8,093 research outputs found

    Smartphone Augmented Reality Applications for Tourism

    Get PDF
    Invisible, attentive and adaptive technologies that provide tourists with relevant services and information anytime and anywhere may no longer be a vision from the future. The new display paradigm, stemming from the synergy of new mobile devices, context-awareness and AR, has the potential to enhance tourists’ experiences and make them exceptional. However, effective and usable design is still in its infancy. In this publication we present an overview of current smartphone AR applications outlining tourism-related domain-specific design challenges. This study is part of an ongoing research project aiming at developing a better understanding of the design space for smartphone context-aware AR applications for tourists

    PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON APPLICATIONS OF AUGMENTED REALITY ENVIRONMENTS 1 Augmented Reality for Construction Site Monitoring and Documentation

    Get PDF
    Abstract—Augmented Reality allows for an on-site presentation of information that is registered to the physical environment. Applications from civil engineering, which require users to process complex information, are among those which can benefit particularly highly from such a presentation. In this paper, we will describe how to use Augmented Reality (AR) to support monitoring and documentation of construction site progress. For these tasks, the staff responsible usually requires fast and comprehensible access to progress information to enable comparison to the as-built status as well as to as-planned data. Instead of tediously searching and mapping related information to the actual construction site environment, our AR system allows for the access of information right where it is needed. This is achieved by superimposing progress as well as as-planned information onto the user’s view of the physical environment. For this purpose, we present an approach that uses aerial 3D reconstruction to automatically capture progress information and a mobile AR client for on-site visualization. Within this paper, we will describe in greater detail how to capture 3D, how to register the AR system within the physical outdoor environment, how to visualize progress information in a comprehensible way in an AR overlay and how to interact with this kind of information. By implementing such an AR system, we are able to provide an overview about the possibilities and future applications of AR in the construction industry

    Augmented Reality for Restoration/Reconstruction of Artefacts with Artistic or Historical Value

    Get PDF
    The artistic or historical value of a structure, such as a monument, a mosaic, a painting or, generally speaking, an artefact, arises from the novelty and the development it represents in a certain field and in a certain time of the human activity. The more faithfully the structure preserves its original status, the greater its artistic and historical value is. For this reason it is fundamental to preserve its original condition, maintaining it as genuine as possible over the time. Nevertheless the preservation of a structure cannot be always possible (for traumatic events as wars can occur), or has not always been realized, simply for negligence, incompetence, or even guilty unwillingness. So, unfortunately, nowadays the status of a not irrelevant number of such structures can range from bad to even catastrophic. In such a frame the current technology furnishes a fundamental help for reconstruction/restoration purposes, so to bring back a structure to its original historical value and condition. Among the modern facilities, new possibilities arise from the Augmented Reality (AR) tools, which combine the virtual reality (VR) settings with real physical materials and instruments. The idea is to realize a virtual reconstruction/restoration before materially acting on the structure itself. In this way main advantages are obtained among which: the manpower and machine power are utilized only in the last phase of the reconstruction; potential damages/abrasions of some parts of the structure are avoided during the cataloguing phase; it is possible to precisely define the forms and dimensions of the eventually missing pieces, etc. Actually the virtual reconstruction/restoration can be even improved taking advantages of the AR, which furnish lots of added informative parameters, which can be even fundamental under specific circumstances. So we want here detail the AR application to restore and reconstruct the structures with artistic and/or historical valu

    An Interactive Visualization of the Past using a Situated Simulation Approach

    Get PDF

    New Trends in Using Augmented Reality Apps for Smart City Contexts

    Get PDF
    The idea of virtuality is not new, as research on visualization and simulation dates back to the early use of ink and paper sketches for alternative design comparisons. As technology has advanced so the way of visualizing simulations as well, but the progress is slow due to difficulties in creating workable simulations models and effectively providing them to the users. Augmented Reality and Virtual Reality, the evolving technologies that have been haunting the tech industry, receiving excessive attention from the media and colossal growing are redefining the way we interact, communicate and work together. From consumer application to manufacturers these technologies are used in different sectors providing huge benefits through several applications. In this work, we demonstrate the potentials of Augmented Reality techniques in a Smart City (Smart Campus) context. A multiplatform mobile app featuring Augmented Reality capabilities connected to GIS services are developed to evaluate different features such as performance, usability, effectiveness and satisfaction of the Augmented Reality technology in the context of a Smart Campus

    Quantitative evaluation of overlaying discrepancies in mobile augmented reality applications for AEC/FM

