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Abstract 

Background: The inability of users to directly and intuitively control their state-of-the-art commercial prosthesis con-
tributes to a low device acceptance rate. Since Electromyography (EMG)-based control has the potential to address 
those inabilities, research has flourished on investigating its incorporation in microprocessor-controlled lower limb 
prostheses (MLLPs). However, despite the proposed benefits of doing so, there is no clear explanation regarding the 
absence of a commercial product, in contrast to their upper limb counterparts.

Objective and methodologies: This manuscript aims to provide a comparative overview of EMG-driven control 
methods for MLLPs, to identify their prospects and limitations, and to formulate suggestions on future research and 
development. This is done by systematically reviewing academical studies on EMG MLLPs. In particular, this review is 
structured by considering four major topics: (1) type of neuro-control, which discusses methods that allow the nerv-
ous system to control prosthetic devices through the muscles; (2) type of EMG-driven controllers, which defines the 
different classes of EMG controllers proposed in the literature; (3) type of neural input and processing, which describes 
how EMG-driven controllers are implemented; (4) type of performance assessment, which reports the performance of 
the current state of the art controllers.

Results and conclusions: The obtained results show that the lack of quantitative and standardized measures hinders 
the possibility to analytically compare the performances of different EMG-driven controllers. In relation to this issue, 
the real efficacy of EMG-driven controllers for MLLPs have yet to be validated. Nevertheless, in anticipation of the 
development of a standardized approach for validating EMG MLLPs, the literature suggests that combining multiple 
neuro-controller types has the potential to develop a more seamless and reliable EMG-driven control. This solution 
has the promise to retain the high performance of the currently employed non-EMG-driven controllers for rhythmic 
activities such as walking, whilst improving the performance of volitional activities such as task switching or non-
repetitive movements. Although EMG-driven controllers suffer from many drawbacks, such as high sensitivity to noise, 
recent progress in invasive neural interfaces for prosthetic control (bionics) will allow to build a more reliable con-
nection between the user and the MLLPs. Therefore, advancements in powered MLLPs with integrated EMG-driven 
control have the potential to strongly reduce the effects of psychosomatic conditions and musculoskeletal degenera-
tive pathologies that are currently affecting lower limb amputees.
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Introduction
Microprocessor‑controlled lower limb prostheses
Modern Microprocessor-controlled lower limb pros-
theses (MLLPs) represent a class of prosthetic devices 
that can simulate the joint’s biological behavior through 
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real-time adaptive control driven by the sensory infor-
mation acquired from embedded sensors (e.g. encoders, 
load and force cells) [42, 43]. Modern advancements in 
actuation and electronics have primarily led to the devel-
opment of variable damping (passive) MLLPs and then 
to powered (active) MLLPs [131]. The main difference is 
that the former class of devices can only change the joint 
impedance, but unlike the latter, cannot actively generate 
net positive power. Compared to their fully passive (non-
microprocessor controlled) predecessors, both types of 
devices can reproduce a broader repertoire of the human 
behaviour by restoring more dynamic functionalities.

In particular, variable damping lower limb prostheses 
guarantee the restoration of almost healthy-like loco-
motion of energy neutral or dissipating actions, such as 
walking, stair descent and sitting down. However, users 
have no direct control over the device [42]: it is the device 
itself that decides how to behave based on the sensors 
recorded information. This condition tends to lead to 
high cognitive fatigue and excessive energy consumption, 
especially during more complex activities [84]. User per-
ception of inadequate controllability of the device, spe-
cifically a lack of intuitive control, reduces the acceptance 
rate of the lower limb prosthesis, which consequently 
leads to its abandonment [21, 108]. While comfort 
remains one of the key factors in prosthesis rejection [9, 
99, 112], poor mobility is one of the leading causes of 
eventual device abandonment [44, 46, 104]. Additionally, 
users that do not abandon their prostheses incur high 
risks of developing a series of neuromusculoskeletal dis-
orders and cardiovascular diseases [12, 45, 75, 92]. This 
is related to the inability of variable damping MLLPs to 
provide positive power: most types of basic healthy-like 
locomotion (e.g. walking) are governed by phases of 
positive power output [60, 88, 89, 95]. As a consequence, 
compensatory movements and gait asymmetry increase 
biomechanical stresses, particularly on the healthy bio-
logical joints of the amputee, causing articular pain to the 
knee, hip and back [8].

Active powered prostheses have been suggested to 
address the desire of being able to exert positive power 
during locomotion. In theory, these devices should allow 
for more natural gaits, and enable a wider range of pos-
sible movements and energy-generative actions, such 
as sloped gait, sit-to-stand, stair climbing and running 
[124]. However, their benefits have not yet been validated 
through biomechanical, performance-based and patient-
reported metrics [42, 126]. Most likely, this validation 
stage has not yet been reached because of the poor user 
acceptance of these devices. Their poor acceptance can 
partly be explained by mechanical challenges that remain 
difficult to overcome. For example, the powered prosthe-
ses on the market are noisier, heavier, less smooth, and 

have shorter battery life than variable damping MLLPs. 
However, in addition to mechanical challenges, simi-
larly to the variable damping prostheses, most powered 
prostheses do not provide direct control to the end-user: 
their control relies solely on interpreting embedded sen-
sor data. Possibly, lack thereof is even more critical if the 
device allows for a wider range of activities.

Neuro‑control architecture
Concurrently, trends in prosthetics, orthotics and 
Human–Robot Interaction (HRI) are pushing not only for 
the restoration of essential human locomotion, but also 
for the user to have direct control to the device through 
the neural pathways [52]. Neuro-controllers in fact have 
the capabilities to decode the neural activity either from 
the central or the peripheral nervous system in order to 
control external devices. In particular, it is possible to 
use EMG sensors to measure and decode users’ motion 
intention directly from neural activity using muscles as 
terminal amplifiers of motor afferent commands [94].

Human locomotion neuro-control comprises two par-
ticular sets of commands: volitional and rhythmical. 
Rhythmic locomotion occurs when humans use repeti-
tive limb movements to translate in space, such as walk-
ing and running. Usually, this class of motor patterns 
does not involve conscious intervention on behalf of the 
subject, but they result from sensory-motor reflexes acti-
vated from specific neural networks [81]. Scientific evi-
dence locates these so-called Central-Pattern Generators 
(CPGs) in the spinal cord or in the brain stem and they 
trigger organized muscle contraction in a cyclic manner 
[2, 30]. Their activation and regulation can both derive 
from Central Nervous System (CNS) inputs and sensory-
motor feedback [31, 82]. Volitional movements instead 
are a broad class of movements that involve motion plan-
ning and motor control, like non weight-bearing knee 
flexing. Conscious movements require constant and vigi-
lant attention from the CNS involving different cortex 
areas and intensive collaboration across the diencepha-
lon, brainstem, and cerebellum [73].

To achieve the same locomotion control, MLLPs have 
different levels in their control architecture that is struc-
tured similarly to the human neuro-control system. This 
particular multi-layer control framework is referred to 
as a hierarchical controller, and shown in Fig.  1 [124]. 
In particular, the high-level control is tasked with iden-
tifying and quantifying the user’s intention. This primar-
ily regards selection of user activity mode (e.g. walking, 
slope ascending or sitting [111]) and, secondarily, context 
recognition (e.g. ambulation speed and swing or stance 
phase [119]). The more these selections stem from user 
awareness and volition, the more difficult it is to iden-
tify user volition based only on embedded sensors, such 
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as joint encoders, load cells and an Inertial Measure-
ment Units (IMU). However, the use of EMG sensors is 
a valid choice for the reliable identification of volitional 
intent, which paves the way for direct neuro-control of 
the device [56].

The identified intent from the high-level control-
ler is fed to the mid-level controller, which translates it 
to device state control, such as a target joint impedance, 
stiffness or angular trajectories. Finally, the device-spe-
cific controller in the low level interprets the output of 
the mid-level controller, and closes the loop with the 
device-specific physical hardware, e.g. by controlling 
motor currents. The mid- and low-level controls are well 
comparable to the human’s brainstem and spinal cord, 
which—in contrast to the high-level control—can func-
tion well by relying solely on the aforementioned system 
dynamics without requiring much input or intervention 
of the human’s awareness and volition.

