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ABSTRACT 
 
 
 
Duket, Timothy W., M.S.I.E., Purdue University, August 2014.  The Multi-Depot 
Minimum Latency Problem with Inter-Depot Routes, Major Professor:  Dr. Seokcheon 
Lee. 

 

The Minimum Latency Problem (MLP) is a class of routing problems that seeks to 

minimize the wait times (latencies) of a set of customers in a system. Similar to its 

counterparts in the Traveling Salesman Problem (TSP) and Vehicle Routing Problem 

(VRP), the MLP is NP-hard. Unlike these other problem classes, however, the MLP is 

customer-oriented and thus has impactful potential for better serving customers in 

settings where they are the highest priority. While the VRP is very widely researched and 

applied to many industry settings to reduce travel times and costs for service-providers, 

the MLP is a more recent problem and does not have nearly the body of literature 

supporting it as found in the VRP. However, it is gaining significant attention recently 

because of its application to such areas as disaster relief logistics, which are a growing 

problem area in a global context and have potential for meaningful improvements that 

translate into reduced suffering and saved lives. An effective combination of MLP’s and 

route minimizing objectives can help relief agencies provide aid efficiently and within a 

manageable cost. 

To further the body of literature on the MLP and its applications to such settings, a new 

variant is introduced here called the Multi-Depot Minimum Latency Problem with Inter-

Depot Routes (MDMLPI). This problem seeks to minimize the cumulative arrival times 

at all customers in a system being serviced by multiple vehicles and depots. Vehicles 

depart from one central depot and have the option of refilling their supply at a number of 

intermediate depots. While the equivalent problem has been studied using a VRP 
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objective function, this is a new variant of the MLP. As such, a mathematical model is 

introduced along with several heuristics to provide the first solution approaches to 

solving it. Two objectives are considered in this work:  minimizing latency, or arrival 

times at each customer, and minimizing weighted latency, which is the product of 

customer need and arrival time at that customer. The case of weighted latency carries 

additional significance as it may correspond to a larger number of customers at one 

location, thus adding emphasis to the speed with which they are serviced. Additionally, a 

discussion on fairness and application to disaster relief settings is maintained throughout. 

To reflect this, standard deviation among latencies is also evaluated as a measure of 

fairness in each of the solution approaches. 

Two heuristic approaches, as well as a second-phase adjustment to be applied to each, are 

introduced. The first is based on an auction policy in which customers bid to be the next 

stop on a vehicle’s tour. The second uses a procedure, referred to as an insertion 

technique, in which customers are inserted one-by-one into a partial routing solution such 

that each addition minimizes the (weighted) latency impact of that single customer. The 

second-phase modification takes the initial solutions achieved in the first two heuristics 

and considers the (weighted) latency impact of repositioning nodes one at a time. This is 

implemented to remove potential inefficient routing placements from the original 

solutions that can have compounding effects for all ensuing stops on the tour. Each of 

these is implemented on ten test instances. A nearest neighbor (greedy) policy and 

previous solutions to these instances with a VRP objective function are used as 

benchmarks. 

Both heuristics perform well in comparison to these benchmarks. Neither heuristic 

appears to perform clearly better than the other, although the auction policy achieves 

slightly better averages for the performance measures. When applying the second-phase 

adjustment, improvements are achieved and lead to even greater reductions in latency and 

standard deviation for both objectives. The value of these latency reductions is 

thoroughly demonstrated and a call for further research regarding customer-oriented 

objectives and evaluation of fairness in routing solutions is discussed. 
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Finally, upon conclusion of the results presented in this work, several promising areas for 

future work and existing gaps in the literature are highlighted. As the body of literature 

surrounding the MLP is small yet growing, these areas constitute strong directions with 

important relevance to Operations Research, Humanitarian Logistics, Production 

Systems, and more. 
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CHAPTER 1: INTRODUCTION 
 
 
 
1.1 Routing Problems 

Routing problems form a substantial area of research with myriad applications to industry 

as well as humanitarian settings. The fundamental goal of routing problems in general is 

to optimize the routes by which a set of nodes, or customers, are visited and serviced by 

one or more vehicles. A wide variety of objective functions can be implemented to meet 

the goals of minimizing travel time, cost, customer wait time, and more. In addition to the 

abundance of objective functions, many variants of these problems can also be studied to 

fit different application settings. These variants modify the characteristics of vehicles 

(single or multiple, homogenous or unique, capacitated or not), customer demand (single 

or multiple commodity, split delivery or single visit, deterministic or stochastic arrivals), 

supply depots (single or multiple, capacitated or not, independent or connected), and 

more. New variants are introduced to accurately model the application of results to 

different settings. 

Perhaps the most basic routing problem is the Traveling Salesman Problem (TSP) which 

uses a single vehicle to service a set of customers such that route length for the service 

provider is minimized. When multiple vehicles are used, this becomes the Vehicle 

Routing Problem (VRP), which is perhaps the most thoroughly studied and widely 

applied routing problem. Both the TSP and VRP are server-oriented problems that have 

valuable applications for cost minimization in industry settings such as vehicle fleet 

logistics. Variants of these problems in the literature are many, including the Time-

Dependent TSP (TDTSP), the TSP with Time Windows (TSPTW), the Clustered TSP 

(CTSP), and the Multi-Depot VRP (MDVRP), among others. 
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The equivalent problem to the TSP with a customer-oriented objective function is called 

the Minimum Latency Problem (MLP). The MLP seeks to minimize the cumulative wait 

time, or latencies, of customers across a system. This objective differs from the TSP and 

VRP in that the needs of the customer are given priority. On the other hand, the costs that 

will be incurred by the service provider are not considered in the optimization, which 

highlights the need for a combination of these two objectives as an extension of research 

in this field. The other key difference is that the MLP does not consider the cost of the 

vehicle’s return to its starting position, since this does not impact customer wait times. 

The TSP, on the other hand, minimizes the full routing loop through all customers and 

back to the starting depot. 

This customer-focused objective makes the MLP an important problem, yet under-

researched, for settings when customer needs are the highest priority, either within or 

outside of industry. A crucially important example of such an application that has gained 

recent attention is in disaster relief efforts, in which quick response and reduced customer 

wait times are clearly the primary goal. 

MLP objectives generate more complex problems than shortest-path variants and have 

been shown to be NP-hard (Blum et al., 1994; Sahni & Gonzalez, 1976; Sitters, 2002). 

Research on this class of problem is also found under a variety of names, including the 

Traveling Repairman Problem (Afrati, Cosmadakis, Papadimitriou, Papageorgiou, & 

Papakostantinou, 1986), the Traveling Deliveryman Problem (Méndez-Díaz, Zabala, & 

Lucena, 2008), the TSP with Cumulative Costs (Bianco, Mingozzi, & Ricciardelii, 1993), 

and the Cumulative Capacitated Vehicle Routing Problem (Ngueveu, Prins, & Wolfler 

Calvo, 2010). To help organize the literature and highlight promising areas for future 

research, Moshref-Javadi & Lee (2013) present a taxonomy to the MLP and highlight 

gaps as well as promising research directions. 

A simple illustration of the minimum latency objective is presented to demonstrate the 

difference from route minimizing objectives as well as its importance in customer-

oriented networks. Consider the possible routing solution depicted in Figure 1.1, in which 
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a vehicle departs from the (square) depot and visits a set of five customers along the arcs 

with associated costs as shown.  

 

Figure 1.1: Sample routing solution 1 

 

This graphic depicts one possible routing solution for this network, not the only 

possibility or the optimal solution. If the travel times associated with each arc are added 

up, it is clear that the time required for the service provider, through to the final customer, 

is 3 + 1 + 4 + 3 + 8 = 19. The latency associated with this route is the sum of the 

vehicle’s arrivals at each customer, which are calculated as follows: 

First customer: 3 

Second customer: 3 + 1 = 4 

Third customer: 3 + 1 + 4 = 8 

Fourth customer: 3 + 1 + 4 + 3 = 11 

Fifth customer: 3 + 1 + 4 + 3 + 8 = 19 

Thus, the total route latency for this solution is 3 + 4 + 8 + 11 + 19 = 45. 
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Alternatively, consider another routing possibility that serves the customers in the 

opposite order. This is shown in Figure 1.2. 

 

Figure 1.2: Sample routing solution 2 

The time requirement of this route for the server is 3 + 8 + 3 + 4 + 1 = 19, which is the 

same as the previous solution. From a TSP perspective, therefore, the two alternatives are 

equally good. However, the latency calculations for customers are now: 

First customer: 3 

Second customer: 3 + 8 = 11 

Third customer: 3 + 8 + 3 = 14 

Fourth customer: 3 + 8 + 3 + 4 = 18 

Fifth customer: 3 + 8 + 3 + 4 + 1 = 19 

The total latency in this routing solution is then 3 + 11 + 14 + 18 + 19 = 65, which is 

significantly increased from the alternative which had total latency of 45. The most 

prominent cause for this dramatic difference is the placement of the arc associated with 

travel time 8. Although this arc is traversed in both alternatives, the second solution uses 

it very early on, causing all remaining customers to absorb this time into their service 
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times. This demonstrates the impactful compounding nature of the MLP. Any inefficient 

routing assignments, especially if they occur early in the solution, can have dramatic 

effects on total latency. This stresses the importance of careful routing decisions at every 

point of the tour. It also highlights the benefit that customer-focused objectives can bring 

to avoid tremendous customer delays resulting from this compounding effect, especially 

when delays can mean the difference between life and death in emergency settings. 

 

1.2 Motivation to Natural Disasters 

As mentioned, one popular example of applications for the class of MLPs, especially in 

recent years, is in humanitarian response to natural disasters. Disasters can be devastating 

to communities and governments, and decision-making in a post-disaster setting needs to 

be quick and efficient. An effective combination of pre-planning and on-site organization 

is important for relief efforts to succeed (Altay & Green, 2006). There are numerous 

areas of disaster relief management that can be studied to improve goals such as 

communication, supply distribution, and medical response. One area of crucial 

importance, and thus having potential for impactful improvements, is transportation 

coordination (Dolinskaya, Shi, & Smilowitz, 2011). This component constitutes a large 

portion of the cost in managing the supply chain and is vital in meeting customer needs in 

a timely fashion (Balcik, Beamon, Krejci, Muramatsu, & Ramirez, 2010). Problems in 

this arena often deal with the additional challenge that certain disasters may be 

accompanied by limited road networks due to traffic backup and damage that make 

certain routes impassible, eliciting an even stronger need for quick, adaptive routing 

solutions. 

These post-disaster challenges make the problem of serving all customers as quickly as 

possible more difficult, but also more important. Timely delivery of medical supplies, 

efficient clearing of debris from roadways, and emergency response to dangerous 

environments are all linked to effective, customer-oriented routing for emergency 

vehicles. With a clear demand for a focus on customer needs, minimum latency 

objectives have great potential for reducing total customer wait time across the system. 
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This can translate into quicker response and supply delivery, and consequently, save 

lives. 

 

1.3 The Role of Fairness 

In customer-oriented networks, fairness also becomes a significant goal for scheduling 

solutions. For example, routing supplies to communities in need as efficiently as possible 

becomes a high priority in addition to keeping the cost sustained by the service provider 

to a reasonable or minimum value. This highlights the importance of customer-oriented 

objective functions. Another similar objective to the MLP is to minimize the maximum 

wait time among all nodes. Campbell, Vandenbussche, & Hermann (2008) study 

objectives to minimize average latency (which is the same as total latency divided by the 

number of customers) as well as the maximum latency at any customer. However, 

minimizing total latency is preferred in this thesis over minimizing the maximum latency 

because it takes into account the wait times at all customers.  

While the minimum latency objective inherently contains a focus on fair distribution of 

supplies to customers as discussed, it is also important to evaluate fairness among 

customers on an individual level. Here, a solution is considered to be fairer if customers 

are serviced with more consistent, similar wait times. That is, the variance among all 

latencies is smaller. This is in contrast to a high-variance solution in which some 

customers are serviced quickly at the expense of others in the system having to absorb 

very long wait times. The objective of minimizing maximum latency partially addresses 

this focus, but again only considers the individual needs of the last-served customer. 

Measuring the standard deviation among customer wait times, on the other hand, 

provides a strong statistical measure of the spread of wait times. Thus, standard deviation 

among responses will also be recorded and compared throughout this thesis. A simple 

illustration of the cumulative distribution functions (CDF) of two solutions shows how 

these measures translate into quick and fair response in customer-focused applications. 

In Figure 1.3, these CDFs are created from two randomly generated datasets with mean 

and standard deviation close to N(100,25) and N(150,50). If these functions are viewed as 
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emergency response times for supply delivery, for example, it is clear that a larger 

portion of customers can be serviced more quickly if the first distribution of wait times, 

‘Distribution 1,’ is accomplished. In certain emergencies, a natural time constraint may 

restrict relief operations to a narrow window. If in this hypothetical situation a time 

constraint of 125 units was in effect, for example, the population serviced by that time by 

the ‘Distribution 2’ solution appears to be less than half of the whole network, whereas 

the low mean and standard deviation of ‘Distribution 1’ would allow it to serve the clear 

majority by that time. 

 

Figure 1.3: CDFs for two hypothetical routing solutions 

 

1.4 Research Objectives 

The overarching goal of this thesis is to advance the developments pertaining to the 

application of routing problems to improve disaster relief operations. This has become a 

popular topic recently and, while much progress has been made, many interesting 

problems of value remain untouched. In response to one of these untouched gaps in the 

current body of literature, an important variant is selected for analysis. This is a version 

of the MLP that utilizes multiple vehicles and multiple supply depots that can be accessed 

by any vehicle. The motivation for selecting such a variant stems directly from 
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applicability to disaster relief scenarios. A prominent setup among relief agencies and 

other entities seeking to provide service involves the prepositioning of supply distribution 

centers paired with a fleet of emergency and delivery vehicles for transportation to the 

customers in need. 

All decisions in an emergency response setting should seek to provide fair service to 

those in need. Thus, the most appropriate objective function is to minimize the service 

times at all customers. Alternative objectives for similar problems often studied in 

industry logistics and job scheduling settings include minimizing total route length, 

minimizing maximum service time, and minimizing the number or tardiness of late jobs 

when time constraints exist. While approaches to many of these objectives are more fully 

developed, they do not fill the direct need required in emergency networks. Minimizing 

route length, for example, seeks to ease the costs incurred by the service provider. 

Minimizing maximum service time, on the other hand, is customer-oriented but does not 

take into account the service time of every customer but only the one with the maximum 

wait time. Minimum latency objectives are the ideal alternative because they factor in the 

service time of every customer. In this work, the basic minimum latency objective is used 

as well as the objective of minimizing total weighted latency. Weighted latency at a 

customer is calculated as the product of the wait time and the demand at that node. When 

applied to post-disaster settings, this weight can correspond to the number of victims at a 

demand location, so the weighted latency objective gives these high demand nodes some 

priority in being served as early as possible. 

