

1

Authors’ accepted manuscript

Rossi, A., & Lanzetta, M. (2013). Nonpermutation flow line scheduling by ant colony optimization. AI

EDAM, 27(4), 349-357. https://doi.org/10.1017/S0890060413000176

Non-permutation Flow Line Scheduling by Ant

Colony Optimization

Andrea ROSSI, Michele LANZETTA

Department of Civil and Industrial Engineering

University of Pisa, Italy

Corresponding author:

Prof. Michele Lanzetta

Department of Civil and Industrial Engineering

University of Pisa

Largo Lazzarino

56122 Pisa, Italy

mob.: +39 320 4212172

tel.: +39 050 2218122

fax: +39 050 2218065

Email: lanzetta@unipi.it

http://www.ing.unipi.it/lanzetta

Short title:

NP Flowshop scheduling by ACO

Manuscript pages: 26

Number of Figures: 4

Number of Tables: 3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80250315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S0890060413000176
mailto:lanzetta@unipi.it
http://www.ing.unipi.it/lanzetta

2

Non-permutation Flow Line Scheduling by Ant

Colony Optimization

Abstract: A flow line is a conventional manufacturing system where all jobs must be processed on all machines

with the same operation sequence. Line buffers allow non-permutation flowshop scheduling (NPFS) and job

sequences to be changed on different machines. A mixed-integer linear programming model for non-permutation

flowshop scheduling and the buffer requirement along with manufacturing implication is proposed. Ant Colony

Optimization (ACO) based heuristic is evaluated against Taillard's (1993) well-known flowshop benchmark

instances, with 20 to 500 jobs to be processed on 5 to 20 machines (stages). Computation experiments show that

the proposed algorithm is incumbent to the state-of-the-art ACO for flowshop with higher job to machine ratios,

using the makespan as the optimization criterion.

Keywords: manufacturing system; scheduling; non-permutation flowshop (NPFS); ant colony

system (ACS); benchmark problems.

3

Introduction

A flow line is a conventional manufacturing system where all jobs must be processed on all

machines with the same operation sequence (Figure 1). Jobs are processed only once by each

machine, as opposed to reentrant flow lines.

Figure 1. Two flow lines, with and without buffers. Permutation (PFS) and non-permutation flowshop (NPFS)

are compared. In both cases, jobs see machines (routing) in the same sequence (flowshop). In non-permutation

flowshop, buffers allow changes (permutations) of job sequences on subsequent machines.

Figure 1 about here

Examples of flow lines include transfer lines, assembly lines, chemical plants, logistics, and

many more (Rossi et al., 2012); the problem is scalable in many senses: a job can be a part,

the whole product or a batch; machines (or stages) can be a single operating unit, a cell, a line,

or their combinations; time is measured by non dimensional units and can indicate seconds,

hours, days etc.

Flow line is referred to as the physical layout; flowshop is the mathematical model, as defined

in the next chapter.

The flowshop scheduling problem occurs whenever it is necessary to schedule a set of n jobs

on m machines so that each job visits all machines in the same order.

In non-permutation flowshop (NPFS) scheduling, the most general flowshop case, which is

examined here, the order in which all m machines are visited by the n jobs changes, allowing

job sequences to be different on subsequent machines.

In a permutation flowshop (PFS) the sequence jobs visit machines (routing) is the same for all

jobs, as for non-permutation.

4

The sequence of jobs on all machines is the same in permutation flowshop; instead in non-

permutation flowshop the sequence of jobs can be different on subsequent machines.

Figure 2. Flow line (clockwise from top left) with m machines (or stages) M (bright red) and different examples

of buffer configurations (dark blue) to allow job sequence permutation between machines.

Figure 2 about here

To allow non-permutation, buffers between, on board or shared among machines are

necessary. Examples of buffers are shown in the U-shaped flow line of Figure 2: input and

output buffers at the two ends and between machines, cells, lines or plants; they can be

shared, in the form of an automatic warehouse or an open space. To allow permutations, jobs

travel through buffers between machines. The flow line in the pictorial example itself is made

of flow lines: a transfer line and a flexible cell.

The buffer requirement has also been formally included in the proposed model.

If buffers are not present, either the blocking or the no-wait condition should be applied to the

algorithm to achieve a feasible schedule. In the former case, a job completed on one machine

may block that machine until the next downstream machine is free; in the latter case, the next

machine must be available before a job leaves the previous one.

As for the problem complexity, there are (n!)m different schedules for ordering jobs on

machines in non-permutation flowshop; the number of schedules for permutation flowshop

reduces to n!.

In this work transport and setup times are neglected. This hypothesis often applies when pallet

changing systems on machines and fast transport and buffer loading/unloading devices are

present. The processing time can be increased by standard transport and/or setup time, if it is

relatively small with respect to the processing time; a transport time to and from the

5

warehouse of hours can be considered negligible if the processing time is in the order of days,

like in the case of welding, heat treatments, painting and inspection of large and bulky parts.

Operations and transport can be automated, like in computer integrated manufacturing, or

manual.