Scope of the review
Among different neuro-controllers, roughly 80% of the 
papers collected on lower limb prosthesis control pub-
lished after 2010 are related to EMG-driven control 
[131], which indicates the recent popularity of this sub-
ject. This particular research interest in myoelectric 
control—also known as EMG-driven control—is related 
to the necessity of novel technological solutions to sup-
port the development of new powered lower limb pros-
theses [50, 52, 131]. Myoelectric control represents a 
possible candidate for introducing a user’s direct control 

for powered MLLPs. Although the literature promotes 
this technology and its positive benefits for the end user, 
such as reduction of phantom limb pain [80, 96], it is not 
mature enough for powered MLLPs. In fact, no commer-
cial device is available with such technology, unlike their 
upper limb counterparts.

Only one comprehensive analysis has been found that 
focuses on EMG-driven control in lower limb prosthe-
ses [41]. Whereas various reviews have been published 
on MLLPs, most of these focus on mechanics and con-
trol, and either do not discuss EMG-driven control [50, 
52, 69], or dedicate a short section to it [42, 84, 124, 131]. 
Instead, whereas numerous other reviews focus specifi-
cally on myoelectric control, they either do so for generic 
HRI [1, 3, 93, 94, 97, 103, 109], or for upper limb pros-
thetics specifically [47, 102, 107].

In the attempt to differentiate from previous reviews, 
we are focusing our survey on the novel and more chal-
lenging implementations of EMG-driven control in 
high-level rather than mid- or low-level control. Infor-
mation and discussions about mid- and low-level con-
trol can be found in [52, 69, 124, 131]. Therefore, this 
work aims at providing a detailed and organized sys-
tematic overview of myoelectric control for powered 
MLLPs prostheses. The main objective of this review 
is to analyze the merits and drawbacks of the various 
implemented EMG-driven controllers. To do so, we 
defined four major topics of investigation categoriz-
ing the most important and common characteristics in 
the available literature. This analysis was conducted to 

neural pattern 
translation

high level
motor comand

 Activity mode
 Context recognition
 Volitional intent

control parameters
translation

device state

Fig. 1 Hierarchical controller schematic representation. Comparison between a generalized control framework for microprocessor-controlled lower 
limb prostheses (right) and the human motor control (left). The figure displays the classic interactions between the Hierarchical Controller layers and 
user-device-environment. Controller level-specific tasks are listed in the figure (adapted from [124])
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provide an unbiased and systematic evaluation of the 
literature on EMG-MLLPs. In addition, the goal is to 
discriminate the potentialities and limitations of each 
technological embodiment to define a clear path for 
future research investment.

Methods
Eligibility criteria
The first eligibility criteria for this review was the 
actual dissertation of a EMG-driven control for MLLPs. 
Papers were considered only if presenting: (1) an imple-
mentation of the myoelectric controller, (2) a complete 
description of its architecture, and (3) results on a 
physical or simulated device.

Since EMG-driven control for MLLPs represents 
a niche research sector in both HRI and prosthetics, 
authors decided to not include any limitation in the 
year of publication, type of publication (e.g., journal or 
conference papers) and language.

Information sources, search strategy and selection process
Searches have been conducted in several major scien-
tific research databases. The following databases were 
chosen based on the number of results obtained with 
the search phrase “myoelectric control lower limb” in 
Google Scholar: PubMed, ScienceDirect, IEEE Xplore, 
Springer Link, ASME, NCBI and ResearchGate. Succes-
sively, combinations of the words “myoelectric”, “EMG”, 
“control”, “lower limb”, “knee”, “ankle” and “prosthesis” 
were used for the actual search in the cited databases. 
Results were not screened based on the date of publica-
tion and type of publication. Databases were last con-
sulted for this review in May 2021.

Due to high prevalence in the results of papers related 
to upper limb prostheses, orthoses and other robotic 
devices, and other papers not related to EMG-driven 
lower limb prosthesis controllers, a manual selection 
was made. Only papers regarding knee and ankle pros-
thesis controllers driven from EMG acquisitions were 
included based on title and abstract. Content of the 
remaining articles was reviewed. Papers were included 
in the review process if they presented an actual imple-
mentation of the myoelectric controller, a complete 
description of its architecture, and results on a physical 
or simulated device. Finally, all cited papers from the 
manuscripts obtained from the screening strategy were 
collected and went through the same search and selec-
tion process.

The diagram in Fig. 2 illustrates the number of manu-
scripts that were identified, screened and finally included 
in this study.

Data items: topics of investigation
The data collected from this review is divided accord-
ing to four major topics used to structure the literature 
investigation:

• Neuro-control: This aspect discusses how the nerv-
ous system, through the muscles, can control the 
lower limb prosthesis. It concerns the use of input 
neural signals (i.e. EMG) for the generated output 
movement, rather than the specific implementation 
of controllers. In particular, it explores the types 
of movement that can be restored, namely either 
rhythmic locomotion or volitional movement. This 
is consequently reflected on the implementation of 
different EMG-driven control strategies: Computa-

Fig. 2 Systematic review flow diagram. The PRISMA flow diagram for 
the systematic review, detailing the database searches, the number of 
abstracts screened and the full texts retrieved
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tional Intrinsic Control (CIC) or Interactive Extrin-
sic Control (IEC) [84].

• EMG-driven working principles: The methodolo-
gies employed in EMG-driven controllers to trans-
late user intention and volition to high-level control 
parameters have been group in three major catego-
ries: direct control, pattern recognition, and model-
based. Each of this class adopt a different principle to 
interpret user volition and intention from EMG sig-
nals and translate it in to a high-level control.

• Neural input and processing: Depending on the type 
of MLLP, the level of amputation and control class, 
and the choice of muscles, different sensors and pro-
cessing methods can be applied. Identifying these dif-
ferences or similarities is essential to confront meth-
odologies in relation with the final results.

• Performance assessment: This topic discusses the 
collection of meaningful reported results in the 
reviewed literature to provide the reader an overview 
of the achieved performance of the controllers.

Data collection process, study of risk bias assessment, 
effect measures
The first author defined the main source databases and 
conducted the search and selection process. No risk bias 
has been identified for the data selection process. How-
ever, to avoid possible apophenia and contextual biases 
in the collection process, the second author revised the 
proposed data items and defined detailed subcategories 
for each item (topic of investigation). For each subcat-
egory, the first author chose effect measures that were 
recurrent among all reviewed manuscripts. Effect meas-
ures are collected in different form depending from the 
topic of investigation. The rest of the authors inspected 
the synthesis results to ensure no incongruity among the 
collected measures and the data clustering.

Synthesis methods
The authors chose to synthesize the collected data in a 
tabular form: one table for each investigated topic. Data 
was catalogued in sub-fields representing relevant infor-
mation for the implementation and evaluation of the 
EMG-driven controller in MLLPs. In each table, all the 
collected papers are cited and grouped by the type of 
working principle. Paper citations for each working prin-
ciple are ordered by date of publication. If manuscripts 
employ identical concepts, they are grouped in a single 
table entry and cited collectively.

In addition, a graphical diagram was designed to 
navigate the collected data in the tables and to show 
the possible interconnections between the four top-
ics of investigation (Fig.  3). The diagram organizes and 

synthesizes the collected literature according to the 
obtained data items. Some of the most representative 
papers were moreover used as examples for better dis-
playing the obtained results.

Results
This section presents the complete listing of the review 
findings, divided in the four topics of investigation as 
described in “Data items: topics of investigation” section.

