1,782 research outputs found

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Computational Approach to Predict Thermal Comfort Levels at Summer Peak Conditions in Passive House Based on Natural Ventilation

    Get PDF
    The Passive House building concept has been widely-researched in relation to its performance, especially the aspects of energy consumption and thermal properties. Nevertheless, the design stages still do not present a dynamic thermal comfort predictive process that aids investigating the design performance. This research focuses on a methodology that calculates summer months peak conditions in a pilot Passive House dwelling in the United Kingdom, based on the natural ventilation plan effectiveness in maintaining sufficient airflows, while the mechanical ventilation-heat recovery summer bypass mode is on. The methodology’s technical aspect involves EnergyPlus dynamic simulations, Ansys computational fluid dynamics simulations, and the Centre for the Built Environment Thermal Comfort Tool. The results presented showed a  spectrum of predicted percentages of people dissatisfied ranging between 13.3-99.2% for different airspeeds. The majority were of uncomfortable levels at summer peak days. Results also presents the ranges of thermal comfort parameters simultaneously. The findings produced by the methodology may add a more comprehensive description to the thermal comfort status during design stages, employing the integrated software combination

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thĂšse vise Ă  Ă©tendre l’utilisation de l'Internet des objets (IdO) en facilitant le dĂ©veloppement d’applications par des personnes non experts en dĂ©veloppement logiciel. La thĂšse propose une nouvelle approche pour augmenter la sĂ©mantique des applications d’IdO et l’implication des experts du domaine dans le dĂ©veloppement d’applications sensibles au contexte. Notre approche permet de gĂ©rer le contexte changeant de l’environnement et de gĂ©nĂ©rer des applications qui s’exĂ©cutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en Ɠuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le dĂ©veloppement d’applications IdO. AmI-DEU intĂšgre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de reprĂ©senter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la dĂ©finition d’applications IoT avec une intention d’activitĂ© autodĂ©crite qui contient les connaissances requises pour rĂ©aliser l’activitĂ©. Ensuite, le cadriciel gĂ©nĂšre Intention as a Context (IaaC), qui comprend une intention d’activitĂ© autodĂ©crite avec des connaissances colligĂ©es Ă  Ă©valuer pour une meilleure adaptation dans des environnements intelligents. La sĂ©mantique de l’AmI-DEU est basĂ©e sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des rĂšgles et l'appariement sĂ©mantique pour produire des applications IdO autonomes capables de s’exĂ©cuter en ContextAA. AmI- DEU inclut Ă©galement un outil de dĂ©veloppement visuel pour le dĂ©veloppement et le dĂ©ploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la mĂ©taphore du flux avec des aides visuelles pour simplifier le dĂ©veloppement d'applications en permettant des dĂ©finitions de rĂšgles Ă©tape par Ă©tape. Dans le cadre de l’expĂ©rimentation, AmI-DEU comprend un banc d’essai pour le dĂ©veloppement d’applications IdO. Les rĂ©sultats expĂ©rimentaux montrent une optimisation sĂ©mantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour amĂ©liorer le bienĂȘtre et la qualitĂ© de vie des personnes. Cette thĂšse se termine par des orientations de recherche que le cadriciel AmI-DEU dĂ©voile pour rĂ©aliser des environnements intelligents omniprĂ©sents fournissant des adaptations appropriĂ©es pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version

    Adjoining Internet of Things with Data Mining : A Survey

    Get PDF
    The Interactive Data Corporative (IDC) conjectures that by 2025 the worldwide data circle will develop to 163ZB (that is a trillion gigabytes) which is ten times the 16.1ZB of information produced in 2016. The Internet of Things is one of the hot topics of this living century and researchers are heading for mass adoption 2019 driven by better than-expected business results. This information will open one of a kind of user experience and another universe of business opening. The huge information produced by the Internet of Things (IoT) are considered of high business esteem, and information mining calculations can be connected to IoT to extract hidden data from information. This paper concisely discusses the work done in sequential manner of time in different fields of IOT along with its outcome and research gap. This paper also discusses the various aspects of data mining functionalities with IOT. The recommendation for the Challenges in IOT that can be adopted for betterment is given. Finally, this paper presents the vision for how IOT will have impact on changing the distant futur

    A multimodal conversational coach for active ageing based on sentient computing and m-health

    Get PDF
    As Life Expectancy Increases, It Has Become More Necessary To Find Ways To Support Healthy Ageing. A Number Of Active Ageing Initiatives Are Being Developed Nowadays To Foster Healthy Habits In The Population. This Paper Presents Our Contribution To These Initiatives In The Form Of A Multimodal Conversational Coach That Acts As A Coach For Physical Activities. The Agent Can Be Developed As An Android App Running On Smartphones And Coupled With Cheap Widely Available Sport Sensors In Order To Provide Meaningful Coaching. It Can Be Employed To Prepare Exercise Sessions, Provide Feedback During The Sessions, And Discuss The Results After The Exercise. It Incorporates An Affective Component That Informs Dynamic User Models To Produce Adaptive Interaction Strategies.Spanish project, Grant/Award Number:TEC2017-88048-C2-2-R and TRA2016-78886-C3-1-

    RADON: Rational decomposition and orchestration for serverless computing

    Get PDF
    Emerging serverless computing technologies, such as function as a service (FaaS), enable developers to virtualize the internal logic of an application, simplifying the management of cloud-native services and allowing cost savings through billing and scaling at the level of individual functions. Serverless computing is therefore rapidly shifting the attention of software vendors to the challenge of developing cloud applications deployable on FaaS platforms. In this vision paper, we present the research agenda of the RADON project (http://radon-h2020.eu), which aims to develop a model-driven DevOps framework for creating and managing applications based on serverless computing. RADON applications will consist of fine-grained and independent microservices that can efficiently and optimally exploit FaaS and container technologies. Our methodology strives to tackle complexity in designing such applications, including the solution of optimal decomposition, the reuse of serverless functions as well as the abstraction and actuation of event processing chains, while avoiding cloud vendor lock-in through models
    • 

    corecore