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Non-permutation Flow Line Scheduling by Ant 

Colony Optimization 

 

 

Abstract: A flow line is a conventional manufacturing system where all jobs must be processed on all machines 

with the same operation sequence. Line buffers allow non-permutation flowshop scheduling (NPFS) and job 

sequences to be changed on different machines. A mixed-integer linear programming model for non-permutation 

flowshop scheduling and the buffer requirement along with manufacturing implication is proposed. Ant Colony 

Optimization (ACO) based heuristic is evaluated against Taillard's (1993) well-known flowshop benchmark 

instances, with 20 to 500 jobs to be processed on 5 to 20 machines (stages). Computation experiments show that 

the proposed algorithm is incumbent to the state-of-the-art ACO for flowshop with higher job to machine ratios, 

using the makespan as the optimization criterion. 

 

 

Keywords: manufacturing system; scheduling; non-permutation flowshop (NPFS); ant colony 

system (ACS); benchmark problems. 
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Introduction 

A flow line is a conventional manufacturing system where all jobs must be processed on all 

machines with the same operation sequence (Figure 1). Jobs are processed only once by each 

machine, as opposed to reentrant flow lines. 

 

Figure 1. Two flow lines, with and without buffers. Permutation (PFS) and non-permutation flowshop (NPFS) 

are compared. In both cases, jobs see machines (routing) in the same sequence (flowshop). In non-permutation 

flowshop, buffers allow changes (permutations) of job sequences on subsequent machines. 

Figure 1 about here 

 

Examples of flow lines include transfer lines, assembly lines, chemical plants, logistics, and 

many more (Rossi et al., 2012); the problem is scalable in many senses: a job can be a part, 

the whole product or a batch; machines (or stages) can be a single operating unit, a cell, a line, 

or their combinations; time is measured by non dimensional units and can indicate seconds, 

hours, days etc. 

Flow line is referred to as the physical layout; flowshop is the mathematical model, as defined 

in the next chapter. 

The flowshop scheduling problem occurs whenever it is necessary to schedule a set of n jobs 

on m machines so that each job visits all machines in the same order.  

In non-permutation flowshop (NPFS) scheduling, the most general flowshop case, which is 

examined here, the order in which all m machines are visited by the n jobs changes, allowing 

job sequences to be different on subsequent machines. 

In a permutation flowshop (PFS) the sequence jobs visit machines (routing) is the same for all 

jobs, as for non-permutation. 
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The sequence of jobs on all machines is the same in permutation flowshop; instead in non-

permutation flowshop the sequence of jobs can be different on subsequent machines. 

 

Figure 2. Flow line (clockwise from top left) with m machines (or stages) M (bright red) and different examples 

of buffer configurations (dark blue) to allow job sequence permutation between machines. 

Figure 2 about here 

 

To allow non-permutation, buffers between, on board or shared among machines are 

necessary. Examples of buffers are shown in the U-shaped flow line of Figure 2: input and 

output buffers at the two ends and between machines, cells, lines or plants; they can be 

shared, in the form of an automatic warehouse or an open space. To allow permutations, jobs 

travel through buffers between machines. The flow line in the pictorial example itself is made 

of flow lines: a transfer line and a flexible cell. 

The buffer requirement has also been formally included in the proposed model. 

If buffers are not present, either the blocking or the no-wait condition should be applied to the 

algorithm to achieve a feasible schedule. In the former case, a job completed on one machine 

may block that machine until the next downstream machine is free; in the latter case, the next 

machine must be available before a job leaves the previous one. 

As for the problem complexity, there are (n!)m different schedules for ordering jobs on 

machines in non-permutation flowshop; the number of schedules for permutation flowshop 

reduces to n!. 

In this work transport and setup times are neglected. This hypothesis often applies when pallet 

changing systems on machines and fast transport and buffer loading/unloading devices are 

present. The processing time can be increased by standard transport and/or setup time, if it is 

relatively small with respect to the processing time; a transport time to and from the 
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warehouse of hours can be considered negligible if the processing time is in the order of days, 

like in the case of welding, heat treatments, painting and inspection of large and bulky parts. 

Operations and transport can be automated, like in computer integrated manufacturing, or 

manual. 

