
University of Wollongong
Research Online

Faculty of Engineering and Information Sciences -
Papers: Part A Faculty of Engineering and Information Sciences

2014

Real-time task attributes and temporal constraints
Amir Ashamalla
University of Wollongong, ana462@uowmail.edu.au

Ghassan Beydoun
University of Wollongong, beydoun@uow.edu.au

N Paramesh
University of New South Wales

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Ashamalla, A., Beydoun, G. & Paramesh, N. (2014). Real-time task attributes and temporal constraints. Americas Conference on
Information Systems (AMCIS) 2014 Proceedings (pp. 1-11). United States: AIS Electronic Library.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eis

Real-time task attributes and temporal constraints

Abstract
Real-time tasks need attributes for monitoring their execution and performing recovery actions in case of
failures. Temporal constraints are a class of real-time task attributes where the constraints relate the status of
the task to temporal entities. Violating temporal constraints can produce consequences of unknown severity.
This paper is part of our on-going research on real-time multi agent systems constraints. We discuss the
importance of temporal constraints and present a task model that explicitly represents temporal constraints.
We also present our preliminary results from our initial implementation in the domain of Meeting Schedules
Management involving multiple users assisted by agents.

Keywords
task, attributes, temporal, time, constraints, real

Disciplines
Engineering | Science and Technology Studies

Publication Details
Ashamalla, A., Beydoun, G. & Paramesh, N. (2014). Real-time task attributes and temporal constraints.
Americas Conference on Information Systems (AMCIS) 2014 Proceedings (pp. 1-11). United States: AIS
Electronic Library.

This conference paper is available at Research Online: http://ro.uow.edu.au/eispapers/4055

http://ro.uow.edu.au/eispapers/4055

Ashamalla et al Real-Time Task Attributes and Temporal Constraints

 Twentieth Americas Conference on Information Systems, Savannah, 2014 1

RT Task Attributes and Temporal
Constraints

Submission Type: Research-in-Progress

A. Ashamalla, G. Beydoun, N. Paramesh

University of Wollongong

{ana462, beydoun} @uow.edu.au
University of New South Wales

paramesh@cse.unsw.edu.au

Abstract

Real-time tasks need attributes for monitoring their execution and performing recovery actions in case of
failures. Temporal constraints are a class of real-time task attributes where the constraints relate the
status of the task to temporal entities. Violating temporal constraints can produce consequences of
unknown severity. This paper is part of our on-going research on real-time multi agent systems
constraints. We discuss the importance of temporal constraints and present a task model that explicitly
represents temporal constraints. We also present our preliminary results from our initial implementation
in the domain of Meeting Schedules Management involving multiple users assisted by agents.

Keywords

Real time constraints, real time, multi agent systems, scheduling.

Introduction

While we assume that Multi-Agent System (MAS) is a decentralized system, MAS reported in the earlier
works are not necessarily decentralized. Existing multi-agent systems for reasoning with real-time
constraints often use a central monitoring agent (master agent) (Neto et al 2009; Beydoun et al 2006) to
achieve an overall synchronization. For example, the monitoring agent may initiate another task if an
agent was not able to meet the real-time constraints of a task allocated to it in the previous problem
solving cycle (Neto et al 2009). There are different kinds of constraints including temporal constraints,
quantitative and qualitative constraints (Meiri 1996). A temporal constraint is “where [attribute] variables
represent time and constraints represent sets of allowed temporal relations between them” (Schwalb and
Vila 1998). In other words, temporal constraints can be viewed as constraints on the relative positions of
tasks along the time line (Meiri 1996).

Constraints on real-time attributes of plans, actions, events and messages play a significant role in
achieving the overall synchronization across the agents in MAS. For example, the London Underground
project (Basra, Lu and Skobelev 2007) used temporal attributes of messages and actions taken by other
trains to avoid collision. Other applications include cases such as search and rescue tasks (Micacchi and
Cohen 2008) where temporal aspects of actions were used for avoiding obstacles in rescuing victims in
real-time target tracking (Sabou, Faheem and Khalifa 2008), constructions (Zhang, Hammad and
Bahnassi 2009), and automated car driving (Konrad 2006).

