1,684 research outputs found

    Advancing Climate Change Research and Hydrocarbon Leak Detection : by Combining Dissolved Carbon Dioxide and Methane Measurements with ADCP Data

    Get PDF
    With the emergence of largescale, comprehensive environmental monitoring projects, there is an increased need to combine state-of-the art technologies to address complicated problems such as ocean acidifi cation and hydrocarbon leak detection

    Risk assessment for the installation and maintenance activities of a low-speed tidal energy converter

    Get PDF
    The study presented in this paper, is part of the Deep Green project, which includes the development of a power converter/device for employment in low-speed tidal currents. It mainly focuses on the initial steps to investigate the ways on how to minimize the risks during handling, operation and maintenance (O&M) activities of the full-scale device particularly in offshore operations. As a first tep, the full-scale device offshore installation and O&M tasks are considered. The overall risk analysis and decision making methodology is presented including the Hazard Identification (HAZID) approach which is complemented with a risk matrix for various consequence categories including personnel Safety (S), Environmental impact (E), Asset integrity (A) and Operation (O). In this way, all the major risks involved in the mentioned activities are identified and actions to prevent or mitigate them are presented. The results of the HAZID analysis are also demonstrated. Finally, the last section of this paper presents the discussion, conclusions and future actions for the above-mentioned activities regarding the full-scale device

    The transfer of oil and gas technology skills to the conceptual design and development of a novel low cost modular Tidal Energy Conversion deployment system.

    Get PDF
    This thesis outlines the use of a new design of Tidal Energy Conversion device which has application in near shore shallow water. The design is applicable for use by coastal communities, either to generate revenue through power sales or just a stand alone system to generate off grid electricity. Previous work conducted on large scale tidal installations have shown that they suffer from excessive costs and time lines, due to their up front design philosophy. This thesis discusses the reasons behind such cost/time overruns and concludes that several technologies and techniques can be incorporated from the subsea oil and gas industry. The early ethos in the offshore oil industry in the 1970s and 1980s was to build large offshore structures such as steel and concrete platforms. This has now been replaced by a field development philosophy that looks at simple lower cost subsea well infrastructure as the most cost effective route to exploit a reservoir. The emerging tidal industry has not learned this lesson, yet. A set of new Tidal Energy exploitation designs are proposed and Patented. The chief advantages of this new design are their modular nature, fabrication simplicity, lower build and installation cost. Prototype work is described and further work also highlighted

    Total Design in the Design and Development Process of a Remotely Operated Vehicle (ROV) with Particular Consideration of Sensorization

    Get PDF
    This paper provides a methodological proposal for the design and development process of a remotely operated vehicle (ROV). The design core and product design specifications (PDS) of Pugh’s Total Design model are considered, with a focus on the early stages of the product design and development process. A modularization of the functional groups of an ROV is proposed, focusing attention on the sensor system. The main concepts regarding ROVs are presented, Pugh’s Total Design model is explained, justifying the application interest in technological projects, a methodological proposal adapted to ROV projects is provided, based on Pugh’s Total Design model, with special interest in the early stages of the new product development process (NPD), the suitability of applying our own model of industrial design engineering in an ROV system is analyzed, and the contribution of this study is evaluated, proposing future work and lines of research

    Solar-powered ROV: advancing underwater exploration with renewable energy.

    Get PDF
    Considering the importance of remotely operated vehicles (ROVs) in conducting inspections, data collection, and exploration beneath the sea surface, this paper proposes a solar-powered ROV solution. Solar power is employed to power the ROV/AUV, with an appropriately designed solar panel providing 5 hours of performance for the Blue ROV. A miniaturized 10Hp/12kg ROV is being considered for underwater activities, with an energy demand load of 943.68W. To meet this demand, solar panels are installed on floating platforms to generate the necessary power, with meticulous calculations determining the best number and size of solar modules. In order to ensure continuous operation, inverters, charge controllers, and battery banks are sized accordingly. The proposed model optimizes silicon solar cells using the COMSOL Multiphysics environment. Simulations in COMSOL Multiphysics validate results against design parameters, confirming adherence to calculated values. The use of solar-powered systems improves operational effectiveness while also ensuring long-term sustainability in maritime activities. The solar-powered ROV represents a significant step towards environmentally conscious and efficient underwater exploration in the Gulf of Guinea and elsewhere by utilizing renewable energy