Manual operations can also be represented, using standard times. 

Examples of scheduling optimization targets are: minimizing total completion time 

(makespan) or weighted tardiness, balancing mean flow time, and meeting due date. The 

problem examined here is referred to as Fm|Bi=+|Cmax using Graham’s notation, where Fm 

stands for flowshop with m machines, Bi=+ denotes that buffers with infinite capacity are 

present, allowing non-permutation schedules, and Cmax denotes the makespan minimization as 

the optimization criterion. Minimizing the makespan is one of the most common criteria in 

the literature: lower total completion time is associated with less idle time, higher machine 

utilization and efficiency. 

Some authors generate random problems or use data taken from realistic cases to test the 

performance of their proposed algorithms. Demanding benchmark problems allow comparing 

objectively and quantitatively the performance of different algorithms, also belonging to 

different classes, e.g. heuristics and metaheuristics. Among the most used flowshop 

benchmarks is the set by Taillard (1993) considered in this work, which includes small, 

medium and large sets as opposed to Demirkol, whose dataset is limited to medium size. Non-

permutation bounds from several authors are available in http://www.mathematik.uni-

osnabrueck.de/research/OR/fsbuffer/taillard2.txt, mirrored in 

http://www.ing.unipi.it/lanzetta/flowshop/taillard2.txt and have been included in current 

analysis. 

Biologically inspired general-purpose optimization algorithms are capable to deal with large 

job-size problems and with the exponential increase in the solution search space with the 

http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt
http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt
http://www.ing.unipi.it/lanzetta/flowshop/taillard2.txt
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number of machines and jobs. Examples of metaheuristics include taboo search, simulated 

annealing, genetic algorithms (Elbeltagi et al., 2005) and memetic algorithms (Amaya et al., 

2012). Despite their successful performance, in the extensive reviews by Ruiz and Maroto 

(2005) and by Ribas et al. (2010) ant colony or pheromone-based systems are not present. Ant 

colony systems, a subset class of Ant Colony Optimization (ACO), use artificial or swarm 

intelligence by exploiting the experience of an ant colony as a model of self-organization in 

co-operative food retrieval (Wang et al., 2003). 

ACO has been selected among metaheuristics because of its ability to build constructively 

arbitrary permutations of job sequences (NPFS schedules) by two inverse mechanisms: 

negative and positive pheromone deposition, respectively through the local update rule and 

off-line pheromone update rule, detailed in the ACO description. Diversification by the local 

update rule pushes towards permutated schedules and is the core mechanism to generate 

natively non-permutation solutions. 

Standard ACO by Bonabeau et al. (1999) and disjunctive graph model inspired by Rossi and 

Dini (2007) are combined in this paper. It seems that the only Ant Colony algorithm applied 

to non-permutation flowshop scheduling is by Sadjadi et al. (2008), which provides the 

relative average performance on the Taillard’s benchmarks. Other non-permutation flowshop 

benchmarks from Demirkol have been considered by Ying and Lin (2007) and by the authors 

(Rossi & Lanzetta, 2013a, 2013b). 

Sadjadi et al. applied the standard ACO specifications from Bonabeau et al., except for the 

diversification mechanism. The other main difference is on the selection of the initial 

population, which is determined by improving a permutation solution found by heuristics 

using local search. 

Other approaches to the permutation flowshop problem tested on benchmarks based on Ant 

Colony Systems by Rajendran and Ziegler (2004), Min-Max Ant Systems by Stuetzle (1998), 
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the state-of-the-art based on Tabu Search by Brucker et al. (2003), and Genetic Algorithms by 

Färber and Coves Moreno (2006) are also compared with the proposed ACO. 

 

Non-permutation flowshop scheduling (NPFS) problem 

The mixed-integer linear programming (MILP) model for the NPFS problem is the following: 

 

Parameters 

p i j = processing time of job i on machine j 

BigM = a sufficiently large positive value 

 

Decision variables 

Z i l j = 1, if job i is assigned to sequence position l on machine j; 0 otherwise 

 

Dependent variables 

S l j = starting time of job in sequence position l on machine j 

The subscript symbols are: i and i’ for jobs, i, i’ = 1,2,. . .,n; l and l’ for the sequence 

positions, l, l’ = 1,2,. . .,n; j for machines, j = 1,2,. . .,m; n and m are the number of jobs and 

machines, respectively. 

