
J Grid Computing (2006) 4: 395–412
DOI 10.1007/s10723-006-9049-1

MAGDA: A Mobile Agent based Grid Architecture

Rocco Aversa · Beniamino Di Martino · Nicola Mazzocca ·

Salvatore Venticinque

Received: 18 October 2005 / Accepted: 13 May 2006 / Published online: 27 June 2006
© Springer Science + Business Media B.V. 2006

Abstract Mobile agents mean both a technology
and a programming paradigm. They allow for a
flexible approach which can alleviate a number
of issues present in distributed and Grid-based
systems, by means of features such as migration,
cloning, messaging and other provided mecha-
nisms. In this paper we describe an architecture
(MAGDA – Mobile Agent based Grid Archi-
tecture) we have designed and we are currently
developing to support programming and execu-
tion of mobile agent based application upon Grid
systems.

Key words mobile agents · Grid · heterogeneous
and distributed systems

R. Aversa · B. Di Martino (B) · S. Venticinque
Dipartimento di Ingegneria dell’Informazione,
Seconda Universita degli Studi di Napoli,
via Roma, 29, 81031 Aversa (CE), Italy
e-mail: beniamino.dimartino@unina.it

R. Aversa
e-mail: rocco.aversa@unina2.it

S. Venticinque
e-mail: salvatore.venticinque@unina2.it

N. Mazzocca
Dipartimento di Informatica e Systemistica,
Università Federico II di Napoli,
via Claudio, 21, Napoli (NA), 80125, Italy
e-mail: nicola.mazzocca@unina.it

1. Introduction

The increase in size and performance of com-
puter networks is both cause and effect of their
ubiquity and pervasiveness. This means that users
are able to exploit network connectivity without
expensive add-on and wherever they are, so they
draw industries to install new networks ad to
provide new services. Another relevant phenom-
enon is the increasing availability of handheld
mobile devices and their increasing capability. In
this context exploitation of distributed resources
and services should be addressed. New program-
ming paradigms are being designed and tested
in order to develop models of applications that
exploit the opportunities of these systems and
overcome their drawbacks. One of the most im-
portant targets is to enable seamless utilization,
interoperabilty and composition of the distributed
resources and services. Technologies and stan-
dards for addressing this task, commonly named
as Web Services, are promoted by W3C (World
Wide Web Consortium) and are fast developing
and achieving robustness and wide adoption. They
define an interaction model to deploy business to
business application in a Virtual Organization and
provide a technology to achieve self-describing,
discoverable services and interoperable protocols
based on XML messages exchange. Grid commu-
nity has recently decided to adopt Web Services
technology in order to gain independence from

396 J Grid Computing (2006) 4: 395–412

the implementation of any service. The alignment
– and augmentation – of Grid and Web services
technologies is the aim of the Open Grid Services
Architecture (OGSA) effort [3]. Anyway Web Ser-
vices represent just a technology to build uniform
interfaces which support a uniform access to the
deployed services. Their adoption does not solve
the still open issues arisen in Grid computing.
A lack of functionality is still present in avail-
able Grid Environment [39, 41]. Missing services
include resource brokering, automatic software
dependency analysis and installation, configuring
execution environments [38], and policy-based ac-
cess control. An execution service to reliably exe-
cute complex jobs in a Grid environment even is
not available. The most known example of Grid
environment is Globus [2]. Even the Globus ap-
proach [40] focuses on low-level protocols, arguing
that the creation of robust, core low-level proto-
cols enables other projects to create higher-level
tools and protocols that will provide advanced
services. We propose in this paper an approach
based on adoption of techniques for code and data
mobility (commonly named as ‘Mobile Agents
technology’), in order to augment existing Grid
frameworks with features of dynamic workload
balancing, reconfigurability, reliability, support to
distributed programming, monitoring and man-
agement of Grid resources etc. Code mobility can
be defined informally as the capability to dynami-
cally change the bindings between code fragments
and the location where they are executed [4]. The
mobile agents technology has gained interest in
the last years in parallel and distributed program-
ming because of its flexibility. This technology
allows the user to exploit the remote resources
of a distributed system, overcoming the limitation
of its connection mode (device and communica-
tion channel), moving computation where data
and any kind of resource are available. In this
paper we discuss how mobile agents technology
can improve existing Grid technology and can be
integrated into existing Grid frameworks. We in-
troduce a Mobile Agent based Grid Architecture
(MAGDA), we have designed and we are imple-
menting, conceived to support programming and
execution of Grid-oriented agent based applica-
tions. The paper is structured as follows: Section 2
introduces related work about mobile agents for

Grid; Section 3 describes pros and cons of the
pros and cons of integration of Mobile Agents into
Grid technology; Section 4 presents a detailed de-
scription of the framework we are developing; in
Section 5 we provide an evaluation of MAGDA,
by presenting a case study application its execu-
tion on a production Grid System; finally we come
to conclusion.

2. Related and Complementing Work

Mobile Agents [5] are the last evolution of Mobile
Code based systems. They add mobility to the set
of features, such as reactivity, proactivity, com-
munication and social ability, which characterize
common software agents systems. A mobile agent
is an agent 1 able to migrate across the network
together with its own code and execution state.
The idea of a self-controlled execution next to
the data source has been proposed [6] as the
new wave to replace the client–server paradigm
with a better, more efficient and flexible mode
of communication. The Mobile Agent paradigm
involves the migration of a whole existing com-
putational component together with its know-how
and its intermediate results from a host to another
where the necessary resources are available. As
it is shown in Figure 1 the agents perform the
computation were the resources are located thus
optimizing the execution time and reducing the
interactions from remote(we need just to send the

Server Server

Migration:
(code+data+state)

Server Server

Mobile Agent

ServerServer

Figure 1 The mobile agent programming model.

1 For a definition of the concept of agent see [44].

J Grid Computing (2006) 4: 395–412 397

agent code and eventually to collect results). Mo-
bile agents provide a mechanism for the delivery
and execution of tasks on remote machines. Sev-
eral mobile agent packages currently provide the
basic functionalities together with other features
about security, communication, user interface and
management. The agent migration is more similar
to process migration than to an applet download
[4]. However the image of a process is strongly tied
to the Operative Environment inside which it has
been created, so it is not feasible to move such a
process across different architectures. Two forms
of mobility characterize the migration of agents a
weak mobility and a strong mobility.

– Strongmobility is the ability of a Mobile
Code System (called strong MCS) to allow mi-
gration of both the code and the full execution
state of an agent.

