53 research outputs found

    Factors influencing wider acceptance of Computer Assisted Orthopaedic Surgery (CAOS) technologies for Total Joint Arthroplasty

    Get PDF
    Computer-assisted orthopaedic surgery (CAOS) promises to improve outcomes of joint arthroplasty through better alignment and orientation of implants, but take up has so far been modest. Following an overview of CAOS technologies covering image-guided surgery, image-free and robotic systems, several factors for lack of penetration are identified. These include poor validation of accuracy, lack of standardisation, inappropriate clinical outcomes measures for assessing and comparing technologies, unresolved debate about the effectiveness of minimally invasive surgery, and issues of medical device regulations, cost, autonomy of surgeons to choose equipment, ergonomics and training. The paper concludes that dialogue between surgeons and manufacturers is needed to develop standardised measurements and outcomes scoring systems that are more appropriate for technology comparisons, and encourages an increased awareness of user requirements

    A Review of Virtual Reality Based Training Simulators for Orthopaedic Surgery

    Get PDF
    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 total hip replacement pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator

    A review of virtual reality based training simulators for orthopaedic surgery

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThis review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator.Wessex Academic Health Science Network (Wessex AHSN) Innovation and Wealth Creation Accelerator Fund 2014/15Bournemouth Universit

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    3D Innovations in Personalized Surgery

    Get PDF
    Current practice involves the use of 3D surgical planning and patient-specific solutions in multiple surgical areas of expertise. Patient-specific solutions have been endorsed for several years in numerous publications due to their associated benefits around accuracy, safety, and predictability of surgical outcome. The basis of 3D surgical planning is the use of high-quality medical images (e.g., CT, MRI, or PET-scans). The translation from 3D digital planning toward surgical applications was developed hand in hand with a rise in 3D printing applications of multiple biocompatible materials. These technical aspects of medical care require engineers’ or technical physicians’ expertise for optimal safe and effective implementation in daily clinical routines.The aim and scope of this Special Issue is high-tech solutions in personalized surgery, based on 3D technology and, more specifically, bone-related surgery. Full-papers or highly innovative technical notes or (systematic) reviews that relate to innovative personalized surgery are invited. This can include optimization of imaging for 3D VSP, optimization of 3D VSP workflow and its translation toward the surgical procedure, or optimization of personalized implants or devices in relation to bone surgery

    The importance of biomechanical restoration for total hip arthroplasty

    Get PDF
    Total hip arthroplasty (THA) has become a safe and very successful surgical intervention. A vast majority of patients get their expectations met. Improvement of materials, implant designs, and surgical techniques, have extended prosthetic survival. However, inferior placement and sizing of a hip prosthesis are known to increase the risk of mechanical failure, wear, and early loosening as well as patient dissatisfaction. The main objective of this thesis was to evaluate the importance of improved biomechanical restoration for the function and survival of THA, as well as finding ways of achieving this improvement. We used radiostereometry (RSA), low dose computer tomography (CT) for 3D measurements, 3D templating, prosthetic modularity, and 3D gait analysis, together with patient-reported outcomes. We found a strong correlation between initial postoperative femoral neck anteversion (FNA) and subsequent posterior rotation and loosening of cemented stems. Our 3D measurement techniques showed near-perfect inter- and intraobserver agreements regarding our femoral offset (FO), acetabular offset (AO), and global offset (GO) measurements. We did not see any differences in RSA migration between uncemented modular and standard stem types, both stabilised well with good migration pattern. Postoperative FNA and FO/AO quota had no impact on uncemented stem migration, maybe due to the study being underpowered. The standard stem tended to result in insufficient GO, whereas the modular stem did not. 3D templating was superior in the correct prediction of the final stem size and neck, but 2D templating overestimated stem-size and underestimated neck-length. There was no statistically significant difference regarding cup size predictions. We found an unexpected progressive varus deformation, with concomitant corrosion-related cobalt ion release, from the modular stem-neck junction. However, the ion-concentrations did not correlate with adverse local tissue reaction (ALTR) as measured with MRI up to 8 years. Biomechanical restoration during THA does positively impact the quality of postoperative overall gait pattern, with faster walking speed and with less trunk lean over the affected side. Increased FNA was associated with increased internal hip rotation during walking. An increase in external hip adduction moments was, on the other hand, not associated with a change in FO/AO quota but with a more upright walking position and increased walking speed.Biomechanical restoration is important for THA and our studies confirm the need for precise measuring- and evaluation-tools for this kind of research

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Factors influencing wider acceptance of Computer Assisted Orthopaedic Surgery (CAOS) technologies for Total Joint Arthroplasty

    Get PDF
    Computer-assisted orthopaedic surgery (CAOS) promises to improve outcomes of joint arthroplasty through better alignment and orientation of implants, but take up has so far been modest. Following an overview of CAOS technologies covering image-guided surgery, image-free and robotic systems, several factors for lack of penetration are identified. These include poor validation of accuracy, lack of standardisation, inappropriate clinical outcomes measures for assessing and comparing technologies, unresolved debate about the effectiveness of minimally invasive surgery, and issues of medical device regulations, cost, autonomy of surgeons to choose equipment, ergonomics and training. The paper concludes that dialogue between surgeons and manufacturers is needed to develop standardised measurements and outcomes scoring systems that are more appropriate for technology comparisons, and encourages an increased awareness of user requirements
    • …
    corecore