In order to aid the reader in navigating the results and 
to give a better understanding of the interconnection of 
these four topics, a graphical overview of the reviewed 
literature is presented in Fig. 3. From this graph it is pos-
sible to advance some preliminary results. For exam-
ple, looking at neuro-control, the number of works that 
investigate the control of prosthetics in volitional move-
ment (IEC) and rhythmic locomotion (CIC) is balanced 
(29 papers each), but pattern recognition controllers 
are more numerous in literature. It can be additionally 
noticed that there is no particular preference regard-
ing the control type with respect of the type of pros-
thetic joint. A similar result has been found for the type 
of additional sensors, when inspecting the possible con-
trol signal inputs. Instead, works that employ pattern 
recognition principles generally use more EMG chan-
nels ( 6.6± 3.1 channels on average) than those employ-
ing direct control and model-based control principles 
(respectively 3.2± 1.9 and 2.5± 1.1 channels on average). 
Volitional movement controllers use generically more 
often visual/haptic feedback (almost 50% of the collected 
papers). Looking at the performance assessment, no sig-
nificant pattern can be determined on the control delay, 
which refers to the time between muscle excitement and 
control execution. It is anyway interesting to notice that 
two out of ten of the selected papers did not report any 
information about this parameter, while being an impor-
tant metric to evaluate the HRI. Finally, the diagram 
shows a strong preferences for performing biomechanical 
evaluations (joint angle and torque trajectories) on IEC 
controllers, while perform-based measures (locomotion 
classification accuracy) are preferred instead on CIC.

Specific results of each of the four categories and their 
interconnections are listed separately in the following 
sections.

Neuro‑control
Results on the neuro-control abilities are collected in 
Table 1.

Martin et al. categorized rhythmical and volitional type 
of movements in two general behaviours that a high-
level controller can implement: CIC and IEC [84]. These 
essentially distinguish between controllers that are based 
on the conscious involvement of the user (volitional or 
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IEC) and those that are not (rythmical or CIC) (Fig. 4). 
Correspondingly, the adoption of this particular subdi-
vision allows us to classify the EMG-driven controllers 
based on how the neural information is employed (Fig. 3).

CICs typically decode the user’s motor intention and 
prosthetic device state through data from embedded neu-
ral sensors This information is then employed to estab-
lish an appropriate control in order to accommodate for 
the changes in the locomotion [121]. This is observable 

in Table  1: the majority of CICs are characterized by a 
neural-control based on adaptive controls depending 
on locomotion recognition. CICs represent the state-of-
the-art in the control of non-EMG MLLPs and they have 
been explored with different approaches, both in the lit-
erature and in commercially available devices [42].

Instead, IECs are designed to guarantee continuous 
communication between the user and the device so as 
to directly modulate the prosthesis’ state (Table  1). In 

Fig. 3 Graphical overview of the reviewed literature, grouped by the same four topics used in the manuscript. The references are grouped by 
application (knee, ankle or both), the EMG-driven control working principle and type of neuro-control (type of movement restored). Some of 
the most relevant works are detailed additionally by listing the employed additional inputs, number of EMG channels and controller delays, if 
known. Five classes of additional data inputs were recognized (apart from EMG signals). Motion Capture (MoCap) and sensorized treadmills with 
force platforms are used to acquire body kinematic and dynamic data; IMU sensors are usually integrated to obtain orientation of the lower limb 
segments; footswitch and loadcells are installed to acquire the force exchanged with the environment; encoders and goniometers are used to 
measure joint angles; finally, visual or haptic feedback is sometimes provided to the user to encourage a correct employment of the device. On the 
lower part of the graph, the most used measurements for each control class validation is displayed. NS not stated; †referenced work belong to a 
hybrid model-based and pattern recognition control class, see “EMG-driven working principles” section
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Table 1 Overview of the neuro-control capabilities of the device

Ref. Control strategy Neuro‑control Actuator control signal Joint Platform

[64] IEC Direct control on the joint 
lock mechanism

Switch signal of the electro-
magnetic clutch

Knee E.C.P. (Electro-Control Pros-
thesis)⋆†

[29] IEC Voluntary control of joint FE Servo-amplifier electrohy-
draulic valve level

Knee Prosthesis simulator (hydraulic 
system externally supplied and 
controlled)⋆†

[24–27] IEC Voluntary control of joint FE Joint angle reference Knee ABS⋆ ; off-line VS†

[56] IEC Voluntary control of joint FE Joint torque reference Knee Vanderbilt micro-controlled 
leg prosthesis⋆†

[14, 23, 62, 63] IEC Voluntary control of joint FE Joint torque reference Knee Clarkson university knee pow-
ered prosthesis prototype⋆†

[57] IEC Voluntary control of joint FE 
and IE

Joint torque reference Knee, ankle Virtual environment⋆ , powered 
knee prosthesis prototype 
(Center for Bionic Medicine, 
Rehabilitation Institute of 
Chicago)†

[37] IEC Direct control on joint angle 
movement

Joint angle reference Ankle Passive prosthetic feet⋆ ; on-
line VS†

[16] IEC Voluntary control of joint FE Joint angular velocity Ankle On-line VS⋆†

[67, 68] IEC Voluntary control of joint FE Force reference of artificial 
pneumatic muscles

Ankle Artificial pneumatic muscles 
powered ankle prosthesis 
prototype (University of 
Michigan)⋆†

[76] IEC Voluntary control of joint FE Joint angle reference Ankle On-line VS⋆† ; ankle prototype †

[11] IEC Voluntary control of joint FE Joint angle reference Knee, ankle ABS⋆ ; off-line VS†

[39, 40] IEC Voluntary control of joint FE Joint torque reference Ankle On-line VS⋆†

[98] CIC Control of walking control 
ground-level or slopes

NI Knee Four-bar linkage mechanism, 
Ottobock⋆ ; Endolite, Blatch-
ford⋆

[70] CIC Adaptive control based on 
locomotion recognition

Stepper motor control driv-
ing a gear train

Knee Prototype leg prosthesis (step 
motor driving the shaft of six-
bar knee)⋆†

[5] CIC Transition between level-
ground to stairs intrinsic 
adaptive control

Joint position/torque (con-
trol state dependent)

Ankle On-line VS⋆ ; BiOM ankle-foot 
prosthesis, MIT Media Lab⋆

[65, 66, 141, 144] CIC Adaptive control based on 
locomotion recognition

NI Knee Mauch SNS, Össur⋆ ; off-line VS†

[66] CIC Adaptive control based on 
locomotion recognition

NI Knee Hydraulic passive knee⋆ ; off-
line VS†

[53] CIC Adaptive control based on 
locomotion recognition

Position and velocity joint 
trajectory

Knee, ankle NS⋆ ; off-line VS†

[85] CIC Adaptive control based on 
walking phase recognition

NI Knee ABS⋆ ; off-line VS†

[15, 110] CIC Adaptive control based on 
walking phase recognition

NI Knee ABS⋆ ; off-line VS†

[32, 33, 143] CIC Adaptive control based on 
locomotion recognition

NI in passive MLLPs; joint 
torque for active MLLP

Knee Knee–ankle powered proto-
type⋆†

[86, 87] CIC Adaptive control based on 
locomotion recognition

NI Ankle Passive ankle⋆ ; off-line VS†

[120] CIC Joint DoF motion determi-
nation

NS Ankle On-line VS⋆†

[58, 111] CIC-IEC Adaptive control based on 
locomotion recognition; 
non-weight bearing volun-
tary control of joints FE

Joint torque reference Knee, ankle Vanderbilt micro-controlled 
leg prosthesis⋆†

[59, 113, 114, 139, 140] CIC Adaptive control based on 
locomotion recognition

Joint torque reference Knee, ankle Vanderbilt micro-controlled 
leg prosthesis⋆†
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fact, this type of control, differently from CIC, cannot be 
implemented in non-EMG MLLPs since no neural input 
is provided to the prosthetic device. As such, IECs have 
enabled the control of lower limb movements that were 
not possible with CIC.

From the obtained results, no particular correlation 
among the remaining fields was found. This suggests that 
there is no particular influence of the choice of neuro-
control on the specific prosthetic device, but only on the 
prioritized type of movement to be restored.

EMG‑driven working principles
Table  2 provides an overview of the control strategies 
and working principles of the reviewed EMG-driven 
approaches for MLLPs. The table also shows that the 
reviewed literature has been classified according to the 
following three types of control: Direct Control, Pattern 
Recognition Control and Model-Based Control.