Manual operations can also be represented, using standard times.

Examples of scheduling optimization targets are: minimizing total completion time

(makespan) or weighted tardiness, balancing mean flow time, and meeting due date. The

problem examined here is referred to as Fm|Bi=+|Cmax using Graham’s notation, where Fm

stands for flowshop with m machines, Bi=+ denotes that buffers with infinite capacity are

present, allowing non-permutation schedules, and Cmax denotes the makespan minimization as

the optimization criterion. Minimizing the makespan is one of the most common criteria in

the literature: lower total completion time is associated with less idle time, higher machine

utilization and efficiency.

Some authors generate random problems or use data taken from realistic cases to test the

performance of their proposed algorithms. Demanding benchmark problems allow comparing

objectively and quantitatively the performance of different algorithms, also belonging to

different classes, e.g. heuristics and metaheuristics. Among the most used flowshop

benchmarks is the set by Taillard (1993) considered in this work, which includes small,

medium and large sets as opposed to Demirkol, whose dataset is limited to medium size. Non-

permutation bounds from several authors are available in http://www.mathematik.uni-

osnabrueck.de/research/OR/fsbuffer/taillard2.txt, mirrored in

http://www.ing.unipi.it/lanzetta/flowshop/taillard2.txt and have been included in current

analysis.

Biologically inspired general-purpose optimization algorithms are capable to deal with large

job-size problems and with the exponential increase in the solution search space with the

http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt
http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt
http://www.ing.unipi.it/lanzetta/flowshop/taillard2.txt

6

number of machines and jobs. Examples of metaheuristics include taboo search, simulated

annealing, genetic algorithms (Elbeltagi et al., 2005) and memetic algorithms (Amaya et al.,

2012). Despite their successful performance, in the extensive reviews by Ruiz and Maroto

(2005) and by Ribas et al. (2010) ant colony or pheromone-based systems are not present. Ant

colony systems, a subset class of Ant Colony Optimization (ACO), use artificial or swarm

intelligence by exploiting the experience of an ant colony as a model of self-organization in

co-operative food retrieval (Wang et al., 2003).

ACO has been selected among metaheuristics because of its ability to build constructively

arbitrary permutations of job sequences (NPFS schedules) by two inverse mechanisms:

negative and positive pheromone deposition, respectively through the local update rule and

off-line pheromone update rule, detailed in the ACO description. Diversification by the local

update rule pushes towards permutated schedules and is the core mechanism to generate

natively non-permutation solutions.

Standard ACO by Bonabeau et al. (1999) and disjunctive graph model inspired by Rossi and

Dini (2007) are combined in this paper. It seems that the only Ant Colony algorithm applied

to non-permutation flowshop scheduling is by Sadjadi et al. (2008), which provides the

relative average performance on the Taillard’s benchmarks. Other non-permutation flowshop

benchmarks from Demirkol have been considered by Ying and Lin (2007) and by the authors

(Rossi & Lanzetta, 2013a, 2013b).

Sadjadi et al. applied the standard ACO specifications from Bonabeau et al., except for the

diversification mechanism. The other main difference is on the selection of the initial

population, which is determined by improving a permutation solution found by heuristics

using local search.

Other approaches to the permutation flowshop problem tested on benchmarks based on Ant

Colony Systems by Rajendran and Ziegler (2004), Min-Max Ant Systems by Stuetzle (1998),

7

the state-of-the-art based on Tabu Search by Brucker et al. (2003), and Genetic Algorithms by

Färber and Coves Moreno (2006) are also compared with the proposed ACO.

Non-permutation flowshop scheduling (NPFS) problem

The mixed-integer linear programming (MILP) model for the NPFS problem is the following:

Parameters

p i j = processing time of job i on machine j

BigM = a sufficiently large positive value

Decision variables

Z i l j = 1, if job i is assigned to sequence position l on machine j; 0 otherwise

Dependent variables

S l j = starting time of job in sequence position l on machine j

The subscript symbols are: i and i’ for jobs, i, i’ = 1,2,. . .,n; l and l’ for the sequence

positions, l, l’ = 1,2,. . .,n; j for machines, j = 1,2,. . .,m; n and m are the number of jobs and

machines, respectively.

Objective function

max Min C

Subject to the following constraints:

8

1
1

n

i

jliZ
mj

nl

,..,1

,..,1

(1)

1
1

n

l

jliZ
mj

ni

,..,1

,..,1

(2)

)1(11

1

1

 jji

n

i

jij SZpS 1,..,1 mj

(3)

)1(

1

 jljli

n

i

jijl SZpS mj

ni

,..,1

1,..,1

(4)

)1(')1(')2(jljljljlijli SpSZZBigM 1,..,1

,..,1',,

mj

nlli

(5)

2,...,2

,:',,..,1, ''11

nml

ZpSZSSiinii jlijijjlijlj

mj ,..,2 (6)

Constraint (1) ensures that each job is assigned to exactly one position of the job sequence on

every machine. Constraint (2) states that each position of the job sequence processes exactly

one job on every machine. Constraint (3) denotes the starting times of the first job on every

machine. Constraint (4) insures that the (l + 1)th job in the sequence of machine j does not

start on machine j until the lth job in the sequence of machine j has completed. Constraint (5)

insures that the starting time of job i which is assigned to position l in the sequence on

machine j + 1 is not earlier than its finish on machine j. Constraint (6) ensures that the buffer

size is subject to:

Lemma

 The flowshop scheduling with n jobs and m machines is Bi=+ if and only if the

interoperational buffer size for machine j (2jm) is at least (n-2).