– Weakmobility is the ability of a MCS (called
weak MCS) to allow code transfer across dif-
ferent CEs together with the intermediate val-
ues of the some data which are relevant to
resume the status of the computation. (the
activation stack and complete image of the
process could not be migrated, the application
is resumed, not the process)

In this work we will deal with object migration
that makes it possible to move objects among
address spaces, implementing a finer grained mo-
bility with respect to process-level migration even
if this does not allow for strong mobility, but only
for weak mobility. Agent technology, and mobile
agent in particular, has recently gained interest
in the Grid community [33, 36, 37]. Many works
on design of agent based Grid platforms focus
on the implementation of basic services such as
routing and handling of FIPA ACL2 messages [8],
load balancing [9], fault masking [7] and service

2 FIPA is the Foundation for Intelligent Physcal Agents
(http://www.fipa.com). Its specifications define the standard
to design and build agent platforms and applications. ACL
is the Agent Communication Language. It has been defined
in order to support the communication among agents de-
veloped by different parties.

discovery [10]. An important component of re-
source sharing is resource description, discovery
and interoperability. A Grid-based architecture
for Multimedia services management is presented
in [11]. Especially [10] defines an architecture
of a services discovery functionality implemented
through mobile agent technology. In [13] software
agents are utilized in order to manage and assign
resources and to distribute applications and data.
A Java micro-kernel allows to hold and release the
system resources for the specific application. Mo-
bile agents take care to start applications and to
monitor them. An agent is able to take a snapshot
of the target application in order to recover it on a
different host. A similar architecture is described
in [14] where all the features of job migration are
encapsulated in a user program wrapper that is im-
plemented on a Java layer between a mobile agent
and the corresponding user program. [15] and [16]
also focus on monitoring and management of Grid
resources. Some other works deal with parallel
programming of distributed applications as in [17]
where the agent based Messenger environment
is used to implement two parallel programming
skeletons, which provide the developer with some
facilities for automatic distribution of tasks. In [18]
a scheduling dynamically arrange and optimize
the distributions of the working agents across the
network according to the throughput of communi-
cation among them. A Problem Solving Environ-
ment built on an agent Grid is described in [34].
Many other issues dealing with Grid and mobile
agents programming are addressed in literature
such as security [19] and exploitation of Grid ca-
pability from heterogeneous and mobile devices
[20–22].

3. Current Grid Technology Limitations
and Opportunities for Mobile Agents

A mobile agents based middleware could be inte-
grated within a Grid platform in order to provide
each architecture with the facilities supported in
the other one. Here we introduce some limitations
of current Grid middleware and introduce rele-
vant characteristics of Mobile Agent technology
which can be exploited to develop Grid services
and applications. A lot of open issues still need

http://www.fipa.com

398 J Grid Computing (2006) 4: 395–412

to be addressed in developing Grid services as the
current available Grid environments lack relevant
functionalities.

– In general current middleware are not able
to migrate an application from one system
to another as there are a lot of issues to be
addressed [42]. Some examples are the differ-
ences across resources in installed software,
file system structures, and default environ-
ment settings. On the other side reconfigura-
tion is a main issue to implement dynamic load
balancing strategies.

– Based on a message passing paradigm such as
MPICHG [1] Grid environments do not pro-
vide high level of abstraction compared to the
current practices mostly based on traditional
message-passing primitives.

– Current Grid middlewares still lack mature
fault tolerant features [43]. Most of the earlier
proposed facilities have been either designed
for local area networks or to handle small
number of nodes and hence lack in areas such
as scalability, efficiency, running times etc.

– Current information and monitoring frame-
works do not scale to Grid level or are focused
on specific aspects. Monitoring and execution
support with adequate checkpointing and mi-
gration support also still lack.3

– Currently, there is neither a coherent and
generally accepted infrastructure to manage
resources nor are there efficient coordination
algorithms that suit the complex requirements
of a large scale Grid environment with differ-
ent resource types [38].

– Globus and other Grid platform do not pro-
vide a scheduler [39], but rather rely on the
client operating system scheduler or batch
schedulers such as OpenPBS4 to handle lo-
cal scheduling activities. Global scheduling
between Grid processes can be provided by
meta-schedulers, such as Condor-G.5

3 See the objectives of the CoreGRID project http://www.
coregrid.net.
4 The OpenPBS Project: http://www.openpbs.org.
5 The Condor Project: http://www.cs.wisc.edu/condor/.

We aim to address the issues introduced above
providing advanced services which are imple-
mented through the ready mechanisms made
available by the mobile agent technology such as
cloning, migration, persistence, etc.

– Mobile agent technology is very flexible as it
supports run-time mobility through both push
and pull interaction models. We mean that
it is possible either to download an agent to
reconfigure the client and to upload the ex-
ecution wherever there is an agent enabled
host that provide computing power. It allows
to migrate the execution according to dynamic
changes in Grid status; suspend or resume the
execution of time consuming applications; ex-
ploit new nodes by a run-time reconfiguration
that provides, just when it needs, with those
components which are needed to take part in
a distributed computation;

– Different message delivery mechanisms block-
ing or non-blocking send and receive primi-
tives allow to develop complex client–server
or peer-to-peer applications. Client server or
peer to peer paradigms can be implemented
by different kind of communication facilities.
Furthermore mobile agents dynamically op-
timize communications: Collaborative agents
can be moved in a distributed environment
in order to re-shape the initial communication
pattern.

– Persistence, cloning and migration mecha-
nisms which are provided by the mobile agents
technology can be exploited to improve relia-
bility by replication [7].

– Migration can be exploited to monitor remote
resources. Agents can move to remote desti-
nations to evaluate system parameters which
allow to characterize the status of the target
machines. Moving themselves to the front-end
nodes they could be able to evaluate the real
configuration of hidden resources.

– Moving code where data resides allows to re-
duce the traffic in the network and to remove
the overhead due to the latency of communi-
cation. This allows also to dynamically opti-
mize communications which could be affected
by new traffic conditions or by unbalance of
the distributed computation. Cooperation a

http://www.coregrid.net
http://www.coregrid.net
http://www.openpbs.org
http://www.cs.wisc.edu/condor/

J Grid Computing (2006) 4: 395–412 399

social ability can be exploited to plan coordi-
nation strategies for an efficient utilization of
Grid resources.

– Scheduling can be addressed at application
level as Agents execution can be controlled
by the server that provides the context in-
side which they will be hosted. Furthermore
persistence and migration can be exploited to
suspend, migrate and resume their execution
according to defined policies.

Of course many challenges should be addressed
in order to grant an effective exploitation of these
new facilities. Furthermore common issues of dis-
tributed system programming become more criti-
cal when applications are based on code mobility.

– It should be granted that Grid programmers
do not need to deal necessary with mobile
agents technology. It should be possible to
reuse original applications without rewriting
them. Java cannot be the only language sup-
ported because performance could be affected
if it was used to implement high performance
applications. Besides execution must not be
bounded to agent enabled nodes. We do not
want to loose the independency of applica-
tions from any programming language and the
compliance with any Grid technology assured
by other platforms.

– Security is a main issue when we deal with
mobile agents [35]. The hosting node is not

aware about the time and from where the
agent will come as is pushed and not pulled.
We need to take in account the protection
of servers against agents; the protection of
agents against other agents; the protection of
agents against servers; the protection against
the network outside the agents domain.

– Reliability is a critical feature as the control of
distributed nodes is not centralized in Grid ar-
chitectures. Mobile agents are especially vul-
nerable to the faults of a distributed system
as they autonomously migrate across the net-
work. A failure of the agent server, of the node
that is hosting it or the network during the
transmission could cause the loss of the agent
itself. Not only the agent is lost but also all the
results of the computation carried out till the
failure event.

– Network latency. As Internet is an asynchro-
nous system, the owner could not know if the
agent is lost or it is late because of the network
and system delay.

