645 research outputs found

    Modeling and rendering for development of a virtual bone surgery system

    Get PDF
    A virtual bone surgery system is developed to provide the potential of a realistic, safe, and controllable environment for surgical education. It can be used for training in orthopedic surgery, as well as for planning and rehearsal of bone surgery procedures...Using the developed system, the user can perform virtual bone surgery by simultaneously seeing bone material removal through a graphic display device, feeling the force via a haptic deice, and hearing the sound of tool-bone interaction --Abstract, page iii

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Fast scalable visualization techniques for interactive billion-particle walkthrough

    Get PDF
    This research develops a comprehensive framework for interactive walkthrough involving one billion particles in an immersive virtual environment to enable interrogative visualization of large atomistic simulation data. As a mixture of scientific and engineering approaches, the framework is based on four key techniques: adaptive data compression based on space-filling curves, octree-based visibility and occlusion culling, predictive caching based on machine learning, and scalable data reduction based on parallel and distributed processing. In terms of parallel rendering, this system combines functional parallelism, data parallelism, and temporal parallelism to improve interactivity. The visualization framework will be applicable not only to material simulation, but also to computational biology, applied mathematics, mechanical engineering, and nanotechnology, etc

    VISIO-HAPTIC DEFORMABLE MODEL FOR HAPTIC DOMINANT PALPATION SIMULATOR

    Get PDF
    Vision and haptic are two most important modalities in a medical simulation. While visual cues assist one to see his actions when performing a medical procedure, haptic cues enable feeling the object being manipulated during the interaction. Despite their importance in a computer simulation, the combination of both modalities has not been adequately assessed, especially that in a haptic dominant environment. Thus, resulting in poor emphasis in resource allocation management in terms of effort spent in rendering the two modalities for simulators with realistic real-time interactions. Addressing this problem requires an investigation on whether a single modality (haptic) or a combination of both visual and haptic could be better for learning skills in a haptic dominant environment such as in a palpation simulator. However, before such an investigation could take place one main technical implementation issue in visio-haptic rendering needs to be addresse

    Extreme scale parallel NBody algorithm with event driven constraint based execution model

    Get PDF
    Traditional scientific applications such as Computational Fluid Dynamics, Partial Differential Equations based numerical methods (like Finite Difference Methods, Finite Element Methods) achieve sufficient efficiency on state of the art high performance computing systems and have been widely studied / implemented using conventional programming models. For emerging application domains such as Graph applications scalability and efficiency is significantly constrained by the conventional systems and their supporting programming models. Furthermore technology trends like multicore, manycore, heterogeneous system architectures are introducing new challenges and possibilities. Emerging technologies are requiring a rethinking of approaches to more effectively expose the underlying parallelism to the applications and the end-users. This thesis explores the space of effective parallel execution of ephemeral graphs that are dynamically generated. The standard particle based simulation, solved using the Barnes-Hut algorithm is chosen to exemplify the dynamic workloads. In this thesis the workloads are expressed using sequential execution semantics, a conventional parallel programming model - shared memory semantics and semantics of an innovative execution model designed for efficient scalable performance towards Exascale computing called ParalleX. The main outcomes of this research are parallel processing of dynamic ephemeral workloads, enabling dynamic load balancing during runtime, and using advanced semantics for exposing parallelism in scaling constrained applications

    Enhanced online programming for industrial robots

    Get PDF
    The use of robots and automation levels in the industrial sector is expected to grow, and is driven by the on-going need for lower costs and enhanced productivity. The manufacturing industry continues to seek ways of realizing enhanced production, and the programming of articulated production robots has been identified as a major area for improvement. However, realizing this automation level increase requires capable programming and control technologies. Many industries employ offline-programming which operates within a manually controlled and specific work environment. This is especially true within the high-volume automotive industry, particularly in high-speed assembly and component handling. For small-batch manufacturing and small to medium-sized enterprises, online programming continues to play an important role, but the complexity of programming remains a major obstacle for automation using industrial robots. Scenarios that rely on manual data input based on real world obstructions require that entire production systems cease for significant time periods while data is being manipulated, leading to financial losses. The application of simulation tools generate discrete portions of the total robot trajectories, while requiring manual inputs to link paths associated with different activities. Human input is also required to correct inaccuracies and errors resulting from unknowns and falsehoods in the environment. This study developed a new supported online robot programming approach, which is implemented as a robot control program. By applying online and offline programming in addition to appropriate manual robot control techniques, disadvantages such as manual pre-processing times and production downtimes have been either reduced or completely eliminated. The industrial requirements were evaluated considering modern manufacturing aspects. A cell-based Voronoi generation algorithm within a probabilistic world model has been introduced, together with a trajectory planner and an appropriate human machine interface. The robot programs so achieved are comparable to manually programmed robot programs and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. Automated workspace analysis techniques and trajectory smoothing are used to accomplish this. The new robot control program considers the working production environment as a single and complete workspace. Non-productive time is required, but unlike previously reported approaches, this is achieved automatically and in a timely manner. As such, the actual cell-learning time is minimal

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems

    A Homegrown DSMC-PIC Model for Electric Propulsion

    Get PDF
    Powering spacecraft with electric propulsion is becoming more common, especially in CubeSat-class satellites. On account of the risk of spacecraft interactions, it is important to have robust analysis and modeling tools of electric propulsion engines, particularly of the plasma plume. The Navier-Stokes equations used in classic continuum computational fluid dynamics do not apply to the rarefied plasma, and therefore another method must be used to model the flow. A good solution is to use the DSMC method, which uses a combination of particle modeling and statistical methods for modeling the simulated molecules. A DSMC simulation known as SINATRA has been developed with the goal to model electric propulsion plumes. SINATRA uses an octree mesh, is written in C++, and is designed to be expanded by further research. SINATRA has been initially validated through several tests and comparisons to theoretical data and other DSMC models. This thesis examines expanding the functionality of SINATRA to simulate charged particles and make SINATRA a DSMC-PIC hybrid. The electric potential is calculated through a 7-point 3D stencil on the mesh nodes and solved with a Gauss-Seidel solver. It is validated through test cases of charged particles to demonstrate the accuracy and capabilities of the model. An ambipolar diffusion test case is compared to a neutral diffusion case and the electric field is shown to stabilize the diffusion rate. A steady state flow test case shows the simulation is able to stabilize and solve the electric potential for a plume-like scenario. It includes additional features to simplify further research including a comprehensive user manual, industry-standard version control, text file inputs, GUI control, and simple parallelism of the simulation. Compilation and execution are standardized to be simple and platform independent to allow longevity of the code base. Finally, the execution bottlenecks of linking particles to cells and particle moving were removed to reduce the simulation time by 95%
    • …
    corecore