A real-time agent is an agent with temporal restrictions in its allocated responsibilities or tasks (Attoui
2000, Botti and Julian 2004). A real world task description is required to specify several temporal
aspects of the activities that need to be taken into account while performing the task. For example, a plan
may include temporal constraints on the sequence of actions, duration, deadlines and resource states. A
temporal constraint on a set of entities is defined by a condition that must be satisfied by the entities over
time. Temporal constraints are fundamental to the descriptions of real-time activities such as dialling a
number to talk to a person, waiting for the call to be answered by a person, talking to the person and
scheduling a meeting, and placing down the receiver. Activities both individually and collectively in this

mailto:ana462@uow.edu.au

Ashamalla et al Application of Intelligent Agent and Multi-Agent Systems

2 Twentieth Americas Conference on Information Systems, Savannah, 2014

example must satisfy the implied temporal constraints. For example, dialling a number must finish within
a few seconds, and within a reasonable period of time the ring tone must be heard, etc., and the whole
activity must finish within a pre calculated time. Violation of these constraints is often not accepted and it
is necessary to specify them explicitly. In this paper, we discuss several types of temporal constraints
incorporating them in an event based model of a task.

The rest of the paper is organised as follows. We first propose a set of real-time task attributes and
discuss temporal constraints on tasks in the event plans. We then discuss application of temporal
constraints in task execution management. We present some results from our preliminary
implementation in the Implementation section and finally conclude the paper in the last section.

Real-time Task Attributes and Temporal Constraints

Real-time constraints identify if/when a task is said to have failed to complete within an expected time
frame. Figure 1 is a partial ontology of some of the core concepts from real-time task attributes,
temporal constraints and the relationships between them. We believe identifying these attributes and
constraints in the analysis phase in software development enables software engineers to better analyse
and design an agent system.

Figure 1. A partial ontology of real-time task attributes

Task Model

We define temporal constraints on tasks by modelling tasks using events. An event ei is said to have
occurred in W when the state sj of the world changes to sk and we denote such an event as ei: sj → sk.
Figure 2 shows an event diagram in which several events have been drawn over a time line. In this
paper, we distinguish three types of events: (a) an action event that is caused by the execution of an
action ai by the agent in the world; (b) a non-action event λi that occurs due to internal or external causes;
and (c) a null event ε that occurs when the agent chooses to execute a null action (also denoted by ε)
whenever it does not want to execute any non-null action in the world. (Sometimes we use the notation e
to denote any one of these events.) The execution of an action ai may also have a delayed consequence in
the future in addition to an immediate consequence. In such situations, we model the delayed
consequences using the λ events. Events happen over time, and at some point in time the agent may see
more than one option to choose from. Events and states may be related by relations such as causality and
other domain dependent relations. Thus, in Figure 2, the execution of the action a0 changes the state s0 to
s1 at time t=t0. At t=t1, there is an option involving an action a1, an event λ0 and a null action ε. At t=t2,
there exists two options for the agent to choose from: a2 and a3 resulting in states s4 and s9, respectively.
When the execution of a2 fails (denoted as á2 at t2) the world goes to the state s5. At t=t3 the execution of
a5 results in the state s7 which also results when the execution of the action a4 occurs at t=t4. The states s6

 Real-Time Task Attributes and Temporal Constraints

 Twentieth Americas Conference on Information Systems, Savannah, 2014 3

and s8 are also labelled with the goals G0 and G1 signifying the fact that these goals are satisfied in these
states. The event at t4, λ2 is the delayed consequence due to the execution of the action a2 at t2. Similarly,
the state s3 in the interval <t1, t2> is a precondition for the action a6 at t3.

Figure 2 Event Diagram

Task Attributes and Temporal Constraints

We have identified twenty three task attributes that are useful in monitoring the execution of real-time
tasks.

1. Alternate Tasks (AT) A fundamental attribute that a real-time task has to have is Alternate Tasks.
AT refers to the alternate options that an agent can consider at any point in time in case the current
action fails. We define the degree of AT at a given point in time t for a task T, DAT(T,t), as the
number of alternate task options the agent has at t. In Figure 2, when for example, the execution of
a2 at time t2 fails, the world goes to state s5 from where the agent can execute a6 to complete an
alternate (sub) task that has G1 as its associated goal. AT is not a temporal constraint, but AT specifies
alternate ways of achieving a task when constraints fail. Since real-time constraints are expected to be
violated often in a dynamic world, a robust real-time task must preferably have as many alternate
task options at each execution step. Absence of AT at any point in time, that is DAT(T,t)=0, signifies
the fact that the task can fail at the point t irrecoverably.