 

Objective function 

max Min C  

Subject to the following constraints: 
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Constraint (1) ensures that each job is assigned to exactly one position of the job sequence on 

every machine. Constraint (2) states that each position of the job sequence processes exactly 

one job on every machine. Constraint (3) denotes the starting times of the first job on every 

machine. Constraint (4) insures that the (l + 1)th job in the sequence of machine j does not 

start on machine j until the lth job in the sequence of machine j has completed. Constraint (5) 

insures that the starting time of job i which is assigned to position l in the sequence on 

machine j + 1 is not earlier than its finish on machine j. Constraint (6) ensures that the buffer 

size is subject to: 

 

Lemma 

 The flowshop scheduling with n jobs and m machines is Bi=+ if and only if the 

interoperational buffer size for machine j (2jm) is at least (n-2).  
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The buffer size for machine j=1 and j=m+1 is n (i.e. the input and output buffers contain up to 

n jobs). 

 

 In the worst case, only one blocking with (n-1) jobs waiting occurs. Let j (2jm) be the 

blocked machine. If the last job on machine (j-1) is completed, no blocking occurs because (n-

1) jobs have been already processed on machine (j-1). Hence (n-2) jobs wait in the 

interoperational buffer between machines (j-1) and j  

 

The optimization problem (1)-(6) can also be represented by a disjunctive graph (Figure 3): 

 

DG = (N, A, Ej , W) (7) 

 

where N is the set of operations, plus the dummy start and finishing operations represented by 

the symbols 0 and *; A is the set of conjunctive arcs (directed arrows) between every pair of 

operations on a job routing; Ej is the set of disjunctive arcs between pairs of operations at 

stage j; W is the set of weights (processing times) on nodes. 

 

Figure 3. Disjunctive graph (digraph) for flowshop scheduling, with processing times p i j at nodes O i j for n jobs 

on m machines. 

Figure 3 about here 

 

Ant Colony Optimization for NPFS 

The pheromone trail is the basic mechanism of communication among real ants. It is 

mimicked by ACO by an iterative method (in epochs) able of finding the shortest path 
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connecting source 0 (nest) and destination * (food) on a weighted graph (Figure 3), which 

represents the optimization problem.  

The ant runs the nest-food path by a probabilistic selection of nodes according to the 

following mechanisms: i) intensification to select a node in the vicinity of the current best 

paths; ii) diversification in order to produce promising alternative paths. 

The proposed ACO follows the standard recommendation for applications to scheduling 

problems, as opposed to the other implementations available in the literature for the flowshop 

problem introduced above. 

The proposed digraph approach builds natively non-permutation sequences by the path 

generation mechanisms. In this stochastic process, each artificial ant selects probabilistically 

the next node (move selection) according to the amount of pheromone on the connecting arc 

(learned desirability).  

The path associated with each ant starts from 0, follows routing arcs, directs disjunctive arcs 

and ends in *. By design, non-permutation schedules are achieved by directing arcs 

differently at each stage. Cmax is evaluated from W (7). At each epoch, as soon as all the paths 

of the ants in the colony are generated, the best ant (lowest Cmax) deposits on its arcs an 

amount of pheromone proportional to the path length (pheromone updating). A pheromone 

decay routine is also performed to prevent stagnation in local optima solutions (evaporation 

=0.12). 

The two inverse mechanisms are achieved by negative and positive pheromone deposition, 

respectively through the local update rule and off-line pheromone update rule. Diversification 

by the local update rule pushes towards permutated schedules and is the core mechanism to 

generate natively non-permutation solutions. 

This is a constructive way to generate a schedule. A complete solution is generated forward 

by a partial solution using the stigmergy of the colony, i.e. the selection of the more 
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promising disjunctive arcs where a higher amount of pheromone is laid. The main goal of the 

ACO mechanism is to generate optimal solutions by constructive schedules. The concept is 

similar to “divide et impera”, because the stigmergy progressively concentrates the search in a 

low number of very small promising regions. Differently to local search, this fact makes the 

algorithm intrinsically parallel and may take advantage of modern processors. 

