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ABSTRACT

A Homegrown DSMC-PIC Model for Electric Propulsion Plumes

Dominic Lunde

Powering spacecraft with electric propulsion is becoming more common, especially

in CubeSat-class satellites. On account of the risk of spacecraft interactions, it is

important to have robust analysis and modeling tools of electric propulsion engines,

particularly of the plasma plume. The Navier-Stokes equations used in classic contin-

uum computational fluid dynamics do not apply to the rarefied plasma, and therefore

another method must be used to model the flow. A good solution is to use the DSMC

method, which uses a combination of particle modeling and statistical methods for

modeling the simulated molecules.

A DSMC simulation known as SINATRA has been developed with the goal to model

electric propulsion plumes. SINATRA uses an octree mesh, is written in C++, and is

designed to be expanded by further research. SINATRA has been initially validated

through several tests and comparisons to theoretical data and other DSMC models.

This thesis examines expanding the functionality of SINATRA to simulate charged

particles and make SINATRA a DSMC-PIC hybrid. The electric potential is calcu-

lated through a 7-point 3D stencil on the mesh nodes and solved with a Gauss-Seidel

solver. It is validated through test cases of charged particles to demonstrate the ac-

curacy and capabilities of the model. An ambipolar diffusion test case is compared to

a neutral diffusion case and the electric field is shown to stabilize the diffusion rate.

A steady state flow test case shows the simulation is able to stabilize and solve the

electric potential for a plume-like scenario. It includes additional features to simplify

further research including a comprehensive user manual, industry-standard version

control, text file inputs, GUI control, and simple parallelism of the simulation. Com-
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pilation and execution are standardized to be simple and platform independent to

allow longevity of the code base. Finally, the execution bottlenecks of linking par-

ticles to cells and particle moving were removed to reduce the simulation time by

95%.
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Chapter 1

INTRODUCTION

There are many methods to create something new, but they all begin with an idea that

needs to be realized. The path to realization in some cases can involve simply building

the final project; however, with aerospace engineering that is not usually the case. In

order to achieve the end goal, much planning is needed. An idea is formed, researched,

designed, and then built. With many aerospace projects, designing cutting-edge

technology requires accurate physical modeling in order confirm the feasibility of a

design and examine the effects of changes. Therefore, the field of aerospace simulation

and modeling is a large and extensive field. It is one which is constantly changing

and expanding as computing power becomes exponentially stronger. The boom in

computing power has opened the door to this thesis.

Figure 1.1: Example of various engineering design tasks [1]
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1.1 Motivation

Computational Fluid Dynamics (CFD) is the field of study which deals with cre-

ating simulations of fluids. This is a critical part of aerospace design and analysis.

Viscous fluid dynamics are completely described through the Navier-Stokes Equa-

tions.

∂tui +Ruj∂jui = −∂iρ+∇2ui + Ei (1.1)

∂juj = 0 (1.2)

ui = Velocity components (m/s)1

R = Reynolds number

ρ = Pressure (Pa)

Ei = External Forces (N)

The Navier-Stokes equations, seen in Equations 1.1 and 1.2 in the incompressible

form [2], have no known closed-form solution without making simplifying assumptions.

They must be solved numerically and, to increase their accuracy, call for increases in

computational power to match. CFD is currently an accepted and reliable industry

tool for analysis across many disciplines. As computers continue to get stronger, more

complicated modeling techniques can be used for unique and diverse scenarios.

A large part of aerospace research involves states of matter where the particle

density is low. Atmospheric re-entry of spacecraft, objects in Low Earth Orbit (LEO),

planes flying at extremely high altitudes, and interactions with plasma all involve

fluids whose particles are relatively far apart from each other. The relative spacing

1Throughout this thesis, repeated indices mean sum over that index.
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Figure 1.2: Appropriate Simulation Models by Knudsen number [3] n0 is
the density of air at standard temperature and pressure at sea level

between particles can be measured through the Knudsen number, seen in Equation

1.3.

Kn =
λ

L
(1.3)

Kn = Knudsen number

λ = Mean free path

L = Characteristic length

The mean free path is a measure of how far particles move before interacting with

other particles and the characteristic length is a description of the basic length scale of

the problem at hand. The ratio of the two (the Knudsen number) shows their relative

differences and, therefore, quantifies whether continuum is a good assumption for that

fluid. When the Knudsen number is very low ( ∼ 10−3 ) the particles collide much
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more often than they move the characteristic length, which means that a continuum

assumption is valid. However, as seen in Figure 1.2, when the Knudsen number is

large ( ∼ 101 and up ) the continuum assumption, and by inference the Navier-Stokes

equations, are no longer valid. One reason they are no longer valid is because in

the Navier-Stokes Equations (1.2), where the divergence of the velocity is zero, the

density of the fluid remains constant, and therefore is incompressible. High Knudsen

number fluids are almost always compressible and therefore the divergence of their

velocity is non-zero.

There is another equation which can solve high Knudsen number problems. This is

the Boltzmann equation, shown in kinematic form for elastic interaction of particles in

a plasma by Equation 1.4 [4]. It is based upon the statistical distribution of particles

and their momentum.

∂fi
∂t

+~vi ·
∂fi
∂~r

+ ~Fi ·
∂fi
∂~vi

=
∑
j

∫ ∞
0

∫ 2π

0

∫ ∞
0

[fi(v
′
i)fj(v

′
j)−fi(vi)fj(vj)]gijbdbdεdvj (1.4)

f(v) = Particle distribution function

i and j = ith and jth species

v = Velocity

F = Force acting on the particle

′ = Functions for post-collision

gij = Initial relative velocity between particles

b = Impact parameter

ε = Azimuth angle

The Boltzmann Equation can be solved for a few select unique fluid scenarios.

These scenarios usually involve knowing the entirety of the initial state, being in
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a near equilibrium state or being in a near vacuum environment [5]. In order to

model other more complicated scenarios the Boltzmann Equation is nominally solved

numerically, like the Navier-Stokes equations. To solve the equation numerically is

a large task, considering the triple integral, the unknown way to find an accurate

function for the particle distribution, and the curse of dimensionality. It would follow

that a discretion of the Boltzmann Equation would be helpful. This is where a

particle-based code begins to make sense.

The most basic algorithm for a particle-based simulation is to keep track of every

particle in the domain and calculate each collision depending on the particles’ relative

distances. While this algorithm, called Molecular Dynamics (MD), is a valid algo-

rithm, computers are not strong enough currently to create meaningful results from

such a computationally heavy solution. This is where Direct Simulation Monte Carlo

(DSMC) comes into play. DSMC was introduced in 1963 [6], one year before the

computer language BASIC was created [7]. Back then, DSMC was seen as an inferior

method to continuum solutions on account of the larger processing power required

and the apparent abandonment of concrete mathematical solutions [6]. Eventually

it was shown that the limit as time-step and grid size approached zero of a DSMC

simulation was a solution to the Boltzmann equation [8]. Through the years, DSMC

has gained respect and is now is well-known in the fluid modeling community as a

standard for high Knudsen number flow simulation methods.

“The Direct Simulation Monte Carlo, or DSMC, method proved a proba-

bilistic physical simulation of a gas flow by simultaneously following the

motion of representative model molecules in a physical space.” [8]

DSMC fits into an important gap in fluid simulation methods. It is a particle-

based method, which allows it to accurately model high Knudsen number simulations

5



Figure 1.3: DSMC Application Example (left) A rocket lander hovering 5 m
above the surface [9]. (right) Predicted surface pressure on Mir from the Space Shuttle
RCS during docking [10].

in cases when continuum codes break down. Yet it does this while remaining based

on statistical sampling and therefore allows critical computation time-saving mathe-

matics and algorithms to allow DSMC to be on par with legacy continuum methods.

DSMC simulates many super-particles in a domain, each of which is comprised of

millions of physical particles. DSMC then uses statistics to determine collisions and

surface interactions. The super-particles allow for a greater range of high Knudsen

number scenarios to be simulated which is of particular interest in astronautics where

Knudsen numbers are traditionally high. As seen in Figure 1.3, DSMC is now used

for many important aerospace analysis tasks.

Unfortunately, DSMC alone does not account for a large area of aerospace re-

search: plasma. Plasma exists when there are a large number of ions and enough

high-energy electrons to keep ionizing the gas. As seen in Table 1.1, plasma can exist

in many various situations and environments. Even commonplace things like candle

flames or lightning bolts contain some plasma. Two large areas of aerospace research

which take place within a plasma environment are atmospheric re-entry and electric

propulsion. Both exist in a high Knudsen number environment but include charged

6



Table 1.1: Various Plasmas [11]. n - Number Density, T - Plasma Temperature

Plasma Type n (cm-3) T (eV)
Interstellar gas 1 1
Solar Corona 103 1
Hot Plasma 1014 102

Thermonuclear Plasma 1015 104

Laser Plasma 1020 102

particles. Therefore, while DSMC would be well-suited for the situation, it is not able

to model the charged particles in these situations.

Plasma is comprised, on average, of equal parts of negative electrons and positive

ions, otherwise known as quasi-neutrality. However, there can be systematic (electric

thruster) or random (solar wind) fluctuations that cause a local net charge. This fact

means that the plasma can create electric forces, which in turn affect the charged

particles in a plasma. DSMC cannot simulate charged particle flows because it only

has mechanisms for collisional velocity updates. DSMC does not have a mechanism

to calculate the electric force and update the particles velocities. This is where the

Particle-In-Cell (PIC) method applies.

The PIC method is a standard method to calculate the force on electrically charged

particles in a particle type model. It is based on a mesh system comprised of nodes,

upon which field calculations are made. The mathematics of charged particle forces

in terms of PIC will be discussed in Chapter 4. PIC, however, does not account for

collisions between particles. To accurately model a plasma for aerospace research,

collisions between particles need to be taken into account. This naturally leads to the

necessity for a DSMC-PIC hybrid method. A single mesh can be used for calculating

collisions and macro-properties through DSMC as well as being used to calculate

the fields in the domain and how they affect the particle’s velocities with PIC. This

allows for a program which can simulate a greater range of scenarios. However, it

7



may be necessary with more complicated simulations to have different mesh sizes for

the DSMC portion from the PIC portions.

One scenario within aerospace research for which a DSMC-PIC simulation is op-

timal is electric propulsion. There are three main methods of spacecraft propulsion:

chemical, cold gas, and electric. Chemical is the classic rocket engines used to put

spacecraft and humans into orbit. Cold gas is simply expelling pressurized gas to

provide thrust. Electric propulsion uses electricity to create more efficient engines

for spacecraft. Electric propulsion can either be electrostatic, electrothermal, or elec-

tromagnetic. A nearly universal property of electric thrusters is that the exhaust is

usually in a plasma state. An electric propulsion engine, in this case an ion engine,

is shown in Figure 1.4. This figure shows the neutral propellant gas being ionized in

the chamber, then the ions accelerated out through magnetic grids to create thrust2.

This results in a plasma plume. Since the spacecraft is in space and the thrusters do

not expel dense amounts of gas, this plasma fits right into the realm of a DSMC-PIC

simulation. Herein this lies the motivation for this thesis.

1.2 Overarching Goal

This thesis is one of a series of projects. The end goal is to have a Cal Poly home-

grown simulation that can simulate an entire electric thruster. While the individual

areas of modeling the discharge chamber [14] and modeling the plasma plume [15]

are growing strongly, there is a distinct lack of complete electric thruster models in

literature. It is technically possible to simulate the entirety of the thruster in DSMC,

but the Knudsen number is so low inside of the thruster that computing a DSMC

method would be nearly impossible. A simulation of a full electric thruster requires

2A more detailed explanation of ion engines and other information about electric propulsion can
be found in Reference [12]
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Figure 1.4: Diagram of an Ion Thruster [13]

a continuum simulation for the gas inside the thruster and then a rarefied gas simu-

lation for the exhaust plume where the Knudsen number is higher. In order to model

a complete thruster, researchers have compromised by attempting to join together a

fluid code and a rarefied gas code. Cal Poly’s Aerospace Department is rare in that a

fluid code and a rarefied gas code are being developed in the exact same manner from

the ground up. Other institutions are also working in this area with success in the

initial stages [16, 17]. The early developers and advisors at Cal Poly worked together

to establish these codes as being compatible from the beginning.

This thesis is the third project of a homegrown DSMC code, code name SINATRA,

which will eventually be able to simulate the thruster’s plasma exhaust plume. The

first three developers worked together in a staggered capacity to build SINATRA up

to a working DSMC-PIC code. The first, Galvez, developed the base framework and

kinematics [18]. Next Alliston built up the collisions and particle models [19]. This

thesis adds charged particle simulation capability to SINATRA. Concurrently with

9



this thesis, Gay has been building the fluid side simulation [20]. Intentionally, many

properties will be common between the codes. They are both written in C++ and are

class-based. They share the same process control items, including the execution style,

distribution method, and the other systems items shown in Chapter 3. They share

the same mesh type and input class to help them work together as one simulation. A

future project will take both simulations and build the interaction system to connect

them across each time-step.
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Chapter 2

DSMC AND SINATRA

The DSMC method has been refined over years of implementation and testing. A

large amount of that progress has been done by Bird, who introduced the DSMC

method [21]. Much of the DSMC procedures and techniques discussed here have

come from his book which walks a developer through the steps of creating a DSMC

simulation [8]. This chapter will explain the DSMC method and the SINATRA’s

implementation.

2.1 DSMC Overview

At its core, the DSMC method is a particle pusher. It takes a domain, initializes

particles in the domain, and, through each time-step, injects, moves, and collides

particles. The simple breakdown of a DSMC flow can be seen in Figure 2.1. The large

difference between DSMC and a plain particle pusher is that each simulated particle

is designed as a clump of actual particles. Therefore, each section and algorithm

of the simulation must keep that in mind when calculating physical properties and

events. However, for this thesis, a ‘super-particle’ will be referred to as a particle for

simplicity.

