1,055 research outputs found

    Dependability Evaluation and Supervision in Thermal Power Plants

    Get PDF
    In order to improve the productivity and the consistency of its maintenance strategies, the industrial world is based on different techniques and tools developed to ensure safe operation and the supervision of production systems. In fact, dependability evaluation is crucial to controlling the risks associated with system failure, and for this reason, it is one of the fundamental steps in automated system design. In this paper, we present firstly the basic concepts for the study of dependability as well as functional systems analysis. Thus, we present the method SADT (Structured Analysis Design technique). Given the ineffectiveness of methods that are currently exploited are not appropriate because the level of complexity of such industrial systems, we propose in the first the Safe-SADT method which allows the explicit formalization of functional interaction, the identification of the characteristic values affecting complex system dependability, the quantification of RAMS parameters (Reliability, Availability, Maintainability, and Safety) for the system’s operational architecture. Secondly, a methodology for designing supervisory production systems has been presented and has been applied on an example of a SCADA (supervisory control and data acquisition) system of a thermal power plant. Finally, a model of operating safety and supervision of a production system is proposed

    Organizational alternatives for flexible manufacturing systems

    Get PDF
    There is an increasing importance of different productive architectures related to worker involvement in the decision making, where is given due attention to the intuitive capabilities and the human knowledge in the optimization and flexibilization of manufacturing processes. Thus having reference point architecture of a flexible manufacturing and assembling system existent at UNINOVA-CRI, we will present some exploratory hypothesis about applicability of the concept of hybridization and its repercussions on the definition of jobs, in those organizations and in the formation of working teams.flexibility; robotics; work organization; manufacturing industry

    The AQUAS ECSEL Project Aggregated Quality Assurance for Systems: Co-Engineering Inside and Across the Product Life Cycle

    Get PDF
    There is an ever-increasing complexity of the systems we engineer in modern society, which includes facing the convergence of the embedded world and the open world. This complexity creates increasing difficulty with providing assurance for factors including safety, security and performance. In such a context, the AQUAS project investigates the challenges arising from e.g., the inter-dependence of safety, security and performance of systems and aims at efficient solutions for the entire product life-cycle. The project builds on knowledge of partners gained in current or former EU projects and will demonstrate the newly developed methods and techniques for co-engineering across use cases spanning Aerospace, Medicine, Transport and Industrial Control.A special thanks to all the AQUAS consortium people that have worked on the AQUAS proposal on which this paper is based, especially to Charles Robinson (TRT), the proposal coordinator. The AQUAS project is funded from the ECSEL Joint Undertaking under grant agreement n 737475, and from National funding

    Agents enabling cyber-physical production systems

    Get PDF
    In order to be prepared for future challenges facing the industrial production domain, Cyber-Physical Production Systems (CPPS) consisting of intelligent entities which collaborate and exchange information globally are being proclaimed recently as part of Industrie 4.0. In this article the requirements of CPPS and abilities of agents as enabling technology are discussed. The applicability of agents for realizing CPPS is exemplarily shown based on three selected use cases with different requirements regarding real-time and dependability. The paper finally concludes with opportunities and open research issues that need to be faced in order to achieve agent-based CPPSs.info:eu-repo/semantics/publishedVersio

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine

    A systematized approach to obtain dependable controller specifications for hybrid plants

    Get PDF
    This chapter focuses on the problem that a designer of an automation system controller must solve related with the correct synchronization between different parts of the controller specification when this specification obeys a previously defined structure. If this synchronization is not done according to some rules, and taking some aspects into consideration, some dependability aspects concerning the desired behaviour for the system may not be accomplished. More specifically, this chapter will demonstrate a systematized approach that consists of using the GEMMA (Guide d`Etude des Modes de Marches et d`Arrêts) (Agence Nationale pour le Developpement de la Production Automatisée) [ADEPA], 1992) and the SFC (Sequential Function Chart) (International Electrotechnical Commission [IEC], 2002) formalisms for the structure and specification of all the system behaviour, considering all the stop states and functioning modes of the system. The synchronization of the models, corresponding to the controller functioning modes and the controller stop states, is shown in detail and a systematized approach for this synchronization is presented. For this the advantages and disadvantages of the vertical coordination and horizontal coordination proposed by the GEMMA formalism are discussed and a case study is presented to explain the proposed systematic approach. A complete safe controller specification is developed to control a hybrid plant. Also this chapter presents and discusses a case study that applies a global approach for considering all the automation systems emergency stop requirements. The definition of all the functioning modes and all the stop states of the automation system is also presented according the EN 418 (European Standard [EN], 1992) and EN 60204-1 (EN, 1997) standards. All the aspects related to the emergency stop are focused in a particular way. The proposed approach defines and guarantees the safety aspects of an automation system controller related to the emergency stop. For the controller structure the GEMMA methodology is used; for the controller entire specification the SFC is used and for the controller behaviour simulation the Automation Studio software (FAMIC, 2003) is used

    New lift safety architecture to meet PESSRAL requirements

    No full text
    ISBN : 978-1-4799-8171-7International audienceAs part of new lift control generation, we will analyze a transition case from an electrical/electro-mechanical components to a networked control system. The main element we focus on in the lift system is the safety chain. This paper will describe the analysis of dependability requirements (IEC 61508) for the next electronic lift control
    corecore