2. Deadline Deadline refers to a point t on the timeline by which time the given task T execution must
finish successfully. Deadline is often used to identify when a task has failed. Once the task T fails to
meet its deadline, the agent will need to take an action (considering alternate tasks) depending on how
critical the task is, for example, by notifying the affected agents (see Tier Number below). If the failing
task is a core task (highly critical) of the system, the system may fail to run successfully or may crash.
For some non-critical tasks, there may exist alternate tasks to run. For other non-critical tasks where
no alternate tasks exist, the agent may have to restart/rerun (see Retry attempts below) the same
task once again or simply notify other dependent agents (Tier Number) that this task has failed. This is
valid when the system can work without the failed task results/outcome. This is usually the case for
non-critical tasks. The deadline for task T is defined as that point in time t which the agent is
committed to, and where an action e occurs so to cause a state s2 which the agent believes is the final
state in the task execution and e is the last action in the event plan of the task. Thus,

Ɐ s1 Ɐ s2 Ɐ e Ɐ t [(Occurs(e,t) & (e: s1 → s2) & Believe(FinalState(s2, T)) & LastEvent(e,T))
 & CommitToExecute(e,t))→ Deadline(T,t)]

CommitToExecute() denotes commitment of the agent to execute e at time t. We associate with a task

s0

a0:s1 ε: s1

λ0:s3

a1:s2

a3: s9

á2: s5

a2: s4

a6: G1

ε: s5

precondition of a4: s7

λ2: G0 delayed consequence of

a5: s7

Ashamalla et al Application of Intelligent Agent and Multi-Agent Systems

4 Twentieth Americas Conference on Information Systems, Savannah, 2014

T the notion of utility of the task T achieved at or before time t , U(T,t) є R where R is the set of real
numbers, and it denotes how significant the completion of T at or before time t is to the overall health
of the system.

a. Hard Deadline A hard real-time deadline enforces that a task T be completed within a
specified time t0 and in such a case U(T, t0) = 1 ; otherwise the outcome of the task is
unacceptable or is of no value, and U(T, t0) = 0.

b. Soft Deadline Sometimes, a task T is allowed to be completed even after the deadline t0

expires, but in such cases, the utility value of such a completion may be considered to be
declining for all t > t0 ; that is, a task completed after its deadline is considered to be of
less utility value to the overall system than the task whose deadline is yet to expire.
Critical tasks normally have hard constraints. However, not all hard real-time constraint
tasks are considered critical. For example, in a PhD program, publishing a paper would
have a hard constraint (paper submission date). However, paper publication is not a
critical requirement for completing a PhD thesis, whereas the PhD end date, first year
progress review, annual progress reports, etc. may all be considered as critical tasks with
hard constraints. Thus,
Ɐ t1 [HardDeadline(T,t1) & (ⱯeⱯs1Ɐs2 Ɐt2Occurs(e, t2) & (e:s1→s2) &
Believe(FinalState(s2)) & t2>t1) → Ɐ t3 (t3 > t1 → U(T, t3) = 0] where T is a task.

Similarly, we can define a soft deadline of task T to be another time point t1 > t0 where
DAT(T,t0) > 0, t1 – t0 ≤ kmax and U(T,t) <= U(T,t0) for all t > t0 and for some constant
kmax; that is, the task T has the option to finish by t1 but possibly with a lower utility
value. Thus,

Ɐ t1 [Deadline(T,t1) & ⱯeⱯs1Ɐs2 Ɐt2Occurs(e, t2) & (e:s1→s2) &
Believe(FinalState(s2)) & t2 - t1 ≤ kmax) & Ɐ t3 (t1 < t3 < t2 → U(T, t3) > 0) →
SoftDeadline(T,t1)] where kmax is a positive constant.