 

Path generation 

By the pheromone mechanism ants may select arbitrary path, consequently the resulting 

scheduling sequences (ant tours) are different permutations (non-permutation approach). 

Random initial solution are generated and iteratively improved at each epoch by the ant 

behavior. By this natively constructive approach we are able to assess the net performance of 

the algorithm. 

An ant a to generate an acyclic conjunctive graph with weights on the conjunctive arcs, i.e. 

feasible schedule Sa, visit every operation on the pheromone-learning model DG (7) one and 

only one time with a complexity of O(mn) in order to transform the digraph in a feasible 

schedule. Path generation is a stochastic process where an ant starts from the dummy 0 and 

selects the next node from the set of allowed operations. It uses the following transition 

probability rule as a function of both the heuristic function of desirability,  (termed visibility 

function), and the amount of pheromone  on the edge (Oi j , J), with J  AL, of the 

pheromone trail: 
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The non-negative parameters  and  represent the intensity of respectively, the amount of 

pheromone and the visibility included in the transition probability function. The non-negative 
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parameter q0 is the cutting exploration, a mechanism that restricts the selection of the next 

operation from the candidate list AL. If a random number q is higher than the cutting 

exploration parameter q0 (0 q0 1), the candidate operation is selected by examining the 

probability of all candidate operations that are as much desirable as higher visibility and 

pheromone amount are; otherwise the most desirable operation is selected, i.e. the arc with the 

highest amount of pheromone and the highest visibility.  

The role of cutting exploration is that of explicitly split the search space in order to achieve a 

compromise between the probabilistic mechanism adopted for q  q0 or the further 

intensification mechanism of exploring near the best path so far, which corresponds to an 

exploitation of the knowledge available about the problem. Cutting exploration by tuning 

parameter q0 near 1 allows the activity of the system to concentrate on the best solutions 

(exploitation activity) instead of letting it explore constantly (exploration activity, achieved by 

tuning parameter q0 near 0). In fact, when q0 is close to 0, all the candidate solutions are 

examined in probability, whereas when q0 is close to 1, only the local optimal solution is 

selected by equation (8). In this paper, a freezing function is considered, which is similar to 

the one proposed by Kumar et al. (2003). This function progressively freezes the system by 

tuning q0 from 0 to 1, in order to favor exploration in the initial part of the algorithm and then 

favor exploitation by means of the following expression: 

 

)_(ln

)(ln
0

epochsn

epoch
q   (9) 

 

where epoch is the current iteration and n_epochs is the total number of iterations of the ant 

colony system. 
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The heuristic function of desirability  is a very critical component of ant colony systems. 

Generally it is implemented by dispatching rules. A comparison among a number of 

dispatching rules to implement the visibility function has been performed by Blum and 

Sampels (2004). In this paper the earliest starting time (EST) rule is used, the best one 

according to Blum and Sampels. 

 

Local update rule 

The local update rule is applied to favor the exploration of not visited nodes by other ants of 

the colony. This rule imposes to the ant that has selected a candidate operation J, of laying on 

the connecting arc (Oi’j , J) the following negative amount of pheromone: 

 

(Oi’j, J) = (1-)  (Oi’j, J) +   0 (10) 

 

The local update rule is a convex combination of parameters equal to the evaporation 

coefficient; in this case the convex combination has points (Oi j, J) and 0. The amount of 

pheromone that remains on a selected edge diminishes because it ranges between the previous 

value (Oi’j, J) and the initial value 0. As a consequence, the effect of this rule is making 

nodes less and less attractive as they are visited by ants, indirectly favoring the exploration of 

not visited nodes. This is a basic diversification mechanism because it pushes the next ants to 

generate alternative paths. 
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Off-line pheromone update rule 

This feature arises when a positive amount of pheromone has to be deposited. The ant that 

detects the best path at each epoch is termed best-epoch ant (Sbe). In order to direct the 

exploration of the best nest-food path by the entire colony, an off-line update rule of 

pheromone is performed. At the end of each epoch, the best-epoch ant Sbe deposits on all 

paths of the acyclic graph generated a further amount of pheromone, proportional to the 

following convex combinations of points (Oi j, J) and makespan(Sbe)
-1. This produces a 

search intensification by other ants of the colony in the vicinity of the best solution: 

