67,118 research outputs found

    A Smart Modular Wireless System for Condition Monitoring Data Acquisition

    Get PDF
    Smart sensors, big data, the cloud and distributed data processing are some of the most interning changes in the way we collect, manage and treat data in recent years. These changes have not significantly influenced the common practices in condition monitoring for shipping. In part this is due to the reduced trust in data security, data ownership issues, lack of technological integration and obscurity of direct benefit. This paper presents a method of incorporating smart sensor techniques and distributed processing in data acquisition for condition monitoring to assist decision support for maintenance actions addressing these inhibitors

    Combining computer game-based behavioural experiments with high-density EEG and infrared gaze tracking

    Get PDF
    Rigorous, quantitative examination of therapeutic techniques anecdotally reported to have been successful in people with autism who lack communicative speech will help guide basic science toward a more complete characterisation of the cognitive profile in this underserved subpopulation, and show the extent to which theories and results developed with the high-functioning subpopulation may apply. This study examines a novel therapy, the "Rapid Prompting Method" (RPM). RPM is a parent-developed communicative and educational therapy for persons with autism who do not speak or who have difficulty using speech communicatively.The technique aims to develop a means of interactive learning by pointing amongst multiple-choice options presented at different locations in space, with the aid of sensory "prompts" which evoke a response without cueing any specific response option. The prompts are meant to draw and to maintain attention to the communicative task–making the communicative and educational content coincident with the most physically salient, attention-capturing stimulus – and to extinguish the sensory–motor preoccupations with which the prompts compete.ideo-recorded RPM sessions with nine autistic children ages 8–14years who lacked functional communicative speech were coded for behaviours of interest

    Time-efficient fault detection and diagnosis system for analog circuits

    Get PDF
    Time-efficient fault analysis and diagnosis of analog circuits are the most important prerequisites to achieve online health monitoring of electronic equipments, which are involving continuing challenges of ultra-large-scale integration, component tolerance, limited test points but multiple faults. This work reports an FPGA (field programmable gate array)-based analog fault diagnostic system by applying two-dimensional information fusion, two-port network analysis and interval math theory. The proposed system has three advantages over traditional ones. First, it possesses high processing speed and smart circuit size as the embedded algorithms execute parallel on FPGA. Second, the hardware structure has a good compatibility with other diagnostic algorithms. Third, the equipped Ethernet interface enhances its flexibility for remote monitoring and controlling. The experimental results obtained from two realistic example circuits indicate that the proposed methodology had yielded competitive performance in both diagnosis accuracy and time-effectiveness, with about 96% accuracy while within 60 ms computational time.Peer reviewedFinal Published versio

    An integrated methodology for the design of Ro-Ro passenger ships

    Get PDF
    The present paper provides a brief introduction to the holistic approach to ship design, defines the generic ship design optimization problem and demonstrates its solution by use of advanced optimization techniques

    Post-Westgate SWAT : C4ISTAR Architectural Framework for Autonomous Network Integrated Multifaceted Warfighting Solutions Version 1.0 : A Peer-Reviewed Monograph

    Full text link
    Police SWAT teams and Military Special Forces face mounting pressure and challenges from adversaries that can only be resolved by way of ever more sophisticated inputs into tactical operations. Lethal Autonomy provides constrained military/security forces with a viable option, but only if implementation has got proper empirically supported foundations. Autonomous weapon systems can be designed and developed to conduct ground, air and naval operations. This monograph offers some insights into the challenges of developing legal, reliable and ethical forms of autonomous weapons, that address the gap between Police or Law Enforcement and Military operations that is growing exponentially small. National adversaries are today in many instances hybrid threats, that manifest criminal and military traits, these often require deployment of hybrid-capability autonomous weapons imbued with the capability to taken on both Military and/or Security objectives. The Westgate Terrorist Attack of 21st September 2013 in the Westlands suburb of Nairobi, Kenya is a very clear manifestation of the hybrid combat scenario that required military response and police investigations against a fighting cell of the Somalia based globally networked Al Shabaab terrorist group.Comment: 52 pages, 6 Figures, over 40 references, reviewed by a reade

    Smart Embedded Passive Acoustic Devices for Real-Time Hydroacoustic Surveys

    Get PDF
    This paper describes cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) These passive acoustic sensors consist of two low power, innovative digital hydrophone systems with embedded processing of acoustic data, A1 and A2, enabling real-time measurement of the underwater soundscape. An important part of the effort is focused on achieving greater dynamic range and effortless integration on autonomous platforms, such as gliders and profilers. A1 is a small standalone, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and soundscape sources. In this work the real-time acoustic processing algorithms implemented for A1 and A2 are described, including computational load evaluations of the algorithms. The results obtained from the real time test done with the A2 assembly at OBSEA observatory collected during the verification phase of the project are presented.Postprint (author's final draft

    Integration of a RSI microstructure sensing package into a Seaglider

    Get PDF
    Seagliders are a type of propeller-less AUV that glide through the water by changing their buoyancy. They have become mainstream collectors of standard oceanographic data (conductivity, temperature, pressure, dissolved oxygen, fluorescence and backscatter) and are increasingly used as trucks to carry a wide variety of hydrographic and bio-geochemical sensors. The extended sensor capability enhances the utility of the gliders for oceanographic observations. Seagliders are designed and optimized for long-term missions (up to 10 months) and deep sea profiling (up to 1000 m). They provide high resolution oceanographic data with very good temporal and spatial density, in near real-time, at a fraction of the cost of ship collected data. These performance parameters are sometimes at odds with the physical dimensions and electrical requirements of the hydrographic and bio-geochemical sensors scientists want installed in gliders. However, as the acceptance of gliders as an integral component of the oceanographic suite of measurement tools grows so do the efforts of sensor vendors to develop products that meet the size, weight and power requirements for successful glider integration. Turbulence microstructure sensors are one measurement system that scientists desired on Seagliders but that until recently did not fit the glider footprint. In collaboration with Rockland Scientific, Inc., a suite of RSI turbulence microstructure sensors was recently integrated into a Seaglider and the system’s performance validated during field tests in Puget Sound near Seattle, WA and in Loch Linnhe on the west coast of Scotland. Ocean turbulence controls the mixing of water masses, biogeochemical fluxes within them, and facilitates ocean-atmosphere gas exchange. As a result, turbulence impacts global ocean circulation, polar ice melt rates, drawdown of atmospheric carbon dioxide and carbon deposition, coastal and deep ocean ecology, commercial fisheries, and the dispersion of pollutants. Turbulent mixing is also recognized as a key parameter in global climate models, used for understanding and predicting future climate change. Seagliders equipped with turbulence microstructure sensors will allow scientists to map the geographical distribution and temporal variability of mixing in the ocean on scales not possible with ship-based measurements. This presentation discusses the technical aspects of the integration of the turbulence sensor suite on a Seaglider with an emphasis on achieving high data quality, while retaining the performance characteristics of the Seaglider. We will also describe applications for this sensor suite, examine the turbulence measurement data already collected by the Seaglider and discuss future deployment plans

    CLIVAR Exchanges - African Monsoon Multidisciplinary Analysis (AMMA)

    No full text
    corecore