The first step is to “Initialize System”. There are two critical parts when initializing

the simulation. First is the mesh structure. The simulation must know where each

cell is in the domain, what shape the cell is, and what type of boundary each of

its faces are. There are various algorithms and methods used in generating and

storing this mesh. Those ones used for SINATRA are discussed in Section 2.2.2. The

11



Initialize System

Move Particles

Perform Boundary Interactions

Insert New Particles

Sort Particles into Cells

Collide Particles

Sample Properties

t < tfinal ?

Stop Simulation
no

yes

Figure 2.1: Basic DSMC flowchart [18]

second important initialization is of the particles. Importantly, once initialized, the

particles should have a uniformly random distribution in their position, as well as a

normal distribution around the set domain velocity vector. There are two methods to

initialize particles. The first is to randomly insert the number of simulated particles

throughout the domain. However, this can cause problems with collision systems

and with mesh-particle linking. Therefore, there is a second method called uniform

distribution. In this method, the particles are distributed evenly to all of the cells

and then within the cell they are randomly distributed. This is a valid method

even though it removes some degree of randomness, because injecting and colliding

particles re-establishes statistically random behaviour [8, 18, 19]. Therefore, accurate

results can be gained in the uniformly distributed method as long as sufficient time-

steps are included. The difference between the two systems can be seen in Figure

2.2. Two smaller processes done during the Initialize section are reading information

from the user input and linking the particles to the cells they are within.
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Figure 2.2: Uniform Particle Initialization (left) The generic random initializa-
tion of particle position [19]. (right) The uniform distribution of particle position by
each cell [19].

The next step is to “Move Particles”. This algorithm consists of going through each

particle and updating its position using its velocity and the chosen time-step. This

is a purely decoupled event and therefore can be split into parallel operations, which

has been implemented and is shown in Section 3.2.4.

The next step is to “Perform Boundary Interactions”. After moving a particle, it is

checked to see if it exited its cell, and if so if it passed through a boundary on the way

there. If so, the particle is processed through surface interactions. There are many

types of surfaces that can be implemented in a DSMC simulation. A discussion of

the ones implemented in this thesis are found in Section 2.2.3.

The next step is to “Insert New Particles”. In this stage particles are introduced to

the domain through Inlets specified by the user. New particles are randomly inserted

in terms of position and velocity, but are inserted with the same distributions required

in initialization.

The next step is to “Sort Particles into Cells”. Once the particles are all moved, all

the new particles are added, the surface interactions are calculated, and the particles

which are in new cells are linked back to those cells. This involves looking at nearby

13



cells and determining within which cell the particle now lies, as well as removing

particles no longer in the domain.

The next step is to “Collide Particles”. Now collisions are calculated between the

particles. This involves using the sphere model for the particle and choosing collision

partners through a selection method. A discussion on the models available in SINA-

TRA can be found in Section 2.2.3. These collisions will change the velocity of the

particles.

The next step is to “Sample Properties”. Once this is completed, properties about

the simulation can be sampled. Through sampling during the time-stepping loop, the

analyst has the ability to view the simulation over time and determine if it has reached

a steady state solution or view the transient or oscillatory nature of the fluid. This

allows SINATRA to have the capacity to be a steady state or a transient simulation

depending on the scenario and application. The method to sample properties in

SINATRA can be found in Section 2.2.4.

These steps continue until the simulation has completed the user specified time-steps.

Then the simulation breaks from the loop, performs final data output, and ends the

program.

2.2 SINATRA

This thesis centers on being one of the initial development projects of a Cal Poly

DSMC code, and the implementation of the PIC component to this code. SINATRA

is developed in the C++ language for a few purposes. C++ is a current industry

standard for large simulations and therefore has a large support base with libraries, a
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Figure 2.3: A visualization of a Cat Class including the Fields and Methods
[22]

developer community, and a large portion of developers know how to read and develop

in C++. It is one of the fastest higher level , object-oriented languages.

2.2.1 Object-Oriented

SINATRA is based in object-oriented programming. Object-oriented programming is

a method of developing which utilizes ‘objects’ that can be given variable character-

istics. This allows a developer to create an object for a type of item in their program

and then create many of those objects each with varying characteristics. It opens the

door to functions being associated with various objects and those objects containing
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Figure 2.4: A demonstration of an octree mesh and its data structure [23]

an idea of ‘self’ in referring to the characteristics of that particular instance of the

object. A simple version of a class can be seen in Figure 2.3.

This method is particularity helpful in DSMC simulations. There are two large

data structures which must be tracked: the mesh and the particles. A class structure

fits right into that gap. Refer to Galvez’s Thesis to see the exact breakdown of data

structures used in SINATRA [18].

2.2.2 Octree Mesh

Another important feature of SINATRA is the octree mesh. Octree is a tree method

of storing data, where each parent item has 8 children. An octree mesh has two

main benefits; it is a well-known data structure which is well documented and serves

as a mesh refinement algorithm. A small example of the octree structure and its

refinement capability can be seen in Figure 2.4.

An octree mesh is built from a cube domain, which is cut into 8 initial cells. Then,

depending on user settings, more refinement is made until the mesh is well-suited for

the simulation case. If the simulation wants to show a curved surface, the cells are
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refined near the surface until the mesh is a good approximation of the object. Optimal

mesh settings are on a simulation to simulation basis and are a largely a user controlled

portion of CFD analysis. However, a discussion on automatic mesh generation and

adaptation can be found in Section 5.1.4. The important advantage of octree meshes

for DSMC is that when a particle moves out of a cell, it is less computationally

intensive to find into which cell it moved compared to more primitive algorithms.

The system can move up one level to the original cell’s parent and then search all of

that parent’s children. This algorithm speeds up the linking phase of DSMC.

2.2.3 Models Implemented

There are various ways to physically model particles and domains. A good CFD

program will include multiple options for a simulation so the analyst can test different

types to see which works best for their simulation case. Therefore, multiple models

for boundaries, particle spheres, and collision schemes have been built into SINATRA

by Alliston and Galvez [18, 19]. The different types can be seen below. It is also

important to note, these models have been built specifically for DSMC, taking into

account the ‘super-particles’ and statistical dependency.

• Boundary Types

These define the boundary conditions of the walls of the domain.

– Inflow

This wall allows particles to be inserted into the domain through the inject

particles algorithm.
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– Outflow

The wall allows particles to leave the domain if they cross this boundary.1

– Spectral

This wall is similar to a symmetry plane, the particles are reflected off this

wall spectrally.

– Diffuse

This wall has particles collide with the wall as if there was a user defined

imaginary gas on the other side of the wall.

– Periodic

This wall takes the particle which crosses it and injects it in the same place

and position on the other periodic wall, allowing for cyclic simulations.

• Sphere Models

When modeling particles, it is important to have a model of the electron sphere

around the particle and its effective radius.

– Hard Sphere Model

This model gives each particle a set radius and cross section.

– Variable Hard Sphere Model

This model sets the hard sphere depending on transitional energy.

– Variable Soft Sphere Model

This model takes into account the collision partner particle when deter-

mining the cross section.

1Note, there is also a process by which particles may enter the domain through an outflow wall
according to the temperature of the simulated gas on the other side of the wall. This wall will
remain named an outflow wall on account of the name within the heritage code. It would be future
work to add a new boundary wall which has a pure outflow wall and to rename the current one to
accommodate.
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• Collision Schemes

There are many different ways to choose particles for collisions and to simulate

those collisions. Note - it is also possible in SINATRA to turn off collisions.

– Discrete Sub-Cell

This method cuts each cell into smaller sub-cells, then chooses particles

from the sub cell to collide using an accept-reject method.

– Nearest Neighbor Scheme

This method checks the distance between every particle in the cell and

chooses the closest particles as the collision partner.

– Trajectory Scheme

This method takes the trajectory of the particle in question, creates a

virtual sub-cell from its projected position, and then chooses a collision

partner from that.

2.2.4 Output Methods

Finally, an important part of a DSMC simulation is outputting the properties of the

flow. SINATRA has three main methods for outputting information. The first is the

simple time-step file. This file is appended to after SINATRA completes each time-

step. This allows the simulation to be tracked as it is being run in the background.

The next method is the main macro-properties sampler. It goes through all the sample

cells, which can either be the lowest or second lowest level of cells and performs two

loops. First it looks at all the particles in that cell and sums their properties, then it

goes through all the species and calculates the various averages and data for which

the specific output case calls. These values are output in a TecPlotTM format and can

be adjusted to be printed out every time-step or every few steps. The final output
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method prints out each particle location and velocity. This creates a strong debugging

tool to understand exactly what is happening in the flow.
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Chapter 3

SYSTEMS ENGINEERING

All large aerospace projects can be viewed a group of integrated systems. The sys-

tems must be designed and managed in order to provide a reliable and efficient final

product. Systems Engineering is the discipline which covers this area. SINATRA

is a complex project and program which needs a smooth integration of the various

program and sub-systems. This chapter will explain the various systems engineering

implementations in SINATRA including documentation, workflow, and user inter-

faces.

3.1 Documentation

In order for SINATRA to be used by other users and developers, the code must be

well-documented. Accordingly, systems of documentation are being put in place for

all of the different levels of instructions, guidelines, comments, and information. The

documentation can be broken into two sections; for the user and for the developer.

These documentation systems must be simple, reliable, clear, and resilient, in order

to make the code easy to distribute, simple to learn to the level necessary, and for

changes, bugs, and suggestions to be centralized.

3.1.1 GitHub

The system chosen to organize and host SINATRA for developers is GitHub R©. GitHub R©

is an online file storage, syncing, and collaboration work-space for developing code
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Figure 3.1: Example of GitHub R© workflow [24]

bases. It is popular and easy to use such that support for its use is strong. SINATRA

is housed on GitHub R© by the Cal Poly Aerospace Department. On account of the

code’s license, the repository is private. Developers can get access by contacting the

Aerospace Department at Cal Poly, SLO.

GitHub R© has three major features used in SINATRA: the commits system, the

branches system, and the ReadME files. The commits system is a method of allowing

multiple developers to work on the same code base without breaking the other de-

velopers builds. Each developer works on the code on their local machines and once

they have a stable addition to SINATRA, they commit it to the GitHub R© repository

where it is merged into the current version. Whenever other users are working, they

can pull those changes on to their local machine. This helps development move along

smoothly, although it does require communication between the developers to ensure

they are not working on the same lines of code and creating different outcomes. This

commit structure also allows the code base to be version controlled, which helps with

mistakes, reverting to older versions, and following the change logs.
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Another feature of GitHub R© utilized during the development of SINATRA was

the branches feature. Branches allow a user to create a separate branch of the code

base. An example workflow can be seen in Figure 3.1. As shown, there is a master

branch which holds the current official version. When a developer wants to build

a new feature, they create a branch of the code. On that branch they develop the

feature so that the master can continue to be used for official uses. Once the fea-

ture is complete the developer submits a pull request which shows the feature and

resulting changes to the master branch. The team then approves the feature and it

is merged into the official master branch. Branches are used to develop a large new

section of code with the features and security of GitHub R© and without cluttering the

team’s main code with testing and validation edits. This process allows developers to

command their own section of the code, update and test, and then make it available

for the other developers to use. This ensures a constant workflow where multiple de-

velopers can work on different features without having to worry about whether their

testing and tinkering will hinder others’ work on the master branch. In this way,

the development continues without bottlenecks, or need for constant communication

between the developers.

The final feature used in GitHub R© were the ReadME files. These files are au-

tomatically displayed by GitHub R© when the directory is entered. This allows the

developers to convey how a directory fits into the code base, specifics on the files in

the directory, and instructions on how to use the directory. The author has outfitted

all of SINATRA’s directories with ReadME files. These ReadME files give specific

directions on how to use each repository of the code base and how to preform basic

functions. These features were the reason that the author choose GitHub R© to host

SINATRA, and they were utilized during development in order to allow efficient and

clear code creation. SINATRA’s main ReadME page is shown in Figure 3.2, as shown

on the GitHub R© website.
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Figure 3.2: SINATRA’s main ReadME page

3.1.2 Doxygen

Doxygen is an automatic documentation creator from source code.1 It was chosen,

configured, and used to create the SINATRA Developer Manual. Doxygen is given

access to the source code, which it searches through and creates comprehensive docu-

mentation of the code base. For SINATRA, it creates descriptions of all of the classes,

functions, and files. It shows what each class consists of. For example, it shows that

the Mesh class contains structure classes, public types, public member functions and

more as seen in Figure 3.3. It is built in HTML, so each attribute is linked to the

actual function. It is also possible to see the location of that item in the source code.

The important part of Doxygen is that it allows the user to customize the doc-

umentation. It allows the HTML file to be built in many different ways to make

it work best for SINATRA. But more importantly, it takes comments made in the

source code about the attributes and displays them in a clear and concise way. This

1Doxygen: Main Page - http://www.doxygen.nl/
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Figure 3.3: Documentation created by Doxygen for the Mesh Class

allows a developer to quickly find an attribute where it is referenced in the rest of the

source code, where it is built, and what the creator commented about it. This allows

new developers to quickly learn SINATRA and start developing their own features.

It also allows quick debugging of heritage code by new developers, which ensures

that they will not run into an error that can only be reasonably fixed by the original

developer. The author has created a Doxygen manual of SINATRA, as well as a

Doxygen input file and batch script for easily updating the manual as more develop-

ers add to SINATRA. This was completed by first learning Doxygen’s documentation

and running test cases. Then applying to SINATRA in a non-intrusive manner with

a simple .bat script so the users can view the manual without interfering with the

source code. See Appendix B for a list of all classes and files in SINATRA which have

been commented with Doxygen. This is not a comprehensive guide to exactly what

each function and variable does, but the author has commented every file and class

in SINATRA’s source code to guide new developers.
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3.1.3 User Distribution

As mentioned above, GitHub R© will be the primary source of distribution for devel-

opers of SINATRA. However, for less serious users, there is a simple distribution. It

includes the mesh and simulation executables and input files. It also includes the GUI

executable and finally a simple MATLAB R© analysis script to visualize the particles.

