30 research outputs found

    Intelligent agent for formal modelling of temporal multi-agent systems

    Get PDF
    Software systems are becoming complex and dynamic with the passage of time, and to provide better fault tolerance and resource management they need to have the ability of self-adaptation. Multi-agent systems paradigm is an active area of research for modeling real-time systems. In this research, we have proposed a new agent named SA-ARTIS-agent, which is designed to work in hard real-time temporal constraints with the ability of self-adaptation. This agent can be used for the formal modeling of any self-adaptive real-time multi-agent system. Our agent integrates the MAPE-K feedback loop with ARTIS agent for the provision of self-adaptation. For an unambiguous description, we formally specify our SA-ARTIS-agent using Time-Communicating Object-Z (TCOZ) language. The objective of this research is to provide an intelligent agent with self-adaptive abilities for the execution of tasks with temporal constraints. Previous works in this domain have used Z language which is not expressive to model the distributed communication process of agents. The novelty of our work is that we specified the non-terminating behavior of agents using active class concept of TCOZ and expressed the distributed communication among agents. For communication between active entities, channel communication mechanism of TCOZ is utilized. We demonstrate the effectiveness of the proposed agent using a real-time case study of traffic monitoring system

    Incorporating temporal-bounded CBR techniques in real-time agents

    Full text link
    Nowadays, MAS paradigm tries to move Computation to a new level of abstraction: Computation as interaction, where large complex systems are seen in terms of the services they offer, and consequently in terms of the entities or agents providing or consuming services. However, MAS technology is found to be lacking in some critical environments as real-time environments. An interaction-based vision of a real-time system involves the purchase of a responsibility by any entity or agent for the accomplishment of a required service under possibly hard or soft temporal conditions. This vision notably increases the complexity of these kinds of systems. The main problem in the architecture development of agents in real-time environments is with the deliberation process where it is difficult to integrate complex bounded deliberative processes for decision-making in a simple and efficient way. According to this, this work presents a temporal-bounded deliberative case-based behaviour as an anytime solution. More specifically, the work proposes a new temporal-bounded CBR algorithm which facilitates deliberative processes for agents in real-time environments, which need both real-time and deliberative capabilities. The paper presents too an application example for the automated management simulation of internal and external mail in a department plant. This example has allowed to evaluate the proposal investigating the performance of the system and the temporal-bounded deliberative case-based behaviour. 2010 Elsevier Ltd. All rights reserved.This work is supported by TIN2006-14630-C03-01 projects of the Spanish government, GVPRE/2008/070 project, FEDER funds and CONSOLIDER-INGENIO 2010 under Grant CSD2007-00022.Navarro Llácer, M.; Heras Barberá, SM.; Julian Inglada, VJ.; Botti Navarro, VJ. (2011). Incorporating temporal-bounded CBR techniques in real-time agents. Expert Systems with Applications. 38(3):2783-2796. https://doi.org/10.1016/j.eswa.2010.08.070S2783279638

    mWater prototype #3 analysis and design

    Full text link
    In themWater case study prototype #3 it has been used Magentix2 [1, 24, 3, 22, 4, 17] (for more details on Magentix2 see WP7 Deliverables) as the MAS platform for supporting the execution of the MAS system. The platform follows the FIPA standards [14] offering a set of useful mechanisms for the agents to communicate and also tools to allow programming agents in a high level language based on the BDI model. Magentix2 is an open system which facilitates the interaction between heterogeneous agents through FIPA-ACL messages. Also complex interactions can be carried out in a flexible an open way as conversations. The platform offers special structures to allow to use such conversations by considering a set of issues: In each conversation there are always two roles involved: Initiator and Participant. The first is the one who initiates the conversation, and the rest of agents play the Participant role. The conversation can be seen as a direct graph where nodes represent the actions to perform in each step of the conversation and arcs represent the transition between such states. Those steps allow to perform some actions and they can be of different kinds, for example: Begin, Final, Wait, Send, Receive, Action, etc. Conversations have a unique identifier that allows to manage them individually. 1Botti Navarro, VJ.; Garrido Tejero, A.; Giret Boggino, AS.; Noriega, P.; Bexi, A. (2013). mWater prototype #3 analysis and design. http://hdl.handle.net/10251/3212