9

The buffer size for machine j=1 and j=m+1 is n (i.e. the input and output buffers contain up to

n jobs).

 In the worst case, only one blocking with (n-1) jobs waiting occurs. Let j (2jm) be the

blocked machine. If the last job on machine (j-1) is completed, no blocking occurs because (n-

1) jobs have been already processed on machine (j-1). Hence (n-2) jobs wait in the

interoperational buffer between machines (j-1) and j

The optimization problem (1)-(6) can also be represented by a disjunctive graph (Figure 3):

DG = (N, A, Ej , W) (7)

where N is the set of operations, plus the dummy start and finishing operations represented by

the symbols 0 and *; A is the set of conjunctive arcs (directed arrows) between every pair of

operations on a job routing; Ej is the set of disjunctive arcs between pairs of operations at

stage j; W is the set of weights (processing times) on nodes.

Figure 3. Disjunctive graph (digraph) for flowshop scheduling, with processing times p i j at nodes O i j for n jobs

on m machines.

Figure 3 about here

Ant Colony Optimization for NPFS

The pheromone trail is the basic mechanism of communication among real ants. It is

mimicked by ACO by an iterative method (in epochs) able of finding the shortest path

10

connecting source 0 (nest) and destination * (food) on a weighted graph (Figure 3), which

represents the optimization problem.

The ant runs the nest-food path by a probabilistic selection of nodes according to the

following mechanisms: i) intensification to select a node in the vicinity of the current best

paths; ii) diversification in order to produce promising alternative paths.

The proposed ACO follows the standard recommendation for applications to scheduling

problems, as opposed to the other implementations available in the literature for the flowshop

problem introduced above.

The proposed digraph approach builds natively non-permutation sequences by the path

generation mechanisms. In this stochastic process, each artificial ant selects probabilistically

the next node (move selection) according to the amount of pheromone on the connecting arc

(learned desirability).

The path associated with each ant starts from 0, follows routing arcs, directs disjunctive arcs

and ends in *. By design, non-permutation schedules are achieved by directing arcs

differently at each stage. Cmax is evaluated from W (7). At each epoch, as soon as all the paths

of the ants in the colony are generated, the best ant (lowest Cmax) deposits on its arcs an

amount of pheromone proportional to the path length (pheromone updating). A pheromone

decay routine is also performed to prevent stagnation in local optima solutions (evaporation

=0.12).

The two inverse mechanisms are achieved by negative and positive pheromone deposition,

respectively through the local update rule and off-line pheromone update rule. Diversification

by the local update rule pushes towards permutated schedules and is the core mechanism to

generate natively non-permutation solutions.

This is a constructive way to generate a schedule. A complete solution is generated forward

by a partial solution using the stigmergy of the colony, i.e. the selection of the more

11

promising disjunctive arcs where a higher amount of pheromone is laid. The main goal of the

ACO mechanism is to generate optimal solutions by constructive schedules. The concept is

similar to “divide et impera”, because the stigmergy progressively concentrates the search in a

low number of very small promising regions. Differently to local search, this fact makes the

algorithm intrinsically parallel and may take advantage of modern processors.

Path generation

By the pheromone mechanism ants may select arbitrary path, consequently the resulting

scheduling sequences (ant tours) are different permutations (non-permutation approach).

Random initial solution are generated and iteratively improved at each epoch by the ant

behavior. By this natively constructive approach we are able to assess the net performance of

the algorithm.

An ant a to generate an acyclic conjunctive graph with weights on the conjunctive arcs, i.e.

feasible schedule Sa, visit every operation on the pheromone-learning model DG (7) one and

only one time with a complexity of O(mn) in order to transform the digraph in a feasible

schedule. Path generation is a stochastic process where an ant starts from the dummy 0 and

selects the next node from the set of allowed operations. It uses the following transition

probability rule as a function of both the heuristic function of desirability, (termed visibility

function), and the amount of pheromone on the edge (Oi j , J), with J AL, of the

pheromone trail:

0
,

0
,

if

if)(η)(τminarg

qqJ

qq,, ji'jiji'ji

ji

OOOO
OZ AL

 (8)

The non-negative parameters and represent the intensity of respectively, the amount of

pheromone and the visibility included in the transition probability function. The non-negative

12

parameter q0 is the cutting exploration, a mechanism that restricts the selection of the next

operation from the candidate list AL. If a random number q is higher than the cutting

exploration parameter q0 (0 q0 1), the candidate operation is selected by examining the

probability of all candidate operations that are as much desirable as higher visibility and

pheromone amount are; otherwise the most desirable operation is selected, i.e. the arc with the

highest amount of pheromone and the highest visibility.