It has documentation which guides the user through a simple test case and show the

user how the parts work together. This walk through can be found in Appendix C.

This distribution is packaged up in a zip file. The executables and other parts will

only work on a Windows computer. Mac and Linux capability can be built through

the source code and compiled on a Mac OS and Linux machine respectively.

This zip file can be sent to students for them to try simple test cases and produce

new results. This distribution, while very simple and light in terms of file count, is

actually a nearly full distribution of SINATRA. Almost all functions of the SINATRA

work without the rest of the file structure and other code, therefore, it can be used for

things such as uploading to a more powerful computer to ensure the correct version of

the code is being used. This allows a more direct way of controlling the simulation in

new environments; however, it does exclude much of the functionality found within

the actual code base itself. There are many test cases and options which can be

activated in the source code. This distribution can be used to share SINATRA with

relevant parties who want to produce DSMC results.

3.2 Workflow

There are three main tasks when using CFD: meshing, simulation, and analysis.

DSMC-PIC is a subsection of CFD; therefore, the original developers have designed
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Figure 3.4: Workflow System for SINATRA

systems for all three sections. However, most CFD analysis does not require the user

to do all three tasks each time. A single mesh can produce many different simulations,

and there can be many different analysis tasks from the same simulation. Therefore,

SINATRA was broken down into three parts according to the three tasks it is able

to accomplish. Each of those sections have their own repository, source code, and

executables. They also share a resources repository between them. This allows the

user to work in the meshing system and create the mesh or meshes necessary for their

task. Then they move to the simulation system and use the newly created meshes as

part of the simulation input. Once they have simulated the domain, they can take

the created output files and run different analysis codes or create their own for their

specific task.

3.2.1 Mesh

The original developers have designed this workflow for SINATRA while including

the option for third party software to be used for the meshing and analysis sections.

As seen in Figure 3.4, Cart3DTM 2 was chosen to be the meshing 3rd party additional

2Cart3D Documentation - http://www.nanda.org/
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tool. Meshing a domain for SINATRA requires an octree mesh. This capability is

available within native SINATRA itself. The homegrown meshing tool is able to

create an octree mesh with any user specified resolution. When an object is added to

the domain, meshing becomes a much more complicated task (outside the scope and

purpose of SINATRA). Cart3DTM is a CFD analysis tool by NASA which is available

to universities. It has within it a three-dimensional octree meshing tool, which can

take geometries and domain sizing as inputs. SINATRA will take the outputted

mesh and use it for simulations. Cart3D has not been tested with SINATRA. It has

been slated for future work for another developer to fully integrate Cart3DTM and

geometry boundaries with SINATRA3. This thesis uses the homegrown meshing tool

exclusively.

3.2.2 Simulation

SINATRA has been designed to be simple to develop and execute. Execution is com-

pleted through one executable file and one input text file. For simplicity, WindowsTM

users can drag the .txt file onto the .exe file to run the simulation. It can also be

run through the command line with the path to an input file as the command line

argument, or if the argument is missing SINATRA will request the user to input the

filepath. The executable and output do not depend on using a specific Integrated De-

veloper Environment like Visual StudioTM or even using a certain operating system

A user can run many simulations or string together meshing, simulating, and analysis

simply through a batch script. An example script is shown in Appendix A.

SINATRA was also deliberately built to be machine independent to reduce the risk

of the code not being developed further or used for new tasks. This was accomplished

3It may be necessary to run Cart3D within a LinuxTM virtual box for WindowsTM users
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through making compilation very simple. It requires only a single command with

no additional libraries4. There are sample compile statements in the ReadME and

compile scripts, but even an intermediate C++ developer could figure out how to

compile SINATRA from the file list alone. This helps new developers move quickly

through the code learning phase and can even allow beginners to explore the code

base and test more complicated features. SINATRA has been tested through being

compiled with various compilers and on different operating systems.

3.2.3 Analysis

After the simulation phase is completed, the user can use the SINATRA output files

for analysis. The original developers created MATLAB R© scripts within SINATRA to

perform basic types of analysis. For other analysis, Tecplot 360TM 5 has been chosen

as a third party tool. TecplotTM is a specific CFD analysis and visualization tool,

which can show the mesh, geometry, and fluid flow. It includes robust visualization

and animation tools as well as various analysis functions. SINATRA can output data

in a format that TecplotTM reads natively. TecplotTM and SINATRA’s integration

has been tested and used by the first developers.

SINATRA’s analysis section has not been built with an encompassing set of fea-

tures to complete any task. It is up to the future users to determine the analysis they

need to accomplish, edit SINATRA’s output class to accommodate, and compile the

output data into the format best suited the situation. This can be completed through

looking at SINATRA’s output class and reformatting other analysis techniques for

the task at hand. TecplotTM and the included MATLAB R© scripts can do a majority

4Need OpenMPTM for parallelization

5Tecplot 360 CFD post processing tools to analyzedata - https://www.tecplot.com/products/
tecplot-360/

29

https://www.tecplot.com/products/tecplot-360/
https://www.tecplot.com/products/tecplot-360/


of the beginning analysis, but the most detailed tools will need to be built by new

developers.

3.2.4 Execution Time

A DSMC code is by nature a very computationally intense program. It requires a

large amount of memory to store all of the data of each particle and mesh cell. It

requires a lot of computational power to calculate the movement and collisions, there-

fore, it is important to design the code to be efficient and powerful. This is why C++

and classes were chosen for SINATRA; however, it is still a slow simulation for a large

meshes with high particle densities. It is slated as future work for a developer who

specializes in computer science and computational optimization to reduce the execu-

tion time of large SINATRA runs. However, there are a few bottlenecks which were

removed by the author. This improvement helps manage simulation time, especially

when the Poisson equation solver is included.

The simplest and most effective way to reduce simulation time on a DSMC sim-

ulation is parallelization. Parallelization is a complex and involved field with many

competing ideas on best practices. There are many discussions about best ways to

parallelize DSMC codes and PIC codes. Parallelization itself is also on the forefront

of new technology at the time of this thesis. Moore’s law has allowed programmers to

have a large amount of memory for their simulation, so that is rarely the constricting

factor. Processors seem to be approaching an asymptote in terms of their power for

user made systems on languages like C++. Breaking the simulation between mul-

tiple cores or even within the graphics processing unit (GPU) seems to be the new

normal for decreasing execution times. For SINATRA, there are many parallelization

possibilities. It is slated for future work for another developer to optimize the par-

allelization capacity. At this time, simple parallelization has been developed by the

30



Figure 3.5: System Architecture of Cal Poly HPC Cluster [25]

author. During the particle propagation phase, there is no interaction between the

commands, therefore, it can be parallelized by using the library OpenMPTM 6. This

was completed through first identifying the loop in the simulation which moves each

particle. Then the loop is reformatted to remove dependencies on any variables which

must be updated sequentially. This allows the simulation to run in many different

cores without interfering with the other cores. Finally, debugging is preformed to

find any errors like segmentation faults and pointer errors. Parallization has been

implemented into the input file. It can be enabled through an optional keyword in

the input file and ensuring the library is included in the compile statement.

The Aerospace Department at Cal Poly, SLO owns a server that is available to

aerospace students and faculty. It is referred to as Bishop High Performing Cluster

[25]. It includes a workload manager so that each user only needs to submit their

6Home - OpenMP - https://www.openmp.org/
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jobs and they are separated through the different nodes on the cluster. The cluster

allows each full user 48 cores and 64 GB of Ram [25]. This is critical to SINATRA.

Through the parallelization the simulation can be run in parallel on the server. Not

only does Bishop have quick processors, but it also has the 48 cores between which the

simulation can be broken up. This enables the execution time of a large simulation to

be cut down by significant amounts, seen in Table 3.1. This server also allows users

to run simulations off of their local machines, which helps compartmentalize heavy

simulation runs from everyday tasks. It also allows scheduling of multiple simulations

such that large analysis tasks can be completed without human interface. SINATRA

has been made with the Bishop cluster as an expected resource.

Another simple process to reduce the execution time is during the linking phase.

After the particles are created, they must be associated with the cells that they are

in. To do this it requires a nested for loop through all particles inside all cells. This

is a very slow process. In order to increase the speed, it is possible to allow the

linking process to ignore the particles it has already linked and ones which aren’t

in the domain. This has been been implemented by the author, however, there is a

simpler solution. There is an option in SINATRA to seed particles in a uniformly

random way [18]. This method creates the same number of particles in each cell but

randomly distributes them within the cell. With uniform initialization, the linking

process can be removed completely, and the execution time is significantly reduced.

This has been implemented by the author. This was completed through reformatting

how particles are created in SINATRA. A new constructor for particles was created

which includes the index of the cell which it was created in as well as the index of the

next particle for the particle chain. The other constructors for particles are updated

so that they explicitly state that they are not yet linked to a cell and don’t know their

next particle. These are two main things are what are added to the particle object

during linking. Then during initialization, the cells are given the information of their
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Table 3.1: Execution Time Comparisons

First Iteration Time-step Average Total Time
Parallel and No Linking 9 sec 10 sec 1 min, 38 sec
Serial and No Linking 3 min, 23 sec 3 min, 23 sec 33 min, 50 sec
Serial and Linking 15 min, 1 sec 3 min, 58 sec 50 min, 47 sec

first particle and the total number of particles in this cell. These two things are what

are added to the cells during linking. These two changes allow linking to be removed

for the uniform initialization case.

A simple timing comparison was completed to examine the effectiveness of two

execution time reduction methods. A collision-less simulation with all diffuse walls

was run on the HPC server. The simulation used 32768 Cells, 5×1019 real to simulated

particles, 1 × 1026 number density which gives 2 million simulation particles in the

domain, and 10 time-steps of 1 × 10−8 seconds with 0 m/s stream velocity and 300

Kelvin temperature. As seen in Table 3.1, including these optimization techniques

has reduced the simulation time by 49 minutes for this simulation. By removing

the linking process, we were able to save a large amount of time during the set up7.

Also, by adding the simple parallelization we were able to reduce the simulation time

by 95%, from over 50 minutes to under 2 minutes. These two techniques combined

make an appreciable difference in the execution time. They allow more complicated

simulations to be run within the same amount of computation time. This allows

the user to run longer simulations or multiple in order to increase confidence in the

accuracy of the solution, as well as reduce the variance caused by the randomness in

a DSMC simulation.

7There is a slight difference in the iteration time for the linking and no linking runs because
the no linking run did not use the uniform initialization because uniform initialization has has the
linking section bypassed in the current version.
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Finally, an important tool for execution time analysis is debugging and profiling.

It is important while developing software to have the ability to debug the code to see

exactly what it is doing. This is usually achieved through the Integrated development

environment (IDE); however, in an effort to make SINATRA IDE independent, the

code has built in a method which allows the GNU Project Debugger to be used

on the code8. This is a command line interface for g++ compiled executables. It

is a legacy debugger that is well documented and is included in most installations

of the g++ compiler. Using gdb on SINATRA allowed the author to solve problems

within various improvements including removing linking and adding parallelized code.

Secondly, a profiler allows the user to view exactly how often each line of code is run,

how long it takes to run, and the sub processes, which contributes to that execution

time. This is a strong way to identify simple coding bottlenecks and optimizing the

coding time. The author has set up the compiling and code base in order to fit with

the profilier Very SleepyTM 9. This was completed by determining the version of g++

which the profiler required, compiling in that method, and then allowing the profiler

to access the executable. Very SleepyTM is a light and simple profiler which shows

each line of the source code and the timing involved. By setting up SINATRA to be

widely compatible it allowed these developing tools to push SINATRA towards an

industry standard level.

3.3 User Interfaces

The user interface is an aspect to distributing a new code base. The interface must

be simple, but powerful. For SINATRA, the author chose a simple text input file

as the base user interface. This combined with a simple execute statement and an

8GDB: The GNU Project Debugger - https://www.gnu.org/software/gdb/

9Very Sleepy documentation - http://www.codersnotes.com/sleepy/
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accompanying GUI allows for a range of users to use SINATRA to accomplish their

tasks.

3.3.1 Running SINATRA

SINATRA is controlled through a text input file. The developers compile and dis-

tribute a new version of SINATRA. This distribution is at its core a .exe file. Also

included is an example text input file. The most basic user only needs to drag the in-

put file onto the .exe file (in WindowsTM). They can also just run the executable and

input the text input filename or input it as an argument while running the executable

in the command line. An example is shown below.

>>DSMC.exe Complex_Input.txt

These multiple options allow the end user to run SINATRA without being caught

up in the one specific way of running the program. This ensures that the program

will not fall to a classic hereditary code problem where only the original developers

are able to run and use the simulation.

3.3.2 Input Files

The input file utilizes a two-line system. The first line is a trigger word and the

line immediately after it contains the input for SINATRA. The input file is broken

into 5 parts. First, is the constant header input. This includes the basic information

that includes time-step, number density, mesh filename, and velocity. Next are the

boundary conditions which are broken into each of the 6 boundaries. Next are the

species information, then the output files and frequency. Finally, the optional key-

words complete the file . Each section is split by three stars. This system allows the
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entire simulation to be compiled once, and complete various tasks just by editing the

text file and using it as input. The input file guide can be found in Appendix D.

SINATRA is not optimized as an open source and commonly distributed system.