4. MAGDA (Mobile Agent based Grid
Architecture): A Layered Model

In this section we present the design and par-
tial implementation of an agent based framework
for Grid computing: MAGDA – Mobile Agents
based Grid Architecture [31]. It is conceived in

Figure 2 The layered
model of MAGDA. Application

Collective

Resources

Connectivity

Fabric

•OMP integration
•Parallel Skeletons
•Collective communication primitives

•JVM & platform dependent natives modules

•Agent’s protocol (messaging, dispatching,
…)
•SIP based localization protocols
•Authorization protocols
•Heterogeneous Client Terminal Access

•Service Discovery
•Load Balancing
•Server clustering
•Reliable protocols

•System Monitor
•Security policies
•Access Control and agent authentication

400 J Grid Computing (2006) 4: 395–412

order to provide secure access to a wide class
of services in a distributed heterogeneous system,
geographically distributed. MAGDA is a layered
architecture, which strictly adheres to the Layered
Grid Model [12]. In this way any of the several
components of MAGDA can be implemented or
integrated in any Grid framework, complaint to
the Layered Model, by utilizing services provided
by components at lower layers, and providing ser-
vices at upper layers. Figure 2 shows a listing of
MAGDA components and services at each Layer
of the Grid model. In the following we provide
a description of MAGDA components at each
layer, starting from lower layers.

4.1. Fabric Layer

At this layer most of all functionalities are pro-
vided by the Java Virtual Machine that offers an
abstraction of the native system. Where needed,
executable programs or native libraries are exe-
cuted by the Java Runtime System or the Java
Native interface. Java is the best choice to support
agent mobility across a wide number of heteroge-
neous architecture because of its portability and
thanks to a number of built in mechanisms such as
serialization, dynamic class loading, late binding
and security isolation. Unfortunately using Java
performance of time consuming applications could
be affected, however a big benefit is gained in
scalability of agent based applications and agent
based architecture.

4.2. Connectivity Layer

Here we define protocols which allow the low-
level interaction among the components of our
Grid architecture. In MAGDA agents exploit the
basic communication protocols defined within the
Aglet workbench. Further we extended some of
them in order to provide localization and security.

4.2.1. Agent Transfer Protocols

In order to dispatch agents from a host to another
or to support the communication among agents
each Mobile Agent platform define its own proto-

cols. The FIPA standard has formally defined the
Agent Communication Language (ACL) in order
to allow the agents, which execute on platform
developed by different parties, to understand one
with another. However each implementation can
choose to implement different transport proto-
col to transfer the data across the network. The
IBM Aglets toolkit, upon which MAGDA is im-
plemented defines the Agent Transfer Protocol
(ATP) to migrate agent and to dispatch messages
which is an extension of the HTTP protocol. It
also supports http tunnelling to transfer the data
beyond a firewall.

4.2.2. SIP Based Localization Protocols

While mobile users or agents travel across the
network, they always get new addresses and are
forced to use different communication protocols.
It has been designed and developed a session
protocol that allows a connection between two
agent servers, and that is transparent with respect
to their effective location. To achieve this goal
we extended the agent server with a connection
manager that implements a SIP compliant proto-
col [29]. The SIP (Session Initiation Protocol) is a
standard for the session creation and management
on a data network. It allows the localization of
the user and the creation of a control channel
that supports the dynamic reconfiguration of the
connection at the application level. A SIP reg-
ister collects the users’ registration requests and
assigns them an identifier. It is able to localize
and to redirect the user’s requests to the receiver
when a session has to be opened, reconfigured
or closed. This service allows the applications to
register and update their address, in such a way
that the developers and users are able to localize
the resource by its identifier. The SIP protocol
has been exploited both for server clustering, in
the way that will be described at Collective level
and for transparent agent localization. Each agent,
that needs to be localized by a SIP call, is able
to update its new location in a SIP register after
it has been dispatched from a host to another.
In our implementation the agent server send and
accept SIP messages on behalf of its local agents
and redirect the body to the right receivers.

J Grid Computing (2006) 4: 395–412 401

4.2.3. Authorization Protocols

An Agent needs to be protected from hosts which
try to steal or manipulate confidential data carried
by the agent itself. We can classify agents security
problems according the following criteria:

– Protection of host systems and networks from
malicious agents;

– Protection of agents from malicious hosts.

When we deal with mobile agents we have to
trust dynamic objects and not static code. Usually
each Mobile Agent is an executing thread inside
the agent server application. It is characterized by
its code, but also by its origin (the place where
the execution started), its owner (who started its
execution), its execution status, its name (a unique
identifier) and eventually its itinerary (the servers
he visited). We employ digital signature technol-
ogy to certify the authenticity of these dynamic
properties (not only the code as it is usually done
with Java Applets), which change every time the
agent migrates from a host to another. Such prop-
erties are signed together with the state of the
agent by the hosting server just before leaving.
Many Mobile Agent Systems address the security
issues by employing proprietary mechanisms to
protect agents inside their platforms, and adopt
standard techniques to protect and trust agents
toward any other application. In order to develop
a security infrastructure for Mobile Agent systems
we need to provide some basic security mecha-
nisms. We developed a component that support
the migration by providing it with an authentica-
tion mechanism based on digital signature tech-
nology. We sign the stream of bytes composed
of the state and the code of the agent. The code
is enclosed in a Java archive (JAR file),which is
signed one time by the developer, before the code
has been deployed. The dynamic properties, which
characterize the agent instance, and the agent
state are signed by the hosting server just before
leaving. The signature process generates a stan-
dard PKCS#7 file [23]. The PKCS#7 is composed
of the plain data, its signed digest and the public
digital certificate (which contains the public key
among other information) of the agent owner, that
is used to authenticate the user and to process its
authorization profile. At destination the server is

able to verify the signature and to start the agent
in case of success. Each agent could be authen-
ticated and authorized by verifying the signature
of its byte stream in order to access the required
resources and to act on behalf of its owner. A
secure dispatching method is provided together
with the original non-secure one. The private key
of the user is stored in a smart-card and a set
of Java API allows to access it when the secure
dispatching is selected. The set of developed APIs
for the secure dispatch of agents can be used to
sign and authenticate communications with other
agents or with applications.

4.2.4. Web Service Based Access and
Heterogeneous Client Terminal Access

In order to provide the interaction between our
mobile agent system and any kind of application
we are able to deploy the services provided by our
Agent Server such as any other Web Service. We
defined and implemented a Web Service interface
that enables the requestor to create, move, com-
municate with the agents by the SOAP protocol.
We developed an application that implements a
wrapper able to receive SOAP requests and to
forward them by invoking the Agent API. When
the service starts an Aglet Server runs inside the
Tomcat Container hosting agents and providing
a SOAP bridge that allows any kind of applica-
tion to interact with them. As the JakartaTomcat
application server is unable to handle the ATP
(Agent Transfer Protocol) messages it has been
extended it in order to support the execution of
our application. As handheld devices can exploit
just limited resources to access distributed services
we are also able to provide a web interface to com-
municate with agents which execute on MAGDA
[29]. An agent server is able to receive an HTTP
request from any browsers and to forward it to the
addressed agent. The agent is able to process the
incoming request as any other messages and can
reply providing a content suited for the its client.
Each administrative domain should be allowed to
define its own requirements for authentication and
authorization. A local policy needs to be defined
in order to specify who is granted to access the
selected resource.