 

’(Oi j , J) = (1- )  (Oi j , J) +   makespan(Sbe)
-1,         (Oi j , J)  Sbe (11) 

= (1- )  (Oi j , J),          otherwise 

 

As for the local update rule, the amount of pheromone ’(Oi j, J) that remains on the selected 

edge ranges between the previous value, (Oi j, J), and a value closer to the optimum: 

makespan(Sbe)
-1. A routine of pheromone decay on pheromone trails is performed on other 

arcs of the digraph, thus indicating that a path rarely used probably does not lead to optimal 

solutions. 

 

Pseudo code 

The algorithm has been implemented in C++ according to the following scheme. 

 

Algorithm. High-level description of Ant Colony System for Native Non-Permutation 

Flowshop Scheduling 
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Input: a weighted digraph WDG=(N, A, Ej, WN, WE) 

// Initialization  

for each disjunctive arc (Oi’j’,Oi j) of EA deposit a small constant amount of pheromone 

WE(Oi’j’,Oi j) = (0, 0) where 

1

1

,..,10 )(max





 







 

n

i

ijmj Otmn  

epoch  1; not_improve  0; 

// Main Loop 

while(not_improve < stability_condition) do 

// Epoch Loop 

for each ant a, a=1 to population size do 

// Path Generation  

Sa  ; 

1. O  Oi j i=1,..,n, j=1,..,m; 

2.  Initialization of Candidate Nodes: ALw  O; 

for each w =1 to nm do  

3. Initialization of Feasible Moves (i.e. the disjunctive arcs connected to 

operation of ALw); 

4. Move Selection: select a feasible move (Oi’j, Oi j) of EA where Oi’j is the 

last operation in the queue of machine m (Oi’j  = dummy 0, if m =1) by 

means of the transition probability rules (8); directing the related 

disjunctive arc (Oi’j =dummy 0, if m =1); 

5. Arc Removing: remove all the disjunctive connected to Oi’j (i.e. no other 

operation can be immediately subsequent to Oi’j in the machine 

sequence); 
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6. Computing length: move t(Oi j )WN from the selected node to the 

directed; also, move t(Oi j) on (Oi (j-1), O i j)  A; 

7. Path length evaluation: the longest path between that one connected to 

the directed arc and that one connected to the arc of the job routing is 

placed as a mark of the scheduled operation; 

8. Local Updating: apply the local update rule (10) to the arcs (Oi’j’, Oi j)  

WE; 

9. Update Allowed: remove the scheduled operation to the allowed list, 

ALw  ALw  Oi j; 

end for 

10. Directing the remaining disjunctive arcs. These arcs are connected to 

dummy *. 

11. Local Search: Apply local search with neighbor structure of Nowicki and 

Smutnicki (1996) to Sa; 

12. Best Evaluation: if (makespan(Sa)<makespan(Sbe))  

then (makespan(Sbe)  makespan(Sa) and Sbe  Sa ) 

end if 

end for 

Global Updating: Apply the global update rule (11); 

Best Ant Evaluation: if (makespan(Sbe)<makespan(S*)) 

then ((makespan(S*)  makespan(Sbe); S*  Sbe and 

epoch0) and not_improve  0; 

else epoch++ and not_improve++; 

end if 

end while 
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Output: S* 

 

Figure 4. Performance of ACO systems in non-permutation and in permutation (PFS) configuration on the 

Taillard’s benchmarks with respect to permutation upper bounds from Stuetzle (1998) [S], Rajendran and 

Ziegler (2004) [RZ] and Sadjadi et al. (2008) [SBZ]. 

Figure 4 about here 

 

Computation experiments 

Benchmark instances are arrays bnm. The nm operations of each job on all m machines are 

represented by their processing times ordered by routing. Taillard’s benchmarks include 12 

sets of 10 instances for job numbers i=20, 50, 100, 200, 500 and machine numbers j=5, 10, 

20. Each benchmark instance k includes a non trivial lower (LB i j k) and upper bound 

(UB i j k). The lower (upper) bound is the maximum (minimum) known theoretical minimum 

(maximum) attainable makespan. The upper bound can be reduced by new improved 

solutions. If it coincides with the lower bound, the optimum for benchmark bi j k has been 

reached. 

