.010.Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.This study was part of the Estuarine Physical Response to Storms project (GS2-2D), supported by the Department of Interior Hurricane Sandy Recovery program

    The Role of Sediment Resuspension in Estuarine Inorganic Nutrient Cycling

    Get PDF
    Time-scaling of estuarine inorganic nitrogen cycling contains many assumptions due to biogeochemical interactions. Nitrogen, often a limiting factor for primary production, is transformed and utilized by many estuarine organisms. Inorganic nitrogen is especially high in porewater. High nutrient pore water, contained within the interstitial spaces of sediment, has been assumed to influx high concentrations of inorganic nutrients into surface waters during resuspension events. These short-term resuspension events rapidly introducing high concentration of nutrients into the water column. In order to determine the internal time scale of inorganic nitrogen cycling, a box-model nutrient budget, horizontal in situ transects, and vertical nutrient profiles were utilized to examine inorganic nitrogen availability and temporal cycling within the Lower Laguna Madre estuary. The nitrogen budget was created to estimate the nitrogen residence time for the lagoon as a whole. The nitrogen budget suggests that the residence time for nitrogen in the Lower Laguna Madre system for approximately one year. In contrast, on the time scale of the horizontal transects and vertical profiles revealed rapid rates of nitrogen utilization in approximately six hours. Inorganic nitrate steadily declined below the detection limit of the senor, while dissolved oxygen began to increase to supersaturated concentrations up to 150 % saturation. An inverse correlation between dissolved nitrate and dissolved oxygen was shown (r2=0.821, p \u3c 0.05), reinforcing the idea that nitrogen is the limiting factor for primary production. These observations indicate rapid internal cycling of nitrogen despite a significant longer overall residence time through the estuary. Utilizing the difference between the results of the nitrogen budget and the field study is important for: understanding time cycling for freshwater influx of nutrients in estuaries, overcoming assumptions in biogeochemical modeling, and representing complex but often subtle biogeochemical interactions within a system

    Dynamic interactions between coastal storms and salt marshes: A review

    Get PDF
    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state

    Seagrass Impact on Sediment Exchange Between Tidal Flats and Salt Marsh, and The Sediment Budget of Shallow Bays

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 4933-4943, doi:10.1029/2018GL078056.Seagrasses are marine flowering plants that strongly impact their physical and biological surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled‐Ocean‐Atmosphere‐Wave‐Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long‐term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.2018-10-3

    A modeling application of integrated nature based solutions (NBS) for coastal erosion and flooding mitigation in the Emilia-Romagna coastline (Northeast Italy)

    Get PDF
    Worldwide, climate change adaptation in coastal areas is a growing challenge. The most common solutions such as seawalls and breakwaters are expensive and often lead to unexpected disastrous effects on the neighboring unprotected areas. In recent years, this awareness has guided coastal managers to adopt alternative solutions with lower environmental impact to protect coastal areas, defined as Nature-Based Solutions (NBSs). NBS are quite popular around the world but are often analyzed and implemented individually at pilot sites. This contribution analyzes the effectiveness of two NBS to mitigate coastal impacts (coastal flooding and erosion) under three historical storms along the EmiliaRomagna coasts and the induced improvements due to their potential integration. Through numerical simulations with XBeach, this study demonstrated that the presence of seagrass meadows of Zostera marina produces an average attenuation of 32 % of the storm peak with a maximum attenuation of 89 % in incoming wave height. Seagrass also mitigates flooded areas and maximum inundation depths by 37 % and 58 % respectively. The artificial dune leads to higher mitigation in terms of inundation of the lagoon (up to 75 %), also avoiding any morphological variations behind it. Seagrass has also been shown to be able to reduce beach erosion volumes up to 55 %. The synergic effect of the two NBS improves the capacity to mitigate both inundation (with a benefit of up to 77 % for flooded area attenuation with respect to cases without any defenses) and coastal erosion. Results of the study suggest that the two NBS will work together to produce co-benefits in terms of preservation of their efficiency, development of habitats for organisms and vegetation species, and thereby offering an important social value in terms of possible tourism, recreation and research

    Influence of seagrass meadows on hydrodynamics. A modelling approach

    Get PDF
    The economic pressures that have been placed on the Spanish coastline have resulted in coastal management strategies and policies that lack of consideration of the long-term costs and preservation of the natural environment. This has brought about the need to explore alternative solutions to the artificially constructed protection measures of the past. Restoration and better management of seagrass meadows along the Mediterranean coast has been proposed as a possible solution to the current problem. Sufficient evidence needs to be provided regarding their wave attenuation and erosion prevention capabilities before seagrass can be promoted as an effective coastal management strategy. This thesis presents a modeling study that aims to evaluate the wave attenuation aspect using a numerical modeling approach. The SWAN (Simulating WAves Nearshore) wave model is first calibrated using a set of flume experiments and is then applied to a case study on the Catalan coast. The results indicate that the seagrass Posidonia oceanica does have an influence on hydrodynamics. Although no change in wave period was observed, it was concluded that the presence of the seagrass reduces the wave heights that end up reaching the shoreline. It is anticipated that this study is a starting point for a more comprehensive model at the Baix Camp location and other locations before seagrass meadows are promoted as an effective approach to coastal management.Incomin

    Salt marsh resilience to sea-level rise and increased storm intensity

    Get PDF
    Salt marshes are important ecosystems but their resilience to sea-level rise and possible increases in storm intensity is largely uncertain. The current paradigm is that a positive sediment budget supports the survival and accretion of salt marshes while sediment deprivation causes marsh degradation. However, few studies have investigated the combined impact of sea-level rise and increased storm intensity on the sediment budget of a salt marsh. This study investigates marsh resilience under the combined impact of various storm surge (0 m, 0.25 m, 0.5 m, 1.0 m, 2.0 m, 3.0 m and 4.0 m) and sea-level (+0 m, +0.3 m, +0.5 m, +0.8 m and + 1.0 m) scenarios by using a sediment budget approach and the hydrodynamic model Delft3D. The Ribble Estuary, North-West England, whose salt marshes have been anthropogenically restored and have a high economic and environmental value, has been chosen as test case. We conclude that storm surges can positively contribute to the resilience of the salt marsh and estuarine system by promoting flood dominance and by triggering a net import of sediment. Conversely, sea-level rise can threaten the stability of the marsh by promoting ebb dominance and triggering a net export of sediment. Our results suggest that storm surges have a general tendency to counteract the decrease in sediment budget caused by sea-level rise. The timing of the storm surge relative to high or low tide, the duration of the surge, the change in tidal range and vegetation presence can also cause minor changes in the sediment budget

    MODELING IMPACTS OF SUBMERSED AQUATIC VEGETATION ON SEDIMENT DYNAMICS UNDER STORM CONDITIONS IN UPPER CHESAPEAKE BAY

    Get PDF
    Submersed aquatic vegetation is an important modulator of sediment delivery from the Susquehanna River through the Susquehanna Flats into the Chesapeake Bay. However, the impact of vegetation coupled with the physical drivers of sediment transport through the region are not well understood. This study used a new vegetation component in a coupled flow-wave-sediment transport modeling system (COAWST) to simulate summer through fall 2011, when the region experienced a sequence of events including Hurricane Irene and Tropical Storm Lee. Fine sediment was exported under normal flows and high wind forcing but accumulated under high flows. The relative effect of vegetation under normal and high wind forcing depended on previous sediment dynamics. Vegetation doubled the accumulation of fine sediments under high flows. While further refinement of the bed model may be needed to capture some nuances, the COAWST modeling system provides new insights into detailed sediment dynamics in complex vegetated deltaic systems
    corecore