402 J Grid Computing (2006) 4: 395–412

4.2.5. System Monitoring

This component had been designed and is cur-
rently being developed. In order to support the
upper layers in the resource allocation each Grid
resource is provided with a parameterized sys-
tem monitor engine. The MAGDA framework
provides developers with some primitives which
allow a dynamic monitoring of system parame-
ters such as the CPU and memory utilization.
A further significant performance metric is the
available bandwidth of the network; it is useful
in order to compute the cost of transferring the
data and the code from a host to another. A set of
Java API has been designed to collect periodically
these parameters values by the servers which run
on identified operative systems such as Unix or
Windows. The exported interface is defined at
this layer but its implementation depends on the
specific resource and is defined at the Fabric layer.
In Figure 3 the System Monitor is a component
implemented by a thread to periodically collect
parameters which characterize the major system
activities and resources. The values of interest are
stored in a table that can be queried by a Database
Manager. The Information Agent is activated on

an information request received as a message.
Programmers can exploit this knowledge to op-
timize resource allocation or to implement effec-
tive load balancing strategies. On the other side,
when new kind of information needed, a dedicated
travelling agent could visit the servers to collect
other significant system parameters which are not
provided. It could be done by executing specific
routines carried by agents on remote hosts. In this
case the agents’ code is Java and can be executed
everywhere, but the we could need to develop dif-
ferent algorithms (shaped according to the specific
architecture) to evaluate the status of the target
machine.

4.2.6. Resource Consumption

In a Grid environment we must avoid that an
incoming application is able to reserve and waste
a shared resource. Once the agent has been al-
lowed to access a resource, controlling resource
consumption is not a trivial task when we deal
with Java and mobile agents architectures. Even
if we can manage a Java application as any other
job scheduled on a Grid nodes, however we have

Figure 3 The system
monitoring architecture.

Aglet Server System
Monitor

monitor
interface

Database
Manager

Platform Dependent

AP2AP1 AP3

Aglet Performance

Platform Independent

Information
Agent

System Monitor Architecture

J Grid Computing (2006) 4: 395–412 403

not the visibility about the different agents which
are running inside the virtual machine. We can
control an agent based application defining some
parameters which affect the agents’ life span. We
mean that we can limit the number of hops that an
agent is allowed to do (the number of migrations
from a host to another), the time life, the mini-
mum time between a suspension and the follow-
ing resumption, the number of clones and so on.
Some mobile agents platforms support this kind
of mechanisms which can be used to define and
enforce the utilization policy of a shared resource
in a Grid environment. Actually we still miss this
feature in our architecture as it is not supported by
the Aglets workbench that has been used to build
a prototypal architecture of MAGDA.

4.2.7. Security Policies, Access Control
and Agent Authentication

The administrator is able to fix a policy according
to which its resource is shared. The policy must be
published; this allows each application and user to
know what are the constraints on the utilization
of the discovered resources. A Security manager,
which is able to authenticate the agent code and
to process its authorizations, is embedded in the
IBM Aglet platform. The Aglet Security Manager
processes an authorization policy to grant per-
missions to the trusted and untrusted agents as a
browser with applets. However different processes
could share the same code but they could be
owned by different users or inherit different per-
missions. The agent server has been provided with
a facility that uses smart card based digital signa-
ture to authenticate the stream of data migrated
from a host to another.

4.3. Collective Layer

At this layer we implement different sharing be-
haviors of collective resources. Some examples of
services we deal with at this level are resource
discovering, clustering and system reliability.

4.3.1. Load Balancing

In the Grid the user is just the owner of its ap-
plication which is hosted by shared resources. The

user requests the allocation of resources for its
application and can ask for a desired performance
profile. The provided resource allocation system,
exploiting the services offered by the underlying
levels, assigns to the application those available
resources that best suit the required performance
profile. The goal of the policy chosen to admin-
istrate each resource can be the performance op-
timization, the bandwidth, the throughput or the
system utilization. We need to grant coherence
between the administration criteria of the shared
resources and the application requirements. For
example, an application who asks for best perfor-
mance, after it reserved a hosting node, it must not
be scheduled according to a different policy. In
order to get the coherence in resource allocation
we introduce two proposal approaches.

– According to the first one the application is
dispatched together with a resource allocation
request and each destination server takes care
of satisfying the attached requirements. This
choice grants the best QoS to the user, but it
builds al lot of constraints on the administra-
tion of each shared resource.

– According to the second approach each node
must publish the defined policy in order to al-
low, at collective layer, a finer selection among
the available resources before to distribute the
application.

Of course to support a dynamical management
of resources and its allocation, based on agent
cloning and dispatching, we have to provide each
node with a set of services at lower level. Some of
them have been discussed before: A system Moni-
tor, an information collector, a local resource man-
ager. Even if this component is currently being
developed, at application level a load balancing
facilities are already operational and have been
exploited in the case study described in Section 5.

4.3.2. Service Discovery

We are designing and have implemented a service
discovery functionality for the MAGDA platform,
mainly exploiting web services technology [28].
Within MAGDA framework, resources and ser-
vices are characterized by mobility features. In
fact in our architecture a resource is defined as

404 J Grid Computing (2006) 4: 395–412

Figure 4 Resources and
application discovery.

Aglet Server

MAGDA policies and
Services:

Security Policy
Server properties
Owner
Administrator
Agents CodeBase
Active Agents
Mobile Services
…………………
…………………

Agents RepositoryApplication
Agent

Agent Server

UDDI Interface

UDDI

UDDI Interface

Agent Server

Discovery

Publication

Aglet Server

MAGDA policies and
Services:

Security Policy
Server properties
Owner
Administrator
Agents CodeBase
Active Agents
Mobile Services
…………………
…………………

Agents RepositoryApplication
Agent

Agent Server

UDDI Interface

UDDI

UDDI Interface

Agent Server

Discovery

Publication

a node able to host a mobile agent. A service is
an application server (that can host an agent) or
a mobile agent. Both users and applications must
be able to get the visibility of the Grid in order
to ask for its resources. They need to know what
are the available resource, and for each of them,
their exported services and access policies. The
user is able to discover available services (running
agents) or to start its own services downloading
the agent code or asking for agent’s creations.
Also the agents are able to discover new hosting
node, in order to explore the network, to mi-
grate to less busy machines, or to look for other
applications.

Our design follows the web services approach
and reuses its technology. Each agent server is a
services provider and must publish its address and
services in a UDDI register. These references are
bind to specific applications or data. As shown in
Figure 4 the platform is able to access an UDDI
register by a set of extended UDDI APIs. At
least the publication should provide the following
items:

– The features of the shared resource: Amount
of memory, CPU power, number of nodes,
bandwidth of the network, operative system,
available compilers, etc.

– Access and authorization policies
– Owner and administrator’s reference
– System services: System monitoring, code

based repository, etc.
– Application services: Running agents

In our prototypal implementation the published
services are references to mobile agents. The
search is available inside an application by the
developed APIs, or by an extension of the Tahiti
graphical interface. The services are accessible
also by a Web Service interface.

4.3.3. Server Clustering

In a Grid environment, a relevant feature that
should be provided is the clustering of the shared
resources in order to manage and exploit them
how better it is possible. Aims of clustering are:

– the global visibility of the network configu-
ration that means both the topology of the
system and the features of links and nodes;

– the design of efficient communication patterns
for multicast and broadcast messaging;

– the support for agents to discover new agent
servers where to migrate and to be hosted;

– the possibility to look for other agents execut-
ing on a clustered nodes.