The role of cutting exploration is that of explicitly split the search space in order to achieve a

compromise between the probabilistic mechanism adopted for q q0 or the further

intensification mechanism of exploring near the best path so far, which corresponds to an

exploitation of the knowledge available about the problem. Cutting exploration by tuning

parameter q0 near 1 allows the activity of the system to concentrate on the best solutions

(exploitation activity) instead of letting it explore constantly (exploration activity, achieved by

tuning parameter q0 near 0). In fact, when q0 is close to 0, all the candidate solutions are

examined in probability, whereas when q0 is close to 1, only the local optimal solution is

selected by equation (8). In this paper, a freezing function is considered, which is similar to

the one proposed by Kumar et al. (2003). This function progressively freezes the system by

tuning q0 from 0 to 1, in order to favor exploration in the initial part of the algorithm and then

favor exploitation by means of the following expression:

)_(ln

)(ln
0

epochsn

epoch
q (9)

where epoch is the current iteration and n_epochs is the total number of iterations of the ant

colony system.

13

The heuristic function of desirability is a very critical component of ant colony systems.

Generally it is implemented by dispatching rules. A comparison among a number of

dispatching rules to implement the visibility function has been performed by Blum and

Sampels (2004). In this paper the earliest starting time (EST) rule is used, the best one

according to Blum and Sampels.

Local update rule

The local update rule is applied to favor the exploration of not visited nodes by other ants of

the colony. This rule imposes to the ant that has selected a candidate operation J, of laying on

the connecting arc (Oi’j , J) the following negative amount of pheromone:

(Oi’j, J) = (1-) (Oi’j, J) + 0 (10)

The local update rule is a convex combination of parameters equal to the evaporation

coefficient; in this case the convex combination has points (Oi j, J) and 0. The amount of

pheromone that remains on a selected edge diminishes because it ranges between the previous

value (Oi’j, J) and the initial value 0. As a consequence, the effect of this rule is making

nodes less and less attractive as they are visited by ants, indirectly favoring the exploration of

not visited nodes. This is a basic diversification mechanism because it pushes the next ants to

generate alternative paths.

14

Off-line pheromone update rule

This feature arises when a positive amount of pheromone has to be deposited. The ant that

detects the best path at each epoch is termed best-epoch ant (Sbe). In order to direct the

exploration of the best nest-food path by the entire colony, an off-line update rule of

pheromone is performed. At the end of each epoch, the best-epoch ant Sbe deposits on all

paths of the acyclic graph generated a further amount of pheromone, proportional to the

following convex combinations of points (Oi j, J) and makespan(Sbe)
-1. This produces a

search intensification by other ants of the colony in the vicinity of the best solution:

’(Oi j , J) = (1-) (Oi j , J) + makespan(Sbe)
-1, (Oi j , J) Sbe (11)

= (1-) (Oi j , J), otherwise

As for the local update rule, the amount of pheromone ’(Oi j, J) that remains on the selected

edge ranges between the previous value, (Oi j, J), and a value closer to the optimum:

makespan(Sbe)
-1. A routine of pheromone decay on pheromone trails is performed on other

arcs of the digraph, thus indicating that a path rarely used probably does not lead to optimal

solutions.

Pseudo code

The algorithm has been implemented in C++ according to the following scheme.

Algorithm. High-level description of Ant Colony System for Native Non-Permutation

Flowshop Scheduling

15

Input: a weighted digraph WDG=(N, A, Ej, WN, WE)

// Initialization

for each disjunctive arc (Oi’j’,Oi j) of EA deposit a small constant amount of pheromone

WE(Oi’j’,Oi j) = (0, 0) where

1

1

,..,10)(max

n

i

ijmj Otmn

epoch 1; not_improve 0;

// Main Loop

while(not_improve < stability_condition) do

// Epoch Loop

for each ant a, a=1 to population size do

// Path Generation

Sa ;

1. O Oi j i=1,..,n, j=1,..,m;

2. Initialization of Candidate Nodes: ALw O;

for each w =1 to nm do

3. Initialization of Feasible Moves (i.e. the disjunctive arcs connected to

operation of ALw);

4. Move Selection: select a feasible move (Oi’j, Oi j) of EA where Oi’j is the

last operation in the queue of machine m (Oi’j = dummy 0, if m =1) by

means of the transition probability rules (8); directing the related

disjunctive arc (Oi’j =dummy 0, if m =1);

5. Arc Removing: remove all the disjunctive connected to Oi’j (i.e. no other

operation can be immediately subsequent to Oi’j in the machine

sequence);

16

6. Computing length: move t(Oi j)WN from the selected node to the

directed; also, move t(Oi j) on (Oi (j-1), O i j) A;

7. Path length evaluation: the longest path between that one connected to

the directed arc and that one connected to the arc of the job routing is

placed as a mark of the scheduled operation;

8. Local Updating: apply the local update rule (10) to the arcs (Oi’j’, Oi j)

WE;

9. Update Allowed: remove the scheduled operation to the allowed list,

ALw ALw Oi j;

end for

10. Directing the remaining disjunctive arcs. These arcs are connected to

dummy *.