Metrics for algorithm performance are the individual relative distances from the upper bound 

of benchmark instances bnm or the mean relative error in each set (i,j): 
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where the best and the average solutions for each set (i,j) of 10 benchmark instances 

k=1,…,10 are respectively 
kjibestC  and 

kjiavgC . 

The proposed NNP-ACO has been run 10 times with the (selected) parameters in Table 1 on 3 

GHz 32 bit Intel® Pentium® IV based PCs with 2 GB RAM. 

 

Table 1. Preliminarily tested and selected parameters for the proposed NNP-ACO. 

Table 1 about here 

 

The main ACO parameters described are summarized in Table 1, have been derived from the 

job shop application in Rossi and Dini (2007) and have been explored in preliminary tests 

with the values indicated for population_size, , ,  and . 

As for the population size, fewer ants have been used vs. Rajendran and Ziegler (40 ants) and 

vs. Sadjadi et al. (1000 ants) in order to reduce the processing time. Consequently, the 

evaporation rate has been reduced vs. Sadjadi et al. (=0.9) to reduce the effect of random 

search. 

The stop criterion from Sadjadi et al. is a fixed computation time, instead we use a stability 

condition, corresponding to 3000 epochs with error reduction of at least one processing time 

unit. 

 

Results 

The average performance (MREavg) of the proposed ACO are compared in Figure 4 within the 

same class of problems with Sadjadi et al., Rajendran and Ziegler and Stuetzle, which do not 

provide results for datasets of 200 and 500 jobs. 
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Although results are discrete, a graphical representation with connecting lines has been 

preferred to show the separation among the performance of different algorithms. 

The differences of makespan of the proposed algorithms of the respective authors have been 

calculated from the upper bound of the permutation flowshop benchmark. Because the 

detailed values are not available, the proposed algorithm has been compared with the (slightly 

higher) permutation upper bound for performance assessment. 

A lower value of MREavg means a better performance (lower makespan) of the proposed 

algorithm compared to the state-of-the-art. A negative value represents a new (lower) upper 

bound. 

For comparison within the same class of algorithms (ACO), MREavg has been conservatively 

calculated with respect to the original permutation upper bounds from Taillard, because most 

available results are for permutation flowshop, except Sadjadi et al. 

The MREavg of the proposed ACO ranges between +0.035 and +0.159, while Sadjadi et al. is 

between –0.075 and +1.12, Rajendran and Ziegler is between +0.72 and +1.86 and Stuetzle is 

between +0.196 and +2.475 (not shown). This also means that the MREavg of the proposed 

ACO is upper limited to 16% as opposed to 112% from Sadjadi et al. The algorithms in 

Rajendran and Ziegler, and Stuetzle show the worst performance overall. Out of scale MREavg 

values (available on the respective articles) have not been represented to achieve a higher 

visualization detail on the best results. The non-permutation algorithm from Sadjadi et al. 

behaves clearly better than with the permutation (PFS) constraint. The algorithm from Sadjadi 

et al. has the best performance with 20 jobs or with 5 machines (small problems). Although 

the performance on large instances (200 and 500 jobs) are not available from these authors, a 

degradation of performance with benchmark size (job and machine number) is clearly visible 

on medium instances. This is enhanced by the steeper trend line for the better (non-

permutation) algorithm from Sadjadi et al. 
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The upper bounds for the makespan of all 12 sets of 10 benchmark instances in non-

permutation flowshop configuration from various authors and methods, averaged are reported 

in Table 2. The MREavg found by the state-of-the-art from Brucker et al. and Färber and Coves 

Moreno, based on Tabu Search and Genetic Algorithms respectively is compared with the 

proposed ACO. The better results (highlighted) have been obtained for higher machine 

numbers and job numbers. Results are not available from Brucker et al. and Färber and Coves 

Moreno for the 40 largest instances, where the proposed ACO becomes the best known 

solution. 

Here the non-permutation upper bounds have been used for comparison between the proposed 

NNP-ACO and the state-of-the-art of metaheuristics in general, using Taillard’s benchmarks. 