Independently from the type of controller, an essential 
feature is the walking control. Walking represents the 
most important movement in bipedal locomotion and 
is therefore essential to be restored in lower limb ampu-
tees. Consequently, the primary use of EMG signals is to 
accomplish healthy-like ambulation. The use of EMG sig-
nals and the design of the controller depends on the type 
of EMG-driven controller.

Direct EMG-driven controllers refer to all those con-
trollers that employ EMG as input of a specific func-
tion y = f (xemg) , where y represents the variables to be 

Fields include: paper reference; control strategy (the neural control strategy used for the high-level control function implementation: CIC or IEC); neuro-control 
(the use of input neural signals for the generated output movement); actuator control signal (the output signal from the high-level EMG-driven control); joint (the 
controlled lower limb joint); platform (the device used for acquisition and testing)

NI not implemented, NS not stated, IEC interactive extrinsic contro, CIC computational intrinsic contro, FE flexion-extension; IE internal-external rotation, DoF Degrees 
of Freedom, ABS able-bodied subjects, ABA able-body adaptor, VS virtual simulator
⋆Platform for data acquisition
†Platform for control testing

Table 1 (continued)

Ref. Control strategy Neuro‑control Actuator control signal Joint Platform

[17] CIC Adaptive control based on 
terrain slope estimation

Joint damping reference Ankle Peking university PKU-RoboT-
Pro⋆†

[106] CIC EMG-triggered stride motion 
routine

Motor current reference Knee Prototype leg prosthesis⋆†

[54, 55] CIC Adaptive control based on 
locomotion recognition

NI Ankle ABS⋆ ; off-line VS†

[6] IEC Voluntary control of joint FE Joint angle reference Ankle On-line VS⋆†

[61] IEC Voluntary control of joint FE Joint torque reference Knee ABS with ABA and powered 
knee prosthetic prototype⋆†

[136] IEC Voluntary control of joint FE Joint torque reference Knee ABS with ABA and Vanderbilt 
micro-controlled leg prosthe-
sis⋆†

[71, 72, 130] CIC-IEC Voluntary control of joint FE Joint torque reference Ankle BiOM ankle-foot prosthesis, 
MIT Media Lab⋆†

[19] IEC Voluntary control of joint FE Joint torque reference Knee ABS⋆ ; on-line VS†

Fig. 4 Computational Intrinsic Control (CIC) and Interactive extrinsic 
Control (IEC) approaches for lower limb prosthesis neuro-control. 
Comparison between CIC (on the left) and IEC (on the right) from 
motor task generation to EMG-driven control. A CICs chose the 
correct control among the states implemented in the control board 
based on the EMG signals generated during a rhythmic locomotion; 
B IECs instead transform EMG recorded patterns to a specific 
continue modulation of the prosthetic joint
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Table 2 Overview of lower limb EMG-driven controllers working principles

Ref. Walking controller Slope/
speed 
adaptation

Additional modalities Training/calibration time

Direct control

[64] EMG-triggered knee joint lock dur-
ing stance phase

SlA⋆ , SpA⋆ All (STA⋆) NN

[29] EMG-proportional modulation of 
knee joint velocity

SlA, SpA⋆ All (not tested) NS

[24–27] ML-driven knee joint angle trajec-
tory generation

SlA, SpA All (not tested) CT: 10–15 s, per 2 sessions, per 5 days

[56] EMG-driven knee joint stiffness 
set-point

SlA, SpA All (NWB⋆) ST: 1 h, before each use

[14, 23, 62, 63] EMG-driven knee joint stiffness 
set-point

SlA, SpA All (STND⋆ , SIT⋆ , SQ⋆ , STA⋆ , NWB⋆) ST: 3 h, per 4 sessions; CT: 2 h trajec-
tory tracking trials

[57] EMG-driven multi-DoF knee and 
ankle joint stiffness set-point

SlA, SpA All (NWB⋆) ST: therapist session; CT: 3 s per 64 
trials, per 4 sessions

[37] ML-driven knee joint angle trajec-
tory generation

SlA, SpA All (not tested) NS

[16] EMG-driven ankle joint stiffness 
set-point

SlA, SpA All (NWB⋆) CT: 10 trials ( ∼ 80 s)

[67, 68] EMG-proportional plantarflexor 
torque generation

SlA, SpA All (not tested) CT: NS

[76] EMG-triggered ankle plantarflexion 
and dorsiflexion

NI NI CT: NS

[11] EMG-decoded ankle and knee joint 
angle trajectory generation

SlA⋆ All (STA⋆ , STD⋆) CT: ∼ 20 trials per task

[39, 40] EMG-proportional plantarflexor 
torque generation

SlA, SpA All ST: limited acclimation period

Pattern recognition control

[98] EMG-driven knee FSM (Stance 
[Post-HS, FF and Pre-TO], swing 
[SF, SE])

SlA NI Adaptation period of 20 min; FSM 
CT: NS

[70] Knee joint moment control as 
function of EMG-driven locomotion 
identification

SlA⋆ , SpA⋆ STA⋆ , STD⋆ FSM CT: NS

[5] EMG-driven FSM for level ground 
walking and stairs climbing

SlA, SpA STA⋆ FSM CT: NS; ST < 20 min

[65, 66, 141, 144] ML-driven knee joint FSM (Stance 
[Post-HS, Pre-TO], swing [Post-TO, 
Pre-HS])

SlA⋆ OBST⋆ , STND⋆ , STA⋆ , STD⋆ , TURN⋆ FSM CT: ∼ 15 min (3 times each task)

[53] CPG-generated knee and ankle 
joint trajectories as function of ML-
driven locomotion identification

NI STND⋆ , SIT⋆ , STA⋆ , STD⋆ FSM CT: NS

[85] ML-driven knee joint FSM (Stance 
[Post-HS, FF, Pre-TO], swing [Post-
TO, Pre-HS])

NI STA⋆ , STD⋆ FSM CT: 50 gait cycles per task

[15, 110] ML-driven knee joint FSM (Stance 
[Post-HS, FF, Pre-TO], swing [Post-
TO, Pre-HS])

NI NI FSM CT: 70 gait cycles

[32, 33, 143] ML-driven knee joint FSM (Stance 
[Post-HS, Pre-TO], swing [Post-TO, 
Pre-HS])

SlA⋆ STA⋆ , STD⋆ ST: therapist sessions; FSM CT: ∼ 30s 
(5 times per task)

[86, 87] ML-driven ankle joint FSM (Stance 
[Post-HS, Pre-TO], swing)

SlA⋆ , SpA⋆ STA⋆ , STD⋆ FSM CT: 21 trials in total, 6–7 steps 
per trial

[120] ML-driven FSM for multi-DoF ankle 
joint

SlA, SpA All (NWB⋆) FSM CT: 3 s per 8 trial, per 7 tasks

[58, 111] ML-driven knee joint FSM (Stance 
[Post-HS, Pre-TO], swing [Post-TO, 
Pre-HS])

NI STND⋆ , SIT⋆ , NWB⋆ FSM CT: NS
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controlled during the walking cycle for the generation 
of the signal reference, such as joint angle or torque 
(Fig. 5a). Examples of these are proportional controllers 
[29, 64], regression functions [24, 37] or mapping-trans-
formation functions between processed multi-channel 
EMG acquisitions and control parameters [56, 57, 62].