We have designed a software protocol which
is employed to organize the agent servers with
a regular binary tree topology. The cluster of
agent servers is dynamically updated by means of
enroll and disjoin procedures. The requests are
submitted to an elected master server that com-
municates the changes to the involved members.
Each new computing node, joining the MAGDA
cluster, checks the presence of a master node in
the network. If the master node is not reachable
it promotes itself as master node, otherwise if a

J Grid Computing (2006) 4: 395–412 405

master node is already up it will be contacted and
will take care of providing the new node with a
new identity in the topology and with the refer-
ence to its neighbors. Each node, which is already
part of the tree, is also notified by the server node
of the changes in the structure. Each node in the
tree is able to directly reach its neighbors or to ask
them for the other destinations in the tree. The
knowledge of the topology provides an agent with
the possibility to explore the network. Further we
were able to augment the framework with col-
lective communication primitives. Each server is
able to forward broadcast and multicast messages
across the web of active nodes exploiting ad hoc
communication paths upon the defined topology.
Mobile nodes as laptop and handheld devices can
be moved from a network to another getting dif-
ferent addresses. The roaming of a mobile user
could require many changes of the system con-
figuration affecting performance with a relevant
overhead and reliability. The SIP protocol, widely
used in Voice Over IP applications, supports the
localization of the user who is roaming in the
network by a SIP identifier and allows to open and
manage sessions. The localization of the clustered
agent servers has been performed in our archi-
tecture by the SIP compliant protocol provided
at connective layer. Prototypal implementations
of the described architecture has been developed
and then it reliability has been improved by the
protocols described in the next section.

4.3.4. Reliable Protocols

In a distributed system we have to deal with the
management of unexpected events such as a fault
or a degraded behavior of the system. In order to
manage such a kind of occurrences we introduce
different protocols to ensure both the reliability
to the applications and a dynamic reconfiguration
of the available resources in the Grid platform.
As the Grid is built on a distributed system and
no one has a complete control of it, it is a main
issue to grant reliability. In order to manage a fault
occurrence or a degraded behavior of the system
we need to:

– detect the fault
– notify it to the interested components

– reconfigure the system by cutting off the faulty
component

– notify the changes in the configuration
– recover data and applications, when it is

possible

We introduce here two reconfiguration pro-
tocols which are designed in order to provide
reliability to the applications and to the Grid con-
figuration. The first one is based on the well known
leader election protocol, which is used to coor-
dinate asynchronous processes. It is conceived to
grant availability and the execution recovery
to the applications. The fault must not be able
to interrupt the service for more than a mini-
mum amount of time. The application should be
able to recover a correct instance of its execution
state, saved before the fault, and to restore the
service. We suppose to have an agent that is car-
rying on a sequential task. In order to grant the
promised reliability the system provides to create
some clones of the first agent. The clones are
dispatched to different servers where they must be
ready to replace an agent if it faults. Through a
cyclic polling each agent asks its clones for reply,
in order to detect any fault. When a fault occurs
among the agents a leader is elected, whose task
is to replace the faulty clones. The execution state
is forwarded from the master clone to the others
when it needs. The reliability of the application
increases with the number of clones, however

Figure 5 A reliable protocol for resource clustering recon-
figuration.

406 J Grid Computing (2006) 4: 395–412

the performance of the application and the load
of the system grow. About the reliability of the
Grid architecture we designed and implemented
a protocol that allows to reconfigure the shape
of the clustered resources when a node fails. The
classic leader election protocol is not suited in this
case because it does not provide scalability to the
architecture. Performance is lost too quickly when
the number of nodes increases. In our extension
each node acts just a monitoring of its neighbors
as shown in Figure 5. The generic node belongs
to two disjoint groups. In Figure 5 the node 3
belongs to the groups {1,4,9,10} and {7,8}. If it
was faulty, the components of each group should
agree about the occurrence of the failure. Only
one node per group is elected to ask the master
node (node 0) for the substitution of the faulty
node. If the mater receives both the alerts from
the elected nodes it substitutes in the topology
the faulty node with the last registered one. The
changes are communicated to all the interested
nodes. The leaves and the root node belong to a
single group so a different strategy is chosen.

4.4. Application Layer

The higher layer in Grid architecture consists of
end-user applications developed relying on ser-
vices defined at any lower layer. The main issue,
at this level, is to make easy and efficient the
task of an application developer. In MAGDA, we
support parallel programming by the mobile agent
paradigm with a set of Java packages that:

– help the building of distributed applications
through the use of different predefined paral-
lel skeletons

– allow an effective utilization of the available
Grid resources by means of dynamic load bal-
ancing mechanisms customized to the specific
application

– provides collective communication primitive
for agent based applications

Some examples of services at this layer are
described in the following.

4.4.1. OpenMP Integration

In order to program hierarchical distributed-
shared memory multiprocessor architectures, in
particular heterogeneous clusters of SMPs (and
uniprocessor) nodes, mobile agents and high-level
shared memory programming paradigms can be
coupled in order to express a hierarchical (two-
level) parallelism: An external distributed mem-
ory level, and an internal shared memory one.
The agents paradigm implements the external
distributed memory parallelism; internal shared
memory parallelism can be achieved within each
agent’s execution, and can be expressed through
OpenMP directives. We have obtained such a cou-
pling through the integration of MAGDA with
OpenMP compiler technology [26]. In particular
we have utilized the JOMP Compiler, developed
by the EPCC research center of the University
of Edinburgh [24]. It is an OpenMP compiler for
the Java language, augmented with OpenMP like
directives and methods, proposed by the authors.
It provides an implementation of most OpenMP
directives for parallel regions, synchronization and
mutual exclusion among threads. It provides a
runtime library, in the form of a Java class library.
The integrated use of JOMP within the Aglet
workbench is straightforward: The JOMP com-
piler needs to be used just as a pre-processor for
the Aglet Workbench, for the Java agent classes
whose methods contains OMP annotations. The
case study presented in Section 5 exploit this
integration.

4.4.2. Algorithmic Skeleton

Parallel programming effort can be reduced by
using high-level constructs such as algorithmic
skeletons. We provide a skeleton-based parallel
programming environment, based on specializa-
tion of Algorithmic Skeleton Java interfaces and
classes to support development and execution of
mobile agent based distributed applications. It is
operational and has been described in [25]. The
user can thus develop a parallel, mobile agent
based application by simply specializing a given
set of classes and methods and using a set of
added functionalities. As a matter of fact, devel-
oping distributed applications using the mobile

J Grid Computing (2006) 4: 395–412 407

agent model remains a non-trivial task because
the mobility feature introduces additional diffi-
culties in designing coordination, synchronization
and communications among the different work-
ers. In practice, many applications share the same
communication and synchronization structure, in-
dependently from the application-specific compu-
tations. In addiction such approach allows to reuse
a great deal of the sequential code, when avail-
able. A predefined algorithmic skeleton allows
to follow the sequential programming model by
filling some methods, classes and interfaces and to
hide the difficulties involved by an explicit parallel
programming paradigm. So, especially when the
starting point is an available sequential code, us-
ing the concept of the algorithmic skeletons that
is separating the communication/synchronization
structure from the application-dependent func-
tions, can ease the programming task, and im-
prove the mapping for performance o parallel
systems. Finally exploiting the peculiar features
of both Object Oriented and mobile agents pro-
gramming models, the proposed skeletons-like
approach enables to program distributed applica-
tions. By means of the provided skeletons inter-
faces the programmer is able to implement his
own application by specializing an assigned struc-
ture and utilizing the set of functionalities that
the mobile agents framework offers. Two algorith-
mic skeletons involving the Farm-like program-
ming paradigm and the Divide and Conquer-like
programming paradigm, respectively, have been
implemented and tested. In the Processor Farm
programming paradigm the master process creates
a number of slaves and assigns some work to every
one of them. The slaves compute their work and
return the results to the master. Task Queue is
the most general Farm-like skeleton; every slave
may produce new work to be performed by it-
self or by other slaves. The second algorithmic
skeleton we have implemented belongs to Divide
and Conquer-like skeleton class, but not to the
highest abstraction level. It is an example of Tree
computation algorithmic skeleton. It solves the
initial problem dividing it in several sub-problems
assigned to different agent workers. The data flow
down from the root into the leaves and the solu-
tions flow back toward the root. We have chosen
to implement a binomial algorithm to build our

tree, so its shape and the results recombination
procedure are consequentially determined.