11. Local Search: Apply local search with neighbor structure of Nowicki and

Smutnicki (1996) to Sa;

12. Best Evaluation: if (makespan(Sa)<makespan(Sbe))

then (makespan(Sbe) makespan(Sa) and Sbe Sa)

end if

end for

Global Updating: Apply the global update rule (11);

Best Ant Evaluation: if (makespan(Sbe)<makespan(S*))

then ((makespan(S*) makespan(Sbe); S* Sbe and

epoch0) and not_improve 0;

else epoch++ and not_improve++;

end if

end while

17

Output: S*

Figure 4. Performance of ACO systems in non-permutation and in permutation (PFS) configuration on the

Taillard’s benchmarks with respect to permutation upper bounds from Stuetzle (1998) [S], Rajendran and

Ziegler (2004) [RZ] and Sadjadi et al. (2008) [SBZ].

Figure 4 about here

Computation experiments

Benchmark instances are arrays bnm. The nm operations of each job on all m machines are

represented by their processing times ordered by routing. Taillard’s benchmarks include 12

sets of 10 instances for job numbers i=20, 50, 100, 200, 500 and machine numbers j=5, 10,

20. Each benchmark instance k includes a non trivial lower (LB i j k) and upper bound

(UB i j k). The lower (upper) bound is the maximum (minimum) known theoretical minimum

(maximum) attainable makespan. The upper bound can be reduced by new improved

solutions. If it coincides with the lower bound, the optimum for benchmark bi j k has been

reached.

Metrics for algorithm performance are the individual relative distances from the upper bound

of benchmark instances bnm or the mean relative error in each set (i,j):

10

1
10

1

k kji

kjibestbest
ji

UB

UBC
MRE

kji

 (12)

10

1
10

1

k kji

kjiavgavg
ji

UB

UBC
MRE

kji (13)

18

where the best and the average solutions for each set (i,j) of 10 benchmark instances

k=1,…,10 are respectively
kjibestC and

kjiavgC .

The proposed NNP-ACO has been run 10 times with the (selected) parameters in Table 1 on 3

GHz 32 bit Intel® Pentium® IV based PCs with 2 GB RAM.

Table 1. Preliminarily tested and selected parameters for the proposed NNP-ACO.

Table 1 about here

The main ACO parameters described are summarized in Table 1, have been derived from the

job shop application in Rossi and Dini (2007) and have been explored in preliminary tests

with the values indicated for population_size, , , and .

As for the population size, fewer ants have been used vs. Rajendran and Ziegler (40 ants) and

vs. Sadjadi et al. (1000 ants) in order to reduce the processing time. Consequently, the

evaporation rate has been reduced vs. Sadjadi et al. (=0.9) to reduce the effect of random

search.

The stop criterion from Sadjadi et al. is a fixed computation time, instead we use a stability

condition, corresponding to 3000 epochs with error reduction of at least one processing time

unit.

Results

The average performance (MREavg) of the proposed ACO are compared in Figure 4 within the

same class of problems with Sadjadi et al., Rajendran and Ziegler and Stuetzle, which do not

provide results for datasets of 200 and 500 jobs.

19

Although results are discrete, a graphical representation with connecting lines has been

preferred to show the separation among the performance of different algorithms.

The differences of makespan of the proposed algorithms of the respective authors have been

calculated from the upper bound of the permutation flowshop benchmark. Because the

detailed values are not available, the proposed algorithm has been compared with the (slightly

higher) permutation upper bound for performance assessment.

A lower value of MREavg means a better performance (lower makespan) of the proposed

algorithm compared to the state-of-the-art. A negative value represents a new (lower) upper

bound.

For comparison within the same class of algorithms (ACO), MREavg has been conservatively

calculated with respect to the original permutation upper bounds from Taillard, because most

available results are for permutation flowshop, except Sadjadi et al.

The MREavg of the proposed ACO ranges between +0.035 and +0.159, while Sadjadi et al. is

between –0.075 and +1.12, Rajendran and Ziegler is between +0.72 and +1.86 and Stuetzle is

between +0.196 and +2.475 (not shown). This also means that the MREavg of the proposed

ACO is upper limited to 16% as opposed to 112% from Sadjadi et al. The algorithms in

Rajendran and Ziegler, and Stuetzle show the worst performance overall. Out of scale MREavg

values (available on the respective articles) have not been represented to achieve a higher

visualization detail on the best results. The non-permutation algorithm from Sadjadi et al.

behaves clearly better than with the permutation (PFS) constraint. The algorithm from Sadjadi

et al. has the best performance with 20 jobs or with 5 machines (small problems). Although

the performance on large instances (200 and 500 jobs) are not available from these authors, a

degradation of performance with benchmark size (job and machine number) is clearly visible

on medium instances. This is enhanced by the steeper trend line for the better (non-

permutation) algorithm from Sadjadi et al.