Using these objective functions, the model is developed to closely resemble the 

organizational setup of a relief provider. Multiple vehicles are used with limited capacity 

such that they may need to refill their supply at depots in order to fulfill all demand. 

Capacity constraints are not imposed on supply depots here, as they are entities with 

much larger storage ability, but imposing such constraints is a potential next step for 

furthering this research. Upon the completion of routes, vehicles are assumed to return to 

the main depot from which they started, but this return time is not factored into the 

objective as it does not directly impact customer latency. 
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The problem with these qualities is titled the Multi-Depot Minimum Latency Problem 

with Inter-Depot Routes (MDMLPI). The following research objectives are identified to 

explore and evaluate this problem: 

1. Formulate and validate a mathematical model that is representative of the 

MDMLPI 

2. Develop heuristic algorithms to obtain strong solutions to the MDMLPI in 

reasonable computation time for the minimum latency and minimum weighted 

latency objectives 

3. Evaluate the power and benefit of these heuristics by comparing to a 

benchmarking solution and to when a minimum route length objective is used on 

the same instances 

4. Evaluate the performance of these heuristics incorporating the notion of fairness 

for such networks 

 

1.5 Research Overview 

The remainder of the document will be organized as follows: 

• Chapter 2: Literature Survey 

Relevant literature to the research on this problem is investigated. This includes 

works pertaining to the variants of the MLP, similar variants of routing problems 

using multiple vehicles, research directly related to disaster relief logistics, and 

applications of similar network designs in job scheduling problems. In each case, 

previously proposed algorithms are highlighted and important learning from the 

past literature is gathered. 

 

• Chapter 3: Model Formulation 

The development of the model for the MDMLPI is documented, including 

performance measures, system qualities, and assumptions. This chapter also 

details how each quality or limitation in the network was translated into a 
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mathematical constraint. The integer programming model is developed in this 

chapter and is presented concisely in full in Appendix A. 

 

• Chapter 4: Heuristic Approaches 

Several heuristic approaches to the MDMLPI, as well as a second-phase 

reassignment procedure, are introduced. The first algorithm utilizes an auction 

policy such that vehicles accept bids from customers who seek to be the next stop 

on a given route. Secondly, an alternative heuristic is presented in the form of a 

simple insertion technique. This approach assigns nodes sequentially based on 

proximity to the main depot and positions depot stops once all nodes have been 

assigned to the route. Lastly, a second-phase adjustment heuristic is presented to 

improve the results of the first two algorithms, which may be considered as initial 

routing solutions. This policy evaluates the potential movement of each node to 

alternative route positions to see if improvements in latency (or weighted latency) 

can be achieved. 

 

• Chapter 5: Preliminary Evaluation 

Given the NP-hardness of a problem as complex as the MDMLPI, the test 

instances cannot be solved to optimality. Therefore, smaller problems are used to 

validate that the formulated model is accurate. This is done using two small sets 

of instances. Firstly, subsets of the larger instances are extracted and solved to 

optimality using CPlex solver. The heuristics are also run on the subset instances. 

This assists validation of the defined model and heuristics to ensure that all 

components are functioning and intuitive routing solutions are being obtained. 

Secondly, the heuristics are run for some single-vehicle MLP instances to further 

validate them on problems of larger size. The instances come from the Traveling 

Salesman Problem Library (TSPLIB) and have been used for the MLP in previous 

literature. 
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• Chapter 6: Performance Evaluation 

Results are presented for testing of the benchmarking policy and proposed 

heuristics. Latency and weighted latency values are displayed along with the 

standard deviations achieved under each objective. The results demonstrate that 

the proposed heuristics offer significant improvements over the benchmarking 

policies in terms of both latency and standard deviation, thus carrying valuable 

implications for fair routing in emergency settings. They offer even greater 

reductions when compared to the latencies and standard deviations that arise from 

using a minimum route length objective, exhibiting the key benefits and 

motivation for using a minimum latency objective in such environments. Lastly, 

the average computation times of each are presented to show their effectiveness in 

reasonable time. 

 

• Chapter 7: Conclusions and Future Work 

Finally, a summary of what was accomplished and the key lessons from this thesis 

work are discussed. As the class of MLPs and the field of disaster relief logistics 

are currently developing, there are many interesting and impactful areas for future 

research directions. Several of these pertaining to similar work as that presented 

here are discussed. 
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CHAPTER 2: LITERATURE SURVEY 
 
 
 
2.1 The Minimum Latency Problem 

The problem of wait time minimization among customers was first studied by Afrati, 

Cosmadakis, Papadimfditriou, Papageorgiou, & Papakostantinou (1986) as the Traveling 

Repairman Problem (TRP). The authors introduce the objective of minimizing the 

average waiting time of a number of machines in need of repairs by a single repairman. A 

polynomial time algorithm for the instance in which machines are in a line, called the 

line-TRP, is proposed. Recently, problems with MLP objectives have attracted attention 

among researchers as well as for industry applications. Exact algorithms, approximation 

schemes, and heuristics have been developed to solve or approximate the complex MLP 

variants in reasonable time (for a few examples, see Abeledo, Fukasawa, Pessoa, & 

Uchoa, 2010; Goemans & Kleinberg, 1998; Salehipour, Sörensen, Goos, & Bräysy, 2011; 

Silva, Subramanian, Vidal, & Ochi, 2012; Wu, Huang, & Zhan, 2004; Wu, 2000). For a 

more complete review, see Moshref-Javadi & Lee, (2013). 

 

2.2 Multi-Depot and Multi-Vehicle Routing Problems 

Focusing the scope of search to multiple vehicle instances of the MLP, however, greatly 

reduces the body of available literature. Those works that deal with such variants, to the 

extent of our knowledge, fall under the name of the Cumulative Capacitated VRP, or 

CCVRP. This problem is equivalent to the system of a VRP with the only difference 

being the altered objective function. Ngueveu, Prins, & Wolfler Calvo (2010) present this 

problem using homogenous vehicles with limited capacity. The authors introduce 

methods to formulate the first upper and lower bounds to this problem. A memetic 
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algorithm is used to find the upper bounds. Ribeiro & Laporte (2012) study the same 

problem and provide improved solutions for the same instances previously used. The 

authors do this using adaptive large neighborhood search. Ke & Feng (2013) offer further 

improvements with a two-phase heuristic. This approach employs two perturbation 

operators on generated solutions at every iteration.  

The above literature on the MLP is organized by characteristic in Table 2.1 below, which 

is adapted from a larger version found in Moshref-Javadi & Lee (2013). The following 

qualities are tracked for each:  whether demand quantity is considered on customer nodes 

or not, whether demand is deterministic or stochastic, the number of depots, the number 

of vehicles, whether vehicles have limited capacity or not, and if vehicles are similar in 

terms of speed, capacity, etc. While other variants of the MLP exist with numerous other 

characteristics, these works represent the body of MLP literature most closely related to 

that proposed in this thesis. For example, although all of these referenced papers use 

deterministic demand, there exist other works not discussed here that use stochastic 

demand arrivals. 

Table 2.1: Characteristics of the above MLP literature 

 Demand 
Quantity 

Demand 
Type 

# 
Dep. 

# 
Veh. 

Veh. 
Capacity 

Similar 
Veh. 

Afrati et al. (1986)  Det. 1 1   
Abeledo et al. (2013)  Det. 1 1   
Goemans & Kleinberg 
(1998) 

 
Det. 1 1   

Salehipour et al. (2011)  Det. 1 1   
Silva et al. (2012)  Det. 1 1   
Wu et al. (2004)  Det. 1 1   
Wu (2000)  Det. 1 1   
Ngueveu et al. (2010)  Det. 1 >1   
Ribeiro & Laporte (2012)  Det. 1 >1   
Ke & Feng (2013)  Det. 1 >1   
MDMLPI  Det. >1 >1   

 

These works can be grouped into two broader categories designated by the lines in the 

table above: those that use a single vehicle without capacity constraints or customer 
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demand, and those that consider multiple vehicles with these constraints. It is clear from 

the table, however, that no previous works use more than one depot. This is also true 

when considering a larger range of literature; no previous works have been found that use 

multiple depots in an MLP variant. 

Therefore, this work seeks to expand upon these variants in the direction of a multiple 

vehicle, multiple depot MLP in which vehicles can refill their supply at any depot in the 

system. The quality of shared supply depots is prevalent in customer-oriented networks 

like disaster relief operations. This problem is titled the Multi-Depot Minimum Latency 

Problem with Inter-Depot Routes (MDMLPI). The characteristics of this problem are 

included in the bottom row of Table 2.1, which clearly identifies the research gap filled 

by this thesis work. 

An equivalent variant of this new problem has been applied to the VRP by Crevier, 

Cordeau, & Laporte (2007). These authors introduce the MDVRPI as a new variant that 

contains intermediate depots that can serve vehicles traveling from and ultimately 

returning to one main depot. Test data sets are developed with randomly generated nodes 

and depots, and then the main depot is determined as the center point among all 

intermediate depots. The proposed solution is tested on randomly generated instances 

with unlimited supply depots serving customers using homogenously capacitated 

vehicles. The authors develop a two-phase heuristic using a Tabu Search and test it on ten 

problem instances. As the MDVRPI had not been previously studied, these results are 

assumed to be the present best-known solutions for their datasets and will be used as a 

reference for discussion of results in this work. 

 

2.3 Disaster Relief Operations 

The relevant literature from disaster relief applications of these problems is also briefly 

reviewed. Works pertaining to this application area are often found under key phrases 

such as Humanitarian Logistics / Humanitarian Operations, Disaster Operations 

Management (DOM), and emergency relief logistics. Different literature in this field 

deals with varying levels of application to these real-world settings, ranging from 
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theoretical development of new problem variants to case studies of actual 

implementations of relief effort optimization. It is important to maintain a focus on 

applicability throughout this work. Thus, while the problem and heuristics presented here 

are not being applied to a present disaster, it is appropriate to approach them with a 

careful understanding of how such applications have previously been performed. 

Literature applied to this field comes in several forms, including development of new 

problems and solution approaches, analyses of the field of relief efforts from different 

perspectives, case studies from groups directly involved in such efforts, and more. Altay 

& Green (2006) offer a valuable review of applications of Operations Research and the 

Management Sciences (OR/MS) in this field. The authors note that researchers in this 

area have not yet produced a thorough body of work to encompass the multitude of 

impactful questions in this area. The existing literature is reviewed such that unresolved 

questions and new research directions can be highlighted. Many valuable questions to 

guide researchers are also discussed, including the ethical role of decision making in such 

settings and the ideal organizational structures to enhance communication and 

coordination. 

A follow-up to this work is presented by Galindo & Batta (2013), who offer updates of 

how the field has developed more recently and continue the discussion on such issues as 

the role of coordination among multiple relief agencies. Other similar reviews can be 

found in Van Wassenhove (2005), which focuses on the supply chain perspective, as well 

as Kovács & Spens (2011), Balcik et al. (2010), and McEntire (1999), which include 

significant discussions on the main issues, gaps, and opportunities in relief. 

Campbell et al. (2008) provide a thorough discussion specific to routing efforts in disaster 

relief by exploring different objectives with bounds on performance between server-

oriented and customer-oriented goals. The customer-oriented objectives studied are 

average latency and maximum latency. The discussion between objectives and regarding 

fairness in relief routing strongly advance understanding of these topics in the literature. 

Another common study in such settings that has direct application value comes in the 

form of case studies and analyses from relief worker perspectives. Day, Melnyk, Larson, 
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Davis, & Whybark (2012) call for the inclusion of what they refer to as Humanitarian and 

Disaster Relief Supply Chains (HDRSCs) into the field of supply chain management 

(SCM). As a concluding component of this argument, they present some of the key needs 

of this field from the perspective of HDRSC practitioners. Similarly, Howden (2009) 

places a similar call on the importance of humanitarian operations in disaster relief 

supply chains. This work is written from the perspective and experience of a 

humanitarian consultant. Other case studies specific to certain disasters as opposed to 

types of organizations include analyses of response in Haiti following the 2010 

earthquake (Jobe, 2011; Martinez & Wassenhove, 2010) as well as of the response to the 

2004 tsunami in Asia (Tabbara, 2008), among others. Costa, Campos, & Bandeira (2012) 

analyze response efforts to four different disasters affecting Japan in 2011, Brazil in 

2011, Pakistan in 2005, and 14 countries bordering the Indian Ocean in 2004.  

Lastly, another interesting area involves corporate involvement in response to local 

disaster relief. Kuo & Means (2012) discuss this involvement and the value of local 

businesses to serve their local communities in need, as well as the larger players from 

international relief organizations to larger corporations (e.g. Walmart’s presence in 

recovery from Hurricane Katrina in 2005). Another interesting example of this is 

presented in Ergun, Heier Stamm, Keskinocak, & Swann (2010) with an analysis of 

Waffle House Restaurants and the corporations involvements in a number of hurricane 

relief efforts. 

 

2.4 Job Scheduling 

Another application area for which routing problems can provide some insight is job 

scheduling. Many industry applications require the scheduling of jobs with sequence-

dependent setup times such that the setup time for a job depends on the job itself as well 

as the job preceding it. Setup times are thus represented in matrix form where every entry 

designates the setup required to transition from job i to job j. In standard job scheduling 

notation, sequence-dependent setup times are denoted by sij in the β field of an α|β|γ 

scheduling problem. 
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Certain variants of these problems can be equated to classes of routing problems such that 

the setup time between two jobs equates to the travel time between two customers. If a 

routing problem calls for time windows to service nodes, this is equivalent to the 

processing time of a job. Otherwise, processing times can be assumed to be zero. For 

example, the TSP, which minimizes the route time for a single server among n nodes that 

each need to be visited once, is equivalent to a 1|���|���	 problem. Expanded to the 

Vehicle Routing Problem (VRP) which has the same objective and m identical servers, 

this becomes a 
�|���|���	 problem. Similarly, the Minimum Latency Problem (MLP) 

seeks to minimize total arrival time at customers and can be equated to a 1|���| ∑ �� 

problem, or 
�|���| ∑ �� in the multi-server variant. 

As these parallel problems may be able to provide insight for each other, it is important to 

be aware of the research conducted on each of them. Below is a brief look at some similar 

problems in the field of job scheduling and methods for how they have been studied. Tj 

used in the notation below corresponds to the tardiness of a job being completed when a 

deadline is present. This would parallel late arrival of a vehicle to a customer that has a 

time requirement. Additionally, problems that minimize wjTj utilize weighted tardiness of 

job completion based on the job’s importance. 

An exact branch-and-bound algorithm for both the 1|sij|∑ �� and 1|sij|∑ � problems, 

where Tj is the tardiness of a job with a scheduled completion time, is presented by 

Bianco et al. (1993). Many similar works with the objective of minimizing total tardiness 

were also found, including a demonstration of lower and upper bounds to the problem 

(Luo et al., 2005), an ant colony optimization (Liao & Juan, 2007), and a hybrid genetic 

algorithm (Sioud, Gravel, & Gagné, 2012). Wang & Tang (2010) present a hybrid 

metaheuristic for the same environment minimizing weighted job completion times. The 

general single-machine environment with past-sequence-dependent setup times is studied 

with a variety of objective functions by Koulamas & Kyparisis (2008), who present a 

sorting procedure to solve instances in O(n log n) time. 