4.4.3. Collective Communication Primitives

In a highly dynamic computing platform that rep-
resents the target computing environment of most
mobile agent based applications, it becomes es-
sential for the user to benefit of some collective
mechanisms of communication and synchroniza-
tion. We provide a set of Java API that allows
collective communication among mobile agents
which are spread across the network. We were
able to augment the framework with collective
communication primitives such as broadcast and
multicast, and some collective synchronization op-
erations that, for example, allow to compute and
distribute a maximum or minimum value among
all the agents involved. The agent servers are
clustered according to the protocols defined at
the collective layer. Communication patterns can
be built on top of the cluster topology. As an
example, in order to send a remote multicast, an
agent must exploit the ‘remote multicast’ primitive
and provide the message with a label. An agent
who needs to receive multicast messages has to
subscribe itself to the reception of a multicast
message with the same specific label. The message
is broadcasted across the cluster along a sink tree,
and on each server the message is forwarded to
all the subscribed agents. We implemented and
test different implementations which exploit agent
migration to dispatch messages across a network
through different patterns.

4.4.4. A Dynamic Workload Balancing Facility
for Application Programming

Load balancing can be implemented at different
layers of the introduced architecture, according to
the issue that should be addressed. At applica-
tion layer we intend with Workload balancing the
possibility to distribute the application workload
among the worker agents. This approach requires
to know the semantic of the application. We pro-
vide a service for dynamic workload balancing
that can be easily customizable to any user ap-
plication developed within the Workbench. It is
fully operational and it was described in detail in

408 J Grid Computing (2006) 4: 395–412

[27]. The framework is composed of a coordina-
tor agent that controls the load balancing and an
Aglet super-class support. The coordinator agent
communicates, by message passing, only with the
Aglet super-class. In order to configure the sup-
port, the user class must override some methods
inherited by the super-class and set some param-
eters. The implementation of these functions
depends on the specific user application. The co-
ordinator manages a first list of registered workers
and a second list of available free hosts. When the
user Agent’s execution starts, the coordinator is
created and executes a polling among the working
agents registered with it. It is done in order to
know the state of the workers’ computation, which
is the percentage of computation performed, with
respect to the amount assigned to it. The regis-
tered agent’s references are stored in a vector,
ordered according to their computation state; the
ordering of this vector thus represents the relative
speed of each worker with respect to the oth-
ers. It also gives a representation of the state of
the computation. A load unbalance event occurs
when: 1) A worker ends the computation assigned
to it, and becomes idle; 2) the slowest worker
has completed a percentage of the computation
assigned to it which is far below the percentage
completed by the fastest worker (determined by
a fixed threshold on the difference of the two
percentage). In this case the coordinator ask the
most loaded worker to split its workload that will
be assigned to the less loaded one.

5. A Case Study

We provide here an example of parallel ap-
plication developed upon the MAGDA frame-
work. We describe how some MAGDA facilities
have been exploited and provide some consid-
erations about performance results. We show,
through a case-study, how to yield a hierarchi-
cally distributed-shared memory parallel version
of a sequential algorithm, without completely re-
thinking its structure, reusing a great deal of the
sequential code and trying to exploit the hetero-
geneity of the target computing architecture. We
exploit collective communication, the OpenMP
and the balancing facilities of the MAGDA frame-

work. The chosen application solves the well-
known N-body problem [32]. The mobile agents
and high-level shared memory programming par-
adigms have been coupled in order to express a
hierarchical (two-level) parallelism: An external
distributed memory level, and an internal shared
memory one. The interacting agents’ execution
model perform the external distributed memory
parallelism; internal shared memory parallelism
can be achieved within each agent’s execution,
and can be expressed through OpenMP directives.
The chosen case-study is a sequential algorithm
that solves the N-body problem by computing,
during a fixed time interval, the positions of N
bodies moving under their mutual attraction. The
algorithm is based on a simple approximation:
The force on each particle is computed by ag-
glomerating distant particles into groups and using
their total mass and center of mass as a single
particle. The program repeats, during a fixed time
interval, three main steps: To build an octal tree
(octree) whose nodes represents groups of nearby
bodies; to compute the forces aging on each par-
ticle through a visit in the octree; to update the
velocities and the positions of the N particles. The
parallelization of the code relative to the construc-
tion of the octree, needs that the reading of the
input data and the production of the first level
in the octree is carried out by the first running
agent. As soon as the nodes in the current level
of the octree exceeds in number the computing
nodes, the first agent clones itself and dispatches
its clones to each host making up the computing
environment. Every agent, are responsible for the
building of the subtrees assigned to it, an oper-
ation that can be carried out in parallel. At the
end of this stage every agent has filled up a slice
of the complete octree data structure and can
send a multicast message to all the other agents
so that each of them is able to get a complete
copy of the octree. The computation stage of the
force acting on a single particle, as well as the
update of its velocity and position results to be
completely independent. Each of the N particles,
in fact, computes the force aging on it by tra-
versing separately the octree, just as the updating
phase of the particles velocities and the positions
requires the same computation on different data.
So, a parallelization can be obtained by simply

J Grid Computing (2006) 4: 395–412 409

Table 1 Connection links.

Node Max speed (Mbits/s) Mean distance (km)

Portici 18.0 290
Frascati 18.0 413
Trisaia 4.0 327
Brindisi 2.0 380

distributing the particles among the agents. In this
case it’s immediate to write a multi-thread ver-
sion of forces computation stage by inserting the
BALANCED FOR directive inside the agent
code, in order to exploit the availability of nodes
with multiple processors. The benefits of the dy-
namic workload balancing infrastructure available
in our programming framework is exploited to
distribute the loop iteration chunks among the
agents. A coordinator agent assigns chunks to
each worker agent, which either starts the compu-
tation of the loop, or asks for new workload. Each
worker agent performs the computation corre-
sponding to the assigned chunk, possibly in paral-
lel through multiple threads. Finally, at the end of
their work, the agents, by means of a new all-to-all
multicast message provided by a MAGDA facility,
obtain an updated copy of the particles velocities
and positions so that the next iteration step of the
algorithm can start. It is worth while underlining
that the original sequential routines with the ap-
propriate input parameters can be completely
reused becoming different methods of the agent
code.

