2,640 research outputs found

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented

    Virtuaalse proovikabiini 3D kehakujude ja roboti juhtimisalgoritmide uurimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneVirtuaalne riiete proovimine on üks põhilistest teenustest, mille pakkumine võib suurendada rõivapoodide edukust, sest tänu sellele lahendusele väheneb füüsilise töö vajadus proovimise faasis ning riiete proovimine muutub kasutaja jaoks mugavamaks. Samas pole enamikel varem välja pakutud masinnägemise ja graafika meetoditel õnnestunud inimkeha realistlik modelleerimine, eriti terve keha 3D modelleerimine, mis vajab suurt kogust andmeid ja palju arvutuslikku ressurssi. Varasemad katsed on ebaõnnestunud põhiliselt seetõttu, et ei ole suudetud korralikult arvesse võtta samaaegseid muutusi keha pinnal. Lisaks pole varasemad meetodid enamasti suutnud kujutiste liikumisi realistlikult reaalajas visualiseerida. Käesolev projekt kavatseb kõrvaldada eelmainitud puudused nii, et rahuldada virtuaalse proovikabiini vajadusi. Välja pakutud meetod seisneb nii kasutaja keha kui ka riiete skaneerimises, analüüsimises, modelleerimises, mõõtmete arvutamises, orientiiride paigutamises, mannekeenidelt võetud 3D visuaalsete andmete segmenteerimises ning riiete mudeli paigutamises ja visualiseerimises kasutaja kehal. Selle projekti käigus koguti visuaalseid andmeid kasutades 3D laserskannerit ja Kinecti optilist kaamerat ning koostati nendest andmebaas. Neid andmeid kasutati välja töötatud algoritmide testimiseks, mis peamiselt tegelevad riiete realistliku visuaalse kujutamisega inimkehal ja suuruse pakkumise süsteemi täiendamisega virtuaalse proovikabiini kontekstis.Virtual fitting constitutes a fundamental element of the developments expected to rise the commercial prosperity of online garment retailers to a new level, as it is expected to reduce the load of the manual labor and physical efforts required. Nevertheless, most of the previously proposed computer vision and graphics methods have failed to accurately and realistically model the human body, especially, when it comes to the 3D modeling of the whole human body. The failure is largely related to the huge data and calculations required, which in reality is caused mainly by inability to properly account for the simultaneous variations in the body surface. In addition, most of the foregoing techniques cannot render realistic movement representations in real-time. This project intends to overcome the aforementioned shortcomings so as to satisfy the requirements of a virtual fitting room. The proposed methodology consists in scanning and performing some specific analyses of both the user's body and the prospective garment to be virtually fitted, modeling, extracting measurements and assigning reference points on them, and segmenting the 3D visual data imported from the mannequins. Finally, superimposing, adopting and depicting the resulting garment model on the user's body. The project is intended to gather sufficient amounts of visual data using a 3D laser scanner and the Kinect optical camera, to manage it in form of a usable database, in order to experimentally implement the algorithms devised. The latter will provide a realistic visual representation of the garment on the body, and enhance the size-advisor system in the context of the virtual fitting room under study

    'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications

    Get PDF
    High-resolution topographic surveying is traditionally associated with high capital and logistical costs, so that data acquisition is often passed on to specialist third party organisations. The high costs of data collection are, for many applications in the earth sciences, exacerbated by the remoteness and inaccessibility of many field sites, rendering cheaper, more portable surveying platforms (i.e. terrestrial laser scanning or GPS) impractical. This paper outlines a revolutionary, low-cost, user-friendly photogrammetric technique for obtaining high-resolution datasets at a range of scales, termed ‘Structure-from-Motion’ (SfM). Traditional softcopy photogrammetric methods require the 3-D location and pose of the camera(s), or the 3-D location of ground control points to be known to facilitate scene triangulation and reconstruction. In contrast, the SfM method solves the camera pose and scene geometry simultaneously and automatically, using a highly redundant bundle adjustment based on matching features in multiple overlapping, offset images. A comprehensive introduction to the technique is presented, followed by an outline of the methods used to create high-resolution digital elevation models (DEMs) from extensive photosets obtained using a consumer-grade digital camera. As an initial appraisal of the technique, an SfM-derived DEM is compared directly with a similar model obtained using terrestrial laser scanning. This intercomparison reveals that decimetre-scale vertical accuracy can be achieved using SfM even for sites with complex topography and a range of land-covers. Example applications of SfM are presented for three contrasting landforms across a range of scales including; an exposed rocky coastal cliff; a breached moraine-dam complex; and a glacially-sculpted bedrock ridge. The SfM technique represents a major advancement in the field of photogrammetry for geoscience applications. Our results and experiences indicate SfM is an inexpensive, effective, and flexible approach to capturing complex topography

    Uses and Challenges of Collecting LiDAR Data from a Growing Autonomous Vehicle Fleet: Implications for Infrastructure Planning and Inspection Practices

    Get PDF
    Autonomous vehicles (AVs) that utilize LiDAR (Light Detection and Ranging) and other sensing technologies are becoming an inevitable part of transportation industry. Concurrently, transportation agencies are increasingly challenged with the management and tracking of large-scale highway asset inventory. LiDAR has become popular among transportation agencies for highway asset management given its advantage over traditional surveying methods. The affordability of LiDAR technology is increasing day by day. Given this, there will be substantial challenges and opportunities for the utilization of big data resulting from the growth of AVs with LiDAR. A proper understanding of the data size generated from this technology will help agencies in making decisions regarding storage, management, and transmission of the data. The original raw data generated from the sensor shrinks a lot after filtering and processing following the Cache county Road Manual and storing into ASPRS recommended (.las) file format. In this pilot study, it is found that while considering the road centerline as the vehicle trajectory larger portion of the data fall into the right of way section compared to the actual vehicle trajectory in Cache County, UT. And there is a positive relation between the data size and vehicle speed in terms of the travel lanes section given the nature of the selected highway environment