Many variants of sequence-dependent processing and assignment problems on parallel 

machines are well-studied, but approaches specific to the 
�|���| ∑ ��, which is the MLP 
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with multiple vehicles, are not abundant. Guinet (1993) studies this exact problem and 

presents an approach adapted from the routing literature. A previous model is adapted for 

assignment of jobs to machines and fictitious machines are added to allow machine 

redeployment. The proposed heuristic is tested over a wide variety of instances and 

performs well. 

A similar problem is studied in Lee & Pinedo (1997), where a three-phase heuristic is 

presented for the problem of 
�|���| ∑ ���. The heuristic involves a preprocessing 

phase, a dispatching rule, and simulated annealing and is also tested on a variety of 

instances. Similarly, Ying (2012) presents an effective iterated greedy heuristic for the 

objective of minimizing setup times in parallel machines, which is similar to the VRP 

objective. 

Further, a literature review of scheduling problems with sequence-dependent setups was 

conducted by Zhu & Wilhelm (2006) while Tan, Narasimhan, Rubin, & Ragatz (2000) 

compare four algorithms in the minimum total tardiness class of problems. These 

approaches are branch-and-bound, genetic algorithm, simulated annealing, and random-

start pair wise interchange. They conclude that both simulated annealing and pair wise 

interchange are feasible approaches for large datasets, and branch-and-bound is optimal 

for smaller problems. 
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CHAPTER 3: MODEL FORMULATION 
 
 
 
3.1 Performance Measures 

The primary goal is to minimize total latency, or weighted latency, across all customers. 

As a secondary measure, standard deviation among customer wait times is also sought as 

an indication of fair routing solutions. These two performance measures will be used in 

developing and evaluating the routing policies of the MDMLPI. 

 

3.2 System Qualities 

The system of the MDMLPI contains the following: 

• A set of customers with demand for a single commodity to be fulfilled by one visit of 

a single vehicle 

• A set of identical vehicles with limited capacity 

• One main supply depot from which all vehicles begin their routes 

• A set of intermediate supply depots at which vehicles can refill their supply en route 

 

One characteristic of the original MDVRPI formulation not implemented with the 

MDMLPI is a route length maximum on each vehicle. For VRP solutions, it may be 

preferable for a smaller number of vehicles to service a larger number of customers, since 

the objective is to simply minimize route length of all vehicles. Thus, this constraint 

prevents some vehicles from performing large routes while others potentially never leave 

the main depot and contribute a route length of zero. However, this behavior is clearly 

suboptimal for problems with an MLP objective. Thus, the restriction on single tour 
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lengths is not applied here, although it is expected to naturally be met regardless, given 

the nature of the MLP objective. Because the arrival time at all customers should be 

minimized, a strong solution will virtually always utilize every available vehicle and will 

inherently assign routes of similar lengths to each one. 

3.3 Assumptions 

The following assumptions are also made: 

• The supply depots have unlimited capacity 

• Each stop is assumed to have zero service time such that the time required to service a 

customer is simply the time required to travel there 

• Likewise, time windows for supply replenishment at depots is assumed to be zero 

• When calculating latency, only arrival times at customers are considered, not stops at 

intermediate depots or a return to the main depot, in keeping with the objective 

function 

 

3.4 Mathematical Model 

An original integer programming formulation for this new variant is formed as follows. 

Note that the nomenclature discussed below is presented concisely as a preliminary 

section of this document on page ix. Consider a set of nodes V = {1, 2,…, n}, which is the 

inclusive set composed of customers, a main depot, and multiple intermediate depots. Let 

the subsets VC, VD, and VI, define the set of customers, main depot, and intermediate 

depots, respectively. An arc between two nodes i and j in V has an associated travel time 

of cij. All arcs are symmetrical, implying that this is the equivalent distance associated 

with traveling from node j to node i. We also define R = {1, 2,…, m} as the set of 

vehicles servicing these nodes. If the arc from customer i to customer j is traversed by 

vehicle k, the value of a binary variable xijk is equal to 1, otherwise it is 0. 

To write the objective of this problem, we define πik as the wait time for customer i being 

serviced by vehicle k, which is calculated as the sum of all travel times on route k 

preceding customer i. The objective to minimize latency is thus: 
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 (1) 

 

For the objective of minimum weighted latency, we also define the demand for customer 

i as qi. The minimum weighted latency objective is then written as: 

��� � � �����
����

�

���
 (2) 

We now explain the logic behind the formulation of the set of constraints. Firstly, we 

ensure that each customer is visited by exactly one vehicle. In other words, every 

customer i requires that the variable xijk equal 1 for exactly one vehicle and route pair, so: 

� � ����
�

���

�

���
� 1          �� �  !  (3) 

A constraint is also imposed that limits each arc to being traversed by at most one 

vehicle:  

� ����
�

���
" 1          �� �  ,   �$ �   (4) 

Next, every vehicle is required to begin its route at the main supply depot. In a TSP 

which has a completed, full-loop tour, this constraint would not always be necessary 

because a tour would start and end in the same place and have the same route length 

regardless of starting position. However, this is not the case with a minimum latency 

objective, and so every vehicle, k, must have xijk = 1 when i is the main depot and j is the 

one and only first stop on the tour. 

� ����
�

���
� 1          �� �  %,   �& � ' (5) 

The next constraint is implemented to ensure contiguous routing solutions. So far, the 

constraints assign a vehicle stop for every node in the system along the available arcs, but 
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do not guarantee that when a vehicle arrives at a node it will necessarily depart from that 

same node for the next stop. To capture this, the symmetric behavior of the undirected 

arcs is utilized to define that the number of arrivals at any node j from node i on vehicle k 

(which is limited to at most one) must equal the number of departures from node j on 

vehicle k to any other node i. 

� ����
�

���
� � ����

�

���
          �$ �  ,   �& � ' (6) 

The next constraint is a very simple limitation to prevent any vehicle from traversing an 

arc from one node directly to the same node. This accomplishes the same effect as 

assigning any arc from i to i a sufficiently large value such that it will never be used. 

���� � 0          �� �  ,   �& � ' (7) 

To keep track of the latency at each customer, a constraint must be set on ���  according 

to the arc lengths that precede it on the route. This is done using the binary variable, ���� , 

and a large number operator M. Firstly, if the arc from customer i to j is assigned on route 

k, this constraint can be written so that the value of π at the ensuing stop j is equal to the 

previous value of π at stop i plus the arc length between i and j. If this arc is not active on 

vehicle k, however, the constraint should not calculate any latency. For this the term 

)1 * ����+ , - is subtracted from the left hand side of the constraint. Thus, if xijk = 0, the 

term takes a value of M and the left hand side, which takes on a value of –M,  is 

guaranteed to be less than the right hand side of the new latency value. This constraint 

was adapted from the cumulative wait time formulation used in Ngueveu et al. (2010) 

and applies to all customers and intermediate depots. Although intermediate depot 

latency is calculated, it is only used to add the impact of supply refills on the customers 

who are still waiting. It is not factored into the objective function. 

��� . ��� * )1 * ����+ , - " ���           �� �  \ % ,   �$ �  ,   �& � ' (8) 

These constraints also eliminate the possibility of subtours. If xijk = 1, then ��� . ��� "
��� must hold. For a subtour to exist, for example from node 1 to 2 to 3 on vehicle 1, then 
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��� . ��0 . �0� . �01 . �1� . �1� " ��� . �0� . �1� and thus ��0 . �01 . �1� " 0 

which contradicts the problem definition and cannot occur (Ngueveu et al., 2010). 

The next set of constraints performs similarly to the latency calculations and are used to 

keep track of the running supply a vehicle has available. Let µik represent the cumulative 

amount of stock required from vehicle k when it services customer i. This value should be 

calculated as the sum of all customer need on the route up to and including customer i. 

The total need for a routing segment at the next stop, j, will be the amount needed up to 

the previous stop, i, plus the demand at the next stop, which is denoted by qj. 

2�� . �� * )1 * ����+ , - " 2��           �� �  ,   �$ �  ! ,    �& � ' (9) 

To account for supply refills, the following constraint is added to the main depot and set 

of intermediate depots. At any of these entities, supply required up to that point is zero 

and all ensuing calculations of 2��  will ‘reset’ from this starting value. 

2�� � 0          �� �  / ! ,   �& � ' (10) 

The final constraint on capacity must ensure that the amount of supply demand for any 

route segment between depots has to be within the vehicle’s carrying capacity, which is 

denoted Q and is the same for each vehicle. 

2�� " 4          �� �  ,   �& � ' (11) 

Finally, xijk is defined as a binary variable and non-negativity constraints are imposed for 

variables  ���  and 2�� . 

���� � 50,16          �� �  ,   �$ �  ,   �& � ' (12) 

���, 2�� 7 0          �� �  ,   �& � ' (13) 

For completeness, the model is written in full in Appendix A. 

One final note should be made for the implementation of this model into optimization 

solver software. The formulation precludes the possibility of multiple visits to the same 
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supply depot, including en route stops at the main depot, because of the calculation of 

latency and supply need. Multiple visits is a quality that should be allowed in the system 

to account for all possible tours. This can be accomplished by simply adding several 

hypothetical supply depots, or ‘phantom’ depots, with the same locations, qualities, and 

associated travel costs as the existing set. This will allow routing solutions to use the 

resources of a depot multiple times while addressing it by separate indices. 
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CHAPTER 4: HEURISTIC APPROACHES 
 
 
 
The MDMLPI is an NP-hard problem. Because instances of any reasonably large size 

cannot be solved to optimality, it is beneficial to develop heuristics that can provide 

strong, near-optimal solutions and that can be solved in a reasonable amount of 

computation time, even for large problem instances. This motivates the development of 

two heuristic approaches and a second-phase adjustment that are applied to problem 

instances containing up to several hundred customers. Additionally, because no optimal 

solutions exist for the problem instances to be tested, two sets of benchmarking solutions 

are introduced. The first comes from a nearest neighbor policy that is described in section 

4.1. Secondly, because this problem has been studied as a VRP, the best-known solutions 

to solving with this objective are used. The (weighted) latencies that would result from 

applying these solutions with the MLP objective are calculated and used for comparison 

between the two objectives. These calculated values will be introduced in Table 6.2. 

 

4.1 Nearest Neighbor Benchmark 

Firstly, a simple nearest neighbor, or greedy, policy was implemented. A nearest 

neighbor policy typically performs well in routing problems and requires very little 

computational need. Here, vehicle stops are selected sequentially such that the vehicle 

with the shortest route length at any time is the next one to select. This allows real-time 

assignment of stops and balances route lengths among vehicles, which is a desirable 

property when wait times are to be minimized. The results from this simple policy will be 

used along with previous VRP solutions as a benchmark for the remaining heuristics. 

 



26 
 

4.2 Initial Heuristics 

4.2.1 Auction Policy 

An auction policy is developed in which nodes are assigned to vehicles sequentially as is 

done in the nearest neighbor benchmark, where the vehicle with the current shortest route 

at any time accepts bids from all nodes that have not yet been served. Each node bids 

once at every iteration until it is serviced and the lowest bid of each determines the 

vehicle’s next stop. 

Four bidding parameters are included: 

• Vehicle’s Distance to Bidding Customer: This is the single factor used in the nearest 

neighbor policy. It gives a more competitive bid to nodes that are close to the 

vehicle’s current location. 

• Customer Need: This will affect the number of customers a vehicle is able to serve 

before requiring a refill stop at an intermediate depot. In the case of weighted latency, 

it directly relates to the objective function and is paired with a negative calibrating 

parameter because customers with high need will ideally receive quick service. This 

high need may correspond to a larger number of people at that node.  

• Customer’s Distance to Nearest Neighbor: In either the minimum latency or the 

minimum weighted latency case, a node will be a more attractive option, and thus 

have a lower bid, if it has a close neighbor that can also be served around the same 

time. 

• Customer’s Average Distance to Other Nodes: Similarly, nodes found in small 

‘clusters’ of other nodes with a smaller average distance to its neighbors will have 

more attractive bids. This adds an element of centrality to the vehicle’s decision-

making. 

These factors led to the bidding function shown below for each node, j, with calibrating 

parameters and variables defined as follows: 

���  Distance from vehicle at its current stop i to the bidding node j 

��8 Distance from node i to neighbor l 
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��  Supply needed at customer l 

� Number of nodes 

9�:;�< � ��� , ��=> , ?min���� ��8C=D , E∑ ��8����� F
=G

 

The values of the three calibration parameters, w1, w2, and w3, were determined as 

follows. For the supply needed at each customer, which is modified by w1, a different 

behavior is expected between the latency and weighted latency objectives. In the case of 

weighted latency, it is clear that a larger demand should correspond to a more attractive 

(lower) bid, so the calibration should take on a negative value. With the minimum latency 

objective, however, this is less clear because visiting customers with large demand will 

result in earlier, and probably more frequent, stops at intermediate depots. Because this 

may be suboptimal behavior, positive values were also considered for w1. For w2 and w3, 

however, both parameters should take on positive values for both objectives. This will 

give lower bids to customers with smaller distances to neighbors, which is preferable 

because it gives priority to clusters of nodes. 

With these directions established, experimentation was done to find appropriate ranges 

for these values that lead to strong results. It was determined to vary w1 from -0.2 to 0.2 

by steps of 0.05, w2 from 0 to 0.5 by 0.05, and w3 from 0 to 1 by steps of 0.2. These 

parameter calibrations are uniformly applied to the minimum latency and minimum 

weighted latency objectives alike. 

Stops at intermediate depots must also be considered to ensure that capacity constraints 

are met. Heuristics must therefore keep track of how much is demanded from each 

vehicle’s route and add a stop at a nearby depot before capacity is violated. For the 

auction heuristic, this was implemented with the following rule:  if at any point bids are 

calculated and the current vehicle does not have sufficient supply to fulfill the need of the 

lowest-bidding customer, it is routed to refill at the depot it is closest to at that point. 

Pseudocode for the auction policy is included in Appendix B. 
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As an illustration of how the bidding function works, consider a section of a routing 

network as in Figure 4.1. The solid arrow shows the last arc traversed by the servicing 

vehicle and the vehicle’s current location is at that lower left node. Although all 

customers who have not been served will place bids at this point, let’s consider the bids 

of just two nodes as an example. These bidding nodes are identified by connection to the 

current location by dashed arrows. 

 

Figure 4.1: Example network for auction heuristic 

 

First, we break down the bidding parameters for the node on the left. Figure 4.2 contains 

further information about arc lengths and demand at this customer. The values of each of 

the four bidding parameters can be clearly inferred using this information. The distance to 

the bidding node from the vehicle’s current position is 5 units and it has a demand of 8 

for the needed commodity. Additionally, the node’s nearest neighbor is 2 units away. 