5.1. Experimental Results

Experiments we describe in this section have been
carried out on a production Grid owned by ENEA
(National Agency for Energy and Environment).
The Grid subsystem we used for our experiments
is composed of four four-way processors SMP
nodes. All computing nodes were equipped with
four Xeon 3 GHz processors and 8 GB RAM, lo-
cated in four towns of the middle and the south of
Italy (Frascati, Portici, Trisaia, Brindisi) and con-
nected by different bandwidth connection links.
In Table 1 we report the mean distance between
a node and the other and the bandwidth of the
different links. The force computing phase is the
most CPU-consuming portion of the program and
at the same time the most significant to our pur-
poses. As it was explained above we expect to
have he maximum speed-up for the computation
of the forces acting on each particle were as both
the OpenMP extension and the parallelization by
the agents are exploited. In Figure 6 we can com-
pare the ideal speedup with the real one and with
the one obtained just considering the force com-
putation. We provide here just the performance
figures obtained when, on the distributed system,
we executed one agent for each node. On the
x-axis we reported the maximum number of par-
allel threads spawned for each experiment, but
we need to clarify that just the last measure ex-
ploits all the four nodes of the Grid. In particular
on the last experiment we added the ones which
were connected to the network by more narrow-

Figure 6 Speed-up of the
N-body application on
Linux distributed system,
two of four nodes, four
processors.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Threads

S
p

ee
d

u
p Forces

Total

Ideal

410 J Grid Computing (2006) 4: 395–412

band links. We must consider that server have
been shared with other users and our applica-
tion never get exclusive access to the resources.
Besides, above all for Trisaia and Brindisi the
bandwidth used is always near saturation. This
means that it is difficult to get any significant
consideration without an extensive analysis of a
wide amount of experimental results performed
in different condition. Trying to overcome the
unbalance due to the irregularity of the problem
and to the unpredictable dynamic condition of
nodes and traffic network we exploited the bal-
ancing facility intra and inter each node. As we
can see the performance figure is very promising
as the speedup increase well, even if we did not
care to optimize the application that was originally
conceived to run on a local cluster. To summarize
we can say that, in particular, for low number of
threads the speed-up of the balanced version is
near to the ideal speed-up value. We can conclude
that agents, under the tested conditions, exploit-
ing some MAGDA facilities as dynamic workload
balancing service together with the multithreaded
execution promise to be effective to obtain a good
scalability on distribute computing architecture.

6. Conclusions

MAGDA, an example of Mobile Agent based
platform for Grid programming we have de-
signed and are developing has been presented. In
Section 5 a case study application of MAGDA,
on a production Grid System, has been presented.
The interested reader can find in the following
references additional details on our gained ex-
perience with use of Mobile Agents technology
in Grid computing and with MAGDA features
in particular: Dynamic load balancing facilities
and their exploitation in distributed applications
are described in [27]; an integration of OpenMP
compiler technology with a mobile agents envi-
ronment to develop and execute hierarchically
distributed-shared memory applications on Grid
of SMP nodes are described in [24]; design, im-
plementation and utilization of a set of API that
provides high level constructs to support the de-
velopment and the execution of parallel applica-
tions have been presented in [25]; a comparison

between the mobile agents and the distributed
object programming paradigms is provided in [30].
The ever increasing adoption and improvements
of Mobile Agents technology, the Java perfor-
mance improvements, the widespread adoption
of the FIPA standard for agents interoperability,
encourage us to continue and extend the design
and implementation work performed until now,
in particular towards the integration of MAGDA
functionalities within a currently available open
source Grid framework.

Acknowledgments Experiments have been carried out
at: Associazione Euratom-ENEA sulla Fusione, Frascati,
Rome. We are particularly thankful to Sergio Briguglio,
Gregorio Vlad, and Giovanni Bracco and Silvio Migliori
from Servizio Centralizzato Informatica e Reti.

References

1. MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface. Karonis, N., Toonen, B.,
Foster, I.: J. Parallel Distrib. Comput. (2003)

2. Globus: A Metacomputing Infrastructure Toolkit. Fos-
ter, I., Kesselman, C.: Int. J. Supercomput. Appl. 11(2),
115–128 (1997). Provides an overview of the Globus
project and toolkit

3. Nick, J.M., Tuecke, S., Foster, I., Kesselman, C.: The
physiology of the Grid: An open Grid services archi-
tecture for distributed systems integration. Technical
report, http://www.globus.org/research/papers/ogsa.pdf
(2002)

4. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding
code mobility. IEEE Trans. Softw. Eng. 24(5), (May
1998)

5. Pham, V.A., Karmouch, A.: Mobile software agents:
An overview. IEEE Commun. Mag. 36(7), 26–37 (July
1998)

6. Lange, D., Oshima, M.: Seven good reasons for Mobile
Agents. Commun. ACM 42(3), (March 1999)

7. Baratloo, A., Karaul, M., Kedem, Z., Wycko, P.: Char-
lotte: Metacomputing on the web. In: 9th International
Conference on Parallel and Distributed Computing
systems, Dijon, France, 1996

8. Tveit, A.: jfipa – An architecture for agent-based Grid
computing. In: AISB’02 Convention, Symposium on AI
and Grid Computing, London, United Kingdom, 2001

9. Niranyan, S., Groth, P.T., Bradshaw, J.M.: While you’re
away: A system for load-balancing and resource based
on mobile agents. In: Buyya, R. (ed.) 1st IEEE Interna-
tional Conference on Cluster Computing and the Grid,
Brisbane, Australia. IEEE Computer Society (2001)

http://www.globus.org/research/papers/ogsa.pdf

J Grid Computing (2006) 4: 395–412 411

10. Cao, J., Kerbyson, D.J., Graham, R.N.: High perfor-
mance services discovery in large-scale multi-agent an
mobile-agent systems. Int. J. Softw. Eng. Knowl. Eng.
2(5), 621–641 (2001)

11. Bruneo, D., Guarnera, M., Zaia, A., Puliafito, A.: A
Gridbased architecture for multimedia services man-
agement. In: Annual CrossGrid Project Workshop, 1st
European Across Grids Conference, 2003

12. Foster, I.: The anatomy of the Grid: Enabling scalable
virtual organizations. Lecture Notes in Computer
Science 2150 (2001)

13. Binder, W., Di Marzo Serugendo, G., Hulaas, J.: To-
wards a secure and efficient model for Grid comput-
ing using mobile code. In: 8th ECOOP Workshop on
Mobile Object Systems, Agent Applications and New
Frontiers, Malaga, Spain, June 10, 2002

14. Fukuda, M., Tanaka, Y., Suzuki, N., Bic, L.F.,
Kobayashi, S.: A mobile-agent-based PC Grid. In: Proc.
of the 5th Annual Int’l Workshop on Active Middle-
ware Services – AMS2003, Seattle, Washington, pp.
142–150, June 25, 2003

15. Tomarchio, O., Vita, L.: On the use of mobile code
technology for monitoring Grid system. CCGRID
450–455 (2001)

16. Di Martino, B., Rana, O.F.: Grid performance and re-
source management using mobile agents. In: Getov, V.,
Gerndt, M., Hoisie, A., Malony, A., Miller, B. (eds.)
Performance Analysis and Grid Computing. Kluwer
(November 2003)

17. Kuang, H., Bic, L., Dillencourt, M.B.: Iterative Grid-
based computing using mobile agents. ICPP 109–117
(2002)

18. Chakravarti, A.J., Baumgartner, G., Lauria, M.: The
organic Grid: Self-organizing computation on a peer-
to-peer network. ICAC 96–103 (2004)

19. Ma, T., Li, S.: An instance-oriented security mechanism
in Grid-based mobile agent system. IEEE International
Conference on Cluster Computing 492–495 (2003)

20. Kurkovsky, S., Bhagyavati: Modeling a computational
Grid of mobile devices as a multi-agent system. In:
Proceedings of The 2003 International Conference on
Artificial Intelligence (IC-AI’03), Las Vegas, Nevada,
(June 2003)