    LiDAR REMOTE SENSING FOR FORESTRY APPLICATIONS

    Get PDF

    An Assessment of Small Unmanned Aerial Systems in Support of Sustainable Forestry Management Initiatives

    Get PDF
    Sustainable forest management practices are receiving renewed attention in the growing effort to make efficient long-term use of natural resources. Sustainable management approaches require accurate and timely measurement of the world’s forests to monitor volume, biomass, and changes in sequestered carbon. It is in this context that remote sensing technologies, which possess the capability to rapidly capture structural data of entire forests, have become a key research area. Laser scanning systems, also known as lidar (light detection and ranging), have reached a maturity level where they may be considered a standard data source for structural measurements of forests; however, airborne lidar mounted on manned aircraft can be cost-prohibitive. The increasing performance capabilities and reduction of cost associated with small unmanned aerial systems (sUAS), coupled with the decreasing size and mass of lidar sensors, provide the potential for a cost-effective alternative. Our objectives for this study were to assess the extensibility of established airborne lidar algorithms to sUAS data and to evaluate the use of more cost-effective structure-from-motion (SfM) point cloud generation techniques from imagery obtained by the sUAS. A data collection was completed by both manned and sUAS lidar and imaging systems in Lebanon, VA and Asheville, NC. Both systems produced adequately dense point clouds with the manned system exceeding 30 pts/m^2 and the sUAS exceeding 400 pts/m^2. A cost analysis, two carbon models and a harvest detection algorithm were explored to test performance. It was found that the sUAS performed similarly on one of the two biomass models, while being competitive at a cost of 8.12/acre,comparedtothemannedaircraftscostof8.12/acre, compared to the manned aircraft’s cost of 8.09/acre, excluding mobilization costs of the manned system. On the biomass modeling front, the sUAS effort did not include enough data for training the second model or classifier, due to a lack of samples from data corruption. However, a proxy data set was generated from the manned aircraft, with similar results to the full resolution data, which then was compared to the sUAS data from four overlapping plots. This comparison showed good agreement between the systems when ingested into the trained airborne platform’s data model (RMSE = 1.77 Mg/ha). Producer’s accuracy, User’s accuracy, and the Kappa statistic for detection of harvested plots were 94.1%, 92.2% and 89.8%, respectively. A leave-one-out and holdout cross validation scheme was used to train and test the classifier, using 1000 iterations, with the mean values over all trials presented in this study. In the context of an investigative study, this classifier showed that the detection of harvested and non-harvested forest is possible with simple metrics derived from the vertical structure of the forest. Due to the closed nature of the forest canopy, the SfM data did not contain many ground returns, and thus, was not able to match the airborne lidar’s performance. It did, however, provide fine detail of the forest canopy from the sUAS platform. Overall, we concluded that sUAS is a viable alternative to airborne manned sensing platforms for fine-scale, local forest assessments, but there is a level of system maturity that needs to be attained for larger area applications

    Examination of the Potential of Structure-from-Motion Photogrammetry and Terrestrial Laser Scanning for Rapid Nondestructive Field Measurement of Grass Biomass

    Get PDF
    Above ground biomass (AGB) is a parameter commonly used for assessment of grassland systems. While destructive sampling of AGB is highly accurate, it is time consuming and often precludes repeat temporal sampling or sampling in sensitive ecosystems. Consequently, a number of nondestructive techniques that relate grass structural properties to AGB have been developed. This study investigated the application of two recent technologies, Terrestrial Laser Scanning (TLS) and Structurefrom- Motion (SfM), in the development of rapid nondestructive AGB estimation of grassland plots. TLS and SfM volume metrics generated using a rasterized surface differencing method were linearly related to destructively measured total AGB and grass AGB excluding all litter, and results were compared to the conventional disc pasture meter. The linear models were assessed using a leave-one-out cross validation scheme. The disc pasture meter was found to be the least reliable method in assessing total AGB (r2 = 0.32, RMSELOOCV = 269 g/m2). SfM (r2 = 0.74, RMSELOOCV = 169 g/m2) outperformed TLS (r2 = 0.56, RMSELOOCV = 219 g/m2), though a much larger slope in SfM regressions suggests an increased sensitivity to error. Litter removal decreased the effectiveness of AGB estimation for both TLS (r2 = 0.49) and SfM (r2 = 0.51) but increased the fit of disc pasture meter estimations (r2 = 0.42), highlighting the complex relationship between litter accumulation and AGB. TLS and SfM derived volumes were shown to be insensitive to cell dimensions when calculating volume provided cell dimensions were large enough to ensure no empty cells occurred. Using observed ground surfaces in volumetric calculations rather than an estimated ground plane increased r2 to 0.63 for TLS and 0.77 for SfM. Though the disc pasture meter was found to be the most rapid of the three methods, TLS and SfM both out performed it and have clearly demonstrated their potential utility for AGB estimation of grass systems. Their ability to systematically collect measurements over larger spatial extents than those investigated here could greatly outpace the disc pasture meter’s predictive capabilities and speed
    corecore