Lastly, the average travel cost associated between this node and any possible neighbor in 

the system is calculated to be 4. 
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Figure 4.2: Bidding parameters for first bidding customer 

Next, consider the bidding parameters for the second node in the lower right. This has the 

demand and travel costs detailed in Figure 4.3. 

 

Figure 4.3: Bidding parameters for second bidding customer 

This customer’s bidding parameters are a demand of 5, a distance from the vehicle of 9, a 

nearest neighbor at a distance of 6, and an average neighbor distance of 7. Without 

calculating the final bids from each node, it is trivial to see that the first customer we 

considered will have a more attractive bid than the second. It is closer to the vehicle, has 

higher need, and exists in a cluster of nodes that can be serviced together for efficient 

performance. 

��� � 9 
:� � 5 
��� ��8 � 6 

�KL� ��8 �  9 . 6 . 7 . 7 . 6
5 �  7 

 

��� � 5 :� � 8 
��� ��8 � 2 

�KL� �8� �  5 . 2 . 3 . 4 . 6
5 �  4 
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4.2.2 Insertion 

The second algorithm developed for this problem is a variation of a well-known approach 

referred to as insertion (e.g. Campbell et al., 2008; Ke & Feng, 2013). The basic structure 

runs according to the following steps: 

1. Order all customers based on proximity to the main (starting) depot from least to 

greatest 

2. Considering customers in this order, begin placing them one by one into a partial 

routing solution: 

a. For each customer, consider placing them in every possible position in the 

current partial solution 

b. Among these, select the position that generates the least increase in overall 

latency 

3. Store the top H partial solutions that have the shortest latency 

4. Continue until all nodes have been assigned 

5. For each of these top H solutions, that are now complete with all customers, add 

any necessary stops at intermediate depots (this procedure is detailed below) 

6. Select from the final group of the top complete schedules the one that has the 

minimum total latency 

See Appendix C for the pseudocode of the insertion technique. 

This technique is illustrated as follows. Consider the partial routing solution in Figure 

4.4. At present, the first 7 nodes that are considered have been placed in the solution and 

node 8 is now considered. Let each row in the figure represent the tour of a single vehicle 

in the system, i.e. this example has four vehicles. Further, the width of each entry 

designates the travel cost associated with traveling to that node from its predecessor. 

Therefore, the width will vary based on the node’s predecessor, which determines where 

the vehicle is traveling from. The first nodes in each route are being visited directly from 

the main depot. 
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Figure 4.4: Partial routing example for insertion heuristic 

The algorithm will consider placing node 8 in every possible position on the partial tour. 

At each possibility, the increase in overall latency as a result of this assignment can be 

determined and the position with the minimum latency increase will be stored. Consider 

placing node 8 in the first position of the first vehicle, as in Figure 4.5. 

 

Figure 4.5: Possible position for customer 8 in partial solution 

The impact of this addition will come from three things: 1) the travel cost from the main 

depot (node 0) to node 8 will be added to the overall latency, 2) node 8 will push back the 

service time of nodes 1 and 7 by this amount, and 3) the new travel cost from node 8 to 

node 1 will replace the previous cost which was from the main depot to node 1. The 

calculation of how much latency is added to the solution becomes: 

Additional latency = �RS . 2�RS . ;�S� * �R�< 
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As another example, consider Figure 4.6, in which node 8 is placed between nodes 6 and 

4 on the third vehicle’s route. 

 

Figure 4.6: Alternative position for customer 8 in partial solution 

In addition to the latency increases noted above, there will be another increase of the 

travel time to node 6, since this (and any other predecessors that could exist) impacts the 

latency of all following nodes. Thus, additional latency for placing node 8 here can be 

written: 

Additional latency = �RT . �TS . 1�TS . ;�SU * �TU< 

Note that the coefficient on �TS in this calculation is 1 because it only has one successor 

in this case, as opposed to the two successors in the previous example. 

The key advantages to this approach are that it is simple to perform and that it builds a set 

of promising routes, maintaining several strong candidates as opposed to one single 

partial solution. It does, however, only consider one customer at a time, similar to the 

nearest neighbor policy, and therefore does not consider the value of things like node 

clusters with short travel costs among them, which the auction policy takes into account.  

For this thesis, a value of H = 5 was utilized to aim for a balance of strong results within 

reasonable computation time. Higher values of H would be able to provide improved 

solutions, but the time expense of such runs is outside the bounds of this research. 
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Depot assignment 

Following the initial assignment of nodes to routes and sequencing of the tours, it is also 

necessary to consider how stops at supply depots will be assigned in such cases. The 

simplest way to do this is to keep a running sum of all node demands and add a depot 

stop at the nearest depot one stop before that demand will exceed capacity. However, the 

impact of routing to refill supply can be alleviated if the vehicle considers stopping more 

than one stop in advance of running out of supply. For example, the vehicle may be much 

closer to a depot two or three stops before refilling is absolutely necessary, and it may be 

optimal to stop early instead of incurring later inconvenience.  

As a result, whenever a capacity limitation is identified, the algorithm adds an 

intermediate depot stop at the point among the most recent D stops at which the vehicle 

was closest to a depot. Because a value of D that is too large can also incur negative 

effects from too many unnecessary stops, this value was varied between 1 and 10 and the 

best objective among the results was kept. The pseudocode for this depot assignment 

procedure is found in Appendix D. 

For example, consider the partial route depicted in panel (a) of Figure 4.7. The arrows 

show the path of the vehicle as assigned by the insertion algorithm without yet 

considering depots. Consider the case now that the top node in black will not be able to 

be served due to the vehicle’s capacity limit, so a stop at a depot must be added before 

traveling to this node. Two possible depots are shown as squares in the figure. 

Panel (b) of the figure represents what the route may look like if the vehicle were routed 

to its nearest depot when the demand shortage occurred. It is clear that this requires a 

significant deviation from the current route trajectory. If the vehicle were to refill several 

stops in advance of this shortage, such an inefficiency can likely be eliminated. 
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(a)      (b) 

    

(c)      (d) 

Figure 4.7: Illustration of depot assignment for insertion heuristic 

In an effort to capitalize on this potential for reducing latency, the depot assignment 

algorithm considers the closest point that the route gets to a depot in the last several 

stops. Panel (c) of the figure shows the two strong candidates for depot stops, which are 

the minimum distance this section of the route gets from each of the two depots in the 

figure. The minimum of all candidates, which in this case is the node-depot pair in the 

lower right of the graph, is selected. Panel (d) then displays this section of the routing 

solution with the efficiently added depot visit. 

Depot assignment is done on all of the top H completed solutions from the initial step. 

The full route with stops at depots with the best overall (weighted) latency is selected 

among these as the final routing solution.  
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4.3 Second-Phase Adjustment 

Finally, a second-phase modification to the above solutions is introduced to achieve 

additional improvements. Due to the cumulative nature of the MLP, an inefficiently-

positioned node impacts the routing solution for every stop following it, and thus the 

effect of any inefficiency is compounded. To help alleviate this effect, this adjustment 

takes the previous routing solutions and considers moving each customer to any alternate 

stop on the route to see if an improvement in total latency can be made. With each 

possibility, it also must be ensured that capacity constraints are still satisfied. Any time an 

improvement is achieved, the new positioning is checked to ensure that no capacity 

constraints have been violated. If they have, the improvement is not allowed to occur, 

since it is no longer a feasible solution. With this structure, results from the second-phase 

adjustment are guaranteed to be at least as good as the original solution. 

The order in which nodes are considered for a position change (either on its current route 

or being assigned to a different vehicle) impacts the available changes of subsequent 

nodes. Thus, nodes were considered in a random order, checking every position for the 

current node before considering the next. As a result, each instance was run multiple 

times using this adjustment. The number of repetitions was selected to be ten as this is 

expected to provide a good estimation of the true mean of the distribution. The best 

results as well as averages are reported. See Appendix E for the pseudocode of this 

adjustment. 

To illustrate this procedure, consider the following example shown in Figure 4.8. Here, 

assume that the routing solution below is complete for a system of 11 nodes and 4 

vehicles. If the total latency (sum of wait times for each unit represented below) is 

calculated, the solution currently has a latency of 73 time units. 
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Figure 4.8: Example complete schedule for second-phase adjustment 

When the second-phase heuristic is run, it considers moving each node to a new position 

to see if total latency can be improved. To explore the calculation behind this decision, 

consider Figure 4.9, which moves node 6 from the middle position for the third vehicle 

(third row) to the middle position on the last vehicle’s route, between nodes 3 and 9. 

 

Figure 4.9: Possible repositioning using second-phase adjustment 

This adjustment will be implemented and stored if the reductions in latencies outweigh 

the additional latency values that are incurred. Reductions in this case will result from 

removing node 6 from the third vehicle’s route and moving node 4 to be serviced earlier 

in the schedule. New latency costs will be incurred as a result of adding node 6 to the last 

route and pushing back the position of customer 9. Because travel costs depend on both 

the departure and arrival nodes, changes in the time it takes to service a customer may 

also change, either in the positive or negative direction. Therefore, this potential 

movement will have the impact calculated below. 
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Impact on total latency 

Removal of node 6 latency in row 3:       

Reduction in wait time before vehicle departs for node 4 (originally 7, now 3):  

Change in travel cost to node 4 (originally 5, now 3):    

Wait time before vehicle departs for node 6 in new position:   

New travel cost to node 6:        

Additional wait time before vehicle departs for node 9 (originally 4, now 7): 

Change in travel cost to node 9 (originally 5, now 3):    

-7 

-4 

-2 

4 

3 

3 

-2 

Total system latency change:  -5 

 

Repositioning node 6 between nodes 3 and 9 is, therefore, a beneficial move in terms of 

total latency and the new solution will have a cumulative latency of 68 time units, which 

can be verified by adding the waiting times of all customers shown in the previous 

graphic. 
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CHAPTER 5: PRELIMINARY EVALUATION 
 
 
 
The proposed model was implemented using CPlex solver to validate all system 

components. Next, both of the heuristic approaches as well as the second-phase 

adjustment were coded and implemented in C++. Because the problem instances being 

solved are too large to be solved to optimality, two methods were used to test the 

proposed algorithms on similar, smaller datasets for validation. 

 

5.1 Test Instances 

The qualities of the ten instances to be tested on, as generated in Crevier et al. (2007) and 

labeled a through j, are summarized in Table 5.1. The full results are available online at 

http://neumann.hec.ca/chairedistributique/data. 

Table 5.1: Characteristics of the 10 data sets used for testing 

Instance # Depots # Customers # Vehicles Vehicle Capacity 

a 5 48 4 150 

b 5 96 4 200 

c 5 144 4 250 

d 5 192 3 300 

e 5 240 3 350 

f 5 288 3 400 

g 7 72 4 175 

h 7 144 4 250 

i 7 216 3 325 

j 7 288 3 400 
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Note that these details do not include the constraint on route maximum duration. As was 

mentioned in the problem definition, a strong minimum latency solution will utilize all 

available vehicles such that the route length of each is relatively similar. This negates the 

need for the maximum route duration constraint. Such a constraint was used with the 

minimum route length objective because a strong solution may involve some vehicles not 

being used at all while others serve extremely long routes. Take, for example, a pair of 

nodes that are 1 unit away from each other and both 10 units from the starting depot. If 

the goal is to minimize route length, one vehicle will optimally service both nodes, which 

requires 11 units of travel, instead of each vehicle traveling 10 units to get to one of the 

nodes. However, it is always optimal to use every available vehicle when minimizing 

latencies. In the same example, the single vehicle solution will have latencies of 10 at the 

first node and 11 units at the second, totaling 21. However, if each vehicle travels to one 

of the nodes, the latencies at each node will be 10 units, totaling to 20. 

 

5.2 Validation on Small Instance Subsets 

Firstly, subsets of the problem instances were created so that they could be solved to 

optimality using CPlex solver and approximated with the proposed heuristics in order to 

1) ensure that all qualities and constraints are properly being implemented in the full 

complexity of the problem and 2) indicate the performance of the algorithms compared to 

an optimal solution. Although results from such an approach are not necessarily 

expandable to the larger problems (for example the smaller problems generate tighter 

capacity constraints, adding an emphasis on this component that is not as crucial in the 

larger problems), they provide an initial indication of result quality and ensure validity of 

the approaches. Additionally, small modifications were made to the heuristics as 

necessary to fit the smaller problems, such as an adjusted calibration of the bidding 

parameters used in the auction policy. The details and full problem instances of these test 

data are included in Appendix F. 

Because of the expensive computation of the MDMLPI, very small subsets were used for 

each problem instance. Each one uses the main depot, two intermediate depots, and six 
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nodes from the original instance. Additionally, a ‘phantom’ depot was created for the 

main depot so the option of revisiting en route was possible for the optimization. With 

these selected, each problem contained ten entities among customer nodes and depots. To 

select the subsets, the first six nodes in the order in which they are originally numbered 

were chosen. Additionally, the first and third intermediate depots were selected in order 

to increase the likelihood of the intermediate depots being on either side of the main 

depot rather than close to each other in a shared area. The original demand at each of 

these customers was also retained. 

Based on the proportion of these instances to the full ones, it was decided to use a 

constant vehicle capacity of 30 and to use 2 vehicles in each instance. These 

characteristics were selected so that vehicles would likely have to each make a stop at an 

intermediate depot in most of the solutions. This way, the validity and effectiveness of 

depot assignments could also be tested. 

5.2.1 Minimize Latency 

The performance of heuristics on the small instances using the minimum latency 

objective is presented in Table 5.2. Here, optimal solutions are presented along with 

results from the two heuristics and the nearest neighbor benchmark.  

Table 5.2: Optimal, benchmark, and heuristic results for small problem instances 

Instance Optimal Auction Insertion Nearest Neighbor 

a 451.78 451.78 505.20 595.35 

b 583.05 583.05 586.71 649.28 

c 648.73 682.95 648.73 682.95 

d 578.06 579.23 578.06 743.04 

e 514.61 528.30 514.61 616.24 

f 779.45 854.08 779.45 933.63 

g 835.05 835.05 909.60 928.57 

h 819.20 843.87 1,006.60 971.78 

i 885.73 1,011.35 1,037.70 1,053.10 

j 389.84 431.58 450.80 589.73 
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The initial results are as expected. Both heuristics seem to perform generally well when 

compared to optimality. Between the two of them, the optimal solution is acquired for 7 

out of the ten instances. The auction heuristic does this for 3 instances, while insertion 

accomplishes optimality for 4 of them. It is also easy to see that they outperform the 

nearest neighbor benchmark in general. 

In order to make comparison between the approaches more clear, Table 5.3 presents the 

results from each policy as a ratio over the optimal value. 