Pattern recognition control represents the largest 
class. They are reminiscent of (FSM)-based control-
lers, which are currently used in commercial MLLPs 
(Fig. 5b). FSM-based controllers distinguish a number 
of control states (actions) through state classification 
(perception), a concept similar to that governed by 
pattern recognition algorithms, a branch of Machine 
Learning (ML) [18]. Typical pattern recognition algo-
rithms identify particular signals’ signatures (features) 
that can be observed under particular conditions. 
These features can be used, consequently, as transi-
tion rules in the controller to distinguish the different 
working conditions [70, 98, 106], such as slope adapta-
tion (SlA) and speed adaptation (SpA). For this reason, 
as illustrated in Table  2, pattern recognition con-
trol algorithms provide only a pre-defined number of 

Fields include: paper reference; walking controller (the high-level control law during the walking cycle); slope/speed adaptation (the ability of the walking controller 
to adapt to different slope angles and ambulation velocities); additional modalities (additional types of locomotion supported from the EMG-driven controller); 
training/calibration time (required time to either calibrate the controller parameters or train the subject)

NN not necessary, NS not stated, NI not implemented, ML machine learning, NMS neuromuscularskeletal, CPG central pattern generator, HS heel strike, FF foot flat, TO 
toe off, SF swing flexion, SE swing extension, FSM finite-state machine, DoF Degrees of freedom, SlA slope adaptation, SpA speed adaptation, All no restriction in the 
locomotion control, NWB non-weight bearing joint movements joint movement, STND standing, SIT sitting, SQ squatting, STA stairs ascending, STD stairs descending, 
OBST obstacle stepping, TURN turning on the spot, CT calibration time, ST subject training
⋆Tested modalities

Table 2 (continued)

Ref. Walking controller Slope/
speed 
adaptation

Additional modalities Training/calibration time

[59, 113, 114, 139, 140] Knee and ankle joint impedance 
characterization as function of ML-
driven locomotion identification

SlA⋆ STA⋆ , STD⋆ , SIT⋆ , NWB⋆ Intrinsic controller parameters tuning 
(NS); FSM CT: 10–20 trials per task

[17] ML-driven ankle joint impedance 
characterization based terrain 
inclination classification

SlA⋆ NI Intrinsic controller parameters tuning 
(NS); CT: 3 sessions; ST: ∼ 5 h

[106] EMG-triggered knee joint motion 
routine

NI NI NS

[54, 55] ML-driven ankle joint FSM SlA⋆ STA⋆ , STD⋆ FSM CT: 5 gait cycles per trial; ST: 5 
min per task

Model-based control

[6] EMG-driven model-based ankle 
joint angle trajectory generation

SlA, SpA All (NWB⋆) Virtual environment training: NS

[61] EMG-driven model-based knee 
joint impedance characterization

SlA, SpA All (not tested) CT: NS

[135, 136] EMG-driven model-based knee 
joint impedance characterization

SlA, SpA All (NWB⋆) CT: trajectory tracking trials, walking 
experiments

[71, 72, 130] EMG-modulation of model-based 
ankle joint moment trajectory

SlA, SpA All (STA⋆ , STD⋆) CT: 10 steps

[19] Hybrid ML-NMS model-based knee 
joint moment generation

SlA, SpA⋆ All(STND⋆ , SIT⋆) CT: 3–10 trials per motor task

Fig. 5 Graphical representation of the three possible solutions for 
EMG-driven control. EMG signals are acquired from the stump of the 
amputee and used as input for the high-level controller, depending 
on how the neural signals are used three type of EMG-driven 
controllers can be implemented: A direct control, B pattern 
recognition, C model-based; the control signal output is then used 
from the internal lower level control of the prosthetic device
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locomotion types with respect to the other controllers, 
such as only for stair ascend and descend, standing and 
sitting. Instead, direct controllers allow theoretically 
all types of motion.

The last class of EMG-driven controllers employ 
Musculoskeletal (MS) models to reproduce human 
kinematics and dynamics in locomotion [7, 83, 119] 
(Fig.  5c). Modeling in bio-engineering research has 
been used to study biological systems, whose charac-
teristics are not directly measurable. In case of lower 
limb prostheses, it is possible to use MS to estimate 
joint impedance starting from the measured external 
forces and joint trajectories [34]. Additionally, with the 
use of EMG signals and translating them to appropri-
ate muscles activation, these models can be used to 
modulate voluntarily tracked joint impedance [6, 61, 
130, 136].

Another important distinction regarding the EMG-
driven working principles is the different partitioning 
between user-training and control-calibration time. 
Both describe the time the user needs to spend with the 
prosthesis to achieve an effective Human-In-The- Loop 
(HITL) control of the device [79]. In fact, intra- and 
inter-subject variability of the biological system and of 
the signals involved in the control loop increase uncer-
tainty in the control performance [132]. Stochastic 
variability within HITL can be reduced by tuning inter-
nal control variables, but it cannot be removed com-
pletely [133]. For this reason, the user has to be trained 
to avoid control errors and understand how to use the 
device optimally. As such, while calibration time is cor-
related to the number of tunable variables and pro-
vides an indication of control complexity, the training 
time is an indicator of how seamless and intuitive the 
control is. From the collected data (Table 2), it can be 
observed that the ratio between calibration and train-
ing time changes drastically in pattern recognition con-
trol. In fact, multiple recordings are necessary for the 
appropriate calibration of the FSM, but after this initial 
effort the user needs a minimal amount of training. The 
contrary can be said for the direct control: short initial 
parameter tuning, usually based on previous analysis, 
followed by prolonged training sessions.

The classification of EMG-driven control type is 
closely related to the neuro-control strategy since the 
analyzed literature shows that the pattern recognition 
algorithms are all CIC controllers, whereas direct con-
trol and model-based approaches are IECs. This can be 
observed also in Fig.  3. While the neuro-control dis-
tinction allows the reader to understand which are the 
target motor tasks intended to be restored, the working 
principle describes the methodology employed for the 
control.

Neural input and processing
Table 3 lists the used muscles and applied signal process-
ing techniques to provide input data to the EMG-driven 
controller.

Assuming that a robotic prosthesis can be fastened to 
the user stump and replace the missing limb, it may be 
possible to embed the EMG acquisition system on that 
device. Surface EMG activity is characterized by a high 
temporal resolution, which makes it practical for the 
control of an external device. However, signal non-sta-
tionarity, motion artifacts, electrode-skin conductivity 
variations, and channel cross-talk require computation-
ally-demanding signal processing techniques [74]. In 
order to mitigate these problems, additional mechanical 
sensors, such as load cells (see also Fig. 3), can be intro-
duced to strengthen the reliability of the control [66]. The 
sensors listed in Table 3 refer only to those used for the 
actual control loop: either as input for the device’s high-
level control or for its calibration.

Even when using extra sensors, proper muscle choice 
and EMG processing (e.g. filtering) are essential to guar-
antee the robustness of the controller.

In order to decode the user’s movement intention, a 
layer of feature extraction and classification can be added 
to the control system. Useful features for EMG control 
are well described in literature [74]. Nonetheless, the 
choice of the sampling window length is often tailored 
to the specific processing choices. In fact, the size of the 
window has to be as large as possible to guarantee the 
stability of the extracted features, but at the same time—
due to signal non-stationarity—the length is calibrated to 
meet the quasi-stationarity condition.

Performance assessment
Results concerning control validation and reliability are 
listed in Table  4, which collects the main findings pre-
sented in the selected references.

The efficacy of an EMG-driven control framework is 
always a trade-off between intuitiveness, system response 
time and accuracy of movement selection [35]. Conse-
quently, it is challenging to define a threshold of accept-
ability of a given implemented solution. Bias and variance 
of the myoelectric control parameters, as well as in the 
input signals, depend on numerous conditions and they 
can heavily impact performance [3]. The reviewed manu-
scripts showed limited amount of evidence on assessing 
patient safety and security, probably due to their proto-
typical stages of the development. However, there are 
studies focusing exclusively on EMG-driven control 
faults and safety issues, which analyze critical situations 
for stumbling and falls [145].

The different number of subjects and the average 
results presented in Table  4 show that a standardized 
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evaluation is missing for defining the overall perfor-
mances of MLLP EMG-driven controllers, even at the 
prototype stage.

During this review, the authors found a strong cor-
relation between the type of evaluation and the type of 
implemented neuro-control. In fact, while IEC manu-
scripts focus their analyses on biomechanical meas-
urements, CIC controllers focus mainly on evaluating 
performance-based measurements.