It is made to be a Cal Poly homegrown code base; therefore, it is not built with

airtight error checking, complete documentation and support, or perfect distribution

and releases. The goal is to have enough of each of those components that competent

users in the Cal Poly community may be able to use it to complete simulation and

analysis tasks. It is possible that there are bugs within the input system in which

it will seem that there was no error and that results are displayed, but they are not

physical at all. There are error management functions and systems, but they are not

foolproof. The user should read previous theses, understand the input file, and have

an understanding of DSMC. That being said, it is possible to help the user understand

these things simply through a clickable interface.

3.3.3 Graphical User Interface

The main goal of SINATRA is to be able to simulate rarefied gas for research purposes.

It is aimed for use by faculty, graduate students, and specialized clubs in focused

research and projects, however, a DSMC-PIC simulation is a useful tool for even

undergraduate classes to test and work with. With that purpose in mind, a Graphical

User Interface (GUI) for SINATRA has been created. This GUI is built using the

MATLAB R© GUIDE tool. It allows a user who has never seen the source code to be

able to set up and run simulations. It is built with the expectation that the user does

not know how to set up a SINATRA run. The default set up of the GUI can be seen

in Figure 3.6.
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Figure 3.6: Default Setup for SINATRA GUI

The GUI allows the user to input the various parameters of a SINATRA run.

It does low level error checking on their input to help the user make simulations

without many errors. Then the user can create an input text file through a click of a

button. The simulation converts the user’s inputs into the format of SINATRA’s input

file. Then the user can select ‘Run’ and the GUI will take a current distribution of

SINATRA’s executable and run it with the recently created input file. The SINATRA

GUI is also available as a pure executable or MATLAB R© figure, so that the end user

does not have to run complicated code.
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Chapter 4

CHARGED PARTICLES

A DSMC simulation has many applications in aerospace engineering. However, it

does not capture the full picture when gasses are composes of ions and electrons.

Plasma, which is composed of charged particles, needs the electrostatics to be taken

into account in the simulation in order to create an accurate model. This chapter will

explain how to simulate charged particles with the particle-in-cell method, how that

method was implemented in SINATRA, and how the implementation was validated.

4.1 Particle-In-Cell

In order to model the charged particle interactions, a particle-in-cell method is im-

plemented in SINATRA. As previously stated, the plasma is quasi-neutral in that it

has nearly even densities of ions and electrons. There can, however, be patches of

charge inequality. The gradient in the charge density creates an electric field, which

in turn applies a force on the particles and changes their velocities.

The characteristic length of those charge inequalities can be calculated through the

Debye Length, λDe, shown in Equation 4.1 [26]. This Debye length is the first plasma

property which helps with setting up the simulation. The Debye length gives us a

good approximation for cell size when creating a PIC mesh.
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λDe =

√
ε0 Te
e ne

(4.1)

ε0 = Permittivity of free space

Te = Electron Temperature

e = Elementary charge

ne = Electron density

Similar to the Molecular Dynamics method, it is possible to model every particle

in a domain1. Charged interactions between particles would be calculated through the

Coulomb Force, seen in Equation 4.2. The Coulomb Force is only the force between

two particles. Therefore, to calculate the force on a single particle, the force of each

particle in the domain must be summed. This is still computationally infeasible.

~FC =
1

4πε0

q1q2
r2

~r12 (4.2)

FC = Coulomb Force between two particles

ε0 = Permittivity of Free Space

q = Charge of a particle

r = Distance between particle 1 and 2

~r12 = The direction of the line connecting the two particles

In PIC, the particles move according to the Lorentz force, seen in Equation 4.3.

This force can be calculated across the entire domain and then applied to each particle,

reducing the order of the simulation to O(n) where n is the number of particles in

the domain [27].

1This explination of the Electro-Static PIC method draws much of its material from [27] because
it was used as a reference and it is attempting to explain the same method at the same level as this
thesis.
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~F = q( ~E + ~v × ~B) (4.3)

q = Particle Charge

E = Electric Field

v = Particle Velocity

B = Magnetic Field

It is not in the scope of this thesis to examine the effect of the self-induced or an

applied magnetic field, therefore the force is reduced to ~F = q ~E. The electric field

can be calculated through the gradient of the electric potential, as shown in Equation

4.4.

~E = −∇φ (4.4)

φ = Electric Potential

The electric potential comes from the double gradient of the charge density. The

electric potential can be seen in Equation 4.5, which is also known as the Poisson

Equation, specifically for electrostatics.

∇2φ = − ρ
ε0

(4.5)

ρ = Charge Density

ε0 = Permittivity of Free Space

The charge density is found using Equation 4.6. More information on the PIC

method to calculate the charge density is given in Section 4.2.
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ρ = e(Zini − ne) (4.6)

e = Elementary Charge

Zi = Ion Charge

n = Number density

i = subscript for ions

Xe = subscript for electrons

An important assumption is made for this thesis. Electrons are much smaller than

ions and therefore travel much faster. The difference in speeds between the two means

that a simulation which includes both ions and electrons as simulated particles would

need to have a time-step which captured the electron movement, and therefore would

be wasting a lot of time on the ions barely moving. In order to simplify the simulation,

a fluid assumption is made for the electrons. This is a valid assumption when viewed

from the ions reference frame because the electron particles themselves move so fast

that the ions are only affected by the overall distribution of electrons. This fluid

assumption is calculated through the Boltzmann relationship [27], and can be seen in

Equation 4.7.

ne = n0 exp
(φ− φ0

kTe

)
(4.7)

n = number density

φ = Electric Potential

φ0 = Initial Electric Potential

k = Boltzmann Constant

Te = Reference temperature of the electrons
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Initialize SystemCalculate Charge Density

Solve Poisson’s Equation

Calculate Electric Field

Update Particle Velocity

Move Particles

Perform Boundary Interactions

Insert New Particles

Sort Particles into Cells

Collide Particles

Sample Properties

t < tfinal ?

Stop Simulation
no

yes

Figure 4.1: DSMC-PIC Hybrid Code Flow. White blocks are DSMC algorithms
[18]. Red blocks are for PIC.

4.2 Particle-In-Cell Algorithm

This set of equations then gives us the particle-in-cell method; firstly, the charge

density is calculated, then the electric potential, and finally the electric field. The

electric field is then used to update the velocities of the particles. The addition of

these calculations into the DSMC method is shown in Figure 4.1.

There are many ways to take these formulas and code flow and turn into a working

simulation. There could be multiple methods for all of these calculations, which leads

to the various techniques for PIC codes, similar to the various DSMC codes. The ones

chosen for SINATRA are simple and robust. First, while the DSMC method is based

upon cells full of particles, the PIC method depends on the nodes of the cells upon

which the fields can be calculated. When calculating the charge density, the charge

must be distributed to those nodes. This is done through weighted charge distribution.

The distance between the particle and the 8 nodes of its cell are calculated, and then
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the 8 different volumes which cut into the particle are calculated. Those weights

determine the amount of charge from the particle distributed to each node.

Once this is done, Poisson’s equation can be solved. This is the most computation-

ally intensive part of a PIC code because Poisson’s equation is a partial differential

equation which is globally coupled. To solve it in the PIC framework, it is discretized

across the nodes. Then the a discretized partial differential equation solver can be uti-

lized to calculate the electric potential. For SINATRA, the Finite Difference method

is used, as discussed in Section 4.3.1. In order to solve the Finite Difference a linear

equation solver must be implemented. SINATRA uses a Gauss-Seidel solver as shown

in Section 4.3.2.

Once the electric potential solver is shown to be converged, the electric field can be

calculated. In SINATRA the field is calculated using a central difference calculation.

This can be seen in Equation 4.8. The equation shown is for the x direction and for

a non-boundary node.

Ex,i,j,k = −φi+1,j,k − φi−1,j,k
2∆x

(4.8)

E = Electric field

φ = Electric potential

x = Distance between nodes in the X direction

i , j and k = The x,y, and z node directions respectively

These three steps only need to be calculated once during the time-step, hence

the beauty of the PIC method. During the particle movement part of the DSMC

code, these calculations are utilized. Before updating the position of the particle, the

velocity is updated. Rearranging and simplifying Equation 4.3 gives the acceleration

as ax = q
m
Ex. This is used to update the velocity before updating the position of the
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particle. Finally, PIC settings are incorporated into the input and output systems of

the DSMC and a functioning DSMC-PIC code is born.

4.3 PIC Implementation

Implementing PIC into SINATRA was completed using the algorithm seen in Section

4.2. Two important factors were critical during implementation: robustness and effi-

ciency. SINATRA is built to be able to simulate many different fluid scenarios chosen

by the user. Therefore, the PIC portion should also have this generality. Therefore,

even though the Finite Difference method requires equal cell sizes, the rest of the

algorithms are based on the individual cells so that when the mesh is non-uniform

the simulation could be updated with minimum work. It was also implemented in

an efficient manner for the DSMC setup and algorithms found in SINATRA. It uses

flattened arrays, built-in particle and cell index arrays, and a structure which fits the

current parallelization within SINATRA. Live Long and Prosper

4.3.1 Finite Difference

Finite Difference was chosen as the method to discrete Poisson’s equation. Finite

difference is a simple and common method for discretizing the Poisson equation and

is common in PIC codes. There are other algorithms which could be used, but Finite

Difference allows for a relatively simple implementation. The derivation below is for

a 7-point finite difference for the Poisson equation [28, 29].

The derivation begins with the Poisson equation expanded out to each of the 3 direc-

tions.
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∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= − ρ

ε0
(4.9)

Next the Poisson equation can be discretized in the x , y and z directions as shown

in Equations 4.10, 4.11, and 4.12. The indices for x , y and z are given by i , j and k

respectively [28].

∂2φ

∂x2
(xi, yi, zi) ≈

1

h2
(φ(xi−1, yj, zk)− 2φ(xi, yj, zk) + φ(xi+1, yj, zk)), (4.10)

∂2φ

∂x2
(xi, yi, zi) ≈

1

h2
(φ(xi, yj−1, zk)− 2φ(xi, yj, zk) + φ(xi, yj+1, zk)), (4.11)

∂2φ

∂x2
(xi, yi, zi) ≈

1

h2
(φ(xi, yj, zk−1)− 2φ(xi, yj, zk) + φ(xi, yj, zk+1)), (4.12)

Substituting these into Equation 4.9 gives Equation 4.13 below.

φ(xi−1, yj, zk)− 2φ(xi, yj, zk) + φ(xi+1, yj, zk)

h2
+

φ(xi, yj−1, zk)− 2φ(xi, yj, zk) + φ(xi, yj+1, zk)

h2
+

φ(xi, yj, zk−1)− 2φ(xi, yj, zk) + φ(xi, yj, zk+1)

h2
=− ρijk

ε0
(4.13)

h = Cell side length

This builds a set of linear equations which is a common problem in linear algebra and

therefore multiple methods exist to solve it. First, the matrix must be created. This

matrix, also called a stencil, only needs to be created once per simulation because it

is only dependent on the mesh. Equation 4.14 shows the stencil for a 7-point mesh

on a 3× 3× 3 node domain.
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A =



S I I

I S I I

I S I

I S I I

I I S I I

I I S I

I S I

I I S I

I I S



(4.14)

where,

S =


−6 1

1 −6 1

1 −6

 and I =


1

1

1


Boundary conditions in a finite difference model can either be Neumann or Dirich-

let. Neumann boundary conditions define the derivative at the boundary while Dirich-

let define the value of the solution along the boundary. In this case, that means Neu-

mann boundaries define the electric field while Dirichlet conditions define the value

of the electric potential. For PIC simulations, it is best to use Neumann for open or

uncharged boundaries while Dirichlet is best for objects like charged surfaces. SINA-

TRA currently only includes Neumann boundary conditions; Dirichlet will be added

when the boundary class is updated.2Neumann boundaries have been implemented

by editing the stencil when the node is along a boundary. At that point Equation

4.15 is used to change the values of the stencil. An average is calculated between

2This current condition causes the stencil to be ill posed for a direct solver like Gauss-Seidel
[30]. This means that while it will converge upon an answer it is possible that it converged upon
an inaccurate result and therefore will skew the results. For current results it has be observed to
calculate relatively accurate solutions, however this should be explored in further work and users
should be stopped from selecting this situation in the initial conditions.
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Figure 4.2: SINATRA Sparse Stencil Matrix, shown through the MATLAB R©

spy command (left) 8 Cells in the mesh (right) 64 cells in the mesh.

the direction of boundary and the perpendicular direction in order to keep the slip

boundary along open walls.

Ax0,yj ,zk =
−φ(x0, yj, zk) + φ(x1, yj, zk)

2h
(4.15)

This stencil was implemented into SINATRA as a flattened 2D matrix which in

itself is two flattened 3D matrices. The electric potential is stored as a flattened 3D

matrix. The matrix items are selected through conversion functions that go from 3

dimensions to 1 dimension and vice versa, shown in Equations 4.16 and 4.17. Figure

4.2 shows a MATLAB R© spy command on SINATRA’s stencil. The spy command

shows which items in a matrix are non-zero. As seen by these figures the stencil is

largely empty. Future work would include using a different data structure and access

algorithm to reduce the wasted memory.
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Index = i× s2 + j × s+ k (4.16)

Index = The index of the 1D array

i , j and k = The indices of the 3D array

s = The size of one dimension of the 3D array

i =
Index

s2

j =
(Index

s

)
% s (4.17)

k =Index% s

Note: Values rounded down to closest whole number for use as indices

% = The modulus operator which gives the remainder of division

At this stage, the simulation assumes equal cell sizes and refinement across the

whole domain. However, the charge density summation is calculated cell by cell,

and the electric field is distributed cell by cell. These allow future iterations to have

unequal cell sizes.