3. Estimated Duration (ED) Estimated Duration of a task T, ED(T), of an agent denotes the time that

the agent estimates to complete the task, and it is an important temporal attribute of a task. While
defining ED, we assume that there exists a sequence of options of events starting from the current
state si at time ti to a final state sf at time tf. Then, ED = ti – tf. The occurrence of external events λ
affects the value of ED. In the absence of λ events, it is possible to get a reasonable estimate of the ED
for a given task. However, in the presence of λ events, ED is estimated from the historical runs of that
task. Since the first run or instance of the task will not have any history, the initial estimate of ED(T) is
often based on the software engineer’s input and/or lines of code. A temporal constraint placed upon a
task using ED will typically require that ED of a task lie below a specified limit. For example, ED(T) ≤
nmax is represented as an assertion below :
Ɐ e1 Ɐ e2 Ɐ s1 Ɐ s2 Ɐ t1 Ɐ t2 [Occurs(e1,t1) & Occurs(e2,t2) & [e2:s1 → s2 &
Believe(FinalState(s2))]→ t2–t1 ≤ nmax] /* Agent believes s2 is final state in the task execution*/

4. Real-time Order (RTO) Real-time Order of a task T1 is a temporal attribute of the task which is
defined as the time between the finishing of T1 and a dependent task T2 starting. If T1 finishes at time t1
and T2 starts at t2 then RTO = t2 – t1. When RTO is positive it is called slack time and when negative
it is called leap time. The more slack time a task has the less priority it would have, as it will have more
time to be delayed without affecting or missing its deadline. Constraints are placed on the values of
RTO. For example, a typical constraint of this type will be of the form: RTO ≤ nmax. Thus,
Ɐ e1 Ɐ e2 Ɐ t1 Ɐ t2 [Occurs(e1,t1) & Occurs(e2,t2) & t2 – t1 ≤ nmax & Believe(LastEvent(T1,e1)) &
Believe(FirstEvent(T2,e2)) → Starts(e1,e2,t2)] /* e1 starts e2 at t2 where e1 is the first event of T1 and e2
is the last event of T2 */
Deadline is a function of RTO. If RTO > 0, then the task duration can be extended by that value before
the dependent task fails and vice versa.

5. Periodic Occurrence (PO) Periodic Occurrence of a task T constraints the task to occur
periodically. (See Figure 3.) The implication of periodicity is that the task T will keep recurring with a
periodicity P over the specified interval of time L.

 Real-Time Task Attributes and Temporal Constraints

 Twentieth Americas Conference on Information Systems, Savannah, 2014 5

Figure 3 Periodic Task T where T1 is its first occurrence and T2 its second occurrence.

If T1 and T2 are two adjacent task instances of a task T then:
Ɐ e1 Ɐ e2 Ɐ t1 Ɐt2 [Occurs(e1,t1) & LastEvent(e1,T1) & Occurs(e2,t2) & FirstEvent(e2,T2) → (t2= t1+τ)]
for some constant τ called the period. In a real world scenario, a periodic task signifies the fact that it
occurs more than once, and in certain situations if the agent fails to achieve it in a given occurrence,
the agent may look forward to retrying it at a later occurrence. (The Retry attempt is a function of PO
as stated below.)

6. Sampling Time (ST) Sampling Time is a temporal attribute of a real-time task that identifies the
status of a task at chosen time instants. In Figure 4, we have shown two rates of sampling Sampling1
and Sampling2 where sampling has been modeled as events of sampling of the state of task execution.

Figure 4 Sampling time

The rate of sampling is a function of how critical the task is. A critical task should be sampled more
often than a non-critical task to identify early potential delays and the delays must be minimized by,
for example, choosing appropriate alternate tasks and assigning more resources. There is an upper
limit of sampling times as sampling by itself consumes resources and could potentially delay tasks
rather than help resolve task conflicts and/or delays. Thus, Ɐn (T,n) ≤ nmax , where n is an integer, for
some maximum value of sampling of a task T. Sampling can identify the task status as one of the
three: on track, delayed, and early. Agents will take actions based on the task status, dependent tasks
status and the system. If the task is on track, then no action is required. If the task is early the agent
might need to delay it, for example, by providing other delayed task more resources to catch up and
become on track. In another scenario when an early task has a dependency that will not complete early,
we delay this task for its results to be usable on time by the dependent task.