An analysis of the literature also shows that control 
delay is an important parameter to evaluate the control-
ler performance in real scenarios [137]. In particular, to 
guarantee control stability while considering the HITL 
factor, the total maximum control delay between the sig-
nal window sampling and the actual output value has to 
be less than the human physiological electromechanical 
delay dEM . The human dEM is caused by the time that a 
neural signal requires to generate the electrical depo-
larization of the muscle tissue, to consequently result in 
a mechanical force, and finally joint displacement. The 
delay has been estimated to be dEM ≈ 100 to 150 ms for 
the lower limb [123, 129]. If the generation of the pros-
thetic mechanical movement requires longer time than 
dEM , the prosthesis will be always delayed with respect 
to the volition of the user, which limits the usability of 
the controller and may generate risky conditions. Even 
though the prosthesis’ motion generation delay is a cru-
cial metric to evaluate the EMG-driven control, close to 
half of the reviewed manuscripts do not provide such 
information. Long delays are especially problematic if 
they are prone to a logical deadlock, where the system 
comes to a halt because its subsystems (human and the 
prosthesis) are waiting for each other to take action. For 
example, if the controller requires completion of a (par-
tial) step cycle to detect a user-intended switch from 
walking to stair climbing, while the user is not at comfort 
or able to perform the first stair climbing step with the 
presently selected walking controller, then the switch will 
never occur.

Discussions
The results presented in “Results” section can be further 
discussed to identify patterns, prospects and limitations 
of the various approaches, to understand how future 
research and development into EMG-driven controlled 
MLLPs is most promising.

The structure of the discussion follows that of the 
results, i.e., uses the same four topics as subsections. Fur-
thermore, this section presents an additional discussion 
in “Clinical considerations” section, regarding the clinical 
implications of developing an effective neuro-controller, 
in particular an EMG-driven controller. This is important 

to provide a general interpretation of the results in the 
context of other evidence.

Neuro‑control
High-level controllers for lower limb prostheses, and in 
general lower limb robotics, aim to restore both rhyth-
mic locomotion (CIC) and volitional movements (IEC). 
Unfortunately, very little is known about how these two 
processes cooperate in humans, but it has been proposed 
that these two paths can bidirectionally interact and 
cooperate with each other [20]. This lack of knowledge 
generates a particular dichotomy of EMG-driven control 
in restoring either rhythmic or volitional movement. CIC 
and IEC aim exactly in the control of either type of move-
ments (Fig. 4).

Similarly as in human CPGs, prosthetic CIC does not 
require any conscious human involvement [138]. Rhyth-
mic motor patterns, like walking, compose almost the 
totality of human basic locomotion, and therefore con-
stitute the most important type of movements to restore 
in amputees. Rhythmic motor patterns are easily detect-
able and reproducible, by employing basic concepts of 
data analysis on prosthesis kinetic and kinematic meas-
urements [100, 127]. For this reason, pattern recogni-
tion control techniques are employed for implementing 
CICs and are the most widely used. In fact, as stated in 
“EMG-driven working principles” section, pattern rec-
ognition uses data from embedded sensors in the pros-
thetic device (e.g. load/pressure cells, foot switch, joint 
encoders and IMU) to identify the locomotion type and 
change the control law parameters accordingly. The 
introduction of EMGs and therefore the integration of 
user volition information in this control paradigm has 
been investigated mainly with two objectives: using the 
myoelectric signals as additional information to incre-
ment the number of classes of movements that can be 
controlled, and boosting their recognition accuracy. 
These controllers therefore inherited the same controller 
capabilities of their non-EMG MLLPs predecessors: high 
reliability during rhythmic locomotions in spite of their 
lack of intuitive control. Therefore, CICs are the most 
effective option when the main objective of the MLLPs 
is to restore walking, which is the case for a major tar-
get group of lower limb prosthesis users. In contrast to 
rhythmic movements, volitional motions are not char-
acterized by phase-dependent trajectories, nor by corre-
lated conditions between repetitive movements. Due to 
the redundancy in the musculoskeletal system, identical 
limb configurations can be generated from different mus-
cle activations [77]. This particular property of the human 
musculoskeletal system makes it significantly more diffi-
cult to design a controller that is able to obtain a reliable 
solution through the processing of only EMG signals for 
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the voluntary control of the artificial joint. Direct and 
model-based controllers in IECs tackle this issue in two 
different ways: the former employs signal processing to 
reduce these aforementioned redundancies, while the lat-
ter uses modeling in order to characterize them. Despite 
this technological difficulty, users can employ this type of 
control to voluntarily and continuously modulate joint 
flexion-extension with higher degree of freedom respect 
to the previous class of controllers.

Collected results showed that only two research groups 
attempted to unify CIC and IEC in a unique control strat-
egy [72, 113]. The first research was conducted at the for-
mer Center for Bionic Medicine, Rehabilitation Institute 
of Chicago [58, 111]. They adopted a pattern recognition 
control algorithm, in combination with Targeted Muscle 
Reinnervation (TMR), to implement a hybrid CIC-IEC. 
Depending on the device state, the FSM could decide 
either to control rhythmical locomotion or, in case of a 
non-bearing motor task, give the user the freedom to 
control the joint voluntarily.

Another exception to the CIC/IEC dichotomy can be 
seen in the work conducted at the MIT Media Lab [71, 
72, 130]. In their studies, the EMG signal proportionally 
regulates the gain of a Hill-type muscle model to gener-
ate additional plantar-flexion force. Deviation from the 
intrinsic controller output was enabled depending on the 
type of locomotion performed and the level of muscular 
activation: this was especially used to generate an addi-
tional push-off when required by the user. Their approach 
employed standard pattern recognition techniques for 
locomotion control, while applying direct voluntary or 
model-based techniques to deviate from such intrinsic 
control during particular locomotive states. These stud-
ies recognized the strengths of the two strategies and 
attempted to simultaneously preserve both high reliabil-
ity and seamless control.

This particular choice on the type of neuro-control and 
the type of movement to be addressed has a direct con-
sequence on the type of controller that should be imple-
mented. Their particular working principle is discussed 
in the following section.

EMG‑driven working principles
Walking represents the most important locomotion in 
humans: on average 10,000 steps per day for the younger 
population ( ≤ 65 years old) and 7000 for the older ( > 65 
years old) [10]. Consequently, SlA and SpA are usually 
the most implemented, since they are essential to accom-
modate different walking patterns based on the cadence 
and terrain conditions. Table  2 displays the additional 
modalities (locomotion types) that are allowed to be per-
formed from the controllers, apart from walking. While 
an EMG-driven pattern recognition approach has to 

declare the modalities that can be controlled specifically 
in the framework design, direct-control and model-based 
approaches are able to deliver the control for any type of 
locomotion. However, even if they theoretically could, 
there is a lack of experimental validation for this aspect. 
In fact, some of the reviewed works did not perform any 
validation regarding such capabilities, as they only report 
results of ground-level walking [26, 37, 61].

Despite this limitation, the strength of pattern recogni-
tion algorithms, such as ML, is the ability of learning and 
recognizing peculiar features from a given data set. This 
skill becomes useful for the case of multi-dimensional 
and complex data streams that have to be analyzed and 
labeled in real time, such as EMG. Moreover, EMG sig-
nals are highly irregular and non-stationary, and ampu-
tees could develop abnormal co-contraction features in 
the residual limb, making techniques of direct control 
particularly difficult.

Another important characteristic that distinguishes 
pattern recognition techniques from other control tech-
niques, is the reduced user training time, as can be seen 
in “EMG-driven working principles” section. Clinical 
evaluations of myoelectric prostheses have correlated 
the reduced training time to a higher device acceptance 
[35]. Even though there are no standards to establish 
an optimal training time, prolonged and repetitive ses-
sions might result in cognitive and physical exhaustion. 
However, it has to be noticed that no pattern recogni-
tion study explored multiple testing sessions and there-
fore dealt with recalibration issues. Depending on the 
robustness of the developed pattern recognition EMG-
driven controller, calibration time might be necessary 
before each session, correspondingly worsening device 
acceptance.

This discussion has clarified that the choice of the type 
of the controller affects the type of processing and the 
type of signals. Further discussion on the type of process-
ing related to the type of EMG-driven working principle 
is discussed in the next section.