4.3.2 Gauss-Seidel

The Gauss-Seidel iterative method was chosen to be the linear algebra solver for

SINATRA. It was chosen for its simplicity, universality, and robustness. It has one

improvement over the simplest iterative method, Jacobi, in that it uses the informa-

tion as it calculates it. It solves a version of the Equation 4.18.
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A · x = b (4.18)

In terms of SINATRA,

A = Stencil - Matrix of coefficients

x = Electric Potential - The vector to be solved

b = Charge Density - The calculated vector

The Charge Density (b), as defined in Equation 4.6, includes the electron density. In

SINATRA the electrons are approximated with a fluid assumption as shown in the

Boltzmann relationship (4.7). This thesis will not go into a derivation of the Gauss-

Seidel method, but the equation to update the electric potential at each time-step is

given by Equation 4.19 3.

xk+1
i =

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=i+1

Aijx
k
j

)
/aii (4.19)

It was discussed previously how to distribute the ion’s charge, but not how to

combine the ion charge and the electron charge. Therefore, by discretizing Poisson’s

Equation (4.5), combining it with Equations 4.6 and 4.7 for the charge density, and

putting it in matrix form (4.14) we get Equation 4.20.

3A derivation of the Gauss-Seidel method can be found in Reference [31]
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A · φ = − e

ε0

[
ni − no exp

(φ− φ0

k Te

)]
(4.20)

A = The sparse stencil

e = Charge on an electron

ε0 = Permittivity of free space

n = Number density

φ = Electric Potential

φ0 = Initial Electric Potential

k = Boltzmann Constant

Te = Temperature of the Electrons

This shows that the b in Equation 4.18 is the right hand side of the set of linear

equations for the Gauss-Seidel solver. Importantly, note that both sides depend on

the electric potential. It means that the right hand side must be recalculated at every

time-step.

4.4 Results

Two main methods, Solver Validation and Test Cases, have been used to validate the

PIC portion of SINATRA. By both testing the individual solver as well as running

test cases, SINATRA’s new upgrade can be validated as a working PIC code for its

methods. All input files used for the test cases can be found in Appendix F. The top

of each page of that appendix shows the title of the test case. All simulations can be

run using the master branch in the GitHub R© version committed on June 14th, 2019.
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Figure 4.3: Convergence Visualization Error of the Gauss-Seidel solver over 2000
iterations compared to a MATLAB R© verified solver. The error is calculated through
the vector norm of the difference between the stencil times the electric potential and
the charge density.

4.4.1 Solver Validation

SINATRA uses a Gauss-Seidel solver to solve the 7-point 3D stencil. The Gauss-

Seidel solver calculates the value of x when given A and b in A · x = b. In order to

validate the Gauss-Seidel solver, the SINATRA implementation was tested against

a validated MATLAB R© version4. Both solvers were given the same inputs shown in

Table 4.1. The important components of the solvers were logged during operation.

The results of the two solvers were then compared to confirm that SINATRA’s solver

is valid. As shown in Appendix E, the solvers were shown to match with only slight

rounding errors between them. This is expected in a Gauss-Seidel solver because it

has no randomness. Their agreement can also be seen in Figure 4.3.

4The validation was done through comparing Wolfram Alpha and the MATLAB R© version
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Table 4.1: The initial conditions for solver verification

Property Value Property Value
Number of Cells 64 Real to Simulated particles 1× 1019

Sphere Model Hard Sphere Collision Scheme Off
Time-step (s) 1× 10−8 Total Simulation Time (s) 5× 10−8

Number Density 1× 1024 Gas Type Nitrogen
Electron Density 1× 1012 Electron Temp (eV) 1
Reference Potential (V) 0 Domain size (m) 1× 1× 1
Stream Temperature (K) 300 X,Y,Z Velocity (m/s) 0,0,0

A visual way to confirm that the solver works is by observing the error as the

iterations increase. A few tests were run, and the error of the solver was outputted

at each iteration. A 64-cell convergence comparison is shown in Figure 4.3, with

an average 24.8 particles per cell. It was compared to the validated solver’s error

residual and they are shown to match exactly. As seen in the figure, the error drops

quickly and then slowly decreases towards zero. This shows numerical stability and

convergence. However, it also shows that Gauss-Seidel, while robust, is not optimal

for very large simulations. A visualization of the error is a good way to estimate

the accuracy of the solution and just as importantly, the soundness of the initial

conditions.

4.4.2 Ambipolar Test Case

Two main test cases were performed in order to test the validation of the SINATRA:

Ambipolar diffusion and steady state electric flow. Ambipolar diffusion is a typical

simulation case for PIC codes. Normal fluids will diffuse out of a domain naturally

over time. However, on account of the different speeds between electrons and ions

in a plasma, a gradient is set up as the electrons start to move faster than the ions.

This gradient causes an electric field which in turn reduces the speed of the electrons

while increasing the speed of the ions. This causes a uniform diffusion rate.
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Table 4.2: The initial conditions for ambipolar diffusion

Property Value Property Value
Number of Cells 4096 Real to Simulated particles 1× 109

Sphere Model Hard Sphere Collision Scheme Off
Time-step (s) 1× 10−7 Total Simulation Time (s) 5× 10−5

Number Density 1× 1012 Gas Type Argon
Electron Density 1× 1012 Electron Temp (eV) 100
Reference Potential (V) 0 Domain size (m) 1× 1× 1
Stream Temperature (K) 5000 X,Y,Z Velocity (m/s) 0,0,0

The initial conditions for the ambipolar diffusion were based on diffuse hot plasma

consisting of argon gas [11]. They can be seen in Table 4.2. These conditions were

chosen by taking the density and temperature of a diffuse hot plasma, then calculating

the other parameters according to the requirements for a PIC simulation. The Debye

length was calculated to be 0.074 meters. The cell density was selected such that

the cell size was approximately the Debye length. The time-step was calculated to

be on the order of 1 × 10−7 seconds and the total simulation time was chosen to

see significant change in the simulation. The domain was initialized with uniformly

distributed particles. The number of particles per cell was 0.85 which should be

increased in future simulations for greater accuracy and to avoid numerical heating.

There are two simple ways to confirm that the ambipolar diffusion is working

correctly. First is by comparing the density distribution throughout the simulation

time. This is done through viewing a slice of the density distribution once every

2× 10−5 seconds. These can be seen in the full-page Figures 4.4 and 4.5. They are a

clear validation of the implementation of the PIC simulation. In the neutral particles,

it can be seen that the density near the walls slowly decreases. The sections of high

density particles become smaller as more particles leave the domain. However, the

charged particles are attracted to each other and join together in the middle to form

a high density core of the domain. This slows the diffusion rate significantly.
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Figure 4.4: Neutral Diffusion Density The domain of neutral diffusion from
1× 10−5 to 5× 10−5 seconds. First is top left, then top right, and finally bottom left.
This is one slice in the Z direction as indicated by the axis, and the density levels are
shown in the bottom right.
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Figure 4.5: Ambipolar Diffusion Density The domain of ambipolar diffusion
from 1 × 10−5 to 5 × 10−5. First is top left, then top right, and finally bottom left.
This is one slice in the Z direction as indicated by the axis, and the density levels are
shown in the bottom right.

55



Figure 4.6: Number of Particles in Diffusion The number of particles in the
domain for ambipolar diffusion vs neutral diffusion

Another metric to see if the diffusion is working is the number of particles in

the domain. The number of particles is shown in Figure 4.6, and it shows the large

difference between charged particles and neutrals. Both simulations begin with losing

particles at a similar rate. However, within 0.5 × 10−5 seconds they diverge. The

diffusion of the neutrals through the boundaries is relatively quick compared to the

diffusion of the charge particles. Through the relative difference ambipolar diffusion

can be observed.

Finally, an analytical comparison is a strong validation tool for the PIC implemen-

tation. For this, the ion flux can be compared to the gradient of the density because

they are proportionally related [12]. They are related by the negative ambipolar

diffusion coefficient, which is shown in Equation 4.21.
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Table 4.3: Ambipolar diffusion coefficient results

X Y Z Flux (Y) Density Gradient (Y) RHS of Eqn 4.21 (Y)
4 8 4 0.00E+00 0.00E+00 0.00E+00
4 8 8 0.00E+00 -2.10E+21 0.00E+00
4 8 12 0.00E+00 0.00E+00 0.00E+00
8 8 4 -5.43E-07 2.10E+21 3.08E+22
8 8 8 0.00E+00 0.00E+00 0.00E+00
8 8 12 5.43E-07 0.00E+00 -3.08E+22
12 8 4 -5.44E-07 0.00E+00 3.08E+22
12 8 8 -5.43E-07 0.00E+00 3.07E+22
12 8 12 0.00E+00 0.00E+00 0.00E+00

τ = −Da∇n (4.21)

Da =
µiDe + µeDi

µi + µe
(4.22)

τ = Ion Flux

n = Density

Da = Ambipolar diffusion coefficient

µ = Ion and electron mobilities

D = Ion and electron diffusion coefficients

In order to test this equation first the Ambipolar diffusion coefficient is calculated

in this simulation to be 5.6627 × 1028 m2/s using the code found in Appendix G.

Then the gradient in a direction and the flux is calculated over test points within

the domain. These were then compared and can be seen in Table 4.3. A few notes

on these results are as follows. First, the low number of particles makes the results

very discretized and therefore not consistent. Also, the ambipolar diffusion has made

some cells have no particles and therefore the densities are actually 0, giving a skewed

result. However, what can be seen is the magnitude of the results. This is shown

to be within 1 order of magnitude. This is acceptable on account of two reasons.
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First, the ambipolar diffusion coefficient assumes a continuum solution and therefore

is not completely accurate in this simulation. Secondly, the all neumann boundary

simulation means that the simulation may find a solution which is not necessarily the

most accurate solution. These two sources of error explain the error in these results.

4.4.3 Steady State Flow

An electric propulsion plume can be approximated by a simulation with all the

boundaries as outflows except for a single inlet. That inlet has some initial velocity

into the domain. This is the second test case for the PIC implementation into SINA-

TRA. It serves two purposes. First, it is a starting point for a complicated electric

propulsion plume. Secondly, it is a strong visual tool to confirm that the poisson

equation solver is generating reasonable electric potential values. All boundaries are

outflows while the -X boundary is an inlet with velocity going into the domain. Table

4.4 shows the initial conditions for this test case. The domain is uniformly initial-

ized for number of particles per cell (9.85) and given an Maxwellian distribution for

velocity of 1000 m/s in the X direction.

Figure 4.7 shows the contours of the potential across a slice of the domain. This

figure shows how the electric potential does not have any large numerical instabilities,

it does not change shape dramatically between time-steps, and it is relatively regular

as expected for an empty domain. To show that as time progresses the simulation is

reaching the steady state solution, the maximum difference in the potential between

time-steps was calculated and plotted in Figure 4.8. The asymptotic nature of the

difference approaching zero shows that this simulation is converging upon a steady

state solution to the given initial conditions. This is not the Gauss-Seidel solver slowly

converging upon a solution because the 5% solver requirement was used which ensures

that the Gauss-Seidel is steady before moving on to the next time iteration. This test
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Figure 4.7: Steady State Potential The domain of steady state flow from 1×10−8

to 1×10−6. First is top left, then top right, and then bottom left, and finally bottom
right. This is one slice in the Z direction at node 4. The color bar shows the value of
the potential.

Figure 4.8: Maximum Difference in Potential The maximum difference in
potential across one slice of the domain in the Z direction at node 4. The steady
state convergence can be seen in the approach to 0 difference in potential.
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Table 4.4: The initial conditions for steady state flow

Property Value Property Value
Number of Cells 512 Real to Simulated particles 1× 109

Sphere Model Hard Sphere Collision Scheme Off
Time-step (s) 1× 10−8 Total Simulation Time (s) 1× 10−6

Number Density 5× 1012 Gas Type Argon
Electron Density 1× 1012 Electron Temp (eV) 1
Reference Potential (V) 0 Domain size (m) 1× 1× 1
Stream Temperature (K) 5000 X,Y,Z Velocity (m/s) 1000,0,0

case validates a correct implementation of charged particles as well as well-suited

initial conditions to study complicated electric propulsion plumes.

4.4.4 Execution Time Study

In order to examine the performance of SINATRA after the inclusion of PIC, an

execution time study was performed. The convergence condition was tested as both

the absolute error being less than 0.05 Volts and a less than a 5% difference in the

error from the last 50 iterations. Simulations were run keeping the same number of

particles but changing the mesh size, as well as holding the mesh size and changing

the number of particles. It is also compared to a similar non-charged simulation. The

results can be found in Table 4.5.

These simulations used the same settings as ambipolar diffusion. There were 2500

maximum iterations and it was run for 500 time-steps. First, the large difference

(over 98%) between the neutral simulation and similar charged particle simulations

is evident. This is on account of the large number of iterations necessary to solve

the electric potential. Secondly, the difference between the 5% percent change con-

vergence condition and the 0.05 Volts absolute error condition is significant, on the

order of 65%. This can be attributed to the fact that if a time-step does not con-

verge, the next time-step starts where the last one ended, because electric potential is

60



Table 4.5: PIC Execution Time

First Iteration Time-step Average Total Time
Neutral 2 sec < 1 sec 3 min, 4 sec
5% error convergence 1 min, 56 sec 24 sec 199 min, 44 sec
0.05 V error convergence 18 min, 46 sec 18 min, 46 sec 578 min, 11 sec6

64 Cells, 5% error < 1 sec < 1 sec 15 sec
10 times more particles 1 sec < 1 sec 26 sec7

not reset between time-steps. Consequentially, the solver keeps trying to reduce the

error throughout all the time-steps. In the percent change simulation, it can be seen

that the first simulation reaches convergence, and the sequential time-steps only need

to solve the slight difference in the charge density caused by the moving particles.

However, the first iteration of the absolute error simulation takes the same amount

of time as the other iterations and therefore it is continually reaching the maximum

time-steps attempting to reduce the error5.