7. Priority (P) Priority on a set of tasks is a temporal attribute that specifies the temporal order on the
tasks that have to be executed. It is a function of the status of the tasks and how critical each one is. A
critical task running late should have a higher priority than a non-critical task running ahead of
schedule. All critical tasks should have a higher priority than non-critical tasks. Priority is also a
function of the periodic occurrence of a task where if a task occurs in very low intervals then its priority
decreases and if it fails then the next instance of that task will run relatively sooner without any need
for the agent’s interference, rescheduling or re-planning. The more slack time a task has the less
priority it would have, as it will have more time to be delayed without affecting or missing its deadline.

 T1
Period
τ

t2

 T2

Sampling 1

Task T

Sampling 2

Ashamalla et al Application of Intelligent Agent and Multi-Agent Systems

6 Twentieth Americas Conference on Information Systems, Savannah, 2014

8. Retry Retry n is a real-time non temporal task attribute that indicates the number of times n a

task may be re-attempted whenever it fails. It is assumed that Retry options exist whenever the task
fails and the agent wants to retry the task. Retry attempts is a function of AT and PO. If the PO is low
(say, every one millisecond) then there is no need to retry as the task will automatically run. However,
if it keeps failing n times on a schedule or on a Retry attempt, then this task is considered broken and
the agent would consider alternate tasks.

9. Criticality (C) Criticality is a non temporal task attribute that indicates how critical a task is and
it signifies the effect of failure of the task would have on the whole system. The degree of criticality is a
function of dependent and alternate tasks. A task may become critical as the number of its dependent
tasks increases and the number of its alternate tasks decreases. For example, a task T1 with no
alternatives and several other tasks depending on T1 would be considered highly critical, while a task
T2 that has several alternate tasks and no other tasks relying on its outcome would be considered less
critical.

10. Other Task Attributes We also have identified several other task attributes which we mention
below briefly due to lack of space.

a. Tier Number (TN) Tier number of a task T denotes the total number of tasks
depending on T. The criticality degree we presented above is a function of the Tier
number of a task.

b. Max Output Jitter (MOJ) Max Output Jitter is the difference between the best

execution time and the worst execution time.

c. Task Status (TS) TS represents the current state of the task which is one of: started,

working, super, and final.

d. Check Points (CP) CP represents a point where task results can be saved. The

assumption is that software faults can be overcome by re-execution of the affected task

from the most recent checkpoint.

e. Validity Duration (VD) This refers to the maximum time the data can be held before

expiring or being considered invalid.

f. Slack Time (ST) ST refers to the time within which the execution time can be increased

without failing the deadline.

g. Minimum Time (MT) Minimum time is the minimum time required for a task to

complete.

h. Instant Value Function (IVF) IVF refers to the total accrued value of a job.

i. Execution Accrued Value (EAV) EAV measures the amount of value gained by the

system, in terms of time gained due to tasks completing below their deadlines and/or

estimated duration.

j. Real or Not (R/N) R/N identifies if the task is a real time component or not.

k. Remaining Time (REM) REM identifies the remaining time till the deadline is reached.

l. Maximum-Miss-Ratio (MMR) MMR is a soft deadline that cannot be missed more

often than a specified number of times or ratio.

 Real-Time Task Attributes and Temporal Constraints

 Twentieth Americas Conference on Information Systems, Savannah, 2014 7

m. Composite (COMP) COMP refers to a list of simple timing requirements that are

imposed at the same time; hence the constraint is the composite time requirement of the

individual requirements.

Event based Modeling of Rules

Rules are useful in specifying how task execution can be monitored and task repairs can be performed.
A rule has a condition that should be satisfied to perform an action. Temporal constraints can occur
both in the conditions and in the actions. Rules can be modeled using the event notations we described
above. In Figure 5, we have considered a rule r where

r: C1 (s1) & C2 (s3) & (t2-t1 ≤ t3-t2) → select_execute (a0, t4).

The rule above uses events semantics (Yao-Hua and Thoen 2002) and reads as: if states s1 and s3

satisfy the conditions C1 and C2 respectively and the temporal constraint (t2-t1 ≤ t3-t2) is also satisfied,
then select the action option a0 and execute it at time t4. In Figure 5, the events e1, e2, and e3 cause the
states s1, s2 and s3. We graphically show that the state s4 , which was caused by the execution of the
action a0, is supported by the states that occurred in the past.