20

The upper bounds for the makespan of all 12 sets of 10 benchmark instances in non-

permutation flowshop configuration from various authors and methods, averaged are reported

in Table 2. The MREavg found by the state-of-the-art from Brucker et al. and Färber and Coves

Moreno, based on Tabu Search and Genetic Algorithms respectively is compared with the

proposed ACO. The better results (highlighted) have been obtained for higher machine

numbers and job numbers. Results are not available from Brucker et al. and Färber and Coves

Moreno for the 40 largest instances, where the proposed ACO becomes the best known

solution.

Here the non-permutation upper bounds have been used for comparison between the proposed

NNP-ACO and the state-of-the-art of metaheuristics in general, using Taillard’s benchmarks.

Table 2. Performance assessment in non-permutation (NPFS) configuration.
kjibestC is the best makespan

obtained by the proposed ACO in a single run or otherwise defined by Brucker et al. [B] and Färber and Coves

Moreno [FCM].

* 300 epochs.

** from http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt

Table 2 about here

The last 4 sets of instances are one order of magnitude more time consuming compared to the

other instances (200 vs. 10 min.) because of their large size. Other methods use a stop

criterion based on a fixed number of epochs or computation time. Instead we use a stability

condition (of 3000 epochs with an improvement of at least one processing time unit), which

has been reduced by one order of magnitude and still results in a processing time one order of

magnitude higher. By the stability condition instead of a stop criterion, convergence is

assured regardless of the epoch number.

http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt

21

Discussion

As shown, the proposed algorithm becomes the state-of-the-art on the benchmarks used, with

the ACO approach, particularly on larger instances.

Possible reasons of the better performance compared to Sadjadi et al. as a function of the

benchmark size are inferred:

1. the ACO implementation by Sadjadi et al. has a higher colony size and lower epoch

number, which do not allow sufficient differentiation despite the high evaporation,

particularly on larger instances;

2. Sadjadi et al. find an initial permutation schedule (pheromone trails) by the NEH heuristic

(Nawaz et al., 1983). Initial good solutions provide good final solution for small sized

benchmarks. For larger benchmarks the NEH heuristic suffers some performance

decrease. Consequently, ACO search can be trapped in local optima;

3. Sadjadi et al. start from a solution of the permutation problem and find an NPFS solution

by a local search, which causes a further performance decrease.

The proposed ACO has also been compared with permutation upper bounds from Rajendran

and Ziegler and still provides better performance, despite the higher problem complexity of

NPFS (n!m compared to n!).

A regression analysis has been carried out to assess the effect of the machine and job number

on the makespan of the best scheduling found by the proposed ACO. A correlation has been

found between MREavg and machine number at constant job number. This is also qualitatively

shown by the periodic MREavg increase in Figure 4. The same trend also shows the relative

independence of the algorithm performance on the job number.

A stronger correlation has been found between computation time and both job number and

machine number. The computation time with the proposed ACO, which has not been

optimized in this work, is one order of magnitude higher than Sadjadi.

22

Compared to non-permutation metaheuristics, new upper bounds have been proposed on

larger instances and there is still margin of improvement, by parameters optimization, on

others.

A summary of benefits and drawbacks of the proposed approach is available in Table 3

Table 3. Summary of benefits and drawbacks of the proposed approach.

Table 3 about here

Conclusions

A mathematical model of the flow line scheduling problem with unlimited buffers has been

proposed. The few existing approaches have been compared using well-known benchmarks

on a wide size spectrum available from Taillard (1993).

The NP-hardness has been tackled by metaheuristics and ACO have been selected. The

proposed ACO is natively non-permutation as opposed to other authors who apply a local

search to permutation solutions. Natively means that initial ant paths are selected arbitrarily

and the pheromone mechanism stimulates differentiation among permutated schedules (non-

permutation scheduling).

The proposed approach shows the best performance in non-permutation flowshop

configuration, particularly on larger instances and is very close to the state-of-the-art

metaheuristics.

Based on computation experiments, it can be concluded that such general-purpose

optimization tool has high potential in non-permutation flowshop scheduling and can provide

good solutions, regardless of the problem complexity increase in the examined range.

23

References

Amaya, J.E., Cotta, C., & Fernández-Leiva, A.J. (2012). Solving the tool switching problem with memetic

algorithms, AI EDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing 26(2),

221–235, doi:10.1017/S089006041100014X.

Blum, C., & Sampels, M. (2004). An Ant Colony Optimization Algorithm for Shop Scheduling Problem.

Journal of Mathematical Modelling and Algorithms 3, 285–308.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence. From natural to artificial systems. New

York: Oxford University Press.

Brucker, P., Heitmann, S., & Hurink, J. (2003). Flow-shop problems with intermediate buffers. OR Spectrum 25,

549–574.

Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-based optimization

algorithms. Advanced engineering informatics 19(1), 43–53.

Färber, G., & Moreno, A.M.C. (2006). Benchmark results of a genetic algorithm for non-permutation flowshops

using constrained buffers, 10th International Research/Expert Conference, ”Trends in the Development

of Machinery and Associated Technology” TMT 2006, Barcelona-Lloret de Mar, Spain, 11-15 September,

2006.

Kumar, R., Tiwari, M.K., Shankar, R. (2003). Scheduling of flexible manufacturing system: an ant colony

optimization approach. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture 217, 1443–53.

Nawaz, M., Enscore Jr., E.E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop

sequencing problem. OMEGA, The International Journal of Management Science 11(1), 91–95.

Nowicki, E., & Smutnicki C. (1996). A fast taboo search algorithm for the job-shop problem. Management

Science 42(6), 797–813.

Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize

makespan/total flowtime of jobs. European Journal of Operational Research 155, 426–38.

Ribas, I., Leisten, R., & Framinan, J.M. (2010). Review and classification of hybrid flowshop scheduling

problems from a production system and a solutions procedure perspective. Computers & Operations

Research 37, 1439–1454.

Rossi, A., & Dini, G. (2007). Flexible job-shop scheduling with routing flexibility and separable setup time

using ant colony optimisation method. Robotics and Computer Integrated Manufacturing 23, 503–16.

24

Rossi, A., & Lanzetta, M. (2013a). Native metaheuristics for non-permutation flowshop scheduling. Journal of

Intelligent Manufacturing doi:10.1007/s10845-012-0724-8.

Rossi, A., & Lanzetta, M. (2013b). Scheduling flow lines with buffers by ant colony digraph. Expert Systems

with Applications doi:10.1016/j.eswa.2012.12.041.

Rossi, A., Puppato, A., & Lanzetta, M. (2012). Heuristics for Scheduling a Two-stage Hybrid Flow Shop with

Parallel Batching Machines: an Application on Hospital Sterilization Plant. International Journal of

Production Research doi:10.1080/00207543.2012.737942.

Ruiz, R., & Maroto C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics,

European Journal of Operational Research 165, 479–494.

Sadjadi, S.J., Bouquard, J.L., & Ziaee, M. (2008). An ant colony algorithm for the flowshop scheduling problem,

Journal of Applied Sciences, 8(21), 3938–44, ISSN: 1812-5654, doi:10.3923/jas.2008.3938.3944.

Stuetzle, T. (1998). An ant approach to the flow shop problem. Proceedings of the Sixth European Congress on

Intelligent Techniques and Soft Computing (EUFIT’98), Verlag Mainz, Wissenschaftsverlag, Aachen,

Germany, 3, 1560–1564.

Taillard, E. (1993). Benchmarks for basic scheduling problems, European Journal of Operational Research 64,

278–285.

Wang, J.F., Liu, J.H., Li, S.Q., & Zhong, Y.F. (2003). Intelligent selective disassembly using the ant colony

algorithm. AI EDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17(4),

325–333, doi:10.1017/S0890060403174045.

Ying, K.-C., & Lin, S.-W. (2007). Multi-heuristic desirability ant colony system heuristic for non-permutation

flowshop scheduling problems, International Journal of Advanced Manufacturing Technology 33, 793–

802, doi:10.1007/s00170-006-0492-8.

25

Authors’ biographies

Andrea Rossi

He is research fellow with Department Civil and Industrial Engineering (2000-) at Pisa

University, where he received his PhD in Industrial Automation and Robotics (1998) and his

MSc in Computer Science (1993). His main interests in manufacturing processes and systems

include: FMS production planning and scheduling, inspection planning with coordinate

measuring machines, E-manufacturing and new solution techniques of AI, particularly Ant

Colony Optimization, Genetic Algorithms and Parallel Metaheuristics published in high-

impact journals. He is referee for international journals and member of the Italian Association

of Mechanical Technology (AITEM).

Michele Lanzetta

He is associate professor in engineering at Pisa U. (2005-) where he was assistant professor

(1998) and received his PhD in Industrial Automation and Robotics (1997) and his MEng in

Aeronautical Engineering (1992). He has been visiting scholar at the MIT (2011, 2009, 2002,

2000), Stanford U. (2007, 2004, 1996) and Tokyo U. (2006). His main interests in

manufacturing processes and systems include: scheduling, metrology, rapid prototyping,

assembly and visual inspection, particularly leather and stone. He patented a reflectometer for

stone polishing (commercialized) and published more than 100 papers. Cirp associate member

(2007-). Consulted world championship Jaked swimwear (2009).