    Development of actuating organ for electric intervention tool

    Get PDF
    Master's thesis in Offshore technologyThis thesis describes the initial steps towards development of a modularized all-electric toolbox, to use during ROV intervention. Based on a vision of future subsea systems, which will rely on electrification and standardization. Inspired by standardized interfaces and interchangeability in tool kits used on land, the objective has been to research the possibility of implementing such concepts into the offshore industry. The primary objective of this thesis was to create an understanding of ROV systems and their capabilities. The secondary objective of this thesis was to expand our understanding of relevant markets, and the services involved in these. What kind of tools are necessary to complete the given tasks? What characteristics are mandatory of an ROV to operate relevant tools in a safe and efficient manner? These questions determine what market segments are favorable and should be focused on, and thereby which tools are relevant. The third objective was to analyze the chosen tools to determine preferable properties towards electrification and modularization. The fourth objective is to determine what tools are best suited to proceed into concept and design evaluations. The properties of the selected tools are then reviewed, where necessities related to power input and outputs are established. Electric actuator solutions are then analyzed to find viable candidates within the suggested electric motor types. Several motors containing viable qualities where found. The qualities and restrictions that one must comply with during design and operation where adhered to, following these guidelines the best tooling solutions where sought out. These objectives culminate into a goal of making it possible to enter the ROV market with limited experience, by learning the basics of the ROV business and thereby gaining insight into this trade. Based on the knowledge gained in every step of the process, datasheets containing recommended properties for four electric actuators are presented. These are capable of performing the criterions set for tooling actuators. Development processes might now proceed with the suggested candidates as the basis for further research

    Development of Modular Bio-Inspired Autonomous Underwater Vehicle for Close Subsea Asset Inspection

    Get PDF
    To reduce human risk and maintenance costs, Autonomous Underwater Vehicles (AUVs) are involved in subsea inspections and measurements for a wide range of marine industries such as offshore wind farms and other underwater infrastructure. Most of these inspections may require levels of manoeuvrability similar to what can be achieved by tethered vehicles, called Remotely Operated Vehicles (ROVs). To extend AUV intervention time and perform closer inspection in constrained spaces, AUVs need to be more efficient and flexible by being able to undulate around physical constraints. A biomimetic fish-like AUV known as RoboFish has been designed to mimic propulsion techniques observed in nature to provide high thrust efficiency and agility to navigate its way autonomously around complex underwater structures. Building upon advances in acoustic communications, computer vision, electronics and autonomy technologies, RoboFish aims to provide a solution to such critical inspections. This paper introduces the first RoboFish prototype that comprises cost-effective 3D printed modules joined together with innovative magnetic coupling joints and a modular software framework. Initial testing shows that the preliminary working prototype is functional in terms of water-tightness, propulsion, body control and communication using acoustics, with visual localisation and mapping capability

    Best practice report – mooring of floating marine renewable energy devices

    Get PDF
    MERiFIC is an EU project linking Cornwall and Finistère through the ERDF INTERREG IVa France (Manche) England programme. The project seeks to advance the adoption of marine energy in Cornwall and Finistère, with particular focus on the island communities of the Parc naturel marin d’Iroise and the Isles of Scilly. Project partners include Cornwall Council, University of Exeter, University of Plymouth and Cornwall Marine Network from the UK, and Conseil général du Finistère, Pôle Mer Bretagne, Technôpole Brest Iroise, IFREMER and Bretagne Développement Innovation from France.This report is a deliverable of MERiFIC Work Package 3: ‘Dynamic Behaviour of Marine Energy Devices’ involving the collaboration of IFREMER (Institut français de recherche pour l'exploitation de la mer) in France and the University of Exeter in the United Kingdom. It is anticipated that the International Electrotechnical Commission’s guidelines Marine energy - Wave, tidal and other water current converters - Part 10: The assessment of mooring system for marine energy converters (MECs) will be published by the end of 2013. Although there are several guidance documents in the literature regarding the mooring of marine renewable energy (MRE) devices, the IEC document is one of the first to be produced on this subject, with guidance also available in documents produced by Det Norske Veritas. This document is intended to provide a concise introduction to mooring systems for MRE devices with reference given to guidelines and standards which may be applicable to the design of moorings for marine renewable energy (MRE) devices. The document begins by setting the scene to give background on the fundamental differences between conventional offshore equipment and MRE devices. In Section 2 design considerations are introduced, including cost, geometry and the importance of conducting risk analysis. Section 3 then gives an overview of moored system numerical modelling. Key findings of the report are then summarised in Section 4.MERiFIC was selected under the European Cross-Border Cooperation Programme INTERREG IV A France (Channel) – England, co-funded by the ERDF
    corecore