    Get PDF
    Augmented Reality (AR) is a trending technology that provides a live view of the real and physical environment augmented by virtual elements, enhancing the information of the scene with digital information (sound, video, graphics, text or geo-location). Its application to architecture, engineering and construction, and facility management (AEC/FM) is straightforward and can be very useful to improve the on-site work at different stages of the projects. However, one of the most important limitations of Mobile Augmented Reality (MAR) is the lack of accuracy when the screen overlays the virtual models on the real images captured by the camera. The main reasons are errors related to tracking (positioning and orientation of the mobile device) and image capture and processing (projection and distortion issues). This paper shows a new methodology to mathematically perform a quantitative evaluation, in world coordinates, of those overlaying discrepancies on the screen, obtaining the real-scale distances from any real point to the sightlines of its virtual projections for any AR application. Additionally, a new utility for filtering built-in sensor signals in mobile devices is presented: the Drift-Vibration-Threshold function (DVT), a straightforward tool to filter the drift suffered by most sensor-based tracking systems

    Senseable Spaces: from a theoretical perspective to the application in augmented environments

    Get PDF
    openGrazie all’ enorme diffusione di dispositivi senzienti nella vita di tutti i giorni, nell’ ultimo decennio abbiamo assistito ad un cambio definitivo nel modo in cui gli utenti interagiscono con lo spazio circostante. Viene coniato il termine Spazio Sensibile, per descrivere quegli spazi in grado di fornire servizi contestuali agli utenti, misurando e analizzando le dinamiche che in esso avvengono, e di reagire conseguentemente a questo continuo flusso di dati bidirezionale. La ricerca è stata condotta abbracciando diversi domini di applicazione, le cui singole esigenze hanno reso necessario testare il concetto di Spazi Sensibili in diverse declinazioni, mantenendo al centro della ricerca l’utente, con la duplice accezione di end-user e manager. Molteplici sono i contributi rispetto allo stato dell’ arte. Il concetto di Spazio Sensibile è stato calato nel settore dei Beni Culturali, degli Spazi Pubblici, delle Geosciences e del Retail. I casi studio nei musei e nella archeologia dimostrano come l’ utilizzo della Realtà Aumentata possa essere sfruttata di fronte a un dipinto o in outdoor per la visualizzazione di modelli complessi, In ambito urbano, il monitoraggio di dati generati dagli utenti ha consentito di capire le dinamiche di un evento di massa, durante il quale le stesse persone fruivano di servizi contestuali. Una innovativa applicazione di Realtà Aumentata è stata come servizio per facilitare l’ ispezione di fasce tampone lungo i fiumi, standardizzando flussi di dati e modelli provenienti da un Sistema Informativo Territoriale. Infine, un robusto sistema di indoor localization è stato istallato in ambiente retail, per scopi classificazione dei percorsi e per determinare le potenzialità di un punto vendita. La tesi è inoltre una dimostrazione di come Space Sensing e Geomatica siano discipline complementari: la geomatica consente di acquisire e misurare dati geo spaziali e spazio temporali a diversa scala, lo Space Sensing utilizza questi dati per fornire servizi all’ utente precisi e contestuali.Given the tremendous growth of ubiquitous services in our daily lives, during the last few decades we have witnessed a definitive change in the way users' experience their surroundings. At the current state of art, devices are able to sense the environment and users’ location, enabling them to experience improved digital services, creating synergistic loop between the use of the technology, and the use of the space itself. We coined the term Senseable Space, to define the kinds of spaces able to provide users with contextual services, to measure and analyse their dynamics and to react accordingly, in a seamless exchange of information. Following the paradigm of Senseable Spaces as the main thread, we selected a set of experiences carried out in different fields; central to this investigation there is of course the user, placed in the dual roles of end-user and manager. The main contribution of this thesis lies in the definition of this new paradigm, realized in the following domains: Cultural Heritage, Public Open Spaces, Geosciences and Retail. For the Cultural Heritage panorama, different pilot projects have been constructed from creating museum based installations to developing mobile applications for archaeological settings. Dealing with urban areas, app-based services are designed to facilitate the route finding in a urban park and to provide contextual information in a city festival. We also outlined a novel application to facilitate the on-site inspection by risk managers thanks to the use of Augmented Reality services. Finally, a robust indoor localization system has been developed, designed to ease customer profiling in the retail sector. The thesis also demonstrates how Space Sensing and Geomatics are complementary to one another, given the assumption that the branches of Geomatics cover all the different scales of data collection, whilst Space Sensing gives one the possibility to provide the services at the correct location, at the correct time.INGEGNERIA DELL'INFORMAZIONEembargoed_20181001Pierdicca, RobertoPierdicca, Robert
    • …
    corecore