2,022 research outputs found

    Routing Applications in Newspaper Delivery

    Get PDF
    -The goal of this report is to give an up-to-date account of routing applications in the newspaper business. We describe the newspaper supply chain, and focus on the “last mile” distribution that has been advocated as an application of arc routing in the literature. A literature survey is provided, followed by a discussion of the arc routing model and its adequacy to newspaper applications. A more general and normally more adequate model: The Node, Edge, and Arc Routing Problem, is discussed. Characteristics of routing problems in carrier delivery are presented, together with a case study from the development of a web-based route design and revision system. Finally, summary, conclusions, and prospects for the future are given

    Nonpermutation flow line scheduling by ant colony optimization

    Get PDF
    A flow line is a conventional manufacturing system where all jobs must be processed on all machines with the same operation sequence. Line buffers allow nonpermutation flowshop scheduling and job sequences to be changed on different machines. A mixed-integer linear programming model for nonpermutation flowshop scheduling and the buffer requirement along with manufacturing implication is proposed. Ant colony optimization based heuristic is evaluated against Taillard's (1993) well-known flowshop benchmark instances, with 20 to 500 jobs to be processed on 5 to 20 machines (stages). Computation experiments show that the proposed algorithm is incumbent to the state-of-the-art ant colony optimization for flowshop with higher job to machine ratios, using the makespan as the optimization criterion

    The Multi-Depot Minimum Latency Problem with Inter-Depot Routes

    Get PDF
    The Minimum Latency Problem (MLP) is a class of routing problems that seeks to minimize the wait times (latencies) of a set of customers in a system. Similar to its counterparts in the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), the MLP is NP-hard. Unlike these other problem classes, however, the MLP is customer-oriented and thus has impactful potential for better serving customers in settings where they are the highest priority. While the VRP is very widely researched and applied to many industry settings to reduce travel times and costs for service-providers, the MLP is a more recent problem and does not have nearly the body of literature supporting it as found in the VRP. However, it is gaining significant attention recently because of its application to such areas as disaster relief logistics, which are a growing problem area in a global context and have potential for meaningful improvements that translate into reduced suffering and saved lives. An effective combination of MLP\u27s and route minimizing objectives can help relief agencies provide aid efficiently and within a manageable cost. To further the body of literature on the MLP and its applications to such settings, a new variant is introduced here called the Multi-Depot Minimum Latency Problem with Inter-Depot Routes (MDMLPI). This problem seeks to minimize the cumulative arrival times at all customers in a system being serviced by multiple vehicles and depots. Vehicles depart from one central depot and have the option of refilling their supply at a number of intermediate depots. While the equivalent problem has been studied using a VRP objective function, this is a new variant of the MLP. As such, a mathematical model is introduced along with several heuristics to provide the first solution approaches to solving it. Two objectives are considered in this work: minimizing latency, or arrival times at each customer, and minimizing weighted latency, which is the product of customer need and arrival time at that customer. The case of weighted latency carries additional significance as it may correspond to a larger number of customers at one location, thus adding emphasis to the speed with which they are serviced. Additionally, a discussion on fairness and application to disaster relief settings is maintained throughout. To reflect this, standard deviation among latencies is also evaluated as a measure of fairness in each of the solution approaches. Two heuristic approaches, as well as a second-phase adjustment to be applied to each, are introduced. The first is based on an auction policy in which customers bid to be the next stop on a vehicle\u27s tour. The second uses a procedure, referred to as an insertion technique, in which customers are inserted one-by-one into a partial routing solution such that each addition minimizes the (weighted) latency impact of that single customer. The second-phase modification takes the initial solutions achieved in the first two heuristics and considers the (weighted) latency impact of repositioning nodes one at a time. This is implemented to remove potential inefficient routing placements from the original solutions that can have compounding effects for all ensuing stops on the tour. Each of these is implemented on ten test instances. A nearest neighbor (greedy) policy and previous solutions to these instances with a VRP objective function are used as benchmarks. Both heuristics perform well in comparison to these benchmarks. Neither heuristic appears to perform clearly better than the other, although the auction policy achieves slightly better averages for the performance measures. When applying the second-phase adjustment, improvements are achieved and lead to even greater reductions in latency and standard deviation for both objectives. The value of these latency reductions is thoroughly demonstrated and a call for further research regarding customer-oriented objectives and evaluation of fairness in routing solutions is discussed. Finally, upon conclusion of the results presented in this work, several promising areas for future work and existing gaps in the literature are highlighted. As the body of literature surrounding the MLP is small yet growing, these areas constitute strong directions with important relevance to Operations Research, Humanitarian Logistics, Production Systems, and more

    Simheuristics to support efficient and sustainable freight transportation in smart city logistics