    Real-time task attributes and temporal constraints

    Get PDF
    Real-time tasks need attributes for monitoring their execution and performing recovery actions in case of failures. Temporal constraints are a class of real-time task attributes where the constraints relate the status of the task to temporal entities. Violating temporal constraints can produce consequences of unknown severity. This paper is part of our on-going research on real-time multi agent systems constraints. We discuss the importance of temporal constraints and present a task model that explicitly represents temporal constraints. We also present our preliminary results from our initial implementation in the domain of Meeting Schedules Management involving multiple users assisted by agents

    mWater prototype review

    Full text link
    This document reviews our current water policy-making decision-support framework, build on top of a regulated open Multi-Agent System (MAS),mWater [BGG+10, GGG+11], that models a flexible water-rights market. Our simulator focuses on the effect of regulations on demand and thus provides means to explore the interplay of norms and conventions that regulate trading (like trader eligibility conditions, tradeable features of rights, trading periods and price-fixing conventions), the assumptions about agent behaviour (individual preferences and risk attitude, or population profile mixtures) and market scenarios (water availability and use restrictions). A policy-maker would then assess the effects of those interactions by observing the evolution of the performance indicators (efficiency of use, price dynamics, welfare functions) (s)he designs. 1.2 OurBotti Navarro, VJ.; Garrido Tejero, A.; Giret Boggino, AS.; Noriega, P. (2013). mWater prototype review. http://hdl.handle.net/10251/3212

    mWater Prototype 3

    Full text link
    This report concerns the application of a regulated open Multi-Agent System (MAS), mWater, that uses intelligent agents to simulate a flexible water-right market. Our simulator focuses on demands and, in particular, on the type of regulatory (in terms of norms selection and agents behaviour), and market mechanisms that foster an efficient use of water while also trying to prevent conflicts among parties. In this scenario, a MAS plays a vital role as it allows us to define different norms, agents behaviour and roles, and assess their impact in the market, thus enhancing the quality and applicability of its results as a decision support tool.Botti Navarro, VJ.; Garrido Tejero, A.; Giret Boggino, AS.; Noriega, P.; Gimeno, J. (2013). mWater Prototype 3. http://hdl.handle.net/10251/3212

    RT-MOVICAB-IDS: Addressing real-time intrusion detection

    Get PDF
    This study presents a novel Hybrid Intelligent Intrusion Detection System (IDS) known as RT-MOVICAB-IDS that incorporates temporal control. One of its main goals is to facilitate real-time Intrusion Detection, as accurate and swift responses are crucial in this field, especially if automatic abortion mechanisms are running. The formulation of this hybrid IDS combines Artificial Neural Networks (ANN) and Case-Based Reasoning (CBR) within a Multi-Agent System (MAS) to detect intrusions in dynamic computer networks. Temporal restrictions are imposed on this IDS, in order to perform real/execution time processing and assure system response predictability. Therefore, a dynamic real-time multi-agent architecture for IDS is proposed in this study, allowing the addition of predictable agents (both reactive and deliberative). In particular, two of the deliberative agents deployed in this system incorporate temporal-bounded CBR. This upgraded CBR is based on an anytime approximation, which allows the adaptation of this Artificial Intelligence paradigm to real-time requirements. Experimental results using real data sets are presented which validate the performance of this novel hybrid IDSMinisterio de Economía y Competitividad (TIN2010-21272-C02-01, TIN2009-13839-C03-01), Ministerio de Ciencia e Innovación (CIT-020000-2008-2, CIT-020000-2009-12

    mWater prototype #3 review

    Full text link
    mWater is a software demonstrator developed in the Agreement Technologies Project. It is a Multi-Agent System (MAS) application that implements a market for water rights, including the model and simulation of the water-right market itself, the basin, users, protocols, norms and grievance situations. mWater is motivated due to the fact that water scarcity is becoming a major concern in most countries, not only because it threatens the economic viability of current agricultural practices, but because it is likely to alter an already precarious balance among its different types of use.Garrido Tejero, A.; Botti Navarro, VJ.; Giret Boggino, AS.; Alfonso Espinosa, B.; Noriega, P. (2013). mWater prototype #3 review. http://hdl.handle.net/10251/3181
    corecore