Table 5.3: Ratio of each heuristic and NN benchmark over optimality for small instances 

Instance Auction Insertion Nearest Neighbor 

a 1.0000 1.1182 1.3178 

b 1.0000 1.0063 1.1136 

c 1.0527 1.0000 1.0527 

d 1.0020 1.0000 1.2854 

e 1.0266 1.0000 1.1975 

f 1.0957 1.0000 1.1978 

g 1.0000 1.0893 1.1120 

h 1.0301 1.2288 1.1863 

i 1.1418 1.1716 1.1890 

j 1.1071 1.1564 1.5127 

Average 1.0456 1.0771 1.2165 

 

These ratios reveal that the auction policy achieves a slightly better average optimality 

ratio than insertion, despite achieving the optimal solution for fewer instances. This can 

be attributed to higher variance in the solutions obtained by insertion, which has several 

instances with ratios above 1.10 and even 1.20. Given the small size of the instances, 

these large gaps may simply be the result of one inefficient routing assignment. 

For example, the route obtained by the insertion heuristic for instance i is very similar to 

the optimal route. The optimal solution uses the routes: 

0 � 5 � 9 � 3 � 2 � 1 and 0 � 4 � 6 
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Note that in this notation, the main depot is denoted 0, the customers are nodes 1 through 

6, and the intermediate depots are labeled 8 and 9. For this same instance, the insertion 

heuristic developed the following route, which is almost identical except for the 

placement of node 1 and a corresponding depot stop to fulfill it: 

0 � 5 � 9 � 3 � 2 and 0 � 4 � 6 � 9 � 1 

Despite the near-optimal route developed with the insertion technique, the solution still 

had 15.64% longer latency. This effect, however, is not expected to be nearly as extreme 

in the full instances. The presence of many more nodes will allow more near optimal 

paths and be able to dilute the impacts of being slightly off from optimality. 

5.2.2 Minimize Weighted Latency 

Next, each of the ten instances was re-optimized and run for both heuristics with the 

objective of minimizing weighted latency. The results shown in Table 5.4 are similar to 

what was seen above. Both heuristics perform well in general, achieving optimal 

solutions for several cases and very close approximations for most others. A few outlying 

solutions again exist as a result of the small network in which any suboptimal decision 

has a proportionally large impact on the overall weighted latency. 

Table 5.4: Optimal, heuristic, and benchmark results on small weighted instances 

Instance Optimal Auction  Insertion Nearest Neighbor 

a 4,412.78 4,412.80 5,031.40 5,875.10 

b 6,095.57 6,102.20 6,095.60 7,034.10 

c 9,010.67 9,734.50 9,253.00 9,800.60 

d 6,424.93 6,440.70 6,424.93 8,679.30 

e 6,476.03 6,629.10 6,629.10 7,882.30 

f 10,964.80 11,977.00 11,556.00 12,860.00 

g 9,740.29 9,772.90 10,096.00 14,397.00 

h 8,859.00 9,030.20 9,307.40 10,365.00 

i 9,066.23 10,309.00 9,066.23 10,899.00 

j 5,744.04 6,183.20 6,275.00 9,960.40 
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As is shown above, the two heuristic approaches attain the optimal routes for instances a, 

b, d, and i between them. In general, both average a strong approximation to the 

optimality in this small network. Table 5.5 displays each policy’s ratio over the optimal 

objective value. 

Table 5.5: Ratio of new heuristics over optimality for small weighted instances 

Instance Auction Insertion Nearest Neighbor 

a 1.0000 1.1402 1.3314 

b 1.0011 1.0000 1.1540 

c 1.0803 1.0269 1.0877 

d 1.0025 1.0000 1.3509 

e 1.0236 1.0236 1.2172 

f 1.0923 1.0539 1.1728 

g 1.0033 1.0365 1.4781 

h 1.0193 1.0506 1.1700 

i 1.1371 1.0000 1.2022 

j 1.0765 1.0924 1.7340 

Average 1.0436 1.0424 1.2898 

 

Although in the previous case the auction technique slightly outperformed insertion for 

these tests, both perform about equally in these ten weighted latency instances. The 

average ratio over optimality is strong for both of the heuristics, hovering just over 1.04 

for each. 

Using small subsets of the problem instances has thus helped to validate the legitimacy of 

each heuristic. These small instances contain all components that will be included in the 

larger implementation, including the use of multiple vehicles and intermediate depot 

refills. For both the minimum latency and minimum weighty latency objective functions, 

the algorithms provide strong, near-optimal results. The strength of these solutions is also 

expected to increase when tested on the full instances for which they were developed. 

This is because with more sizeable instances, a larger population of nodes will allow 
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additional near-optimal routing possibilities and reduce the consequence of any 

suboptimal assignments. 

For further validation, the heuristics were also tested on single-vehicle instances of the 

MLP. While optimality is not verified for these instances, strong upper bounds exist from 

previous literature and will serve as a strong benchmark. 

 

5.3 Validation on Single Vehicle Instances 

The second method will test the algorithms on a set of larger, single-depot problems for 

which strong upper bounds exist. These test instances will allow for further validation of 

the algorithms and of their promising performance. Note that only the minimum latency 

case without weighting by demand is considered here since the instances used here do not 

include customer demand. 

Several previous works test approximation algorithms and heuristics for the MLP on 

instances from the Traveling Salesman Problem Library (TSPLIB). Archer, Levin, & 

Williamson (2008) apply an approximation algorithm for the MLP that offers an 

improved approximation ratio from previous works. They present the results of running 

the algorithm on a variety of instances from the TSPLIB, ranging in size from 51 to 1084. 

Abeledo et al. (2010) use a branch-cut-and-price algorithm on similar instances, 

including improvements on some of the instances from the previous work as well as 

presenting new upper bounds to others from TSPLIB. The instances used are generally 

smaller problems. Similarly, Salehipour et al. (2011) improve and expand on these results 

using a metaheuristic on a variety of instances. This metahueristic utilizes Greedy 

Randomized Adaptive Search Procedure (GRASP) as well as Variable Neighborhood 

Descent (VND) and Variable Neighborhood Search (VNS). Finally, Silva et al. (2012) 

further develop these results by introducing a three-phase metaheuristic. The presented 

approach uses a combination of GRASP, VNS, and Iterated Local Search (ILS) and is run 

on instances used in both Abeledo et al. (2010) and Salehipour et al. (2011). Several 

upper bounds are improved upon and notable reductions in computation requirements are 

demonstrated. 
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These works collectively present the best-known upper bounds (i.e. best solutions 

achieved so far) to many instances adapted from TSPLIB with an MLP objective 

function. Several of these instances are selected from the previous literature for validation 

and comparison of the algorithms presented herein. Those that are selected range in size 

from 42 to 107 nodes. The MDMLPI instances that are used for testing range from 48 to 

288 nodes serviced among either 3 or 4 vehicles. Thus, these single-depot instances are 

comparable in size to the individual routes that the MDMLPI will be divided into. 

Table 5.6 presents the best-known results from previous literature for each problem as 

well as the results of each heuristic adapted to the characteristics of the single-depot 

problem. Note that the following table presents results from the heuristics with the 

second-phase adjustment applied. 

Table 5.6: Performance of new heuristics with rearranging on TSPLIB instances 

Data Best Known Solution Auction  Insertion 

berlin52 143,721 143,420 135,253 

dantzig42 12,528 11,690 10,999 

eil101 27,513 29,806 29,822 

eil51 10,178 10,023 10,239 

eil76 17,976 18,331 19,933 

kroA100 983,128 1,051,500 1,136,803 

kroB100 986,008 1,066,500 1,133,872 

kroC100 961,324 1,015,100 1,196,915 

kroD100 976,965 1,081,100 1,160,789 

kroE100 971,266 1,020,300 1,048,637 

lin105 585,823 670,970 761,501 

pr107 1,980,767 2,224,100 2,091,237 

pr76 3,455,242 3,504,300 3,922,911 

rat99 54,984 60,790 63,274 

rd100 340,047 370,400 374,433 

st70 19,215 21,591 21,408 
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The heuristics perform well in general and offer improved solutions for three problem 

instances: berlin52, dantzig42, and eil51. Under these characteristics, the quality of each 

approach seems to be stronger in smaller problem instances. The results are more clearly 

demonstrated in Table 5.7, which presents the ratio of each heuristic solution over the 

previous best-known results. 

Table 5.7: Ratios of each heuristic over best known solutions for TSPLIB instances 

Data Auction Insertion 

berlin52 0.9979 0.9411 

dantzig42 0.9331 0.8780 

eil101 1.0833 1.0839 

eil51 0.9848 1.0060 

eil76 1.0197 1.1088 

kroA100 1.0695 1.1563 

kroB100 1.0816 1.1500 

kroC100 1.0559 1.2451 

kroD100 1.1066 1.1882 

kroE100 1.0505 1.0797 

lin105 1.1453 1.2999 

pr107 1.1228 1.0558 

pr76 1.0142 1.1354 

rat99 1.1056 1.1508 

rd100 1.0893 1.1011 

st70 1.1237 1.1141 

Average 1.0615 1.1059 

 

The auction policy seems to perform slightly better in these cases than the insertion 

technique, with an average ratio of 1.0615 over previous best-known solutions as 

compared to 1.1059 from the insertion results. A couple noteworthy observations stem 

from considering these results. First, while each heuristic performs generally well in these 
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single-depot instances, it is anticipated that the results when applied to the full MDMLPI 

will be closer to optimality. This is because both heuristics were developed for the 

multiple vehicle, multiple depot problem and have particular qualities that cater to 

carefully assigning nodes to individual routes and efficiently sequencing customers as 

well as stops at depots. 

Secondly, further analysis of the insertion technique demonstrates how a small 

adjustment can more accurately fit select cases. As described above, the order in which 

nodes are assigned in the insertion technique is based on proximity to the starting depot. 

Nodes that have a smaller Euclidean distance to the main depot are assigned first. This 

performs well in general, but strong performance is particularly noted for the single-

vehicle instances of smaller size (e.g. berlin52, dantzig 42, and eil51). This observation 

also indicates that the approach may perform better in problem instances of the multi-

vehicle case in which vehicles each serve around this number of nodes. 

However, a weaker performance is detected here when the single vehicle serves a larger 

number of customers. To see this effect and why ordering nodes by main depot proximity 

may contribute to this inefficient behavior, consider Figure 5.1. This depicts the routing 

solution of the insertion technique for the kroC100 instance. Here, each ‘+’ symbol 

represents a customer and a line is an arc that is traversed between two of them. 

 

Figure 5.1: Routing solution for kroC100 using insertion 
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The starting position for the vehicle (indicated by the arrow on the graph) is near the top 

middle of the service area. As the vehicle progresses along its route, the nature of the 

algorithm causes it to stay close to the starting position early before expanding outward to 

the furthest regions of the service area. This initial behavior on the graph resembles 

concentric circles (or arcs) expanding outwardly from the starting position. While this 

initial behavior does not appear to be inefficient itself, it causes significant later delays. 

The clearest inefficiency comes with the last two nodes serviced. It can be identified by a 

pair of long arcs (in bold on the diagram) that cut diagonally across a large section of the 

routes. Because the second-to-last node served (which is in the top left of the routing 

area) was considered relatively early in the process, it appears to have gotten locked into 

a position that later became inefficient. 

In addition to this clear inefficiency, there is another lengthy arc (also in bold along the 

bottom-left of the diagram) that has significant implications. This is found in the lower-

left area of the graph, where the vehicle is heading from left to right to serve the final 

group of customers around the rightmost edge of the area. The difference between this 

and the previously cited inefficiency is that the cost of traversing this lengthy arc impacts 

the wait times of numerous customers that follow it, unlike the last one which only 

impacted the final two customers. There are still 27 nodes serviced after this point, which 

means the long arc is contributing a large amount to system wait times. 

To alleviate such an effect, an alternative to this ordering for larger instances is 

suggested. Once the ordering of nodes has been determined by main depot proximity, the 

heuristic could start considering every other node at first, then make a second run through 

the ordered list and assign those that were skipped. For example, the first pass would 

consider nodes 1, 3, 5, … , n-1 (assuming n is even) and the second will assign nodes 2, 

4, 6, … , n. With this technique, the general structure of routes can be formed from start 

to finish, effectively using n/2 nodes. On the second pass, nodes can be conveniently 

placed into the already existing routing structure. Dividing into two steps will alleviate 

the pressure of a single vehicle being constrained closer to the main depot early on, which 

may not always be efficient behavior. 
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The 16 single-vehicle instances from above were run with this adjustment. To examine its 

effects, Table 5.8 presents these results and their ratio when compared to the previous 

best-known solutions. 

Table 5.8: Results of insertion technique using every other ordered node 

Data Result Ratio 

berlin52 136,500 0.9498 

dantzig42 11,761 0.9388 

eil101 30,392 1.1046 

eil51 10,097 0.9921 

eil76 19,244 1.0706 

kroA100 1,022,293 1.0398 

kroB100 1,116,976 1.1328 

kroC100 1,077,629 1.1210 

kroD100 1,071,704 1.0970 

kroE100 1,017,427 1.0475 

lin105 675,848 1.1537 

pr107 2,161,080 1.0910 

pr76 3,416,496 0.9888 

rat99 60,549 1.1012 

rd100 358,945 1.0556 

st70 20,462 1.0649 

Average   1.0593 

 

While some solutions are improved and a few are worsened, the above results 

demonstrate that the adjusted ordering of nodes generally performs better in these 

instances, with an average ratio of 1.0593 from previous best-known solutions. This is 

especially true for problems of larger size, such as kroA100, kroC100, and lin105, which 

have some of the most significant reductions. 
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The new routing solution achieved in the kroC100 instance is shown in Figure 5.2. The 

new solution does not show the behavior of first servicing nodes closer to the starting 

point as strongly, which contributes to improving overall latency by about 12.5%. It is 

noteworthy that the longest arcs traversed in the solution occur in the last several steps of 

the route, and are therefore not compounded for many subsequent customers. 

 

 

Figure 5.2: Routing solution for kroC100 using insertion with every other ordered node 

 

As a result of this demonstrated impact and proposed modification, the following rule is 

applied to the insertion heuristic for the MDMLPI:  if the number of nodes in the problem 

instance divided by the number of vehicles available is 60 or fewer, the original ordering 

of nodes for consideration is used. If this number is more than 60, then the two-pass 

approach considering every other ordered node is implemented. With this in effect, the 

original ordering will be used for the five smallest instances (a, b, c, g, and h) while the 

modification of using every other sorted node will be applied to the five larger instances 

(d, e, f, i, and j). 

The value of 60 used as the threshold for the above rule was selected for two reasons. 