Neural input and processing
The choice of which muscle signals to use represents a 
fundamental topic in EMG-driven control. This choice 
is influenced not only by the architecture of the con-
troller, but additionally by the artificial joint’s mechani-
cal and electronic design, from the amputation level 
and finally by the surgical muscle reattachment [51]. 
The latter two points are subject-specific, which leads 
to user inter-variability regarding choices of the muscle 
signals and consequently the EMG-driven control tech-
nique. Additionally, the biological joints are controlled 
from a different number of muscles, which limits the 
number of signals that can be used after amputation 
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depending on the joint. Moreover, the presence of bi-
articular muscles—and therefore the kinematic and 
dynamic coupling between the different joints—may 
also affect the number of channels that can be used. 
Finally, MLLPs mechanics and electronics (such as 
prosthesis weight, volume, and battery-life) can affect 
the number of sensors that can be embedded.

Related to this issue, the reviewed literature tended to 
go in two opposite directions. Some of the studies used 
a small number of EMG-sensors, and placed them on 
big proximal muscle groups that would still be present 
after the amputation, as in [6, 24, 29, 56, 61, 63, 64]. 
Instead, other studies acquired readings from multiple 
muscles in order to collect redundant information, and 
to analyse how the controller performance changes by 
using a variety of signal processing techniques [66, 70, 
120]. Whereas the latter requires an initial analysis, this 
approach can be used to better tailor the controller to 
user necessities, leading to an improved performance 
when the number of EMG sensors is higher. This par-
ticular choice is usually related to pattern recognition 
controllers and explains why this class of controllers 
has usually more EMG channels.

Additional sensors have been extensively used in 
EMG-driven control in order to improve their accuracy 
(Fig. 3). In fact, a common strategy is to add mechanical 
sensors (e.g. IMU and pressure cells) to the prosthetic 
device to have more reliable information to compen-
sate for the high variability of EMG signals and their 
sensitivity to noise. For example, using a foot switch 
for detecting gait events (e.g. heel strike and toe off ) 
is still the main method for the identification of stride 
phases. This identification can be used additionally to 
adapt different lower-level control strategies or for dis-
abling/enabling the EMG-driven control with respect 
to standard approaches [6, 58].

The use of supplementary mechanical sensors (e.g. 
encoders) in addition to EMG electrodes can also be 
used for restoring the missing sensory feedback from 
the amputated limb. It was found that the most com-
mon approach was to provide the user the joint angle 
position during joint movements through visual rep-
resentation. Indeed, feedback is particularly important 
in the IEC class of controllers. In this particular case, 
since the user is in continuous and full control of joint 
flexion and extension, it is beneficial to return informa-
tion about the MLLPs configuration. The use of visual 
feedback, though, is impractical during every-day 
activities. A potential solution is to employ a haptic 
feedback, such as vibrotactile stimulus, coding for joint 
angle position, as suggested by [6, 62]. However, only 
one work was found to investigate the use of haptic 
feedback in conjunction with EMG-driven control [14]. 

Their results suggested that this was mostly beneficial 
when visual feedback was limited.

Processing EMG signals usually follows two possi-
ble directions, which is mainly influenced by the type 
of neuro-control implemented from the high-level con-
troller. For IEC, the common approach is to extract the 
fully rectified envelope of the signals around the most 
informative bandwidth (around 10 to 500 Hz), and then 
to normalize the relevant signals for their maximum val-
ues. Instead, for the case of CIC, where frequency-based 
features are usually employed, band-pass filtering is 
applied in order to delete low- and high-frequency noise 
components.

Classification of EMG features, as shown in Table 3, is 
usually applied in pattern recognition control. In non- 
EMG MLLP, the most used are heuristic rule-based clas-
sifiers, like FSM impedance controllers [116] or decision 
tree controllers [142]. By providing the right set of rules, 
these controllers can identify a gait phase [115] and addi-
tionally identify different types of locomotion, such as 
walking or slope climbing, driving the mid-level imped-
ance control accordingly [117, 118]. The same purpose of 
heuristic rule-based classifiers can be achieved with auto-
mated pattern recognition algorithms through ML. Such 
classifiers are usually more robust to outliers but they 
all require a priori offline training, often on data derived 
directly from the final user. Linear discriminant analy-
sis (LDA) [140], quadratic discriminant analysis (QDA), 
Gaussian Mixture Models (GMM) [128], Support Vec-
tor Machines (SVM) [66] and Artificial Neural Networks 
(ANN) [5] are examples of possible solutions that have 
been explored, each with relative merits and drawbacks. 
Due to these properties, the ML approaches are usually 
preferred for EMG-driven pattern recognition control-
lers on neural signals features [32, 53, 65, 66, 86, 120].

This review has not found any use of Deep Learning 
(DL) applications for EMG-driven control in MLLPs, in 
contrast to their upper limb counterparts. Note that DL 
is a subset of ML, characterized by the ability to self-learn 
meaningful signal characteristics, rather than requiring 
features to be defined in advance. The choice of features 
for classification is a challenging process and impacts 
long-term performance of the EMG-driven controller 
[125]. For this reason DL classifiers might represent a 
solution for future implementation aiming in improving 
state-of-the-art ML performances [22].

In addition, this review shows that ML strategies are 
not limited to CIC: they can be used as mapping tool for 
trajectory generations in IECs, such as in [24, 37], or for 
reducing signals variability [56, 57].

The diversification regarding the type of neuro-control 
found in literature complicates the comparison of all 
studies: the presence of multiple control and processing 
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methods makes it difficult to isolate the effects of each 
choice on the final outcome. Instead, as presented in the 
following section, the performance validation metrics 
and their analysis highly depend on the control design 
choices.

Performance assessment
The first attempts to introduce EMG signals in the con-
trol loop of lower limb prostheses were made in the 70’s 
with the work of Horn [64] and Donath [29]. Although 
myoelectric controllers have evolved in the last 40 years, 
current solutions are still far from being integrated into 
lower limb prosthetic commercial devices. The main 
obstacle to this is represented by safety and risk assess-
ment after EMG is introduced in the control loop.

Consistently with the available literature on myoelec-
tric controllers, the self-reported major limitations of 
EMG-driven controllers for MLLPs are related to insta-
bilities generated from high sensitivities to EMG noise, 
movement artifacts, and electrode impedance, usually 
due to skin perspiration. Additionally, pattern recogni-
tion approaches mainly report limitations about the fact 
that only a limited number of locomotion types or motor 
tasks can be controlled, as already discussed in “EMG-
driven working principles” section. The main impedi-
ment to model-based control frameworks is represented 
by the manual tuning of parameters during experimenta-
tion, which is crucial for acceptable control. Instead, in 
direct control, only one manuscript reported that exten-
sive subject training was necessary to compensate for the 
increased cognitive load [62]. In fact, users required con-
stant awareness about the prosthesis configuration, since 
the extension and flexion of the knee joint were com-
pletely volitional.

Aside from the specific control implementations, the 
ultimate purpose of a prosthesis is to operate synergisti-
cally with the human body and replicate a behaviour that 
is as similar as possible to the missing biological limb. 
Therefore, evaluating the ability to generate human-like 
joint trajectories and forces during locomotion repre-
sents an important indication of the performance of the 
control. Additionally, investigation of performance-based 
measures, such as changes in cadence, stride length, 
walking speed, and their application to standard prosthe-
sis controllers represents a strong validation of the per-
formance with respect to the state-of-the-art.

As reported in “Performance assessment” section, 
these two types of investigations were usually not con-
ducted simultaneously. Depending on the type of neuro-
control, either performance-based or biomechanical 
measurements are used for performance analysis. This 
particular finding makes it difficult for this review to 
assess a generic comparison between controllers based 

on their reported findings, since no common accuracy 
and reliability metrics could be found.

An additional challenge was found when attempting 
to compare MLLPs performances with able-bodied kin-
ematics and dynamics, because the results were often 
qualitative or limited in terms of statistical analysis. [76, 
106, 136]. CIC controllers—while usually providing more 
accurate quantitative analyses with respect to IEC—are 
usually only limited to classification accuracy of motor 
task and the type of locomotion recognition. Although it 
is a solid parameter for the evaluation of FSM controllers, 
it does not provide a clear measure of the system capa-
bility. Few works instead, compared the accuracy of their 
EMG-driven approach with respect to standard or com-
mercially available CIC [59, 113]. Only few other manu-
scripts proposed analytical correlations between (1) the 
recorded accuracy, (2) the final performance of the con-
troller, and (3) the errors in the classification process that 
could lead to a dangerous failure [59, 145].

