1,365 research outputs found

    Novel soft bending actuator based power augmentation hand exoskeleton controlled by human intention

    Get PDF
    This article presents the development of a soft material power augmentation wearable robot using novel bending soft artificial muscles. This soft exoskeleton was developed as a human hand power augmentation system for healthy or partially hand disabled individuals. The proposed prototype serves healthy manual workers by decreasing the muscular effort needed for grasping objects. Furthermore, it is a power augmentation wearable robot for partially hand disabled or post-stroke patients, supporting and augmenting the fingers’ grasping force with minimum muscular effort in most everyday activities. This wearable robot can fit any adult hand size without the need for any mechanical system changes or calibration. Novel bending soft actuators are developed to actuate this power augmentation device. The performance of these actuators has been experimentally assessed. A geometrical kinematic analysis and mathematical output force model have been developed for the novel actuators. The performance of this mathematical model has been proven experimentally with promising results. The control system of this exoskeleton is created by hybridization between cascaded position and force closed loop intelligent controllers. The cascaded position controller is designed for the bending actuators to follow the fingers in their bending movements. The force controller is developed to control the grasping force augmentation. The operation of the control system with the exoskeleton has been experimentally validated. EMG signals were monitored during the experiments to determine that the proposed exoskeleton system decreased the muscular efforts of the wearer

    Wearable haptic systems for the fingertip and the hand: taxonomy, review and perspectives

    Get PDF
    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand

    A review on design of upper limb exoskeletons

    Get PDF

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Development of Low Cost Supernumerary Robotic Fingers as an Assistive Device

    Get PDF
    This paper presents the development of new type of wearable robot namely Supernumerary Robotic Finger (SRF) as  an  assistive   robot  for  healthy  people  or  people   with hemiparesis or hemiplegia. SRF comprises of two manipulators attached  in user’s wrist. Three flex sensors are utilized to measure the finger bending of the user’s finger. The posture of SRF is driven by modified glove sensor. The kinematics of both robotic thumb (RT) and robotic finger (RF) is studied using D-H parameter method and RoboAnalyzer software in order to understand the kinematic behavior of this robot. Each of RT and RF has three degrees of freedom (DOF). The posture of RT and RF is controlled using bending angles of thumb and finger from the user that are read by flex sensor. Based on the experimental results for people with healthy hand, the proposed SRF can assist object manipulation task in grasping, holding, and manipulating an object by using single hand when normally it only can be done by using two hands. From the experimental results on a person with healthy hand, the proposed of SRF can be employed as an assistive device for people with hemiparesis or hemiplegia. This device will enable people with diminished hand function work more independently

    Bibliometric analysis on Hand Gesture Controlled Robot

    Get PDF
    This paper discusses about the survey and bibliometric analysis of hand gesture-controlled robot using Scopus database in analyzing the research by area, influential authors, countries, institutions, and funding agencies. The 293 documents are extracted from the year 2016 till 6th March 2021 from the database. Bibliometric analysis is the statistical analysis of the research published as articles, conference papers, and reviews, which helps in understanding the impact of publication in the research domain globally. The visualization analysis is done with open-source tools namely GPS Visualizer, Gephi, VOS viewer, and ScienceScape. The visualization aids in a quick and clear understanding of the different perspective as mentioned above in a particular research domain search

    A Linear Actuator/Spring Steel-Driven Glove for Assisting Individuals with Activities of Daily Living

    Get PDF
    Over three million people in the U.S. suffer from forearm and hand disabilities. This can result from aging, neurological disorders (e.g., stroke), chronic disease (e.g., arthritis), and injuries. Injuries to hands comprise one-third of all work-related injuries worldwide. This can lead to difficulties with activities of daily living (ADL), where one needs to grasp, lift, and release objects in the household. There is a rise in demand for assistive orthoses and gloves that can allow many people to regain their grasping/releasing ability and, thereby, their independence. The main contribution of this thesis is developing an assistive glove with the actuating mechanism comprised of linear actuators and strips of spring steel to enable bidirectional motion of users\u27 fingers during ADL. The target group of people to use this proposed actuation system was chosen to those who had only diminished hand grasping capabilities. There are already many different gloves in the market. Each one uses different methods of actuation and force transmission, as well as different control methods. These gloves were analyzed by looking at their actuation mechanisms, control systems, and the benefits and downfalls of each one. Vigorous testing was conducted to choose the most effective components for the actuating mechanism. Then, an assistive glove was fabricated which included a control system box that could be easily worn on the forearm of the user. Tests were conducted on the glove to test its effectiveness when the user’s hand was completely passive using four to six participants. Motion capture, force, and electromyography (EMG) data were collected and from those, range of finger motion, maximum grasping capabilities, maximum force generation, and muscle activity were analyzed. The glove was shown to actuate the fingers enough to grasp objects with different sizes ranging in diameter from 40mm to 80mm, with maximum possible weight able to be picked up being around 1000g for the larger sizes. The glove could generate 4N-5N to the index and middle fingers and 10N to the thumb. EMG analysis showed that using the glove to pick up heavy objects caused a decrease in muscle activity of up to 80%. From this analysis, it was shown that the glove has potential to assist with ADL and would provide greater independence for those with diminished hand grasping abilities
    • …
    corecore