 

Table 2. Performance assessment in non-permutation (NPFS) configuration. 
kjibestC is the best makespan 

obtained by the proposed ACO in a single run or otherwise defined by Brucker et al. [B] and Färber and Coves 

Moreno [FCM]. 

* 300 epochs. 

** from http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt 

Table 2 about here  

 

The last 4 sets of instances are one order of magnitude more time consuming compared to the 

other instances (200 vs. 10 min.) because of their large size. Other methods use a stop 

criterion based on a fixed number of epochs or computation time. Instead we use a stability 

condition (of 3000 epochs with an improvement of at least one processing time unit), which 

has been reduced by one order of magnitude and still results in a processing time one order of 

magnitude higher. By the  stability condition instead of a stop criterion, convergence is 

assured regardless of the epoch number. 

 

http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt
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Discussion 

As shown, the proposed algorithm becomes the state-of-the-art on the benchmarks used, with 

the ACO approach, particularly on larger instances. 

Possible reasons of the better performance compared to Sadjadi et al. as a function of the 

benchmark size are inferred: 

1. the ACO implementation by Sadjadi et al. has a higher colony size and lower epoch 

number, which do not allow sufficient differentiation despite the high evaporation, 

particularly on larger instances; 

2. Sadjadi et al. find an initial permutation schedule (pheromone trails) by the NEH heuristic 

(Nawaz et al., 1983). Initial good solutions provide good final solution for small sized 

benchmarks. For larger benchmarks the NEH heuristic suffers some performance 

decrease. Consequently, ACO search can be trapped in local optima; 

3. Sadjadi et al. start from a solution of the permutation problem and find an NPFS solution 

by a local search, which causes a further performance decrease. 

The proposed ACO has also been compared with permutation upper bounds from Rajendran 

and Ziegler and still provides better performance, despite the higher problem complexity of 

NPFS (n!m compared to n!). 

A regression analysis has been carried out to assess the effect of the machine and job number 

on the makespan of the best scheduling found by the proposed ACO. A correlation has been 

found between MREavg and machine number at constant job number. This is also qualitatively 

shown by the periodic MREavg increase in Figure 4. The same trend also shows the relative 

independence of the algorithm performance on the job number. 

A stronger correlation has been found between computation time and both job number and 

machine number. The computation time with the proposed ACO, which has not been 

optimized in this work, is one order of magnitude higher than Sadjadi. 
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Compared to non-permutation metaheuristics, new upper bounds have been proposed on 

larger instances and there is still margin of improvement, by parameters optimization, on 

others. 

A summary of benefits and drawbacks of the proposed approach is available in Table 3 

Table 3. Summary of benefits and drawbacks of the proposed approach. 

Table 3 about here 

 

Conclusions 

A mathematical model of the flow line scheduling problem with unlimited buffers has been 

proposed. The few existing approaches have been compared using well-known benchmarks 

on a wide size spectrum available from Taillard (1993). 

The NP-hardness has been tackled by metaheuristics and ACO have been selected. The 

proposed ACO is natively non-permutation as opposed to other authors who apply a local 

search to permutation solutions. Natively means that initial ant paths are selected arbitrarily 

and the pheromone mechanism stimulates differentiation among permutated schedules (non-

permutation scheduling). 

The proposed approach shows the best performance in non-permutation flowshop 

configuration, particularly on larger instances and is very close to the state-of-the-art 

metaheuristics. 

Based on computation experiments, it can be concluded that such general-purpose 

optimization tool has high potential in non-permutation flowshop scheduling and can provide 

good solutions, regardless of the problem complexity increase in the examined range. 
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Tables 

Table 1 

 

Parameter NNP-ACO (tested) NNP-ACO (selected) 

population_size 5, 10, 20 5 

0 

1

1

,..,1 )(max





 







 

n

i

ijmj Otmn  
1

1

,..,1 )(max





 