Figure 5 Modeling rules

APPLICATION TO TASK MANAGEMENT

In real world situations, task management involves executing actions and, when actions fail, attempting

recovery actions. Event plans need to have more execution recovery strategies built into them than the

traditional action plans. Figure 6 shows a simple strategy for event plan execution.

s0
e1:s1|C1

 (s1)

e2:s2|C2
 (s2)

a0:s4

a1:s5

a2:s6

e3:s3

t1 t2 t3 | t2-t1≤t3-t2 t4

Precondition of
Precondition of

Ashamalla et al Application of Intelligent Agent and Multi-Agent Systems

8 Twentieth Americas Conference on Information Systems, Savannah, 2014

Figure 6. Event plan execution and constraint violation recovery.

IMPLEMENTATION A TEMPORAL CONSTRAINT RESOLVER

Temporal Constraint Resolver (TCR) is a system that we implemented for Meeting Schedule
Management. This is a multiagent system (running on Android phones) which organizes several meetings
as an event plan for its users. Typical goals include meeting at a chosen point in time by several agents
where each agent has multiple options to travel, namely, by walk, bus or train. A meeting is said to have

R/N

MT

=1
less than Min Time

<2

WarnTime

>=2

less than Warn Time

>5

ED

<=5

REM-=1

Early
IVF +=1
EAV +=1
TS=early

>2

ST MOJ+=1
Comp+=1
TS=late

2>ED>0

CheckCheckPoint

=0

Check VD

>3

no Checkpoint

VD+=1

>3

<=3

After updating VD

enough slacktime
and RTO Updated

ST >=200 or RTO >=200

Check
Hard

ST<200 or RTO <200

<>Hard =Hard

CheckCriticality

CheckPeriority

>3
non critical task<>3

low priority<>3

CheckPeriodic

>=3

with retry

PER-=1

>3

CheckAlternateT
ask

0>Periodic<=3

CheckDeadline

<0

after AT>0

<=0

Deadline Did
not pass

TN-=1

>0

<=0

TS

Non Real time Task <>1

Delayed
TS early or on time

REMREM<ED

REM more than ED

IVF

MOJ

IVF>ED

After IVF
MOJ>=(IVF-ED)

After MOJ

TS=on Time
EAV=0

EAV

MOJ<(IVF-ED)

EAV>=0

After EAV

EAV<0

Check
MMR

MMR <=0

soft constraint MMR
above Zero

MM>0

CP<=3

CheckTN
Notify TN

TN>0
CheckComp

Comp
Successful

Comp fail

TN<=0

 Real-Time Task Attributes and Temporal Constraints

 Twentieth Americas Conference on Information Systems, Savannah, 2014 9

failed if at least one of the agents that was committed to the meeting is not able to attend the meeting.
This can occur if an agent fails to take the trip by the planned means. The agent computes estimated
duration, task state by choosing a sampling rate, etc. The agent then attempts other options which results
in the deviation.

We have developed an application on the Windows platform that uses a calendar on a mobile device using
code from (Dellai 2013) currently incorporating: (a) twelve real-time constraints; and (b) eighteen real-
time constraints. The experiments demonstrated that adding real-time constraints has actually
improved robustness of the application and the scheduling. The user was notified when he was running
late for appointments, giving him enough time to reschedule his meeting or choose other alternate faster
traveling methods to help him arrive on time. The twelve constraints were not considered a sufficient set
(Ashamalla, Beydoun and Low 2009); however using the eighteen constraints were sufficient and was
preferred than using the twenty three constraints identified in our earlier work (Ashamalla, Beydoun and
Low 2012). The eighteen constraints accurately identify delayed tasks. For example, when using the
twelve constraints, the slack time was compared to the delay, which in certain cases did not give accurate
results as compared to the EAV (Execution Accrued Value - the time gained due to tasks completing
before their deadlines and/or estimated duration); that is, gained time enables delays in a task not
affecting dependant tasks as long as the delay is less than the gained time. The implemented Multi agent
system was based on multicasting (Microsoft team 2013). We measured the utilization of cpu, disk, and
network in our implementation for the cases: (a) no constraints; (b) 18 constraints; and (c) 12 constraints.

