18,583 research outputs found

    Evaluation of Technology Concepts for Energy, Automation, and System State Awareness in Commercial Airline Flight Decks

    Get PDF
    A pilot-in-the-loop flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) provide guidance for recovery from low energy states and stalls, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. The study was conducted using 13 commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of complex conditions and several emulated causal and contributing factors found in recent accidents involving loss of state awareness by pilots (e.g., energy state, automation state, and/or system state). Three new technology concepts were evaluated while used in concert with current state-of-the-art flight deck systems and indicators. The technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indicator that shows when automation is no longer actively controlling airspeed, and enhanced synoptic pages designed to work with simplified interactive electronic checklists. An additional synoptic was developed to provide the flight crew with information about the effects of loss of flight critical data. Data was collected via questionnaires administered at the completion of flight scenarios, audio/video recordings, flight data, head and eye tracking data, pilot control inputs, and researcher observations. This paper presents findings derived from the questionnaire responses and subjective data measures including workload, situation awareness, usability, and acceptability as well as analyses of two low-energy flight events that resulted in near-stall conditions

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments

    Principles in Patterns (PiP) : Project Evaluation Synthesis

    Get PDF
    Evaluation activity found the technology-supported approach to curriculum design and approval developed by PiP to demonstrate high levels of user acceptance, promote improvements to the quality of curriculum designs, render more transparent and efficient aspects of the curriculum approval and quality monitoring process, demonstrate process efficacy and resolve a number of chronic information management difficulties which pervaded the previous state. The creation of a central repository of curriculum designs as the basis for their management as "knowledge assets", thus facilitating re-use and sharing of designs and exposure of tacit curriculum design practice, was also found to be highly advantageous. However, further process improvements remain possible and evidence of system resistance was found in some stakeholder groups. Recommendations arising from the findings and conclusions include the need to improve data collection surrounding the curriculum approval process so that the process and human impact of C-CAP can be monitored and observed. Strategies for improving C-CAP acceptance among the "late majority", the need for C-CAP best practice guidance, and suggested protocols on the knowledge management of curriculum designs are proposed. Opportunities for further process improvements in institutional curriculum approval, including a re-engineering of post-faculty approval processes, are also recommended

    Information Management to Mitigate Loss of Control Airline Accidents

    Get PDF
    Loss of control inflight continues to be the leading contributor to airline accidents worldwide and unreliable airspeed has been a contributing factor in many of these accidents. Airlines and the FAA developed training programs for pilot recognition of these airspeed events and many checklists have been designed to help pilots troubleshoot. In addition, new aircraft designs incorporate features to detect and respond in such situations. NASA has been using unreliable airspeed events while conducting research recommended by the Commercial Aviation Safety Team. Even after significant industry focus on unreliable airspeed, research and other evidence shows that highly skilled and trained pilots can still be confused by the condition and there is a lack of understanding of what the associated checklist(s) attempts to uncover. Common mode failures of analog sensors designed for measuring airspeed continue to confound both humans and automation when determining which indicators are correct. This paper describes failures that have occurred in the past and where/how pilots may still struggle in determining reliable airspeed when confronted with conflicting information. Two latest generation aircraft architectures will be discussed and contrasted. This information will be used to describe why more sensors used in classic control theory will not solve the problem. Technology concepts are suggested for utilizing existing synoptic pages and a new synoptic page called System Interactive Synoptic (SIS). SIS details the flow of flight critical data through the avionics system and how it is used by the automation. This new synoptic page as well as existing synoptics can be designed to be used in concert with a simplified electronic checklist (sECL) to significantly reduce the time to configure the flight deck avionics in the event of a system or sensor failure

    Designing for designers: Towards the development of accessible ICT products and services using the VERITAS framework