Through the results in Table 4.5, it can be seen that the execution time is more

heavily influenced by the number of mesh cells than the number of particles. When

the number of cells is reduced to 64, the execution time is reduced from over 3 hours

to 15 seconds. It follows that the combination of an octree mesh and a non-optimal

code dramatically changes the simulation time. The final simulation uses a 64-cell

mesh and increases the number of simulated particles by 10 times. Even with the

increased number of particles there is only an 11-second difference. This shows how

the number of cells has a larger influence than the number of particles. It also shows

that parallization makes a negligible difference in the PIC code unless the number

5This was confirmed by an examination of the output logs

6Extrapolated from first 25 time-steps, assuming same average up to time-step 100, then 24
seconds per time-step.

7Extrapolated from 30 time-steps, errors on account of too many particles in each cell
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of simulated molecules is extremely large. It is future work to find a more efficient

solver in order to increase the simulation accuracy of SINATRA.
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Chapter 5

CONCLUSIONS

The goal of this thesis is three-fold. The first goal is to help develop a homegrown

DSMC simulation tool for Cal Poly. The second goal is to implement charged particles

into the DSMC to create a hybrid DSMC-PIC simulation. The third goal is to

design the code architecture and systems to have both a low probability of becoming

unusable and a similarity to the upcoming homegrown fluid simulation. These are

all intermediary goals which work towards the final end of creating a full simulation

of an electric engine. This thesis shows that the three goals have been accomplished

through the latest upgrade of the new homegrown code, SINATRA.

Building a homegrown CFD code is a complex task. The early developers have

worked together to build a robust and flexible DSMC code base. This has been

demonstrated through Alliston and Galvez’s theses [18, 19]. It has the ability to

model many different flow conditions, species, and boundary conditions. Its execution

time (i.e. under 2 minutes for 2 million particles) allows for accurate simulations in

an institution research setting. It has been validated across its various collision and

sphere models.

In order to eventually model a full electric thruster, this part of the simulation

must be able to model charged particles for the plume. This has been achieved by

making SINATRA a DSMC-PIC hybrid. A simple and robust method is used for dis-

cretizing Poisson’s Equation: The Finite Difference method. This involves creating a

7-point 3D stencil, Neumann boundary conditions, slip conditions through averaging.

For solving the resulting set of linear equations, the Gauss-Seidel iterative method
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was chosen. The implementation in SINATRA was verified against a verified solver

and shown to converge on the 3D stencil. The accuracy of the PIC implementation

has been validated through two important test cases, ambipolar diffusion and steady

state flow. In the ambipolar diffusion test case, it is clear that the charged particles

create a force which greatly reduces diffusion so that within 5 × 10−5 seconds only

0.071% of the particles leave the domain. With the steady state flow, the potential

was seen to quickly assume a steady state solution and change slowly as the particles

moved through the domain.

The code base has been converted from a small developer’s program to a university

standard code. It is managed through GitHub R© in order to be used by multiple

university developers. It has been upgraded with a user manual, consistent and

simple documentation, and a simplified workflow. Two large bottlenecks, particle

pushing and particle linking, have been greatly mitigated through parallization and

increased data throughput so that timely simulations may be made. In addition, a

distribution method has been created with easy-to-use executables and a GUI for user

control.

There are still many ways to improve upon SINATRA. Those are discussed in

Section 5.1. However, SINATRA is a strong first iteration of a university level DSMC-

PIC code base. This work will help SINATRA reach its goals and Cal Poly will

enabled to do novel research in modeling full electric thrusters.

5.1 Future Work

Because of the nature of SINATRA, it is expected for there to be a large amount of

future work. A critical part of SINATRA is that it will be developed into a state-
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of-the-art homegrown code which Cal Poly can use to help develop new aerospace

technology.

5.1.1 Boundaries

One part of SINATRA which is underdeveloped is the handling of boundaries. Cur-

rently, SINATRA handles the main 6 boundaries of a cube. It has the capability to

define the type of wall and the characteristics of the particles flowing through that

wall. However, it ignores any boundaries inside of the domain, cannot break a bound-

ary into multiple sections. While dealing with boundaries inside the domain will not

be needed for a plasma plume, it will be important to be able to split the bound-

aries so that part of the wall can simulate the thruster nozzle. The path forward for

boundaries is twofold. First, a boundary class needs to be built within SINATRA

which allows the user to specify sections which will be different from the rest of the

domain. At that stage it would be reasonable to simulate a thruster nozzle.

The next stage would be to build Cart3DTM integration. Cart3DTM is a meshing

software that can create an octree mesh which includes internal domain boundaries.

This allows a user to import a Computer-aided design (CAD) file and get out a mesh

which SINATRA can understand. This is critical for upper atmosphere calculations

around aircraft or spacecraft bodies. It can also be used for objects in Low Earth

Orbit. The Cart3DTM tool will allow users to specify what each external and internal

boundary type is and is able to split these boundaries into much smaller pieces.

Cart3DTM can also dynamically change the mesh size depending on distance to a

wall and other user specifications which will allow for more accurate DSMC-PIC

simulation data. This integration will need to be completed before SINATRA can

create useful simulation results. The future researchers can also choose a difference

meshing software depending on future requirements.
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5.1.2 Electric Thruster

As mentioned above, in order for an accurate electric thruster simulation, there will

need to be changes in how boundaries are handled in SINATRA. Updating the bound-

aries is the most important change that will be needed for accurate simulations of

electric thruster plumes. The Poisson equation solver would need to be upgraded as

well. Currently, a finite volume solver is being used. This is a robust solver which is

well-researched and understood, but it has a few restrictions. First, and most impor-

tantly, the solver expects the mesh to be evenly sized across the entire domain. This

works with the current version of SINATRA’s home-built meshing software; how-

ever, once the mesh is not completely uniform, the Poisson solver will break. This

solver can only handle straight boundaries, which is acceptable because the DSMC

portion uses straight approximations of curves through the octree mesh. There are

many other options for a Poisson solver that have been explored in PIC research.

For example, the conjugate gradient solver might be a good option for SINATRA.

Conjugate difference requires a symmetric positive definite matrix which the Finite

Difference method creates [28]. This upgrade would also greatly reduce the execution

time, and therefore allow for larger and more accurate simulations.

5.1.3 Charged Particles

There are many facets to simulating charged particles. While the author has captured

the largest features, there are many other physical attributes which make charged

particles a complicated and interesting subject. There are two main physical proper-

ties which would be the most likely candidates to be added to SINATRA. They are

charged collisions and surface interactions.
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When charged particles are involved, there are many new types of particle col-

lisions. Some types are ionization and recombination collisions. These are being

ignored in SINATRA because the electrons are being modeled as a fluid. However, if

magnetic fields were to be included, for example for a magnetic nozzle, or if the grids

of an ion thruster need to be modeled, then the fluid assumption would no longer be

valid. The simulation would have to drastically reduce its simulation time-step for

the fast electrons and also need to consider ionization and recombination collisions.

There are also chemical interactions that are also not being considered in the scope

of this project. Both of those types of collisions will most likely not be needed for

accurate plasma plume simulations. In order for these collisions to be included, the

collision class will need to be updated to be able to handle multiple schemes within

the same simulation.

However, charge exchange collisions will need to be included eventually. Charge

exchange collisions are instances where the electron orbital cloud of an ion and a

neutral particle will interact [32]. There is a possibility in these collision for an electron

to be stripped from the neutral atom and become attached to the charged ion. The

charge is exchanged between the two particles; the neutral atom becomes a charged

ion and the charged ion becomes a neutral atom. However, there is no significant

change in momentum. This type of collision is common and significant in electric

thruster plumes. While most thrusters are efficient at ionizing the propellant, there

are still neutral atoms which come out of the chamber and into the plume. Their

relatively low velocities cause the relative density of the neutral atoms to be high

near the thruster nozzle. Charge exchange collisions (CEX) are therefore likely. The

resulting slow-moving ions are very susceptible to the radial component of the electric

field set up by the plume. While the fast-moving ions will diverge, they do so at a low

angle because of their high initial velocity. However, these new ions are moving slowly

and therefore are more easily affected by the radial electric field. They create what
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Figure 5.1: Visualization of CEX wings [33]

is called CEX wings, seen in Figure 5.1 [33]. This radial direction of charged ions

can cause major interactions with the spacecraft including contamination, sputtering,

and spacecraft charging. Therefore CEX interactions should be included when doing

full spacecraft analysis.

Another important quality of charged particles is their surface interactions. When

high energy particles collide with metal surfaces they sputter off material and degre-

gate the surface. This is an important design consideration in spacecraft with electric

propulsion. SINATRA models various types of surface interactions through its bound-

ary handling. There can be inflow, outflow, specular and diffuse walls. However, es-

pecially with CEX collisions, charged particles can interact with a spacecraft surface

and impart their charge onto it [34]. The surface can be modeled as a grounded con-

ductor or as a perfect insulator or as a mix between the two. This type of modeling

will need to be included into SINATRA whenever boundaries are introduced into the

domain.
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5.1.4 SINATRA Efficiency and Capability

There are many sections in SINATRA that need to be updated before SINATRA can

be used as a cutting edge research tool. It was developed by mechanical and aerospace

engineers, not by computer scientists. Therefore, many of the algorithms, storage

methods, and memory access are not optimized. The author has removed the largest

and simplest bottlenecks, but there are other areas that need to be optimized. The

next largest bottleneck is the sampling of data. When SINATRA samples data from

the simulation, it prints out text files. This printing is one of the slowest portions

of the simulation. TecplotTM has an API which allows users to print binary files

and Tecplot is able to input those binary files. This was attempted by the original

developers, but they were not successful. It requires a deeper understanding of C++

and binary. There are many examples of possible optimization throughout the code

which can be fixed by a developer with that type of skill set. It may also be possible

to switch to the Visualization Toolkit VTK which has other features which may make

sampling data much simpler and quicker.

Within a computer scientist skill set lies parallelization. Similar to the bottle-

necks above the author has implemented a simple version of parallelization; however,

there are many better ways to implement it. It could be implemented by splitting

the domain into multiple pieces, which is a possibility on account of the regularity of

the octree mesh. However, this may not be the best option because particles must be

transferred between the domains which is very computationally expensive. Another

option would be to split a larger section of each time-step into many parts. The

simulation could also be parallelized by having each core run the same simulation.

Then the multiple different simulations could be averaged as a way to reduce the

randomness of DSMC so that an accurate solution is calculated. Parallelization tech-
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niques are still on the cutting edge of computer science, and therefore this would be

a fruitful project for a developer with experience in this area.

Within the DSMC community, there are many schools of thought about the best

way to work with time-steps and mesh sizes [8]. It is possible to have variable time-

steps as well as variable mesh sizes. It is also possible for the time-step to change

for each particle depending on their velocity and the size of the mesh cell they are

within. There are algorithms which create a mesh which changes cell size depending

on the average number of particles in a cell. This creates a mesh which changes with

the flow and eventually sets up an optimal mesh for that steady state flow condition.

SINATRA is currently at its first iteration; therefore it uses a fixed time-step for

all particles and a fixed mesh. Upgrading SINATRA to a more complicated time-step

and mesh algorithm would be a good project for a future developer. In order to keep

charged particle capability, the Poisson solver would have to be upgraded at the same

time because it is currently based on the fixed mesh. This upgrade could greatly

reduce SINATRA’s execution time; therefore, it would allow higher resolution and

accurate simulations. It would be beneficial to implement a user choice for different

Poisson solvers so that a user can compare various solvers and use their various

advantages depending on their simulation requirements. It would also be useful to

include an option for the user to have SINATRA assume a linearized Boltzmann

equation, which assumes that ni − ne << ni. This would allow a much quicker

calculation of the potential and be a good low accuracy solver for the beginning

stages of complicated simulations.

The stencil implementation will also need to be upgraded. When non-uniform

Cartesian grids are included in SINATRA the stencil implementation will fail. The

Finite Difference Method requires an uniform mesh. However, the Finite Volume

method may be a good alternative to be used for the new mesh types. It will need to be

70



upgraded to be much more robust to accommodate complicated meshes. The stencil

implementation can also be upgraded. Currently the sparse matrix wastes a large

amount of computing power through having a large empty matrix and multiplying

many zeros. This can be improved thorough either sparse matrix calculations or by

calculating the required row of the matrix only when going to do operations upon

it. Finally, the future developers will need to be careful when using a non-uniform

Cartesian grid and depositing charge on account of the octree structure.

Another area of possible improvement is within the octree search algorithm. Fu-

ture developers will need to start with confirming that the current search algorithm

fits the expected nlog(n) order where n is the number of items in the search. Once

confirmed other advanced algorithms can be implemented including aligning the oc-

tree mesh to an integer system so that the integer positions can be used as inputs

into the data matrix within the calculations.

5.1.5 Systems Operations

It will be important to continually update the systems engineering sections of SINA-

TRA. The author has set up systems which will hopefully be helpful at keeping

SINATRA up-to-date and relevant, but they will need to be monitored and main-

tained

First, the simple distributions need to be kept up-to-date. There are distributions

for Windows, Linux, and Mac. If SINATRA continues to grow at Cal Poly, an official

release website with version control can be set up. Until then it will be released

through .zip files being sent to the new user; therefore, the distributions need to be

up-to-date with the current stable version of SINATRA, input files, and the GUI.
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The GUI will also need to be updated as there are changes to the input class.

Whenever the input class requires a different way to input variables to the simulation,

the GUI will also need to be changed to accommodate for those changes. It will

also have to be updated when the boundary class or output class changes their user

interface. It is not difficult to keep the GUI up-to-date, but it can easily become

obsolete if it is left alone during further development.