26

Tables

Table 1

Parameter NNP-ACO (tested) NNP-ACO (selected)

population_size 5, 10, 20 5

0

1

1

,..,1)(max

n

i

ijmj Otmn
1

1

,..,1)(max

n

i

ijmj Otmn

 0.1, 0.2, 0.5, 1, 1.5, 2 2

 (0.1 i), i=1,…,8 0.3

stop criterion not_improve < stability_condition not_improve < stability_condition

stability_condition 3000 3000

q0
)_(ln

)1_(ln

conditionstability

improvenot

)_(ln

)1_(ln

conditionstability

improvenot

 (0.04 i), i=1,…,9 0.12

local search

steepest descent (Nowicki and Smutnicki,

1996)

steepest descent (Nowicki and

Smutnicki, 1996)

 EST, PAST (Rossi and Dini, 2007) Earliest Starting Time (EST)

27

Table 2

Jo
b

s

I

M
ac

h
in

es

J

Mean NPFS

upper

bounds**

MREavg (12) MREbest (13)

Instances Taillard’s

Benchmarks

State-of-the-art

[reference]

Proposed

NNP-ACO

20 5 1217.1 0.000 [B] 0.057 0.023

20 10 1494.0 0.013 [FCM] 0.107 0.079

20 20 2228.8 0.130 [B] 0.096 0.072

50 5 2731.9 0.001 [FCM] 0.048 0.026

50 10 2979.1 0.020 FCM] 0.136 0.119

50 20 3717.1 0.290 [B] 0.163 0.143

100 5 5237.3 0.020 [B] 0.036 0.021

100 10 5618.6 0.130 [B] 0.107 0.081

100 20 6312.4 -- 0.165 0.141

200 10 10663.1 -- 0.084 0.064

200 20 11272.8 -- 0.160* 0.149*

500 20 26362.8 -- 0.120* 0.116*

28

Table 3. Summary of benefits and drawbacks of the proposed approach.

Benefits drawbacks

general purpose optimization algorithm parameters need to be selected (and

optimized) by preliminary tests

constructive solutions from random

initialization: net performance can be

assessed

local optima are found (no global optima)

relative invariance of performance with

problem size/complexity

further research is required to match the

performance of other metaheuristic

approaches

29

Captions of Figures

Figure 1. Two flow lines, with and without buffers. Permutation (PFS) and non-permutation flowshop (NPFS)

are compared. In both cases, jobs see machines (routing) in the same sequence (flowshop). In non-permutation

flowshop, buffers allow changes (permutations) of job sequences on subsequent machines.

Figure 2. Flow line (clockwise from top left) with m machines (or stages) M (bright red) and different examples

of buffer configurations (dark blue) to allow job sequence permutation between machines.

Figure 3. Disjunctive graph (digraph) for flowshop scheduling, with processing times p i j at nodes O i j for n jobs

on m machines.

Figure 4. Performance of ACO systems in non-permutation and in permutation (PFS) configuration on the

Taillard’s benchmarks with respect to permutation upper bounds from Stuetzle (1998) [S], Rajendran and

Ziegler (2004) [RZ] and Sadjadi et al. (2008) [SBZ].

30

Captions of Tables

Table 1. Preliminarily tested and selected parameters for the proposed NNP-ACO.

Table 2. Performance assessment in non-permutation (NPFS) configuration.
kjibestC is the best makespan obtained by the

proposed ACO in a single run or otherwise defined by Brucker et al. [B] and Färber and Coves Moreno [FCM].

* 300 epochs.

** from http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt

about here

Table 3. Summary of benefits and drawbacks of the proposed approach.

. Summary of benefits and drawbacks of the proposed approach.

http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt

31

Figure 1 Color online

Permutation flowshop

MACHINE(j-1) MACHINE(j)

BUFFER(j-1) BUFFER(j+1)

MACHINE(j+1)

Non-permutation flowshop

MACHINE(j-1) MACHINE(j) MACHINE(j+1)

Permutation flowshop Non-permutation flowshop

MACHINE(j+1) MACHINE(j) MACHINE(j-1)

MACHINE(j-1) MACHINE(j) MACHINE(j+1)

BUFFER(j-1) BUFFER(j) BUFFER(j+1)

32

Figure 2 Color online

transfer line

M1

flexible cell

manual op.

inspection

Mm Mj

M2

output buffer

input buffer

interop. buff.

shared buffer

transfer line

M1

flexible cell

manual op.

inspection

Mm Mj

M2

output buffer

input buffer

interop. buff.

33

Figure 3

 Stage 1 Stage 2 Stage m Stage j

0 *

O11 O12

**
arcs of machine 1

arcs of machine 2

 arcs of machine m

job routing
O22 O21 O2m

O1m

On1 On

m

.........

.........

.........

......... On2

p11 p1m p12

p21 p2m p22

p n 1 p n m

p n 2

34

Figure 4 Color online

0.100

0.300

0.500

0.700

0.900

1.100

1.300

1.500

20x5 20x10 20x20 50x5 50x10 50x20 100x5 100x10 100x20 200x10 200x20 500x20

Mu vs UB 93 Perm

MMAS

M-MMAS

PACO

Sadjadi Perm

Sadjadi NP

Lineare (Mu vs UB 93
Perm)

Lineare (Sadjadi NP)

MRE

shar

ed

buff

er

benchmark size

BUFFER(j)

35

