468 research outputs found

    EMG-driven control in lower limb prostheses: a topic-based systematic review

    Get PDF
    Background The inability of users to directly and intuitively control their state-of-the-art commercial prosthesis contributes to a low device acceptance rate. Since Electromyography (EMG)-based control has the potential to address those inabilities, research has flourished on investigating its incorporation in microprocessor-controlled lower limb prostheses (MLLPs). However, despite the proposed benefits of doing so, there is no clear explanation regarding the absence of a commercial product, in contrast to their upper limb counterparts. Objective and methodologies This manuscript aims to provide a comparative overview of EMG-driven control methods for MLLPs, to identify their prospects and limitations, and to formulate suggestions on future research and development. This is done by systematically reviewing academical studies on EMG MLLPs. In particular, this review is structured by considering four major topics: (1) type of neuro-control, which discusses methods that allow the nervous system to control prosthetic devices through the muscles; (2) type of EMG-driven controllers, which defines the different classes of EMG controllers proposed in the literature; (3) type of neural input and processing, which describes how EMG-driven controllers are implemented; (4) type of performance assessment, which reports the performance of the current state of the art controllers. Results and conclusions The obtained results show that the lack of quantitative and standardized measures hinders the possibility to analytically compare the performances of different EMG-driven controllers. In relation to this issue, the real efficacy of EMG-driven controllers for MLLPs have yet to be validated. Nevertheless, in anticipation of the development of a standardized approach for validating EMG MLLPs, the literature suggests that combining multiple neuro-controller types has the potential to develop a more seamless and reliable EMG-driven control. This solution has the promise to retain the high performance of the currently employed non-EMG-driven controllers for rhythmic activities such as walking, whilst improving the performance of volitional activities such as task switching or non-repetitive movements. Although EMG-driven controllers suffer from many drawbacks, such as high sensitivity to noise, recent progress in invasive neural interfaces for prosthetic control (bionics) will allow to build a more reliable connection between the user and the MLLPs. Therefore, advancements in powered MLLPs with integrated EMG-driven control have the potential to strongly reduce the effects of psychosomatic conditions and musculoskeletal degenerative pathologies that are currently affecting lower limb amputees

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Continuous Myoelectric Prediction of Future Ankle Angle and Moment Across Ambulation Conditions and Their Transitions

    Get PDF
    A hallmark of human locomotion is that it continuously adapts to changes in the environment and predictively adjusts to changes in the terrain, both of which are major challenges to lower limb amputees due to the limitations in prostheses and control algorithms. Here, the ability of a single-network nonlinear autoregressive model to continuously predict future ankle kinematics and kinetics simultaneously across ambulation conditions using lower limb surface electromyography (EMG) signals was examined. Ankle plantarflexor and dorsiflexor EMG from ten healthy young adults were mapped to normal ranges of ankle angle and ankle moment during level overground walking, stair ascent, and stair descent, including transitions between terrains (i.e., transitions to/from staircase). Prediction performance was characterized as a function of the time between current EMG/angle/moment inputs and future angle/moment model predictions (prediction interval), the number of past EMG/angle/moment input values over time (sampling window), and the number of units in the network hidden layer that minimized error between experimentally measured values (targets) and model predictions of ankle angle and moment. Ankle angle and moment predictions were robust across ambulation conditions with root mean squared errors less than 1° and 0.04 Nm/kg, respectively, and cross-correlations (R2) greater than 0.99 for prediction intervals of 58 ms. Model predictions at critical points of trip-related fall risk fell within the variability of the ankle angle and moment targets (Benjamini-Hochberg adjusted p \u3e 0.065). EMG contribution to ankle angle and moment predictions occurred consistently across ambulation conditions and model outputs. EMG signals had the greatest impact on noncyclic regions of gait such as double limb support, transitions between terrains, and around plantarflexion and moment peaks. The use of natural muscle activation patterns to continuously predict variations in normal gait and the model’s predictive capabilities to counteract electromechanical inherent delays suggest that this approach could provide robust and intuitive user-driven real-time control of a wide variety of lower limb robotic devices, including active powered ankle-foot prostheses

    Model-based myoelectric control of robots for assistance and rehabilitation

    Get PDF
    The first anthropomorphic robots and exoskeletons were developed with the idea of combining man and machine into an intimate symbiotic unit that can perform as one joint system. A human-robot interface consists of processes of two different nature: (1) the physical interaction (pHRI) between the device and its user and (2) the exchange of cognitive information (cHRI) between the human and the robot. To achieve the symbiosis between the two actors, both need to be optimized. The evolution of mechanical design and the introduction of new materials pushed pHRI to new frontiers on ergonomics and assistance performance. However, cHRI still lacks on this direction because is more complicated: it requires communication from the cognitive processes occuring in the human agent to the robot, e.g. intention detection; but also from the robot to the human agent, e.g. feedback modalities such as haptic cues. A possible innovation is the inclusion of the electromyographic signal, the command signal from our brain to the musculoskeletal system for the movement, in the robot control loop. The aim of this thesis was to develop a real-time control framework for an assistive device that can generate the same force produced by the muscles. To do this, I incorporated in the robot control loop a detailed musculoskeletal model that estimates the net torque at the joint level by taking as inputs the electromyography signals and kinematic data. This module is called myoprocessor. Here I present two applications of this control approach: the first was implemented on a soft wearable arm exosuit in order to evaluate the adaptation of the controller on different motion and loads. The second one, was a generation of myoprocessor-driven force field on a planar robot manipulandum in order to study the modularity changes of the musculoskeletal system. Both applications showed that the device controlled by myoprocessor works symbiotically with the user, by reducing the muscular activity and preserving the motor performance. The ability of seamlessly combining musculoskeletal force estimators with assistive devices opens new avenues for assisting human movement both in healthy and impaired individuals

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Development of a model for sEMG based joint-torque estimation using Swarm techniques

    Full text link
    © 2016 IEEE. Over the years, numerous researchers have explored the relationship between surface electromyography (sEMG) signal with joint torque that would be useful to develop a suitable controller for rehabilitation robot. This research focuses on the transformation of sEMG signal by adopting a mathematical model to find the estimated joint torque of knee extension. Swarm techniques such as Particle Swarm Optimization (PSO) and Improved Particle Swarm Optimization (IPSO) were adapted to optimize the mathematical model for estimated joint torque. The correlation between the estimated joint torque and actual joint torque were determined by Coefficient of Determination (R2) and fitness value of Sum Squared Error (SSE). The outcome of the research shows that both the PSO and IPSO have yielded promising results
    • …
    corecore