 

n

i

ijmj Otmn  

 0.1, 0.2, 0.5, 1, 1.5, 2 2 

 (0.1  i), i=1,…,8 0.3 

stop criterion not_improve < stability_condition not_improve < stability_condition 

stability_condition 3000 3000 

q0 
)_(ln

)1_(ln

conditionstability

improvenot 
 

)_(ln

)1_(ln

conditionstability

improvenot 
 

 (0.04  i), i=1,…,9 0.12 

local search 

steepest descent (Nowicki and Smutnicki, 

1996) 

steepest descent (Nowicki and 

Smutnicki, 1996) 

 EST, PAST (Rossi and Dini, 2007) Earliest Starting Time (EST) 
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Table 2 

Jo
b

s 
 

I 

M
ac

h
in

es
 

J 

Mean NPFS 

upper 

bounds**  

MREavg (12) MREbest (13) 

Instances Taillard’s 

Benchmarks 

State-of-the-art 

[reference] 

Proposed  

NNP-ACO 

20 5 1217.1  0.000 [B] 0.057 0.023  

20 10 1494.0  0.013 [FCM] 0.107 0.079  

20 20 2228.8  0.130 [B] 0.096 0.072  

50 5 2731.9  0.001 [FCM] 0.048 0.026  

50 10 2979.1  0.020 FCM] 0.136 0.119  

50 20 3717.1  0.290 [B] 0.163 0.143  

100 5 5237.3  0.020 [B] 0.036 0.021  

100 10 5618.6  0.130 [B] 0.107 0.081  

100 20 6312.4  -- 0.165 0.141  

200 10 10663.1  -- 0.084 0.064  

200 20 11272.8  -- 0.160* 0.149*  

500 20 26362.8  -- 0.120* 0.116*  
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Table 3. Summary of benefits and drawbacks of the proposed approach. 

 

Benefits drawbacks 

general purpose optimization algorithm parameters need to be selected (and 

optimized) by preliminary tests 

constructive solutions from random 

initialization: net performance can be 

assessed 

local optima are found (no global optima) 

relative invariance of performance with 

problem size/complexity 

further research is required to match the 

performance of other metaheuristic 

approaches 
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Captions of Figures 

 

Figure 1. Two flow lines, with and without buffers. Permutation (PFS) and non-permutation flowshop (NPFS) 

are compared. In both cases, jobs see machines (routing) in the same sequence (flowshop). In non-permutation 

flowshop, buffers allow changes (permutations) of job sequences on subsequent machines. 

 

Figure 2. Flow line (clockwise from top left) with m machines (or stages) M (bright red) and different examples 

of buffer configurations (dark blue) to allow job sequence permutation between machines. 

 

Figure 3. Disjunctive graph (digraph) for flowshop scheduling, with processing times p i j at nodes O i j for n jobs 

on m machines. 

 

Figure 4. Performance of ACO systems in non-permutation and in permutation (PFS) configuration on the 

Taillard’s benchmarks with respect to permutation upper bounds from Stuetzle (1998) [S], Rajendran and 

Ziegler (2004) [RZ] and Sadjadi et al. (2008) [SBZ]. 
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Captions of Tables 

 

Table 1. Preliminarily tested and selected parameters for the proposed NNP-ACO. 

 

Table 2. Performance assessment in non-permutation (NPFS) configuration. 
kjibestC is the best makespan obtained by the 

proposed ACO in a single run or otherwise defined by Brucker et al. [B] and Färber and Coves Moreno [FCM]. 

* 300 epochs. 

** from http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt 

about here  

 

Table 3. Summary of benefits and drawbacks of the proposed approach. 

. Summary of benefits and drawbacks of the proposed approach. 

 

http://www.mathematik.uni-osnabrueck.de/research/OR/fsbuffer/taillard2.txt
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Figure 1 Color online 

 

 

Permutation flowshop 
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BUFFER(j-1) BUFFER(j+1) 

MACHINE(j+1) 

Non-permutation flowshop 
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Figure 2 Color online 

 

 

 

transfer line 

M1  

flexible cell 

 

manual op. 

 

inspection 

Mm Mj 

M2 

 

output buffer 

 

input buffer 

 

interop. buff. 

 

shared buffer 

 

transfer line 

M1  

flexible cell 

 

manual op. 

 

inspection 

Mm Mj 

M2 

 

output buffer 

 

input buffer 

 

interop. buff. 



 

33 

Figure 3 
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Figure 4 Color online 
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