    Get PDF
    Among key design practices which contribute to the development of inclusive ICT products and services is user testing with people with disabilities. Traditionally, this involves partial or minimal user testing through the usage of standard heuristics, employing external assisting devices, and the direct feedback of impaired users. However, efficiency could be improved if designers could readily analyse the needs of their target audience. The VERITAS framework simulates and systematically analyses how users with various impairments interact with the use of ICT products and services. Findings show that the VERITAS framework is useful to designers, offering an intuitive approach to inclusive design.The work presented in this article forms part of VERITAS, which is funded by the European Commission's 7th Framework Programme (FP7) (grant agreement # 247765 FP7-ICT-2009.7.2)

    Evaluation of Technology Concepts for Traffic Data Management and Relevant Audio for Datalink in Commercial Airline Flight Decks

    Get PDF
    Datalink is currently operational for departure clearances and in oceanic environments and is currently being tested in high altitude domestic enroute airspace. Interaction with even simple datalink clearances may create more workload for flight crews than the voice system they replace if not carefully designed. Datalink may also introduce additional complexity for flight crews with hundreds of uplink messages now defined for use. Finally, flight crews may lose airspace awareness and operationally relevant information that they normally pickup from Air Traffic Control (ATC) voice communications with other aircraft (i.e., party-line transmissions). Once again, automation may be poised to increase workload on the flight deck for incremental benefit. Datalink implementation to support future air traffic management concepts needs to be carefully considered, understanding human communication norms and especially, the change from voice- to text-based communications modality and its effect on pilot workload and situation awareness. Increasingly autonomous systems, where autonomy is designed to support human-autonomy teaming, may be suited to solve these issues. NASA is conducting research and development of increasingly autonomous systems, utilizing machine-learning algorithms seamlessly integrated with humans whereby task performance of the combined system is significantly greater than the individual components. Increasingly autonomous systems offer the potential for significantly improved levels of performance and safety that are superior to either human or automation alone. Two increasingly autonomous systems concepts - a traffic data manager and a conversational co-pilot - were developed to intelligently address the datalink issues in a complex, future state environment with significant levels of traffic. The system was tested for suitability of datalink usage for terminal airspace. The traffic data manager allowed for automated declutter of the Automatic Dependent Surveillance-Broadcast (ADS-B) display. The system determined relevant traffic for display based on machine learning algorithms trained by experienced human pilot behaviors. The conversational co-pilot provided relevant audio air traffic control messages based on context and proximity to ownship. Both systems made use of the connected aircraft concepts to provide intelligent context to determine relevancy above and beyond proximity to ownship. A human-in-the-loop test was conducted in NASA Langley Research Centers Integration Flight Deck B-737-800 simulator to evaluate the traffic data manager and the conversational co-pilot. Twelve airline crews flew various normal and non-normal procedures and their actions and performance were recorded in response to the procedural events. This paper details the flight crew performance and evaluation during the events

    A Conceptual Framework for Definition of the Correlation Between Company Size Categories and the Proliferation of Business Information Systems in Hungary Download article

    Get PDF
    Based on a conceptual model, this paper aims to explore the background of the decision-making process leading to the introduction of business information systems among enterprises in Hungary. Together with presenting the problems arising in the course of the implementation of such systems, their usage patterns are also investigated. A strong correlation is established between the size of an enterprise, the scope of its business activities and the range of the business information systems it applies

    IMPROVING THE DEPENDABILITY OF DESTINATION RECOMMENDATIONS USING INFORMATION ON SOCIAL ASPECTS

    Get PDF
    Prior knowledge of the social aspects of prospective destinations can be very influential in making travel destination decisions, especially in instances where social concerns do exist about specific destinations. In this paper, we describe the implementation of an ontology-enabled Hybrid Destination Recommender System (HDRS) that leverages an ontological description of five specific social attributes of major Nigerian cities, and hybrid architecture of content-based and case-based filtering techniques to generate personalised top-n destination recommendations. An empirical usability test was conducted on the system, which revealed that the dependability of recommendations from Destination Recommender Systems (DRS) could be improved if the semantic representation of social attributes information of destinations is made a factor in the destination recommendation process
    corecore