The author has ensured that the GitHub R© repository is kept clean and up-to-

date as much as possible. It will be necessary to use the GitHub R© repository while

developing new code. One pitfall could be that new developers only develop on

their local machines and ignore the GitHub R© repository. This habit could ruin the

continuity of the version control of GitHub R© and more importantly could make it

harder for new developers to add their contributions. The GitHub R© should be kept

as a version of the code which can be easily shared with new developers, so they are

not be confused nor distracted by extra files and information. If SINATRA is well

taken care of, it will become a legacy code that will allow Cal Poly to shine as a

school with advanced modeling skills and allow new and revolutionary technology to

come from “Learning by Doing”.
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APPENDICES

Appendix A

EXAMPLE BATCH SCRIPT

Seen below is an example batch script written for WindowsTM. It can be found in

the resources directory as SampleWorkflow.bat.

REM This is a sample workflow which simulates a empty domain

REM It meshes a 64 empty domain

REM Then it runs a simple empty domain simulation

REM Finally, it generates a gif of the particles in the domain

REM Run the input program

cd ..\inputProgram

Mesh.exe MeshInput.txt

REM Run the Simulation program

cd ..\simulationProgram

DSMC.exe ..\resources\Complex_Input.txt

REM Run the output program

cd ..\outputProgram

matlab -r FlowVelocityDistributionAnim()
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Appendix B

DOXYGEN CLASS AND FILE LISTS

Classes

Figure B.1: List of all Classes commented through Doxygen
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Files

Figure B.2: List of all Files commented through Doxygen
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Appendix C

SIMPLE DISTRIBUTION WALKTHROUGH

Seen below is a simple tutorial for starting with SINATRA. It can be found in the

documentation/SimpleDistribution directory as ReadMe.md within each specific OS’s

directory.

SINATRA Simple Distribution Manual

Dominic Lunde

Hello! Welcome to a tutorial on how to use SINATRA.

First, requirements

1) Windows OS

2) Matlab or Matlab runtime - for output only

This will walk you through a simple simulation case.

Then it will show you how to use the GUI and then you can have fun!

Step 1 - Mesh

We must create a mesh file. This is done through

the Mesh.exe executable.

The MeshInput.txt file is already set up to create

8 cells through 1 cut.

Therefore we can run the mesher by either:

a) Dragging MeshInput.txt onto Mesh.exe

b) Running "Mesh MeshInput.txt" into a

command window set to this directory

After this is done, you should see your

mesh file as a .plt file appear. Good!

81



Step 2 - Simulate

Now we can simulate some particles.

Complex_Input.txt is set up to use

8 cells and run 10 timesteps

Therefore we can run the mesher by either:

a) Dragging Complex_Input.txt onto DSMC.exe

b) Running "DSMC Complex_Input.txt"

into a command window

All done! You will see a file called SINATRA_OUTPUT.txt.

This shows you very simple time step info.

You will also see SINATRA_uniform_properties_000001.plt.

This has Tecplot data from the first time step.

Step 3 - Analysis

We want to see those particles move right?

We need to change some things first.

Open Complex_Input.txt and go

to the "Output Information" Section

Between the Tecplot Sample Frequency and the *** add this.

Particle Animation

0

1

VelocityOutput\velocityFromParticles_

The first line is the trigger word, next is the start time,

then the frequency of output, and finally the base filename.

--Create the folder VelocityOutput

so these files have a place to go.

Now run the simulation again.

Now if you open VelocityOutput you will see 11 files!

We can use those to view the particles and their movements.

--Open FlowVelocityDistributionAnim.m in Matlab and run

A file called SINATRA_gif.gif will be

created and you can see your particles!

However, it’s a mess and they don’t seem to move. Let’s change that.

In Complex_Input

--Change the Time Step to 1e-5
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--Change the Total Simulation Time to 10e-5.

This will allow the particles to move further each frame.

Now let’s make less particles.

--Set the Number Density to 1e-22.

Now rerun the simlulation and analysis

and boom! Particles in a box.

Step 4 - GUI

Now I’m going to let you play with the GUI. Open up SINATRA_GUI.exe.

We’re going to have to change a few things.

SINATRA Output file - SINATRA_OUTPUT.txt

Tecplot Output - SINATRA_uniform_properties.plt

Velocity Output - VelocityOutput/velocityFromParticles_

Mesh File - FE_NodeLocations_UnitCubeQuad8Cells_TEC.plt

Input File - Complex_Input.txt

This GUI prints input files.

Try it by pressing "Write File" then "Open File".

Then change something and see how it changes the input file.

Finally, you can press "Simulate" to run that input file on DSMC.exe.

Have fun!
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Appendix D

INPUT FILE GUIDE

This is the Input File Guide. It can be found in the ReadMe for the resources file. It

explains each command of the input file and how it works.

Input file Guide

SINATRA reads input files line by line.

It searches for key words and ignores words which don’t fit them.

Then it takes the items in the line under the keyword and

parses that for the simulation.

There are 6 sections to the input file. The sections are

deliminated by *

After the first section, the order of the sections does not matter.

The order of the trigger words do not matter within the sections

Section 1 - This is the intro section. It does not have

a header trigger

"Mesh Input Filename" - path name to

the file which holds the mesh information

"Number of Real Particles to Simulation Particles" - number as a

double which is the ratio of real particles per simulation particles

"Boundary Conditions" - boundary

conditions of the walls. 6 space deliminated string arguments

for the type of the walls. Options are "INFLOW","OUTFLOW",

"SWALL","DWALL","PWALL". Order of the walls is

-X,+X,-Y,+Y,-Z,+Z.

"Collision Scheme" - an integer

which signifies which collision scheme to use

"Sphere Model" - an integer

which signifies which sphere model to use

"Total Simulation Time" - a double

showing the total time the simulation should run

"Time Step" - a double of

the amount of time for each time step
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Section 2 - Trigger "Initial Conditions"

This section contains simple initial conditions

"Number Density" - a double with the number density

for the whole simulation

"Mixture" - a space separated line of alternating

integers and doubles. The first number is the species

id and the second is the percentage it is in the

mixture being simulated

"Stream Temperature" - a double temperature in Kelvin

"Stream Velocity" - space separated doubles which are

the X,Y,Z direction of the stream velocity

Section 3 - Trigger "Boundary Condition Information"

This section contains the information about the Boundaries

There are 6 items which should be put in this.

They each start with "BC X".

X is the number of the boundary from 0 to 5

following -X,+X,-Y,+Y,-Z,+Z.

Each section ends with a "&".

They contain

"Number Density"

"Mixture"

"Stream Temperature"

"Stream Velocity"

where each are defined the same way as in Section 2.

Section 4 - Trigger "Output Information"

This section defined the output variables needed to view the data

"Output File Name" - a string path to

where the simple output file will be placed

"Tecplot Base Name" - a string path which

is the base of the Tecplot output files. It will be

edited with timestep information for each new file.

WARNING - if the folder path does not exist, no

files will be created.

"Sample Cell Type" - a flag for which sampling

should be used. 1 stands for leaf cells and 2 stands for
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the immediate parents of the leaf cells

"Tecplot Sample Frequency" - an integer of the number of

time steps between each sampling

"Tecplot Sample Start Time" - a double which defines the

start time for Tecplot sampling

"Particle Animation" - a three lined argument.

first is start time. second is frequency (integer), and

final is the base file name for the animation files

Section 5 - Trigger "Species Information"

This section holds the information for the species to be used

Each species section starts with the trigger "Species"

After this a list of items are included which are added

to that species class

These are listed below in order.

Reference Temperature - Kelvin - double

Molecular Diameter - meters - double

Mass - kilograms - double

Rotational Degrees of Freedom - number - integer

Vibrational Degrees of Freedom - number - integer

Characteristic Temperature (Rot) - Kelvin - double

Characteristic Temperature (Vib) - Kelvin - double

Viscosity Index - number - double

Viscosity Coefficient - number - double

Charge - Columbs - double

VSS Exponent (VSS sphere only) - number - double

Section 6 - Trigger "Optional Keywords"

Optional items for the simulation.

These don’t necessarily have a second line, they can be

used just as single line triggers

"diffusion" - if trigger is there, enables

the diffusion test case

"init_velocity_gradient" - Next line is the direction of

the gradient (X,Y,Z). Next line is 6 item deliminated by

spaces with the inputs for the velocity gradient in the

normal 6 direction order

"Charged Simulation" - triggers a charged simulation

"Parallel Enabled" - triggers a parallel simulation
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Any other questions about the input file can be solved

by emailing the original developers. Or by reading

through input.cpp and input.h.
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Appendix E

GAUSS-SEIDEL SOLVER VERIFICATION

Below are the outputs of the Gauss-Seidel solvers. They are printed out in order of

the nodes where the nodes are 2D flattened arrays of 3D arrays. These are 64 cells

and therefore a 5 × 5 × 5 node structure. The first number, Rhs, stands for bi. The

second, below, stands for the dot product of the stencil below that index times the

potential below that index. Above is the dot product of the stencil above that index

times the potential above that index. The next one, (u,u), is the value of the stencil

at that index. Finally, phi is the electric potential at that index calculated through

Rhs− below − above)/(u, u).

The solvers show exactly the same calculations when given the same initial condi-

tions. While this is hard to see in this format it is trivial when the logs are analyzed

with a text comparison tool.

SINATRA Solver

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0
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Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:0 above:0 (u,u):-96 phi:-188

Rhs:1.81e+04 below:-3.02e+03 above:0 (u,u):-96 phi:-220

Rhs:1.81e+04 below:-3.52e+03 above:0 (u,u):-96 phi:-225

Rhs:0 below:-450 above:0 (u,u):-66 phi:-6.82

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-3.02e+03 above:0 (u,u):-96 phi:-220

Rhs:1.81e+04 below:-7.04e+03 above:0 (u,u):-96 phi:-262

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-3.52e+03 above:0 (u,u):-96 phi:-225

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:1.81e+04 below:-8.63e+03 above:0 (u,u):-96 phi:-278

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-450 above:0 (u,u):-66 phi:-6.82

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:-43.3 above:0 (u,u):-36 phi:-1.2

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-3.02e+03 above:0 (u,u):-96 phi:-220

Rhs:1.81e+04 below:-7.04e+03 above:0 (u,u):-96 phi:-262

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270
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Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-7.04e+03 above:0 (u,u):-96 phi:-262

Rhs:1.81e+04 below:-1.26e+04 above:0 (u,u):-96 phi:-319

Rhs:1.81e+04 below:-1.37e+04 above:0 (u,u):-96 phi:-332

Rhs:0 below:-978 above:0 (u,u):-66 phi:-14.8

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:1.81e+04 below:-1.37e+04 above:0 (u,u):-96 phi:-332

Rhs:1.81e+04 below:-1.51e+04 above:0 (u,u):-96 phi:-345

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:-978 above:0 (u,u):-66 phi:-14.8

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:-85.9 above:0 (u,u):-36 phi:-2.39

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-3.52e+03 above:0 (u,u):-96 phi:-225

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:1.81e+04 below:-8.63e+03 above:0 (u,u):-96 phi:-278

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:1.81e+04 below:-1.37e+04 above:0 (u,u):-96 phi:-332

Rhs:1.81e+04 below:-1.51e+04 above:0 (u,u):-96 phi:-345

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-8.63e+03 above:0 (u,u):-96 phi:-278

Rhs:1.81e+04 below:-1.51e+04 above:0 (u,u):-96 phi:-345

Rhs:1.81e+04 below:-1.66e+04 above:0 (u,u):-96 phi:-361

Rhs:0 below:-1.26e+03 above:0 (u,u):-66 phi:-19

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:-1.26e+03 above:0 (u,u):-66 phi:-19

Rhs:0 below:-114 above:0 (u,u):-36 phi:-3.18

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0
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Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-450 above:0 (u,u):-66 phi:-6.82

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:-43.3 above:0 (u,u):-36 phi:-1.2

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:-978 above:0 (u,u):-66 phi:-14.8

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:-85.9 above:0 (u,u):-36 phi:-2.39

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:-1.26e+03 above:0 (u,u):-66 phi:-19

Rhs:0 below:-114 above:0 (u,u):-36 phi:-3.18

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:-43.3 above:0 (u,u):-36 phi:-1.2

Rhs:0 below:-85.9 above:0 (u,u):-36 phi:-2.39

Rhs:0 below:-114 above:0 (u,u):-36 phi:-3.18

Rhs:0 below:-19.1 above:0 (u,u):-6 phi:-3.18

Iteration 0 with error of 5.29e+04

Verified Solver

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:-0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0
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Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:0 above:0 (u,u):-96 phi:-188

Rhs:1.81e+04 below:-3.02e+03 above:0 (u,u):-96 phi:-220

Rhs:1.81e+04 below:-3.52e+03 above:0 (u,u):-96 phi:-225

Rhs:0 below:-450 above:0 (u,u):-66 phi:-6.82

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-3.02e+03 above:0 (u,u):-96 phi:-220

Rhs:1.81e+04 below:-7.04e+03 above:0 (u,u):-96 phi:-262

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-3.52e+03 above:0 (u,u):-96 phi:-225

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:1.81e+04 below:-8.63e+03 above:0 (u,u):-96 phi:-278

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-450 above:0 (u,u):-66 phi:-6.82

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:-43.3 above:0 (u,u):-36 phi:-1.2

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-3.02e+03 above:0 (u,u):-96 phi:-220

Rhs:1.81e+04 below:-7.04e+03 above:0 (u,u):-96 phi:-262

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-7.04e+03 above:0 (u,u):-96 phi:-262
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Rhs:1.81e+04 below:-1.26e+04 above:0 (u,u):-96 phi:-319

Rhs:1.81e+04 below:-1.37e+04 above:0 (u,u):-96 phi:-332

Rhs:0 below:-977 above:0 (u,u):-66 phi:-14.8

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:1.81e+04 below:-1.37e+04 above:0 (u,u):-96 phi:-332

Rhs:1.81e+04 below:-1.51e+04 above:0 (u,u):-96 phi:-345

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:-977 above:0 (u,u):-66 phi:-14.8