Additionally, related to this problem, this review has 
identified critical lack of attention to significant measure-
ments, such as the control delay. While this parameter is 
not a direct measurement of the high-level control, it is of 
importance for the evaluation of the whole HRI.

These issues refer to the concept of bench-marking: 
the definition of guidelines to be followed in the iterative 
process of design and development of a new generation 
of MLLPs. While accredited guidelines are available for 
testing exoskeletons [91] and bipedal robots [122], stand-
ardized experimental methods for evaluating MLLPs are 
lacking [48]. With this purpose in mind, recent reviews 
have categorized the evaluation on MLLPs in three meth-
odologies: patient-reported outcomes, performance-
based measures and biomechanical measures [42, 48]. 
Moreover, these reviews highlight the discrepancy 
between the evaluation metrics used for research and 
commercial MLLPs, which focus instead on question-
naires on comfort, sense of security and quality of life 
[101]. This trend can be explained due to the fact that the 
commercial market is more focused on end-user satisfac-
tion for marketing purposes, whereas researchers tend to 
focus on engineering performance metrics.

Before arriving to final conclusions, it is necessary to 
contextualize the obtained results in the clinical situation 
of lower limb amputations. This discussion is critical to 
understand the real necessities in this health sector and 
how myoelectric MLLPs can constructively collaborate to 
address them.

Clinical considerations
The literature depicts a particularly serious perspective 
for lower limb amputations and prosthesis utilization. 
Despite the improvement of medical treatments, the 
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lower limb amputation rate has not substantially changed 
[38, 105]. This is due to the fact that the population at-
risk for lower limb amputation (elderly and diabetic 
patients) is constantly increasing. In fact, vascular related 
diseases remain the leading cause for lower limb amputa-
tions in industrialized countries [28, 49, 90, 121].

Considering clinical aspects, it is important to note 
that critical psychosomatic conditions and secondary 
injuries can emerge over time in amputees. Indeed, evi-
dence suggests that both phantom limb pain and joint 
degeneration due to compensatory movements can be 
avoided with neural interfaces and powered prostheses 
[78, 96, 134].

Moreover, relatively high prosthesis abandonment is 
influenced by the acceptance rate of lower limb prosthe-
ses, which are associated with user perception of inad-
equate controllability of the device, specifically a lack of 
intuitiveness in the control [4]. In addition to deficiencies 
that result from aforementioned mechanical challenges 
(e.g. noise, heaviness, battery life), the lack of intuitive 
control likely contributes to the relatively low popularity 
of powered prostheses. This aspect advocates for the dis-
crepancy between research and the commercial prosthe-
ses reported in “Performance assessment” section, where 
patients’ reports play a major role with respect to the 
performance and biomechanical capability of the device.

Therefore, implementing volitional control can poten-
tially result in large improvements in the usability of 
these prostheses. In fact, MLLPs can already recognize 
and control most of the locomotion modes. However, 
important classes of motor tasks involving the knee and 
ankle have been omitted from this set of movements, 
making it difficult or impossible for amputees to perform 
them [56]. For example, body shifting position while sit-
ting or particular joint flexion and extension motions 
are essential during daily activities, such as donning and 
doffing a shoe, or entering a car. These movements can 
be executed only using a prosthesis with neural-driven 
control, unless the repositioning of the joints must be 
done by hand. Thus, the implementation of this class of 
movements and the increase of the number of activities 
in powered prostheses would augment user freedom of 
motion in daily life. This is the key in making the prosthe-
sis become part of the user routine, which will increase 
the feeling of embodiment, and will lower the probability 
to abandon the prosthesis [13].

However, the results of this review have shown sev-
eral drawbacks (e.g., subject-specificity and high noise 
sensitivity of EMG signals) related to the adoption of 
EMG-driven control for MLLPs and no solid representa-
tive emerged as the predominant solution. Therefore, 
the adoption of such technology still remains disputable 
for MLLPs. Nonetheless, it is important to consider that 

novel invasive technologies grant a direct connection 
with the neuromusculoskeletal system (e.g., osteointegra-
tion, TMR, implantable EMG sensors). These techniques 
have been clinically tested in humans and demonstrated 
the potential to attenuate such limitations of standard 
myoelectric MLLPs [36]. In summary, it should be pos-
sible to substantially improve the performance of neuro-
controlled MLLPs by creating a more reliable connection 
between the robotic limb and the human.

Conclusions
This review has assessed the current state-of-the-art in 
EMG-driven control methods for MLLPs in the attempt 
to identify their prospects and limitations, and to for-
mulate suggestions on future research and develop-
ment. Four major topics of investigation were addressed: 
neuro-control of the device, EMG-driven working prin-
ciples, neural input and processing, and performance 
assessment.

The authors found an evident lack of quantitative and 
standardized measures regarding sensitivity and risk 
analysis. Additionally, this review has not found evidence 
of meaningful comparisons of EMG-driven control in 
MLLPs with respect to standard adaptive control. Like-
wise, no comparison was found with commercial prod-
ucts. Moreover, due to missing guidelines in MLLPs 
development and evaluation, performances metrics are 
tailored to the type of the implemented neuro-controller. 
This issue complicates the execution of a quantitative 
analysis between the reviewed EMG-driven controllers.

However, the reviewed literature also suggests that 
there are certain preferences regarding control princi-
ples depending on the type of movement intended to 
be restored. If the interest is to provide the prosthesis 
control during rhythmical locomotion, pattern recogni-
tion controllers are to be preferred. This solution is sug-
gested for non-active people that use the prosthesis only 
for simple daily tasks (e.g., walking, sitting, ascending and 
descending stairs). For these tasks, this type of control-
ler guarantees a lower cognitive load and more stability. 
In contrast, control of volitional movements is preferred 
with direct and model-based controllers. This approach 
lets amputees control their prosthesis during complex 
tasks with higher freedom and autonomy, at the expense 
of higher cognitive effort and attention.

Despite the increasing interest in EMG-driven control-
lers for MLLPs, a reliable and effective approach that can 
be introduced into powered prostheses has not yet been 
formulated. Particularly, continuous developments in ML 
have resulted in a persisting focus on pattern recogni-
tion techniques, which despite allowing for high stability 
and easier integration, remain a risky approach as they 
have not proven to be able to tackle the inadequate user 
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control yet. In addition, the full potential of using neu-
ral signals is left unexploited, such as targeting direct and 
voluntary manipulation of the prosthetic joint, which 
would give the user complete freedom of movement. 
Based on the evidence reported here, the authors believe 
that introducing a reliable and effective control, able to 
integrate both rhythmic (CIC) and volitional (IEC) motor 
tasks, will promote the use of powered MLLPs despite 
their current limitations. First attempts in this direction 
have been investigated in this review. They have demon-
strated the possibility to exploit both the potentialities of 
the two neuro-controllers.

The real efficacy of EMG-driven controllers have yet to 
be clinically validated. Furthermore, EMG-driven con-
trollers still have to overcome inherent drawbacks such 
as high noise sensitivity of EMG signals, elevated inter- 
and intra- subject signals variability, and a difficult inte-
gration of electrodes in the socket. However, current 
advancements in invasive solutions for bionic prostheses 
have demonstrated to strengthen the connection of the 
HRI, creating a more reliable neuro-control and attenuat-
ing the aforementioned limitations. Therefore, it is likely 
that the combination of novel invasive interfaces, more 
advanced decoding algorithms (e.g., DL or modeling) and 
seamless EMG-driven control will eventually promote 
the use of powered MLLPs. This claim is strongly related 
to clinical evidences about the necessity to provide 
amputees with powered support to avoid psychosomatic 
conditions and secondary degenerative musculoskeletal 
pathologies.

Eventually, neural-driven controllers will acquire the 
capability of closing the sensori-motor loop. Users will be 
provided with sensory information about touch and pro-
prioception, through the prosthesis, to modulate the con-
trol in closed-loop, allowing bioengineers to get closer to 
the goal of giving back what amputees have lost.
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