Firstly, calculations were done to evaluate what threshold value would achieve the best 
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average performance on the above data. The range from approximately 50 to 60 

customers showed the best results. Using a cutoff in this area seems to capitalize on the 

benefits of each approach and, if this rule were applied above, would achieve a smaller 

percentage error of around 5.5%. Thus, this is used as an indicator for the performance of 

the full problems to be tested next. The number of nodes divided by the number of 

vehicles, which is used for sorting in comparison to this threshold value, is as follows for 

each of the ten test instances: 12, 24, 36, 64, 80, 96, 18, 36, 72, and 96. Therefore, any 

threshold within the discussed range will achieve identical results and the value of 60 was 

selected arbitrarily among this range.  
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CHAPTER 6: PERFORMANCE EVALUATION 
 
 
 
6.1 Previous VRP Solutions 

For the ten test cases, the latency and weighted latency have been calculated from the 

best-known solutions available online at http://neumann.hec.ca/chairedistributique/data 

and are shown in Table 6.1. These solutions come from solving the identical network of 

nodes, depots, and intermediate depots that is presented here, but with an objective to 

minimize the total route length among all vehicles. The calculated latencies will be useful 

in comparing the results of the MDMLPI to demonstrate the benefits of using a minimum 

latency objective. 

 

 Table 6.1: Results and calculated latency values from previous VRP solutions 

Instance Best Route Length Latency of Best Solution Weighted Latency of Solution 

a 997.94 6,101 86,447 

b 1,307.28 17,297 231,570 

c 1,747.61 42,083 533,030 

d 1,871.42 63,291 803,650 

e 1,942.85 75,877 1,048,900 

f 2,284.35 129,260 1,653,200 

g 1,162.58 13,880 187,810 

h 1,587.37 39,215 566,720 

i 1,972.00 76,514 952,700 

j 2,294.06 124,890 1,621,000 
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6.2 Minimize Latency 

We first examine the results from the MDMLPI using the objective of minimizing 

latency. This will be done by evaluating the latencies achieved in the benchmark, initial, 

and adjusted solutions, followed by an evaluation of the standard deviations in each. The 

same organization will be used in the following section for the objective of minimizing 

weighted latency. 

For the tables presented below, the following notation for results is defined: 

 

VRP Solutions from the previous solutions using a VRP objective 

NN Solutions from the nearest neighbor benchmark 

A Solutions from the auction heuristic 

A2 Solutions from the auction heuristic with the second-phase adjustment applied 

I Solutions from the insertion heuristic 

I2 Solutions from the insertion heuristic with the second-phase adjustment applied 

L(i) Sum of latencies for solution using approach i 

σ(i) Standard deviation of latencies for solution using approach i 

LW(i) Sum of weighted latencies for solution using approach i 

σW(i) Standard deviation of weighted latencies for solution using approach i 

 

For example, L(I2) will be used to refer to the total latency for an instance when the 

insertion technique with second-phase adjustment is used. Similarly, let 

VW;XX< * VW;Y<
VW;Y< % 

be used to denote the percentage improvement of the total weighted latency when using 

the auction heuristic over the nearest neighbor benchmark. 
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6.2.1 Evaluation of Latencies 

Benchmark Instances 

Firstly, the results from the benchmarking solutions are shown in Table 6.2. As expected, 

the nearest neighbor policy performs reasonably well, improving upon the results of 

using a VRP objective in each of the ten instances.  

 

Table 6.2: Latencies of benchmarking solutions 

Instance L(NN) L(VRP) 

a 6,096 6,101 

b 13,245 17,297 

c 27,273 42,083 

d 52,616 63,291 

e 65,971 75,877 

f 100,630 129,260 

g 10,935 13,880 

h 25,822 39,215 

i 71,405 76,514 

j 104,380 124,890 

 

The average percent reduction of the simple greedy heuristic over the best-known 

solutions using a VRP objective is 18.92%. Without yet viewing the results of the 

proposed heuristics, this fact already makes a noteworthy argument for the benefits of 

MLP objectives. In this case, using one of the simplest and quickest policies to minimize 

latency can reduce the average customer wait time by up to 35%, which is the reduction 

in latency for instance c, compared to server-oriented objectives like the VRP. This 

observation does not carry any weight if the problem being solved is, for example, cost 

minimization for a company’s logistics, but is of note in appropriate setting like disaster 

relief operations. We will next observe the performance of the proposed heuristics that 

attempt to offer further improvements over the nearest neighbor solutions. 



55 
 

Initial Heuristics 

For each of the two initial heuristics in the Table 6.3, the first column presents the latency 

results and the second calculates the percentage improvement of each over the nearest 

neighbor (NN) benchmark. 

Table 6.3: Latency performance of initial heuristics 

Instance L(A) 
[;\\< * [;]<

[;\\< % L(I) 
[;\\< * [;^<

[;\\< % 

a 4,860 20.28 4,676 23.30 

b 11,850 10.53 12,306 7.09 

c 27,113 0.59 27,029 0.89 

d 48,986 6.90 51,478 2.16 

e 61,643 6.56 64,993 1.48 

f 88,931 11.63 87,668 12.88 

g 8,293 24.17 8,286 24.22 

h 25,078 2.88 27,128 -5.06 

i 61,695 13.60 60,727 14.95 

J 94,044 9.90 92,941 10.96 

Average  10.70  9.29 

 

Both heuristics perform well and improve the solutions obtained from NN. Between the 

two, neither one demonstrates itself as clearly dominating the other. The auction policy 

obtains a higher average improvement in latency, but the difference is nominal, 

comparing at 10.70% for auction to 9.29% for insertion. It also reliably improves upon 

every instances, whereas the insertion heuristic falls short of the NN result for instance h. 

On the other hand, insertion achieves a better latency than auctioning for 6 out of the 10 

instances. These instances are a, c, f, g, i, and j, so from these data there does not seem to 

be a pattern based on problem size or other characteristics that implies when one 

approach may be ideal. Therefore, this first set of results shows strong performance from 

each heuristic and shows that either one will generally be able to result in good latency 
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reductions from the NN benchmark. Further analyses using the second-phase heuristic, 

comparing standard deviations, and using the weighted latency objective will help 

distinguish the benefits and drawbacks of each approach. 

A visualization of the implications of such latency reductions is presented in Figure 6.1 

below. This example considers instance a and compares the auction policy to the NN 

benchmark, although a similar graph could be presented for either heuristic or any 

problem instance. 

 

Figure 6.1: Ordered latencies for instance a solutions from auction and NN 

 

The figure plots the ordered arrival times at customers from shortest to longest wait time 

for instance a. Both the auction and nearest neighbor policy solutions service about 30 

out of 48 customers with very similar wait times. However, the impact of the 

compounding nature of MLPs is seen as the wait times for the nearest neighbor solution 

increase quickly after this point. It is among these customers, those that are served later in 

the routes, that the savings of the auction policy are clearly seen.  

Comparing these results to those obtained from the best-known solutions to the MDVRPI 

for the same instances also demonstrates the benefits of MLP objectives in customer-
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oriented networks. The improvements that the auction policy shows over the VRP 

benchmarks, L(VRP), average 28.03% across the ten instances, and for the insertion 

heuristic this average is 27.05%. Thus, while VRP objectives are valuable in many 

industry applications, these initial results exhibit that the benefits of MLP objectives in 

disaster relief and other customer-oriented networks are great. 

Second-Phase Adjustment 

The second-phase heuristic was applied to the above solutions ten times each to gather 

information on best and average performance. These results are presented in Tables 6.4 

and 6.5 as well as the percentage improvements of the best result over the NN policy. 

 

Table 6.4: Latency performance of the auction policy with the second-phase adjustment 
applied 

Instance Best L(A2) 
[;\\< * _`ab

[;\\< % Ave L(A2) 
[;\\< * cd`

[;\\< % 

a 4,781 21.58 4,801 21.24 

b 11,542 12.86 11,547 12.82 

c 26,044 4.51 26,133 4.18 

d 47,800 9.15 48,132 8.52 

e 60,363 8.50 60,467 8.34 

f 86,462 14.08 86,771 13.77 

g 8,180 25.20 8,242 24.63 

h 24,567 4.86 24,632 4.61 

i 60,301 15.55 60,606 15.12 

j 92,641 11.25 92,869 11.03 

Average  12.75  12.43 
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Table 6.5: Latency performance of the insertion heuristic with the second-phase 
adjustment applied 

Instance Best L(I2) 
[;\\< * _`ab

[;\\< % Ave L(I2) 
[;\\< * cd`

[;\\< % 

a 4,598 24.58 4,644 23.81 

b 11,379 14.09 11,536 12.90 

c 26,068 4.42 26,207 3.91 

d 51,283 2.53 51,373 2.36 

e 62,999 4.51 63,238 4.14 

f 86,472 14.07 86,669 13.87 

g 8,154 25.43 8,217 24.85 

h 25,602 0.85 25,655 0.65 

i 59,747 16.33 59,855 16.17 

j 91,318 12.51 91,582 12.26 

Average  11.93  11.49 

 

The average latency reduction from NN for these instances is improved by several 

percent when the second-phase modification is used to eliminate certain inefficiencies. 

The adjustment also seems to perform consistently, as the average values across the ten 

runs for each instance are close in value to the best of the ten runs. 

Comparison of results between the two heuristics yields similar discussion as before. 

When paired with the modification algorithm, both the auction and insertion heuristics 

are affected similarly. Auctioning maintains a slight margin over insertion in terms of 

average overall improvements, and both heuristics achieve the better result over the other 

one for 5 of the 10 instances. The second-phase heuristic was able to improve upon the 

insertion technique in instance h sufficiently such that it now offers improvement in 

latency (0.65%) over the NN benchmark. 

Overall, both heuristics offer great improvements in routing solutions that are further 

improved when paired with the second-phase modification. Again, this is stronger when 
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compared to previous VRP solutions for these instances. Average improvements for the 

auction and insertion heuristics over these VRP benchmarks are, respectively, 29.65% 

and 29.07%. 

 

6.2.2 Evaluation of Fairness 

Per the above discussion on fairness, standard deviations were also recorded for 

benchmarks and heuristic results. Smaller standard deviation among wait times is a 

strongly desirable property of a routing solution as it increases fairness in the distribution 

of customer service times. The results in Table 6.6 are presented for the two heuristics 

when paired with the second-phase adjustment. 

Table 6.6: Standard deviations of benchmarks and heuristics with second-phase 
adjustment 

Instance e;fgh< e;\\< e;]i< e;^i< 

a 81.79 103.24 69.15 63.81 

b 129.74 122.83 93.21 88.09 

c 188.47 138.74 126.69 134.11 

d 222.23 211.97 188.48 187.52 

e 223.03 219.98 202.94 205.17 

f 310.31 256.67 226.71 216.68 

g 116.39 120.01 77.32 79.33 

h 172.01 119.70 112.93 125.87 

i 232.03 220.03 206.40 183.95 

j 296.37 264.14 239.51 227.81 

 

Both heuristics improve standard deviations in all ten instances from the benchmarks. 

Interestingly, while the nearest neighbor policy had improved latencies from the VRP 

solutions in all ten instances, there are a few instances for which it presents a higher 

standard deviation. 
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In order to more clearly evaluate the improvements of each heuristic, Table 6.7 presents 

these same results in terms of percentage improvements from the two benchmarks. 

Table 6.7: Percentage improvements in standard deviation of heuristics from the 
benchmark solutions 

 Auction Insertion 

Instance 
j;kk< * j;ci<

j;kk< % 
j;lmn< * j;ci<

j;lmn< % 
j;kk< * j;oi<

j;kk< % 
j;lmn< * j;oi<

j;lmn< % 

a 32.11 15.45 36.90 21.98 

b 24.11 28.16 28.28 32.10 

c 8.68 32.78 3.33 28.84 

d 11.08 15.19 11.53 15.62 

e 7.75 9.01 6.73 8.01 

f 11.67 26.94 15.58 30.17 

g 35.57 33.57 33.90 31.85 

h 5.66 34.35 -5.16 26.82 

i 6.20 11.05 16.40 20.72 

j 9.32 19.19 13.75 23.13 

Average 15.22 22.57 16.12 23.92 

 

As with the latency results, these percentages show that both algorithms perform very 

well. They show strong reductions in standard deviation of wait times averaging around 

15% compared to NN and over 20% from VRP solutions. The following graphic in 

Figure 6.2 demonstrates another impact of this variance in wait times. It again utilizes the 

case of instance a for the auction policy compared to the NN benchmark. 
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Figure 6.2: Comparison of CDF’s for solutions to instance a from auction and NN 

 

Figure 6.2 depicts the empirical Cumulative Distribution Functions (CDFs) of the two 

routing solutions. As was seen in the earlier graph of ordered latencies for these two 

solutions, the curves look very similar for the first portion of customers in the problem 

instance. However, there is a sharp separation between the two curves for the latter half 

of the graph. 

Consider customer-focused operations that have some time constraint imposed. In such 

situations, the CDFs above can be interpreted as the proportion of customers serviced by 

a certain amount of time, which is along the x-axis. If these two solutions are compared 

in a setting in which a time constraint of 200 time units exists (as depicted by the vertical 

line), the solution found using the NN heuristic would be able to serve somewhere around 

70% of customers by this time. On the other hand, over 90% of customers would be able 

to receive service within 200 time units in the solution from the auction policy. 
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6.3 Minimize Weighted Latency 

6.3.1 Evaluation of Latencies 

Next, the weighted latency results for benchmarks and heuristics are shown. The 

weighted latency of a node is the product of the amount of time before it is served and the 

demand at that node. Weighted latency objectives are of crucial importance when the 

demand of a node corresponds to the number of people present there. The weighted 

latency values from the two benchmarking solutions are first shown in Table 6.8.  

Table 6.8: Weighted latencies of benchmarking solutions 

Instance [p;\\< [p;fgh< 

a 82,798 86,447 

b 158,310 231,573 

c 313,870 533,031 

d 664,830 803,646 

e 927,750 1,048,927 

f 1,259,000 1,653,188 

g 149,570 187,814 

h 351,260 566,722 

i 935,570 952,698 

j 1,371,900 1,621,018 

 

Similar to the previous case, the NN policy again performs generally well. It averages a 

20.52% reduction in weighted latency from the previous VRP solutions, which is 

comparable to the case without weights (18.92%).  

 

Initial Heuristics 

The results of the auction and insertion heuristics are presented next in Table 6.9 along 

with the percentage reduction in latency from the NN policy, which is already a 

significant improvement from the VRP benchmark. 
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Table 6.9: Weighted latency performance of initial heuristics 

Instance [p;]< 
[p;\\< * [p;]<

[p;\\< % WL(I) 
[p;\\< * [p;^<

[p;\\< % 

a 67,744 18.18 65,503 20.89 

b 144,191 8.92 137,281 13.28 

c 300,354 4.31 343,464 -9.43 

d 603,806 9.18 614,741 7.53 

e 848,359 8.56 869,876 6.24 

f 1,069,279 15.07 1,124,314 10.70 

g 109,060 27.08 111,006 25.78 

h 334,586 4.75 339,654 3.30 

i 759,817 18.79 767,494 17.97 

j 1,180,411 13.96 1,277,805 6.86 

Average  12.88  10.31 

 

The results are similar when compared to the NN benchmark as in the case when latency 

weights were not considered. The percentage improvements are slightly stronger in this 

case and, once again, the auction policy has a slightly better overall performance in these 

instances than insertion. The average improvement across the ten instances for auction is 

12.88%. Interestingly, the insertion policy, although averaging 10.31% improvement in 

latency from NN solutions, again has a noticeably inefficient solution, this time in 

instance c. Here, the result of using this heuristic is 9.43% worse than what is achieved 

using a simple greedy policy. 