1. CPU - Processor Time: This counter provides a measure of how much time the processor actually

spends working on productive threads and how often it was busy servicing requests.

2. Disk - Current Disk Queue Length: This counter provides a primary measure of disk congestion.

The disk queue is an indication of the number of transactions that are waiting to be processed.

3. Memory - Committed Bytes in Use: This counter indicates the total amount of memory that has

been committed for the exclusive use of any of the services or processes on Windows

4. Network - Bytes Total/Sec utilization: This indicates how much information is going in and out of

the interface.

Due to shortage of space, we only show partial network utilization results in Figure 7.

Figure 7 (a)

 Figure 7 (b)

Ashamalla et al Application of Intelligent Agent and Multi-Agent Systems

10 Twentieth Americas Conference on Information Systems, Savannah, 2014

Figure 7 (c)

Figure 7 Network utilization for (a) no constraints, (b) 18 constraints, and (c) 12
constraints.

 0 12 18

 Max Average Max Average Max Average

CPU 5.81 2.25 15.95 9.87 27.46 11.18

Disk 1 0.022 0 0 2 0.029

Memory 25.52 25.39 25.56 25.37 26.65 25.49

Network 25,516 2,261 19,331 9,071 21,593 9,668

Table 1 Load test results for the cases: (a) no constraints, (b) 18 constraints, and (c) 12
constraints

Table 1 illustrates the difference between processing 18 constraints and processing only 12 constraints. It
is seen that the difference is very small as the average CPU went from 9.87% to 11.18%, while adding only
6 constraints. But adding the initial 12 constraints increased the CPU utilization from 2.25% to 9.87%.

Conclusion

Assistance offered by our system when the users ran into delay has proved to be very effective, since
delays were communicated to other meeting members and if the person was running too late, the meeting
then was rescheduled to another time. In case an alternate meeting time was available, that was the one
directly rescheduled to. If no alternate meeting time was available a bidding processes was started (to
identify a new goal Gi) and the highest meeting bid was chosen. The bidding processes were a simple
bidding where each user selected one time slot and the time slot with the highest bid was chosen. This
research did not focus on bidding algorithm or methods as it was out of our research scope. Agents were
aware of each other and managed to identify when other agents went offline. However with physical
mobiles when the agent went offline, it did not mean the person will not attend the meeting as mobile
batteries could have run out or the mobile would be out of coverage, etc. In other domains this would
have to be considered since if it were tasks running on other computers and if the computer went down
then all its tasks would fail, unless it has a self-healing or redundancy mechanism. This should be
considered and identified when designing the application.

The scheduling problem was chosen as it can be mapped to other problems without loss of generality of
the results obtained. Furthermore, nearly ever reader of this research would have experienced being late
for a meeting or deadline so knowledge of this problem is quite common. The mapping of results to other
domains can follow ontology mappings as outlined in (Tran, Beydoun and Low 2007; Drake and Beydoun
2000). Towards this, a call center case study which illustrates this mapping is being developed; however
due to size restrictions it was not presented in this paper.

This paper is part of our on-going research aimed at identifying and modelling real-time constraints in the
early analysis stage of the development life cycle. The model would help developers, analysts and

 Real-Time Task Attributes and Temporal Constraints

 Twentieth Americas Conference on Information Systems, Savannah, 2014 11

researchers identify and avoid future bottlenecks where agents are being overloaded with real-time
constraints. The model also helps illustrate, model and understand system real-time constraints.

REFERENCES

Bernat, G., A. Burns, et al. (2001). Weakly hard real-time systems. Computers, IEEE Transactions on
50(4): 308-321.

Botti, V. and Julian, V. (2004). Developing real-time multi-agent systems. Integrated Computer-Aided
Engineering 11(2): 135-149.