21. Hingne, V., Joshi, A., Finin, T.W., Kargupta, H.,
Houstis, E.N.: Towards a pervasive Grid. IPDPS 207
(2003)

22. Hingne, V., Joshi, A., Finin, T., Kargupta, H., Houstis,
E.: Towards a pervasive Grid, Parallel and Distributed
Processing Symposium (IPDPS)2003, 22–26 April 2003,
IEEE CS Press, 2003, ISBN: 0-7695-1926-1

23. Labs, P.R.: Pkcs7: Cryptographic message syntax stan-
dard, “http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/
index.html”, 1997. Printed by RSA

24. Bull, M., Westhead, M., Kambutes, M., Obdrzalek, J.:
Towards OpenMP for Java. In: Proc. of 2nd European
Workshop on OpenMP – EWOMP’2000, Edinmburg
(UK), (14–15 September 2000)

25. Aversa, R., Di Martino, B., Mazzocca, N., Venticinque,
S.: Mobile agent programming for clusters with parallel

skeletons. In: Palma, J.M.L.M., Dongarra, J.,
Hernandez, V., Sousa, A.A. (eds.) VECPAR’2002.
5th International Conference on High Performance
Computing in Computational Sciences 2002. Selected
Papers and Invited Talks, Lecture Notes in computer
Science, vol. 2565, pp. 614–627. Springer, Berlin
Heidelberg New York (2003). (ISBN 3-540-00852-7)

26. Aversa, R., Di Martino, B., Mazzocca, N., Rak, M.,
Venticinque, S.: Integration of mobile agents and
OpenMP for programming clusters of shared memory
processors: A case study. In: Proc. of EWOMP (Euro-
pean Workshop on OpenMP), 2001, Barcelona, Spain,
(8–12 Sept. 2001)

27. Aversa, R., Di Martino, B., Mazzocca, N., Venticinque,
S.: Mobile agents for distribute and dynamically bal-
anced optimization applications. In: Hertzberger, B.,
et al. (eds.) High-Performance Computing and Net-
working (Lecture Notes in Computer Science, vol.
2110), pp. 161–170. Springer, Berlin, (2001), (ISBN:
3-540-42293-5)

28. Aversa, R., Di Martino, B., Mazzocca, N., Venticinque,
S.: A resource discovery service for a mobile agents
based Grid infrastructure. In: Yang, L.Y.,Pan, Y. (eds.)
High Performance Scientific and Engineering Comput-
ing, pp. 189–197. Kluwer Academic publishers, Boston
(2003), (ISBN: 1-4020-7580-4)

29. Aversa, R., Di Martino, B., Mazzocca, N., Venticinque,
S.: Terminal-aware Grid resource and service discovery
and access based on mobile agents technology, Parallel
Distributed and Network based Processing (PDP04),
IEEE, 2004, February, 11-13, 2004. A Coruna, Spain,
ISBN: 0-7695-2083-9, pp. 40–48

30. Aversa, R., Di Martino, B., Fahringer, T., Venticinque,
S.: On the evaluation of the distributed objects and
mobile agents programming models for a distributed
optimization application. In: Goos, G., Hartmanis, J.,
Leeuwen, J. (eds.) Applied Parallel Computing (Lec-
ture notes in Computer Science vol. 2367), pp. 233–242.
Springer Verlang, Berlin Heidelberg New York (2002),
ISBN:3-540-43786-X

31. Aversa, R., Di Martino, B., Mazzocca, N., Venticinque,
S.: MAGDA: A software environment for mobile
agent based distributed applications. In: Parallel Dis-
tributed and Network based Processing (PDP03), Gen-
ova, Printed by IEEE Computer Society (2003) ISBN:
0-7695-1875-3, pp: 332–338

32. Grama, A., Kumar, V., Sameh, A.: Scalable paral-
lel formulations of the Barnes–Hut method for n-
body simulations. Parallel Comput. 24(5–6), 797–822
(1998)

33. Rana, O.F., Moreau, L.: Issues in building agent-based
computational Grids, UK Multi-Agent Systems Work-
shop, Oxford, (December 2000)

34. Rana, O.F., Walker, D.W.: The agent Grid’: Agent
based resource integration in problem solving envi-
ronments, 16th IMACS World Congress on Scientific
Computation, Applied Mathematics and Simulation,
Lausanne, Switzerland, August 2000

35. Nitschke, L., Paprzycki, M., Ren, M.: Mobile agent se-
curity – An overview. In: Niedzielska, E., et al. (eds.)

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html

412 J Grid Computing (2006) 4: 395–412

Modern Information Technologies in Management,
pp. 600–608. Wroclaw University of Economics (2004)

36. Tianfield, H., Unland, R.: Towards self-organization in
multi-agent systems and Grid computing. Multiagent
and Grid Systems Journal, IOS Pres 1(2), 89–95 (2005)

37. Li, Z., Parashar, M., Rudder: An agent-based in-
frastructure for autonomic composition of Grid appli-
cations. Multiagent and Grid Systems Journal, IOS Pres
1(3), 183–195 (2005)

38. Coddington, P.D., Lu, L., Webb, D., Wendelborn, A.L.:
Extensible job managers for Grid computing, ACM
proceedings of the twenty-sixth Australasian computer
science conference on research and practice in infor-
mation technology, vol. 16, pp. 151–159. Australian
Computer Society, Australia (2003), ISBN:1445-1336

39. Mirtchovski, A., Simmonds, R., Minnich, R.: Plan
9 – An Integrated Approach to Grid Computing,

IPDPS2004, 26–30 April 2004, New Mexico, USA,
ISBN:0-7695-2132-0

40. Grimshaw, S., Humphrey, M.A., Natrajan, A.: A philo-
sophical and technical comparison of Legion and
Globus. IBM J. Res. Dev. 48(2), (March 2004)

41. Smith, W., Hu, C.: An Execution Service for Grid Com-
puting, NAS Technical Report, (April 2004)

42. Kolano, P.: Facilitating the portability of user applica-
tions in Grid environments. In: Proc. of the 4th IFIP
Intl. Conf. on Distributed Applications and Interoper-
able Systems, Paris, France, Nov. 18–21, 2003

43. Jain, A., Shyamasundar, R.K.: Failure detection and
membership management in Grid environments. Grid,
pp. 44–52, Fifth IEEE/ACM International Workshop
on Grid Computing (GRID’04), 2004

44. Nwana, H.S.: Software agents: An overview. Knowl.
Eng. Rev. 11, 1–40 (Sep. 1996)

	MAGDA: A Mobile Agent based Grid Architecture
	Abstract
	Introduction
	Related and Complementing Work
	Current Grid Technology Limitations and Opportunities for Mobile Agents
	MAGDA (Mobile Agent based Grid Architecture): A Layered Model
	Fabric Layer
	Connectivity Layer
	Agent Transfer Protocols
	SIP Based Localization Protocols
	Authorization Protocols
	Web Service Based Access and Heterogeneous Client Terminal Access
	System Monitoring
	Resource Consumption
	Security Policies, Access Control and Agent Authentication

	Collective Layer
	Load Balancing
	Service Discovery
	Server Clustering
	Reliable Protocols

	Application Layer
	OpenMP Integration
	Algorithmic Skeleton
	Collective Communication Primitives
	A Dynamic Workload Balancing Facility for Application Programming

	A Case Study
	Experimental Results

	Conclusions
	References