The only instances for which the insertion heuristic achieves a stronger solution than 

auctioning are a, b, and c, three of the smallest. This is not observed, however, in the 

smallest of the 7-depot instances (which are g through j). The routing solutions for the 

auction and insertion heuristics in instance a are depicted on the following page. It is 

interesting to note that this is one of the strongest improvements achieved and both 

heuristics result in similar weighted latency values, yet the routing solutions differ quite 

clearly, as shown in Figures 6.3 and 6.4. 
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Figure 6.3: Routing solution for instance a using auction 

 

 

 

Figure 6.4: Routing solution for instance a using insertion 

 



65 
 

Second-Phase Adjustment 

Next, the second-phase heuristic was run on these results in the same manner as before, 

recording the best and average results among ten runs. The weighted latencies and 

percentage improvements from NN are presented below for each. 

In keeping with previous observations so far, improvements are made for the average 

latencies across all ten instances by several percent. The results presented in Tables 6.10 

and 6.11 show that the adjustment procedure seems to affect both the auction and 

insertion heuristics about equally. Additionally, it is noteworthy that the best and average 

weighted latencies in all cases are very close to each other, highlighting the consistent 

performance of the second-phase heuristic. 

 

Table 6.10: Weighted latency performance of the auction policy with second-phase 
adjustment 

Instance Best [p;]i< 
[p;\\< * _`ab

[p;\\< % Ave [p;]i< 
[p;\\< * cd`

[p;\\< % 

a 65,996 20.29 66,575 19.59 

b 140,726 11.11 141,063 10.89 

c 292,767 6.72 292,920 6.67 

d 583,271 12.27 585,014 12.01 

e 801,862 13.57 804,192 13.32 

f 1,018,783 19.08 1,030,664 18.14 

g 104,055 30.43 104,315 30.26 

h 318,142 9.43 320,255 8.83 

i 735,971 21.33 737,234 21.20 

j 1,130,438 17.60 1,134,011 17.34 

Average  16.18  15.82 
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Table 6.11: Weighted latency improvements of the insertion heuristic with second-phase 
adjustment 

Instance Best [p;^i< 
[p;\\< * _`ab

[p;\\< % Ave [p;^i< 
[p;\\< * cd`

[p;\\< % 

a 62,383 24.66 63,235 23.63 

b 129,591 18.14 129,882 17.96 

c 315,351 -0.47 317,635 -1.20 

d 587,146 11.68 589,149 11.38 

e 837,019 9.78 839,628 9.50 

f 1,061,714 15.67 1,069,217 15.07 

g 110,325 26.24 110,878 25.87 

h 321,881 8.36 324,213 7.70 

i 723,654 22.65 728,533 22.13 

j 1,167,436 14.90 1,183,927 13.70 

Average  15.16  14.57 

 

Previously, when the insertion heuristic performed worse than the NN benchmark in 

instance h for the case without weights, the second-phase adjustment was able to offer 

sufficient improvement on the solution to surpass the NN results. In this case, however, 

the best result achieved from insertion with rearranging for instance c still does not 

achieve reduced latency from NN. This instance aside, both the auction and insertion 

heuristics seem to perform comparably, but auctioning may have the upper hand in terms 

of variance and consistency. 

 

6.3.2 Evaluation of Fairness 

When comparing fairness in weighted latencies, customer demand is also considered in 

latency standard deviations. Table 6.12 shows the weighted standard deviations of both 

benchmarks and the best result from each heuristic with the second-phase adjustment 

already applied. 
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Table 6.12: Weighted standard deviations of benchmarks and heuristics after second-
phase adjustment 

Instance ep;fgh< ep;\\< ep;]i< ep;^i< 

a 1,543.95 1,646.27 1,132.73 1,027.50 

b 2,628.41 1,864.47 1,456.68 1,267.73 

c 3,611.63 2,032.83 1,725.81 1,948.73 

d 3,945.48 3,570.58 2,762.71 2,682.72 

e 4,189.62 3,995.88 3,326.16 3,367.62 

f 5,680.81 4,439.71 3,012.52 3,340.01 

g 2,331.25 2,194.12 1,242.36 1,271.74 

h 3,463.54 2,208.18 1,756.79 1,790.98 

i 3,949.43 4,244.21 3,173.83 3,076.77 

j 5,282.86 4,773.79 3,760.21 3,895.04 

 

Once again, the heuristics perform more or less equally. Weighted standard deviations are 

clearly improved upon by each for all instances, and neither seems to be clearly fairer 

than the other. Insertion also improves weighted standard deviation in instance c when 

compared to NN, despite previously having failed to surpass the NN benchmark in terms 

of weighted latency. The percentage improvements of each heuristic are shown in Table 

6.13. 
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Table 6.13: Percentage improvements of best weighted standard deviations over 
benchmarks 

 Auction Insertion 

Instance 
ep;kk< * ep;ci<

ep;kk< % 
ep;lmn< * ep;ci<

ep;lmn< % 
ep;kk< * ep;oi<

ep;kk< % 
ep;lmn< * ep;oi<

ep;lmn< % 

a 31.19 26.63 37.59 33.45 

b 21.87 44.58 32.01 51.77 

c 15.10 52.22 4.14 46.04 

d 22.63 29.98 24.87 32.01 

e 16.76 20.61 15.72 19.62 

f 32.15 46.97 24.77 41.21 

g 43.38 46.71 42.04 45.45 

h 20.44 49.28 18.89 48.29 

i 25.22 19.64 27.51 22.10 

j 21.23 28.82 18.41 26.27 

Average 25.00 36.54 24.59 36.62 

 

6.4 Computation Times 

Finally, the average computation time of each of these heuristics is presented in Table 

6.14. Each heuristic performs in reasonable time, with the auction policy being faster than 

the insertion technique under the settings selected for this research. 
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Table 6.14: Average computation time (s) for each heuristic 

 Minimize Latency Minimize Weighted Latency 

Instance Auction Insertion Rearranging Auction Insertion Rearranging 

a 21.0 29.3 3.8 32.6 30.8 7.0 

b 87.8 110.6 25.6 136.6 116.5 24.8 

c 214.0 306.4 79.4 329.5 327.1 76.3 

d 414.2 699.0 189.6 638.1 737.3 183.1 

e 712.1 1,437.5 395.1 1,086.5 1,431.9 453.6 

f 1,095.8 2,662.4 740.4 1,695.6 2,579.5 724.8 

g 46.9 51.3 11.9 75.2 51.6 11.4 

h 213.1 340.1 82.2 337.2 334.4 74.5 

i 531.7 1,073.4 312.3 845.3 1,126.0 267.3 

j 1,055.3 2,937.4 808.5 1,733.4 2,798.5 678.0 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 
 
 
 
7.1 Summary of Results 

This thesis introduces a new problem to the routing literature called the Multi-Depot 

Minimum Latency Problem with Inter-Depot Routes (MDMLPI). Similar variants have 

been studied previously, including a VRP equivalent of this system as well as related 

multi-depot versions of the MLP. However, this is the first presentation of a multi-depot 

MLP that allows vehicles to refill at a selection of intermediate supply depots along their 

routes. This is, in fact, one of the literature gaps and future research recommendations 

identified in Moshref-Javadi & Lee (2013). 

To begin discussion on this problem, an original mathematical model for it is formulated 

and two heuristic approaches are proposed. When validated on small problem instances 

and run compared to two benchmarking solution sets, both heuristic algorithms show 

strong performance and significantly improved objective function values. The 

improvements from each are comparable and both heuristics seem appropriate for 

obtaining strong routing solutions in such settings and show promise for future 

expansion. These improvements are consistent for both minimum latency and minimum 

weighted latency objectives as well as for standard deviation of service times, which is 

recorded to evaluate fairness in routing solutions. 

A regular focus is maintained throughout on applications of such routing problems and 

solution approaches to disaster relief routing networks. The ability of these approaches to 

greatly reduce average latency and variance in latency carries strong implications for 

such applications. As the number of natural disasters continues to climb, a subset of 

literature focuses more and more on improving and applying effective routing solutions 
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to these settings. This work helps to sharpen this focus with a demonstration of what 

great improvements are possible and with a step forward to advance further development 

of relevant problem variants. 

7.2 Contributions 

In short, the following contributions are made to further discussion on the class of MLPs 

and their application to disaster relief operations: 

1. A new problem, the MDMLPI, is developed in which multiple vehicles service an 

area and are able to stop at a selection of intermediate supply depots along the 

way 

2. An IP formulation is proposed for the MDMLPI 

3. A heuristic based on an auction policy in which customers bid to be the next stop 

on a vehicle’s route is proposed 

4. A second heuristic, referred to as insertion, is presented as a centralized 

alternative in which customers are added one-by-one to minimize impact on 

current latency 

5. A simple second-phase adjustment is also introduced to be run on either of the 

proposed algorithms to identify and remove some inefficient routing results 

6. Both algorithms are paired with the second-phase adjustment and run on test 

problem instances for comparison with benchmarking solutions 

7. All solutions attained via these heuristics result in great reductions in latency for 

both minimum latency and minimum weighted latency objectives 

a. Compared to a nearest neighbor (NN) benchmark, improvements of up to 

12% average reduction in latency and up to 16% average reduction for 

weighted latency are achieved 

b. Compared to previous solutions for the VRP equivalent to this problem, 

average reductions of around 30% are achieved for both objectives 

8. Solutions also greatly reduce standard deviations among customer service times in 

the instances tested 
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a. Compared to the NN benchmark, average reductions in standard deviation 

for the minimum latency and minimum weighted latency objectives, 

respectively, are up to 15% and 25% 

b. Compared to previous VRP solutions, they are around 22% and 36%, 

respectively 

9. Discussion on fairness in disaster relief routing and evaluation of standard 

deviation as a measure of fairness is also included throughout to advance this 

component of the literature and urge fellow researchers to continue developing 

such evaluation methods 

10. Finally, future research directions that arise from similar problems to the 

MDMLPI are recommended based on the results herein 

 

7.3 Future Research Directions 

Efficient routing of supplies after natural disasters is one of the most prominent 

application areas for this work. The presented algorithms expand this customer-focused 

discussion that has garnered recent attention among routing problem and operations 

research literature. This work emphasizes the importance of evaluating a measure of 

fairness in addition to a latency objective and urges the research community to continue 

developing solution approaches for new variants of the MLP that will help improve the 

practice of serving customer needs. 

Several interesting directions for future research are apparent through this study, 

including improved approaches to the problem presented herein, introduction of other 

variants that accurately reflect what is done in practice in customer-oriented networks, 

and more. A few select directions are discussed below. 

 

7.3.1 Multiple Objectives 

Firstly, one of the most important directions for continuation of this work is the use of 

multiple objectives. The problem studied in this thesis seeks to minimize (weighted) 

latencies for customers without considering the cost to the service provider. However, 
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this may provide unrealistic solutions for real-world applications in which organizations 

are limited in spending ability. Thus, this research is a first step for such a problem 

network that can be expanded to consider the multiple objective cases that can balance 

customer focus and reasonable expense. 

This may involve defining one primary and one secondary objective function or a 

weighted combination of multiple objectives. Averbakh & Berman (1995) used this idea 

with the introduction of the Sales-Delivery Man Problem (SDMP), which has a TSP 

primary objective and a Delivery Man Problem (i.e. MLP) secondary objective. In other 

words, a set of optimal solutions to the TSP objective are presented, and the one among 

those with the minimum latency is selected. The study applies this problem to tree and 

cactus networks. A similar approach would be to weight two objectives according to the 

particular needs of the situation and acquire a set of Pareto-optimal solutions from which 

to choose. Nolz, Doerner, & Hartl (2010) study a similar multi-objective model for 

distribution of water in relief efforts. 

Multiple-objective problems can provide meaningful insights for organizations involved 

in relief efforts who desire to make the most impact with the money they have available. 

In some cases, a group’s budget may be defined by limited funding, grants, or donations, 

and optimal MLP solutions may not be feasible if costs are too high. As an illustration, 

imagine the logistics of a small relief contributor that aims to minimize wait times while 

easing the financial burden. A multi-objective balance between customer- and server-

oriented routing may use an objective function such as: 

���;q�-V
 . q0r
< 

where θ1 and θ2 are user-selected weights of each objective such that they sum to 1. This 

gives the organization flexibility in the relative weights of each objective to cater to the 

unique qualities of the environment. It also allows them to consider multiple alternatives 

and select among Pareto optimal solutions when they are presented, as opposed to 

requiring an advanced decision. Using this objective, there is sound justification for 

routing decisions that seek to best serve a balance of quick response and effective use of 

funding. 
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7.3.2 Corporate Involvement 

A similar objective may also assist for-profit companies seeking to use their resources to 

alleviate local impacts without compromising their own financial stability. Kuo & Means 

(2012) discuss the role of companies in such positions. Other analyses and case studies 

highlight examples of this setting (e.g. Ergun, Heier Stamm, Keskinocak, & Swann, 

2010). 

Corporations may benefit from further developed approaches using a combination of 

objective functions. Here, the issue might not come from limited funding as may be seen 

in the case of relief agencies and nonprofits, but rather from the need to maintain a 

profitable business model. This will undoubtedly put a constraint on how much 

companies are willing to spend in total aid.  

 

7.3.3 Improved Heuristics 

In this work, an auction policy and insertion technique are proposed to provide strong 

solutions to the MDMLPI. As this problem has not been previously studied, 

benchmarking solutions are used to evaluate the strength of the results. While latency 

reductions are achieved from the benchmarks and the benefits of minimum latency 

objectives are clearly demonstrated, different heuristic and approximation approaches can 

be introduced to further improve result quality. 

For example, depot assignment in the auction policy is one potential change. Instead of 

allowing all available customers to bid, a variation could allow only those customers 

whose demand would not exceed capacity constraints to bid. The difficulty with this is 

determining when such a bid should be serviced and when a depot stop would be better. 

For example, if there is only one node that has small enough demand to be satisfied and it 

is very far away from the vehicle, it would make sense to refill supply rather than 

traversing a long, inefficient arc to serve just one more customer before refilling. Relative 

weights between customer and depot bids would need to be developed to achieve best 

performance in such situations. 
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Varying the characteristics of the insertion technique and depot assignment may also lead 

to further reduced latencies. Additionally, depot assignment in both cases is based on 

proximity between the vehicle-depot pair alone with little foresight. This is also a 

potential direction for future improvements on these heuristics. 