    Get PDF
    La logística urbana intel·ligent constitueix un factor crucial en la creació de sistemes de transport urbà eficients i sostenibles. Entre altres factors, aquests sistemes es centren en la incorporació de dades en temps real i en la creació de models de negoci col·laboratius en el transport urbà de mercaderies, considerant l’augment dels habitants en les ciutats, la creixent complexitat de les demandes dels clients i els mercats altament competitius. Això permet als que planifiquen el transport minimitzar els costos monetaris i ambientals del transport de mercaderies a les àrees metropolitanes. Molts problemes de presa de decisions en aquest context es poden formular com a problemes d’optimació combinatòria. Tot i que hi ha diferents enfocaments de resolució exacta per a trobar solucions òptimes a aquests problemes, la seva complexitat i grandària, a més de la necessitat de prendre decisions instantànies pel que fa a l’encaminament de vehicles, la programació o la situació d’instal·lacions, fa que aquestes metodologies no s’apliquin a la pràctica. A causa de la seva capacitat per a trobar solucions pseudoòptimes en gairebé temps real, els algorismes metaheurístics reben una atenció creixent dels investigadors i professionals com a alternatives eficients i fiables per a resoldre nombrosos problemes d’optimació en la creació de la logística de les ciutats intel·ligents. Malgrat el seu èxit, les tècniques metaheurístiques tradicionals no representen plenament la complexitat dels sistemes més realistes. En assumir entrades (inputs) i restriccions de problemes deterministes, la incertesa i el dinamisme experimentats en els escenaris de transport urbà queden sense explicar. Els algorismes simheurístics persegueixen superar aquests inconvenients mitjançant la integració de qualsevol tipus de simulació en processos metaheurístics per a explicar la incertesa inherent a la majoria de les aplicacions de la vida real. Aquesta tesi defineix i investiga l’ús d’algorismes simheurístics com el mètode més adequat per a resoldre problemes d’optimació derivats de la logística de les ciutats. Alguns algorismes simheurístics s’apliquen a una sèrie de problemes complexos, com la recollida de residus urbans, els problemes de disseny de la cadena de subministrament integrada i els models de transport innovadors relacionats amb la col·laboració horitzontal entre els socis de la cadena de subministrament. A més de les discussions metodològiques i la comparació d’algorismes desenvolupats amb els referents de la bibliografia acadèmica, es mostra l’aplicabilitat i l’eficiència dels algorismes simheurístics en diferents casos de gran escala.Las actividades de logística en ciudades inteligentes constituyen un factor crucial en la creación de sistemas de transporte urbano eficientes y sostenibles. Entre otros factores, estos sistemas se centran en la incorporación de datos en tiempo real y la creación de modelos empresariales colaborativos en el transporte urbano de mercancías, al tiempo que consideran el aumento del número de habitantes en las ciudades, la creciente complejidad de las demandas de los clientes y los mercados altamente competitivos. Esto permite minimizar los costes monetarios y ambientales del transporte de mercancías en las áreas metropolitanas. Muchos de los problemas de toma de decisiones en este contexto se pueden formular como problemas de optimización combinatoria. Si bien existen diferentes enfoques de resolución exacta para encontrar soluciones óptimas a tales problemas, su complejidad y tamaño, además de la necesidad de tomar decisiones instantáneas con respecto al enrutamiento, la programación o la ubicación de las instalaciones, hacen que dichas metodologías sean inaplicables en la práctica. Debido a su capacidad para encontrar soluciones pseudoóptimas casi en tiempo real, los algoritmos metaheurísticos reciben cada vez más atención por parte de investigadores y profesionales como alternativas eficientes y fiables para resolver numerosos problemas de optimización en la creación de la logística de ciudades inteligentes. A pesar de su éxito, las técnicas metaheurísticas tradicionales no representan completamente la complejidad de los sistemas más realistas. Al asumir insumos y restricciones de problemas deterministas, se ignora la incertidumbre y el dinamismo experimentados en los escenarios de transporte urbano. Los algoritmos simheurísticos persiguen superar estos inconvenientes integrando cualquier tipo de simulación en procesos metaheurísticos con el fin de considerar la incertidumbre inherente en la mayoría de las aplicaciones de la vida real. Esta tesis define e investiga el uso de algoritmos simheurísticos como método adecuado para resolver problemas de optimización que surgen en la logística de ciudades inteligentes. Se aplican algoritmos simheurísticos a una variedad de problemas complejos, incluyendo la recolección de residuos urbanos, problemas de diseño de la cadena de suministro integrada y modelos de transporte innovadores relacionados con la colaboración horizontal entre los socios de la cadena de suministro. Además de las discusiones metodológicas y la comparación de los algoritmos desarrollados con los de referencia de la bibliografía académica, se muestra la aplicabilidad y la eficiencia de los algoritmos simheurísticos en diferentes estudios de casos a gran escala.Smart city logistics are a crucial factor in the creation of efficient and sustainable urban transportation systems. Among other factors, they focus on incorporating real-time data and creating collaborative business models in urban freight transportation concepts, whilst also considering rising urban population numbers, increasingly complex customer demands, and highly competitive markets. This allows transportation planners to minimize the monetary and environmental costs of freight transportation in metropolitan areas. Many decision-making problems faced in this context can be formulated as combinatorial optimization problems. While different exact solving approaches exist to find optimal solutions to such problems, their complexity and size, in addition to the need for instantaneous decision-making regarding vehicle routing, scheduling, or facility location, make such methodologies inapplicable in practice. Due to their ability to find pseudo-optimal solutions in almost real time, metaheuristic algorithms have received increasing attention from researchers and practitioners as efficient and reliable alternatives in solving numerous optimization problems in the creation of smart city logistics. Despite their success, traditional metaheuristic techniques fail to fully represent the complexity of most realistic systems. By assuming deterministic problem inputs and constraints, the uncertainty and dynamism experienced in urban transportation scenarios are left unaccounted for. Simheuristic frameworks try to overcome these drawbacks by integrating any type of simulation into metaheuristic-driven processes to account for the inherent uncertainty in most real-life applications. This thesis defines and investigates the use of simheuristics as a method of first resort for solving optimization problems arising in smart city logistics concepts. Simheuristic algorithms are applied to a range of complex problem settings including urban waste collection, integrated supply chain design, and innovative transportation models related to horizontal collaboration among supply chain partners. In addition to methodological discussions and the comparison of developed algorithms to state-of-the-art benchmarks found in the academic literature, the applicability and efficiency of simheuristic frameworks in different large-scaled case studies are shown