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:-85.9 above:0 (u,u):-36 phi:-2.39

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-3.52e+03 above:0 (u,u):-96 phi:-225

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:1.81e+04 below:-8.63e+03 above:0 (u,u):-96 phi:-278

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-7.79e+03 above:0 (u,u):-96 phi:-270

Rhs:1.81e+04 below:-1.37e+04 above:0 (u,u):-96 phi:-332

Rhs:1.81e+04 below:-1.51e+04 above:0 (u,u):-96 phi:-345

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:0 above:0 (u,u):-66 phi:-0

Rhs:1.81e+04 below:-8.63e+03 above:0 (u,u):-96 phi:-278

Rhs:1.81e+04 below:-1.51e+04 above:0 (u,u):-96 phi:-345

Rhs:1.81e+04 below:-1.66e+04 above:0 (u,u):-96 phi:-361

Rhs:0 below:-1.26e+03 above:0 (u,u):-66 phi:-19

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:-1.26e+03 above:0 (u,u):-66 phi:-19

Rhs:0 below:-114 above:0 (u,u):-36 phi:-3.18

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-450 above:0 (u,u):-66 phi:-6.82
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Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:-43.3 above:0 (u,u):-36 phi:-1.2

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-648 above:0 (u,u):-66 phi:-9.82

Rhs:0 below:-977 above:0 (u,u):-66 phi:-14.8

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:-85.9 above:0 (u,u):-36 phi:-2.39

Rhs:0 below:0 above:0 (u,u):-36 phi:-0

Rhs:0 below:-714 above:0 (u,u):-66 phi:-10.8

Rhs:0 below:-1.1e+03 above:0 (u,u):-66 phi:-16.7

Rhs:0 below:-1.26e+03 above:0 (u,u):-66 phi:-19

Rhs:0 below:-114 above:0 (u,u):-36 phi:-3.18

Rhs:0 below:0 above:0 (u,u):-6 phi:-0

Rhs:0 below:-43.3 above:0 (u,u):-36 phi:-1.2

Rhs:0 below:-85.9 above:0 (u,u):-36 phi:-2.39

Rhs:0 below:-114 above:0 (u,u):-36 phi:-3.18

Rhs:0 below:-19.1 above:0 (u,u):-6 phi:-3.18

1,5.287557e+04
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Appendix F

SINATRA INPUT FILES FOR VALIDATION

Cell Convergence Visual

*** SINATRA Input File ***

*** Created by User domin with SINATRA_GUI.m ***

*** 09-May-2019 12:23:24 ***

Mesh Input Filename

../resources/FE_NodeLocations_UnitCubeQuad64Cells_TEC.plt

Number of Real Particles to Simulation Particles

1e25

Boundary Conditions

OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW

Collision Scheme

0

Sphere Model

1

Total Simulation Time

1e-5

Time Step

1e-5

Initial Conditions

Number Density

1e28

Mixture

1 1.0

Stream Temperature

100
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Stream Velocity

0 0 0

***

Boundary Condition Information

BC 0

Number Density

1e+23

Mixture

1 1

Stream Temperature

300

Stream Velocity

0 0 0

&

BC 1

Number Density

1e+23

Mixture

1 1

Stream Temperature

300

Stream Velocity

0 0 0

&

BC 2

Number Density

1e+23
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Mixture

1 1

Stream Temperature

300

Stream Velocity

0 0 0

&

BC 3

Number Density

1e+23

Mixture

1 1

Stream Temperature

300

Stream Velocity

0 0 0

&

BC 4

Number Density

1e+23

Mixture

1 1

Stream Temperature

300

Stream Velocity

0 0 0

&

BC 5
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Number Density

1e+23

Mixture

1 1

Stream Temperature

300

Stream Velocity

0 0 0

***

Output Information

Output File Name

../resources/SINATRA_OUTPUT.txt

Tecplot Base Name

../resources/TecplotOutput/SINATRA_uniform_properties.plt

Sample Cell Type

1

Tecplot Sample Frequency

1

Particle Animation

0

1

../resources/VelocityOutput/velocityFromParticles_

***

Species Information

Species 1 (Nitrogen, N2)

273

4.17e-010

4.65e-026

2

2

2.88

3371
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0.74

1.656e-05

1e-19

Species 2 (Oxygen, O2)

273

4.07e-010

5.31e-026

2

2

2.07

2256

0.77

1.919e-05

0

Species 3 (Argon, Ar)

273

4.17e-010

6.63e-026

0

0

0

0

0.81

2.117e-05

0

Species 4 (Carbon Dioxide, CO2)

273

5.62e-010

7.31e-026

3

4

0.561

1700

0.93

1.380e-05

0

***

Optional Keywords

Charged Simulation
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***
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Ambipolar - 5% solver

*** SINATRA Input File ***

Mesh Input Filename

../resources/FE_NodeLocations_UnitCubeQuad4096Cells_TEC.plt

Number of Real Particles to Simulation Particles

1e9

Boundary Conditions

OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW

Collision Scheme

0

Sphere Model

1

Total Simulation Time

500e-7

Time Step

1e-7

Initial Conditions

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

***

Boundary Condition Information

BC 0

101



Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 1

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 2

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0
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&

BC 3

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 4

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 5

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000
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Stream Velocity

0 0 0

***

Output Information

Output File Name

../resources/SINATRA_OUTPUT_Ambipolar_0.05.txt

Tecplot Base Name

../resources/TecplotOutput/SINATRA_Ambipolar_0.05_uniform_properties.plt

Sample Cell Type

1

Tecplot Sample Frequency

5

***

Species Information

Species 1 (Nitrogen, N2)

273

4.17e-010

4.65e-026

2

2

2.88

3371

0.74

1.656e-05

0

Species 2 (Oxygen, O2)

273

4.07e-010

5.31e-026

2

2

2.07

2256

0.77

1.919e-05
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0

Species 3 (Argon, Ar)

273

4.17e-010

6.63e-026

0

0

0

0

0.81

2.117e-05

1.6e-19

Species 4 (Carbon Dioxide, CO2)

273

5.62e-010

7.31e-026

3

4

0.561

1700

0.93

1.380e-05

0

***

Optional Keywords

Parallel Enabled

Charged Simulation

***
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Ambipolar - 64 cells

*** SINATRA Input File ***

Mesh Input Filename

../resources/FE_NodeLocations_UnitCubeQuad64Cells_TEC.plt

Number of Real Particles to Simulation Particles

1e9

Boundary Conditions

OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW

Collision Scheme

0

Sphere Model

1

Total Simulation Time

500e-7

Time Step

1e-7

Initial Conditions

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

***

Boundary Condition Information

BC 0
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Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 1

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 2

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0
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&

BC 3

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 4

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 5

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000
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Stream Velocity

0 0 0

***

Output Information

Output File Name

../resources/SINATRA_OUTPUT_Ambipolar_64.txt

Tecplot Base Name

../resources/TecplotOutput/SINATRA_Ambipolar_64_uniform_properties.plt

Sample Cell Type

1

Tecplot Sample Frequency

5

***

Species Information

Species 1 (Nitrogen, N2)

273

4.17e-010

4.65e-026

2

2

2.88

3371

0.74

1.656e-05

0

Species 2 (Oxygen, O2)

273

4.07e-010

5.31e-026

2

2

2.07

2256

0.77

1.919e-05
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0

Species 3 (Argon, Ar)

273

4.17e-010

6.63e-026

0

0

0

0

0.81

2.117e-05

1.6e-19

Species 4 (Carbon Dioxide, CO2)

273

5.62e-010

7.31e-026

3

4

0.561

1700

0.93

1.380e-05

0

***

Optional Keywords

Parallel Enabled

Charged Simulation

***
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Ambipolar - 10 times more particles

*** SINATRA Input File ***

Mesh Input Filename

../resources/FE_NodeLocations_UnitCubeQuad64Cells_TEC.plt

Number of Real Particles to Simulation Particles

1e6

Boundary Conditions

OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW

Collision Scheme

0

Sphere Model

1

Total Simulation Time

500e-7

Time Step

1e-7

Initial Conditions

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

***

Boundary Condition Information

BC 0
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Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 1

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 2

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

112



&

BC 3

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 4

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 5

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000
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Stream Velocity

0 0 0

***

Output Information

Output File Name

../resources/SINATRA_OUTPUT_Ambipolar_64more.txt

Tecplot Base Name

../resources/TecplotOutput/SINATRA_Ambipolar_64more_uniform_properties.plt

Sample Cell Type

1

Tecplot Sample Frequency

5

***

Species Information

Species 1 (Nitrogen, N2)

273

4.17e-010

4.65e-026

2

2

2.88

3371

0.74

1.656e-05

0

Species 2 (Oxygen, O2)

273

4.07e-010

5.31e-026

2

2

2.07

2256

0.77

1.919e-05
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0

Species 3 (Argon, Ar)

273

4.17e-010

6.63e-026

0

0

0

0

0.81

2.117e-05

1.6e-19

Species 4 (Carbon Dioxide, CO2)

273

5.62e-010

7.31e-026

3

4

0.561

1700

0.93

1.380e-05

0

***

Optional Keywords

Parallel Enabled

Charged Simulation

***
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Neutral diffusion

*** SINATRA Input File ***

Mesh Input Filename

../resources/FE_NodeLocations_UnitCubeQuad4096Cells_TEC.plt

Number of Real Particles to Simulation Particles

1e9

Boundary Conditions

OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW

Collision Scheme

0

Sphere Model

1

Total Simulation Time

500e-7

Time Step

1e-7

Initial Conditions

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

***

Boundary Condition Information

BC 0
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Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 1

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 2

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0
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&

BC 3

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 4

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

Stream Velocity

0 0 0

&

BC 5

Number Density

1e12

Mixture

3 1.0

Stream Temperature

5000

118



Stream Velocity

0 0 0

***

Output Information

Output File Name

../resources/SINATRA_OUTPUT_Neutral.txt

Tecplot Base Name

../resources/TecplotOutput/SINATRA_Neutral_uniform_properties.plt

Sample Cell Type

1

Tecplot Sample Frequency

5

***

Species Information

Species 1 (Nitrogen, N2)

273

4.17e-010

4.65e-026

2

2

2.88

3371

0.74

1.656e-05

0

Species 2 (Oxygen, O2)

273

4.07e-010

5.31e-026

2

2

2.07

2256

0.77

1.919e-05
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0

Species 3 (Argon, Ar)

273

4.17e-010

6.63e-026

0

0

0

0

0.81

2.117e-05

1.6e-19

Species 4 (Carbon Dioxide, CO2)

273

5.62e-010

7.31e-026

3

4

0.561

1700

0.93

1.380e-05

0

***

Optional Keywords

Parallel Enabled

***
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Steady Flow

*** SINATRA Input File ***

Mesh Input Filename

../resources/FE_NodeLocations_UnitCubeQuad512Cells_TEC.plt

Number of Real Particles to Simulation Particles

0.5e9

Boundary Conditions

INFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW OUTFLOW

Collision Scheme

0

Sphere Model

1

Total Simulation Time

100e-8

Time Step

1e-8

Initial Conditions

Number Density

1e12

Mixture

3 1.0

Stream Temperature

500

Stream Velocity

1000 0 0

***

Boundary Condition Information

BC 0
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Number Density

1e12

Mixture

3 1.0

Stream Temperature

500

Stream Velocity

1000 0 0

&

BC 1

Number Density

1e12

Mixture

3 1.0

Stream Temperature

500

Stream Velocity

0 0 0

&

BC 2

Number Density

1e12

Mixture

3 1.0

Stream Temperature

500

Stream Velocity

0 0 0
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&

BC 3

Number Density

1e12

Mixture

3 1.0

Stream Temperature

500

Stream Velocity

0 0 0

&

BC 4

Number Density

1e12

Mixture

3 1.0

Stream Temperature

500

Stream Velocity

0 0 0

&

BC 5

Number Density

1e12

Mixture

3 1.0

Stream Temperature

500
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Stream Velocity

0 0 0

***

Output Information

Output File Name

../resources/SINATRA_OUTPUT.txt

Tecplot Base Name

../resources/TecplotOutput/SINATRA_uniform_properties.plt

Sample Cell Type

1

Tecplot Sample Frequency

500

***

Species Information

Species 1 (Nitrogen, N2)

273

4.17e-010

4.65e-026

2

2

2.88

3371

0.74

1.656e-05

0

Species 2 (Oxygen, O2)

273

4.07e-010

5.31e-026

2

2

2.07

2256

0.77

1.919e-05

124



0

Species 3 (Argon, Ar)

273

4.17e-010

6.63e-026

0

0

0

0

0.81

2.117e-05

1.6e-19

Species 4 (Carbon Dioxide, CO2)

273

5.62e-010

7.31e-026

3

4

0.561

1700

0.93

1.380e-05

0

***

Optional Keywords

Charged Simulation

***
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Appendix G

AMBIPOLAR DIFFUSION COEFFICIENT

Seen below is a MATLABTM which can calculate the ambipolar diffusion coefficient.

% Dominic Lunde

% Validation of ambipolar diffusion

close all;

clearvars;

% page 78

%-D_a grad^2 n = 0;

e = 1.6e-19;

m_e = 9.109e-31;

m_i = 6.63e-26;

k = 1.38e-23;

n_e = 10^12;

T_eV = 100;

T_i = 5000;

% page 70

lnV = 23 - 0.5 * log(10^6 * n_e / T_eV^3);

nu = 2.9e-12 * n_e * lnV / T_eV^1.5;

mu_e = e / (m_e * nu);

mu_i = e / (m_i * nu);

D_e = T_eV / (m_e * nu);

D_i = k * T_i / (m_i * nu);

D_a = (mu_i * D_e + mu_e * D_i) / (mu_i + mu_e);
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