Ashamalla, A., Beydoun, G. and Low, G. (2009). Agent Oriented Approach to a Call Management System,
18th International Conference on Information Systems Development (ISD 2009), Nanchang, China,
September 16-19

Ashamalla, A., Beydoun, G. and Low, G. (2012). Towards Modelling Real-time Constraints , 7th
International Conference on Software Paradigm Trends (ICSoft 2012), Rome, Italy, July 24-27

Neto, A., Sartori, F., Piccolo, F., Vitelli, R., De Tommasi, G., Zabeo, L., Barbalace, A., Fernandes, H.,
Valcárcel, F. and Batista, N. (2009). MARTe: a Multi-Platform Real-Time Framework. Proc. of the
16th IEEE NPSS Real-Time Conference, Beijing, China.

Beydoun, G., Gonzalez-Perez, C., et al. (2006). “Developing and Evaluating a Generic Metamodel for MAS
Work Products“. Software Engineering for Multi-Agent Systems IV: Research Issues and Practical
Applications. A. Garcia, R. Choren, C. Lucenaet al. Berlin, Springer-Verlag. LNCS 3914: 126-142.

Beydoun, G., Tran, N., Low, G. and Henderson-Sellers, B. (2006) Foundations of Ontology-Based
Methodologies for Multi-agent Systems. Proceedings of AOIS2005 (eds. M. Kolp, P. Bresciani, B.
Henderson-Sellers and M. Winikoff), LNAI 3529, Springer-Verlag, Berlin, 111-123

Beydoun G and Hoffmann A (1998). Simultaneous Modelling and Knowledge Acquisition using NRDR.
5th Pacific Rim Conference on Artificial Intelligence (PRICAI98), Singapore, Springer-Verlag.

Basra, R., Lu, K. and Skobelev, P. (2007). Resolving scheduling issues of the London Underground using a
multi-agent system. International Journal of Intelligent Systems Technologies and Applications 2(1):
3-19.

Drake, B. and Beydoun, G. (2000). Predicate logic-based incremental knowledge acquisition. In P.
Compton, A. Hoffmann, H. Motoda and T. Yamaguchi (Eds.) Proceedings of the sixth Pacific
Knowledge Acquisition Workshop (PKAW 2000), Sydney, Australia, 71-88.

Micacchi, C. and Cohen, R. (2008). A framework for simulating real-time multi-agent systems.
Knowledge and Information Systems 17(2): 135-166.

Sabour A., Faheem M. and Khalifa E. (2008). Multi-Agent Based Framework for Target Tracking Using a
Real-Time Vision System. International Conference on Computer Engineering and Systems, ICCES
2008 355-363

Zhang, C., Hammad, A. and Bahnassi, H. (2009). Collaborative Multi-Agent Systems for Construction
Equipment Based on Real-Time Field Data Capturing. Electronic Journal of Information Technology
in Construction 14: 204-22.

Konrad, J. (2006). Model-driven development and analysis of high assurance systems. Department of
Computer Science. Michigan, Michigan State University. DOCTOR OF PHILOSOPHY: 443.

Attoui (2000), A. Real-Time and Multi-Agent Systems, 1st edition, Springer- ISBN: 1-85233-252-2.
Yao-Hua, T. and W. Thoen (2002). Using event semantics for modeling contracts. System Sciences, 2002.

HICSS. Proceedings of the 35th Annual Hawaii International Conference on System Sciences.
Kakkad, J. and N. Parameswaran (2012). Efficiency Considerations in Policy Based Management in

Resource Constrained Devices. Advances in Grid and Pervasive Computing. R. Li, J. Cao and J.
Bourgeois, Springer Berlin Heidelberg. 7296: 210-220.

Meiri, I. (1996). "Combining qualitative and quantitative constraints in temporal reasoning." Artificial
Intelligence 87(1–2): 343-385.

Schwalb, E. and L. Vila (1998). "Temporal Constraints: A Survey." Constraints 3(2-3): 129-149.
Tran, Q.N.N., Beydoun, G. and, Low, G. (2007). “Design of a peer-to-peer information sharing MAS using

MOBMAS (ontology-centric agent oriented methodology”. In Advances in Information Systems
Development, Springer pp. 63-76.

	University of Wollongong
	Research Online
	2014

	Real-time task attributes and temporal constraints
	Amir Ashamalla
	Ghassan Beydoun
	N Paramesh
	Publication Details

	Real-time task attributes and temporal constraints
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1434598926.pdf.kMxa1

