38 research outputs found

    Pain management following new and long-standing spinal cord injury: A pilot study of changes in pain intensity experienced during the day

    Get PDF
    The aim of the study was to examine variations in pain intensity during the day experienced by patients with spinal cord injury. Fourteen consecutive patients had clinical and demographic data recorded. Pain intensity was recorded using a Graphic Rating Scale (GRS) at 2-3-h intervals. Patients were grouped according to maximum GRS into mild and severe groups at assessment (T0). Changes of one-third in GRS were deemed clinically significant. Eight men and six women (mean age 53.1; SD 16.5; range 28-75) were studied. Seven patients with mild pain tended to deteriorate and those with severe pain to improve. Eight patients demonstrated clinically significant changes. These findings suggest inadequate pain control early morning for one group and increasing pain during the day for another. Use of such simple scores over time would enhance pain rehabilitation for all spinal cord injury patients. Usual GRS reporting may mask clinically significant, treatable, changes in pain

    Attitudes of patients toward adoption of 3D technology in pain assessment: Qualitative perspective

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. © Fotios Spyridonis, Gheorghita Ghinea, Andrew O Frank. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 10.04.2013. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.This article has been made available through the Brunel Open Access Publishing Fund.Background: Past research has revealed that insufficient pain assessment could, and often, has negative implications on the provision of quality health care. While current available clinical approaches have proven to be valid interventions, they are expensive and can often fail in providing efficient pain measurements. The increase in the prevalence of pain calls for more intuitive pain assessment solutions. Computerized alternatives have already been proposed both in the literature and in commerce, but may lack essential qualities such as accuracy of the collected clinical information and effective patient-clinician interaction. In response to this concern, 3-dimensional (3D) technology could become the innovative intervention needed to support and improve the pain assessment process. Objective: The purpose of this analysis was to describe qualitative findings from a study which was designed to explore patients’ perceptions of adopting 3D technology in the assessment of their pain experience related to important themes that might positively or negatively influence the quality of the pain assessment process. Methods: The perceptions of 60 individuals with some form of pain in the area of Greater London were collected through semi-structured interviews. Of the 60 respondents, 24 (43%) produced usable responses and were analyzed for content using principles of the grounded theory approach and thematic analysis, in order to gain insight into the participants’ beliefs and attitudes towards adopting 3D technology in pain assessment. Results: The analysis identified 4 high-level core themes that were representative of the participants’ responses. These themes indicated that most respondents valued “the potential of 3D technology to facilitate better assessment of pain” as the most useful outcome of adopting a 3D approach. Respondents also expressed their opinions on the usability of the 3D approach, with no important concerns reported about its perceived ease of use. Our findings finally, showed that respondents appreciated the perceived clinical utility of the proposed approach, which could further have an influence on their intention to use it. Conclusions: These findings highlighted factors that are seen as essential for improving the assessment of pain, and demonstrated the need for a strong focus on patient-clinician communication. The participants of this analysis believed that the introduction of 3D technology in the process might be a useful mechanism for such a positive health care outcome. The study’s findings could also be used to make recommendations concerning the potential for inclusion of 3D technology in current clinical pain tools for the purpose of improving the quality of health care

    The gamification of accessibility design: A proposed framework

    Get PDF
    The use of Gamification for the purpose of training and raising awareness has attracted considerable interest over the last years. However, the development of such solutions to use within the area of accessibility design has not been yet explored. In this paper, we present a proposed framework using Gamification as a method for engaging and motivating web designers to increase the adoption of the W3C WCAG 2.0 guidelines. It is anticipated that our framework will provide a more interactive and intuitive learning experience

    Challenges in medical visualization : an interactive approach to explore the effect of 3-D technology on the visualization of pain

    Get PDF
    Pain experienced as a result of a disabling medical condition is a frequent problem in the clinical community and can often be present in any individual with this kind of health concern. Such pain is typically characterized by severe implications reflected on both a person‘s personal life, as well as on a country‘s health and economic systems. Research on pain has revealed that patients not only experience several types of pain that could prove to be challenging to address, but also that each individual can interpret the same type, location and severity of this pain in different subjective ways, making the need for more effective pain measurement methods an imperative and troublesome effort. In retrospect, the healthcare field is currently trying to enhance the available medical methods with alternatives that would be more efficient in providing accurate pain assessment. Most efforts revolve around traditional methods of measuring pain characteristics, which typically involve the 2-Dimensional (2-D) representation of the human body, often used to collect information regarding the type and location of pain. However, these 2-D pain drawings can be limited in their ability to efficiently visualize pain characteristics for diagnosis purposes. Nonetheless, patients have been shown to prefer such drawings. This research develops an alternative interactive software solution to help in addressing the aforementioned situation, by employing the capabilities that advancements in 3-Dimension (3-D) technology offer. Subsequently, in the anticipation that limitations of current 2-D pain visualization will be solved, the developed approach facilitates the measurement of pain experiences via a 3-D visualization model of the patient. To ensure that it can effectively perform in real-world medical practice, the 3-D pain drawing is evaluated in this research through real-life case studies that are carried out in designated settings. The research findings have shown that the developed approach can potentially make significant contributions to society, science/technology and healthcare provision, with patients and clinicians suggesting that 3-D technology can be a promising means in the pursuit for more effective pain measurement solutions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Designing for designers: Towards the development of accessible ICT products and services using the VERITAS framework

    Get PDF
    Among key design practices which contribute to the development of inclusive ICT products and services is user testing with people with disabilities. Traditionally, this involves partial or minimal user testing through the usage of standard heuristics, employing external assisting devices, and the direct feedback of impaired users. However, efficiency could be improved if designers could readily analyse the needs of their target audience. The VERITAS framework simulates and systematically analyses how users with various impairments interact with the use of ICT products and services. Findings show that the VERITAS framework is useful to designers, offering an intuitive approach to inclusive design.The work presented in this article forms part of VERITAS, which is funded by the European Commission's 7th Framework Programme (FP7) (grant agreement # 247765 FP7-ICT-2009.7.2)
    corecore