Literature on similar problems in the classes of Traveling Salesman Problems and 

Vehicle Routing Problems is more fully developed than the MLP and points to many 

potential approaches to the MDMLPI based on success with route-minimizing objectives. 

Some examples, while many more exist, include approaches based on tabu search (Aras, 

Aksen, & Tuğrul Tekin, 2011; Crevier et al., 2007; Renaud, Laporte, & Boctor, 1996), 

genetic algorithms (Ho, Ho, Ji, & Lau, 2008), dynamic programming (Gromicho, van 

Hoorn, Kok, & Schutten, 2012; Held & Karp, 1962; Tatarakis & Minis, 2009), and large 

neighborhood search (Ribeiro & Laporte, 2012). 

Alternatively, the approaches used here may also be able to provide strong results if 

adapted for route minimizing objectives. Several of the previous best-known results to 

the MDVRPI that were used for benchmarking were inadvertently improved upon for 

several instances. Adapting these models with the objective of minimizing travel time 

could be able to contribute to the VRP literature as well, although that body of work is 

much more developed and has different applications than those focused on here. 

 

7.3.4 Collaborative Depots 

This research also gives rise to discussion of several possible characteristics of supply 

depots that may have interesting effects and applications. For example, in disaster relief 

settings where multiple organizations may be present, effective collaboration can be 

represented by a variant of the MLP in which multiple depots each start their own set of 

vehicles and allow them to refill at the supply depots of other organizations. Such a 

system would look identical to the one used in this research with two differences: 1) there 

would be no main depot designated and 2) each depot would be able to be the starting 

point for one or more routes. 
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Collaboration between the different entities involved in relief operations is an ideal 

characteristic that is difficult to achieve in practice. The diversity of the groups involved 

presents many challenges that need to be overcome for effective collaboration 

(Dolinskaya et al., 2011; Van Wassenhove, 2005). Simulation and mathematical 

modeling of such environments with the involvement of multiple organizations have 

potential to demonstrate what effective collaboration can look like and to set expectations 

for what relief workers can hope to accomplish if improved cooperation is achieved. 

Modeling the routing networks of these groups with shared supply depots is one step that 

can be taken in that direction. Introductory tests were run for this variant using the 

heuristics that were proposed in this work and show promising results comparable to 

those achieved herein. 

 

7.3.5 Job Scheduling 

Another application area, as alluded to in the literature survey, is job scheduling 

problems, which can equate to certain classes of routing problems. The results achieved 

here may also carry implications for job scheduling equivalents. The property that routing 

problems have of variable travel time to nodes depending on starting location is 

paralleled by sequence dependent setup times among jobs that need to be processed on 

machines. If all qualities of the MDMLPI are maintained except for capacity constraints 

and the presence of depots, it equates to the problem of having multiple machines that 

collectively need to process a set of jobs where the setup time of a job depends also on 

the job that precedes it on the machine. An interesting research question would be to see 

how the auction and insertion heuristics would compare to other developed algorithms 

when applied to such a setting. 
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Appendix A: Mathematical Model of the MDMLPI 
 

Consider a set of nodes V = {1, 2,…, n}, which is the inclusive set composed of 

customers, a main depot, and multiple intermediate depots. Let the subsets VC, VD, and VI, 

define the set of customers, main depot, and intermediate depots, respectively. An arc 

between two nodes i and j in V has an associated travel time of cij. All arcs are 

symmetrical, implying that this is the equivalent distance associated with traveling from 

node j to node i. We also define R = {1, 2,…, m} as the set of vehicles servicing these 

nodes. If the arc from customer i to customer j is traversed by vehicle k, the value of a 

binary variable xijk is equal to 1, otherwise it is 0.  

All vehicles have a uniform maximum carrying capacity, designated Q, and the need of 

this commodity required at a given customer i is denoted qi. Let πik represent the wait 

time for customer i being serviced by vehicle k, which is calculated as the sum of all 

travel times on route k that precede customer i. Similarly, let µik represent the cumulative 

amount of stock required from vehicle k when it services customer i, which is the sum of 

all customer need on the route up to and including customer i. The model and constraints 

are then defines as follows: 

minimize � � ���
����

�
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����

�

���
 (1) 

subject to � � ����
�

���

�

���
� 1          �� �  ! (2) 

 � ����
�

���
" 1          �� �  ,   �$ �   (3) 

 � ����
�

���
� 1          �� �  % ,   �& � ' (4) 

 � ����
�

���
� � ����

�

���
          �$ �  ,   �& � ' (5) 



83 

 

 ���� � 0          �� �  ,   �& � ' (6) 

 ��� . ��� * )1 * ����+ , - " ���           �� �  \ % ,   �$ �  ,   �& � ' (7) 

 2�� . �� * )1 * ����+ , - " 2��           �� �  ,   �$ �  ! ,    �& � ' (8) 

 2�� � 0          �� �  / ! ,   �& � ' (9) 

 2�� " 4          �� �  ,   �& � ' (10) 

 ���� � 50,16          �� �  ,   �$ �  ,   �& � ' (11) 

 ��� , 2�� 7 0          �� �  ,   �& � ' (12) 

The objective function (1) minimizes cumulative wait times across the system for all 

customers, not including wait times at the main or any intermediate depots. Constraints 

(2) ensure that each customer is visited by exactly one vehicle while constraints (3) state 

that every arc between customers can only be traversed by one vehicle. Constraints (4) 

guarantee that every vehicle begins at the main depot. Constraints (5) ensure that if a 

vehicle arrives at a node, it also departs from that node. Constraints (6) state that no arc 

can be traversed from one entity to itself. 

Constraints (7) are adapted from the cumulative wait time formulation used in Ngueveu 

et al. (2010) and assign wait times at each entity. If the arc from i to j is traversed by 

vehicle k, the wait time at j equals the wait time at i plus the travel time between them. 

These constraints also eliminate subtours. If xijk = 0, they are always satisfied because a 

large number operator, M, is always greater than ��� . ��� * ���. If xijk = 1, then ��� .
��� " ���  must hold. For a subtour to exist, for example from node 1 to 2 to 3 on vehicle 

1, then ��� . ��0 . �0� . �01 . �1� . �1� " ��� . �0� . �1�  and thus ��0 . �01 .
�1� " 0 which contradicts the problem definition and cannot occur (Ngueveu et al., 

2010). Constraints (8) perform similarly to constraints (7) and calculate the vehicle’s load 

at each stop on its route based on its previous stops at customers. Constraints (9) define 

the required vehicle load at the intermediate depots as zero. Constraints (10) ensure that 

these vehicle load values are always less than the vehicle capacity Q. Finally, constraints 

(11) and (12) define the variable types.  
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Appendix B: Pseudocode for Auction Policy 
 

1  Comment: run for all calibrating parameter (w1, w2, w3) combinations 

2  current best solution ← inf; 

3  for w1 ← -0.2 to 0.2 by 0.05 

4      for w2 ← 0 to 0.5 by 0.05 

5          for w3 ← 0 to 1 by 1 

6              counter ← 1; 

7              while all customers are not yet assigned 

8                  k ← vehicle with shortest current route;  

9                  for all unassigned nodes 

10                    bid(i) ← (cij)(qi)
w1[min��;���<]w2[(∑ ���� )/n]w3; 

11                end 

12                if need of customer with winning bid < vehicle supply 

13                    routes(k,counter) ← min(bids); 

14                    vehicle supply ← vehicle supply – need of winning customer; 

15                else 

16                    routes(k,counter) ← min��uvwxy zvy;���<; 

17                    vehicle supply ← full capacity 

18                end 

19            counter ← counter + 1; 

20            end 

21            if this solution < current best solution 

22                current best solution ← this solution; 

23                Record best combination of calibrating parameters; 

24            end 

25       end 

26  end 
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Appendix C: Pseudocode for Insertion Technique 
 

1  Define all_routes and best_latencies to store partial routes and associated latencies 

2  Set best_latencies(1:H) ← inf; 

3  sorted ← customers sorted in ascending order by proximity to main depot 

4  if n_customers / n_routes > 60 

5      order = [sorted(1:2:end)  sorted(2:2:end)]; 

6  else 

7      order = sorted; 

8  end 

9  for counter ← 1 to n_customers 

10      i = order(counter); 

11      for route_number ← 1 to H 

12          Set routes ← all_routes(route_number,:,:); 

13          for j ← 1 to n_vehicles 

14              Set current_route ← routes(j,:); 

15              for k ← 1 to number of elements in current_route 

16                  try_new_route ← [current_route(1:k)  i  current_route(k+1:end)]; 

17                  if latency of try_new_route is less than min(best_latencies) 

18                      Comment: the next if statement prevents multiple instances of the same 

partial route (beyond the first step when counter = 1) 

19                      if latency value is not already stored in best_latencies or counter = 1 

20        Replace min(best_latencies) with latency of try_new_route; 

21        Replace partial route corresponding to this latency with new route; 

22               end 

23           end 

24              end 

25          end 

26       end 

27  end  
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Appendix D: Pseudocode for Depot Assignment 
 

1  Set current_best ← inf; 

2  for D ← 1 to 10 

3      for h ← 1 to H 

4          for i ← 1 to the number of vehicles 

5              Set route_need ← 0; 

6              for j ← 1 to the number of nodes assigned to vehicle i 

7                  if vehicle has enough supply to meet demand at stop j 

8                      Add demand at stop j to route_need; 

9                  else 

10                    Comment: assign a depot stop among the most recent D stops 

11                    Set depot_best ← inf; 

12                    for k ← max(j – D,0) to j – 1 

13                        for l ← 1 to the number of depots 

14                            if latency of the route with depot l inserted at position k < depot_best 

15                                Store route as the temporary best, set depot_best to this latency; 

16                            end 

17                        end 

18                    end 

19                end 

20            end 

21        end 

22        if depot_best < current_best 

23            Set current best to depot_best and store this route as the temporary best; 

24        end 

25    end 

26  end 
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Appendix E: Pseudocode for Second-Phase ADJUSTMENT 
 

1  Comment: Begin with variable ‘routes’ from auction solution; 

2  current best solution ← inf; 

3  infeasible ← 0; 

4  order ← rand(number of customers); 

5  for each customer in randomly generated order 

6      i ← current customer; 

7      Remove customer i from current position; 

8      for h ← all routes 

9          for j ← all stops on current route 

10            routes(h,j) ← i; 

11            for the number of stops on the current route 

12                if current stop is a depot 

13                    vehicle supply ← full capacity; 

14                else 

15                    vehicle supply ← vehicle supply – need of customer i; 

16                    if vehicle supply < 0 

17                        infeasible ← 1 

18                    end 

19                end 

20            end 

21            if this solution < current best solution 

22                if infeasible = 0 

23                    current best solution ← this solution; 

24                end 

25            end 

26        end 

27     end 

28  end 
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Appendix F: Small Test Instances 
 

The instances used for small preliminary evaluation, which are subsets of the larger 
problems, are shown in full here. For all instances, let x and y denote the coordinates of 
each numbered node and q represent the customer demand. The depot information is 
listed after all customer data and can be identified by demand values of 0. The main 
depot is listed first, denoted D, followed by two intermediate depots, I1 and I2. Note also 
that for these tests a ‘ghost’ depot was implemented to allow secondary stops at the main 
depot if needed. This was denoted as node 10 and contained the exact same qualities as 
the main depot node. 

All small instances used six customers and two intermediate depots. Two vehicles were 
allowed, each with a capacity of 30. The coordinates of all entities for each instance are 
detailed below. 

Instance a: 

Node x y q 
1 -29.73 64.136 12 
2 -30.664 5.463 8 
3 51.642 5.469 16 
4 -13.171 69.336 5 
5 -67.413 68.323 12 
6 48.907 6.274 5 
D 5.243 22.26 0 
I1 -10.442 19.999 0 
I2 21.387 17.105 0 

 
Instance b: 
 
Node x y q 
1 33.588 30.75 4 
2 48.828 65.314 12 
3 86.176 59.344 3 
4 39.27 -33.057 15 
5 -23.37 86.853 13 
6 48.132 95.593 20 
D -16.357 93.311 0 
I1 30.22 24.786 0 
I2 32.663 44.73 0 

Instance c: 
 
Node x y q 
1 -55.28 -24.371 9 
2 -48.297 53.314 22 
3 -49.072 -38.489 10 
4 25.311 -18.561 24 
5 -24.469 -3.815 25 
6 24.591 -17.896 6 
D -10.419 60.364 0 
I1 -18.391 1.121 0 
I2 24.292 -27.704 0 

 
Instance d: 
 
Node x y q 
1 -44.629 -55.64 11 
2 36.096 64.935 11 
3 -25.47 44.58 23 
4 -33.954 -73.059 16 
5 45.654 35.73 16 
6 14.954 -36.719 2 
D -1.477 47.205 0 
I1 -12.284 9.158 0 
I2 -23.138 48.45 0 
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Instance e: 
 
Node x y q 
1 65.991 -49.829 10 
2 -36.938 -36.743 25 
3 -2.734 18.774 18 
4 31.116 -35.907 16 
5 2.789 8.008 14 
6 31.152 43.665 7 
D -36.304 -21.307 0 
I1 8.682 -10.438 0 
I2 0.269 -8.154 0 

 
 
Instance f: 
 
Node x y q 
1 -66.174 -37.811 19 
2 2.673 -35.223 21 
3 38.751 8.618 17 
4 62.653 20.667 6 
5 60.974 -6.11 6 
6 -98.535 -39.532 19 
D 8.411 -81.274 0 
I1 -2.676 -9.467 0 
I2 32.883 -1.779 0 

 
 
Instance g: 
 
Node x y q 
1 -92.7 -59.18 20 
2 71.179 12.543 6 
3 31.537 66.638 19 
4 -4.694 25.537 10 
5 -30.194 67.773 18 
6 12.677 -57.471 1 
D -32.355 -20.966 0 
I1 10.629 9.326 0 
I2 -42.175 -14.554 0 

Instance h: 
 
Node x y q 
1 -40.289 -42.303 20 
2 -64.709 -17.389 10 
3 5.06 -14.349 8 
4 72.095 20.233 6 
5 2.594 -15.002 1 
6 -24.176 -72.894 19 
D -13.19 66.498 0 
I1 -12.167 -0.086 0 
I2 14.233 21.173 0 

 
 
Instance i: 
 
Node x y q 
1 -41.235 -66.357 3 
2 34.064 -59.357 16 
3 20.917 -52.582 8 
4 -38.538 -37.396 15 
5 41.058 22.931 12 
6 -54.034 -53.131 13 
D 8.099 80.725 0 
I1 3.871 -2.597 0 
I2 38.791 22.443 0 

 
 
Instance j: 
 
Node x y q 
1 12.805 1.886 10 
2 18.213 1.373 21 
3 57.947 -48.779 8 
4 -52.429 -84.088 23 
5 60.797 -32.593 10 
6 23.151 4.205 9 
D 25.385 22.986 0 
I1 -14.367 -20.341 0 
I2 -40.488 -35.864 0 
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