151,509 research outputs found

    Development, modelling and evaluation of a (laminar) entrained flow reactor for the determination of the pyrolysis kinetics of polymers.

    Get PDF
    Laminar Entrained Flow Reactors were examined to determine whether this type of reactor can be used to measure the kinetic parameters of the pyrolysis reaction of polymers. In case the EFR was operated in the turbulent regime or the diameter of the reactor was to small, sticking of polymer to the reactor wall, became a major problem. In the laminar flow regime this problem did not occur and this operation regime was determined as a function of the Reynolds number. Due to the necessity of operation in the laminar regime significant temperature and velocity gradients exist in the EFR. To correct for these gradients a model was developedincorporating the Navier - Stokes equations to describe the gas phase velocity and temperature distributions and a single particle model to describe the conversion of the individual particles. While correction of the experimental data for the axial gradients proved to be possible, it was not possible to correct this data for radial gradients in the reactor due to the uncertainty in the radial position of the particle. Experiments were performed and corrected for the aforementioned gradients to obtain the first order kinetic parameters for the pyrolysis of LDPE. However, these parameters are inaccurate and therefore a LEFR is preferably not to be used to determine kinetics of particles, if operation of the EFR in the laminar regime is necessary (sticking particles). If possible (non-sticking particles) the EFR should be operated in the turbulent regime. Finally our pyrolysis experiments of LDPE showed that intermediate wax - like products are produced during the pyrolysis reaction, which are pyrolysed further in the gas phase

    Study of Multilouvered Heat Exchangers at Low Reynolds numbers

    Get PDF
    Air Conditioning and Refrigeration Project 13

    Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    Get PDF
    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems

    Stonehenge remodelled

    Get PDF
    We are pleased to present the latest account of the sequence of burial and construction at the site of Stonehenge, deduced by its most recent excavators and anchored in time by the application of Bayesian radiocarbon modelling. Five prehistoric stages are proposed, of varied duration, and related by our authors to neighbouring monuments in the Stonehenge environs. While it may never be possible to produce a definitive chronology for this most complex of monuments, the comprehensive and integrated achievement owed to these researchers has brought us much closer to that goal. It is from this firm platform that Stonehenge can begin its new era of communication with the public at large

    Laboratory performances of the solar multichannel resonant scattering spectrometer prototype of the GOLF-New Generation instrument

    Full text link
    This article quickly summarizes the performances and results of the GOLF/SoHO resonant spectrometer, thus justifying to go a step further. We then recall the characteristics of the multichannel resonant GOLF-NG spectrometer and present the first successful performances of the laboratory tests on the prototype and also the limitations of this first technological instrument. Scientific questions and an observation strategy are discussed.Comment: 8 pages, 8 figures, published in Astronomical Note

    Modelling and simulation techniques for forced convection heat transfer in heat sinks with rectangular fins

    Get PDF
    The official published version of this article can be found at the link below.This paper provides a comprehensive description of the thermal conditions within a heat sink with rectangular fins under conditions of cooling by laminar forced convection. The analysis, in which increasing complexity is progressively introduced, uses both classical heat transfer theory and a computational approach to model the increase in air temperature through the channels formed by adjacent fins and the results agree well with published experimental data. The calculations show how key heat transfer parameters vary with axial distance, in particular the rapid changes in heat transfer coefficient and fin efficiency near the leading edges of the cooling fins. Despite these rapid changes and the somewhat ill-defined flow conditions which would exist in practice at the entry to the heat sink, the results clearly show that, compared with the most complex case of a full numerical simulation, accurate predictions of heat sink performance are attainable using analytical methods which incorporate average values of heat transfer coefficient and fin efficiency. The mathematical modelling and solution techniques for each method are described in detail.This work was part of a project funded by Solas Technology Limited, Ireland
    • …
    corecore