    Hybrid Search method for Zermelo's navigation problem

    Full text link
    In this paper, we present a novel algorithm called the Hybrid Search algorithm that integrates the Zermelo's Navigation Initial Value Problem with the Ferraro-Mart\'in de Diego-Almagro algorithm to find the optimal route for a vessel to reach its destination. Our algorithm is designed to work in both Euclidean and spherical spaces and utilizes a heuristic that allows the vessel to move forward while remaining within a predetermined search cone centred around the destination. This approach not only improves efficiency but also includes obstacle avoidance, making it well-suited for real-world applications. We evaluate the performance of the Hybrid Search algorithm on synthetic vector fields and real ocean currents data, demonstrating its effectiveness and performance.Comment: 25 pages, 5 figure

    Dynamic vehicle routing problems: Three decades and counting

    Get PDF
    Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing a real explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the nature of the dynamic element, (10) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit linkages of methodology to technological advances and analysis of worst case or average case performance of heuristics.© 2015 Wiley Periodicals, Inc

    Vehicle routing and location routing with intermediate stops:A review

    Get PDF

    Constrained Navigation with Mandatory Waypoints in Uncertain Environment

    No full text
    Also available online at http://www.ijisce.org/admin/upload/946980IJISCE-Constrained%20Navigation%20with%20Mandatory%20Waypoints%20in%20Uncertain%20Environment.pdfInternational audienceThis paper presents a hybrid solving method for vehicle path planning problems. As part of the vehicle system architecture (vetronic), planning is dynamic and has to be activated on-line, which requires response times to be compatible with mission execution. The proposed approach combines constraint solving techniques with an Ant Colony Optimization (ACO). The hybridization relies on a static probing technique which builds up a search strategy using a distance information between problem variables and a heuristic solution. Various forms of this approach are compared and evaluated on real world scenarios. Preliminary results exhibit response times close to vehicle control requirements, on realistic problem instances

    Airline planning benchmark problems—Part II : passenger groups, utility and demand allocation

    Get PDF
    This paper is the second of two papers entitled “Airline Planning Benchmark Problems”, aimed at developing benchmark data that can be used to stimulate innovation in airline planning, in particular, in flight schedule design and fleet assignment. The former has, to date, been under-represented in the optimisation literature, due in part to the difficulty of obtaining data that adequately reflects passenger choice, and hence schedule revenue. Revenue models in airline planning optimisation only roughly approximate the passenger decision process. However, there is a growing body of literature giving empirical insights into airline passenger choice. Here we propose a new paradigm for passenger modelling, that enriches our representation of passenger revenue, in a form designed to be useful for optimisation. We divide the market demand into market segments, or passenger groups, according to characteristics that differentiate behaviour in terms of airline product selection. Each passenger group has an origin, destination, size (number of passengers), departure time window, and departure time utility curve, indicating willingness to pay for departure in time sub-windows. Taking as input market demand for each origin–destination pair, we describe a process by which we construct realistic passenger group data, based on the analysis of empirical airline data collected by our industry partner. We give the results of that analysis, and describe 33 benchmark instances produced
    corecore