5,737 research outputs found

    Development of impedance spectroscopy based in-situ, self-calibrating, on-board wireless sensor with inbuilt metamaterial inspired small antenna for constituent detection in multi-phase mixtures like soil

    Get PDF
    Real time and accurate measurement of sub-surface soil moisture and nutrients is critical for agricultural and environmental studies. This work presents a novel on-board solution for a robust, accurate and self-calibrating soil moisture and nutrient sensor with inbuilt wireless transmission and reception capability that makes it ideally suited to act as a node in a network spread over a large area. The sensor works on the principle of soil impedance measurement by comparing the amplitude and phase of signals incident on and reflected from the soil in proximity of the sensor. The permittivity of the soil dielectric mixture which is calculated from these impedance measurements is used as input parameter to the dielectric mixing models which are used to estimate the ionic concentration in soil. The inbuilt wireless transceiver system is connected to a specially designed metamaterial inspired small antenna in order to reduce the sensor size while keeping the path losses to a minimum by using a low frequency. This composite right-left handed (CRLH) antenna for wireless transmission at 433 MHz doubles up as an underground, sensing element (external capacitor) and integrates with the on-board sensor for soil moisture and nutrient determination. The input impedance of the CRLH sensor, surrounded by the soil containing moisture and nutrient and other ions, is measured at multiple frequencies. It is shown that the change in moisture and ioinic-concentration can be successfully detected using the sensor. The inbuilt self-calibrating mechanism makes the sensor reliable at different environmental conditions and also useful for remote, underground and hand-held applications. A multi-power mode transceiver system has been designed to support the implementation of an energy efficient medium-access-control

    Advances in catalysis for fuel cells

    Get PDF
    Imperial Users onl

    Synthesis, characterisation and applications of diamond materials

    Get PDF
    This thesis presented a detailed research work on diamond materials. Chapter 1 is an overall introduction of the thesis. In the Chapter 2, the literature review on the physical, chemical, optical, mechanical, as well as other properties of diamond materials are summarised. Followed by this chapter, several advanced diamond growth and characterisation techniques used in experimental work are also introduced. Then, the successful installation and applications of chemical vapour deposition system was demonstrated in Chapter 4. Diamond growth on a variety of different substrates has been investigated such as on silicon, diamond-like carbon or silica fibres. In Chapter 5, the single crystalline diamond substrate was used as the substrate to perform femtosecond laser inscription. The results proved the potentially feasibility of this technique, which could be utilised in fabricating future biochemistry microfluidic channels on diamond substrates. In Chapter 6, the hydrogen-terminated nanodiamond powder was studied using impedance spectroscopy. Its intrinsic electrical properties and its thermal stability were presented and analysed in details. As the first PhD student within Nanoscience Research Group at Aston, my initial research work was focused on the installation and testing of the microwave plasma enhanced chemical vapour deposition system (MPECVD), which will be beneficial to all the future researchers in the group. The fundamental of the on MPECVD system will be introduced in details. After optimisation of the growth parameters, the uniform diamond deposition has been achieved with a good surface coverage and uniformity. Furthermore, one of the most significant contributions of this work is the successful pattern inscription on diamond substrates by femtosecond laser system. Previous research of femtosecond laser inscription on diamond was simple lines or dots, with little characterisation techniques were used. In my research work, the femtosecond laser has been successfully used to inscribe patterns on diamond substrate and fully characterisation techniques, e.g. by SEM, Raman, XPS, as well as AFM, have been carried out. After the femtosecond laser inscription, the depth of microfluidic channels on diamond film has been found to be 300~400 nm, with a graphitic layer thickness of 165~190 nm. Another important outcome of this work is the first time to characterise the electrical properties of hydrogenterminated nanodiamond with impedance spectroscopy. Based on the experimental evaluation and mathematic fitting, the resistance of hydrogen-terminated nanodiamond reduced to 0.25 MO, which were four orders of magnitude lower than untreated nanodiamond. Meanwhile, a theoretical equivalent circuit has been proposed to fit the results. Furthermore, the hydrogenterminated nanodiamond samples were annealed at different temperature to study its thermal stability. The XPS and FTIR results indicate that hydrogen-terminated nanodiamond will start to oxidize over 100ºC and the C-H bonds can survive up to 400ºC. This research work reports the fundamental electrical properties of hydrogen-terminated nanodiamond, which can be used in future applications in physical or chemical area

    Monitoring structural and physiological properties of crop roots using spectral electrical impedance tomography

    Get PDF
    Non- or minimally invasive methods are urgently needed to characterize and monitor crop root systems, both on the laboratory and the field scale. Traditional research methods still overwhelmingly rely on manual labor, which slows down phenotyping and breeding programs. This thesis investigates electrical impedance tomography (EIT) as a non-invasive method for the characterization and monitoring of crop root systems. First, various improvements to the analysis methodology of electrical polarization measurements, required to investigate the small signal strengths encountered in biological tissue, are implemented and discussed. Second, multiple laboratory experiments with EIT on crop root systems are presented. Measurements were conducted in aqueous solutions, as well as in various substrate types. Root system extension could be successfully imaged with EIT in aqueous solutions, as were systematic electrical polarization responses in reaction to physiological stress situations. Substrates, however, still pose significant challenges for EIT measurements, due to their inherent polarizability and a strong influence of variable water content on polarization signals. In summary, EIT was successfully applied to characterize and monitor structural and physiological properties of crop roots in an laboratory environment. Although many challenges remain, establishing EIT as a reliable tool on the field scale is within reach

    Fibrin association at hybrid biointerfaces made of clot-binding peptides and polythiophene

    Get PDF
    The properties as biointerfaces of electroactive conducting polymer-peptide biocomposites formed by poly(3,4-ethylenedioxythiophene) (PEDOT) and CREKA or CR(NMe)EKA peptide sequences (where Glu has been replaced by N-methyl-Glu in the latter) have been compared. CREKA is a linear pentapeptide that recognizes clotted plasma proteins and selectively homes to tumors, while CR(NMe)EKA is an engineer to improve such properties by altering peptide-fibrin interactions. Differences between PEDOT-CREKA and PEDOT-CR(NMe)EKA reflect dissemblance in the organization of the peptides into the polymeric matrix. Both peptides affect fibrinogen thrombin-catalyzed polymerization causing the immediate formation of fibrin, whereas in the absence of thrombin this phenomenon is only observed for CR(NMe)EKA. Consistently, the fibrin-adsorption capacity is higher for PEDOT-CR(NMe)EKA than for PEDOT-CREKA, even though in both cases adsorbed fibrin exhibits round-like morphologies rather than the characteristic fibrous structure. PEDOT-peptide films coated with fibrin are selective in terms of cell adhesion, promoting the attachment of metastatic cells with respect to normal cells.Peer ReviewedPostprint (author's final draft

    Two-Dimensional Nanomaterials and Nanocomposites for Sensing, Separation, and Energy Applications

    Get PDF
    Two-dimension (2D) nanomaterials have gained popularity for the last few decades due to their excellent mechanical, electrical and thermal properties. These unique properties of 2D nanomaterials can be exploited in various applications specially in sensor, energy, and separation devices. In this study, the sensing and energy generation performance of PVDF/PAni fiber mat systems made by the forcespinning method with and without graphene coating. The graphene-coated nanocomposites show an average output voltage of 75 mV (peak-to-peak) which is 300% higher compared to bare fiber mats and an output current of 24 mA (peak-to-peak) by gentle finger pressing. Moreover, the graphene-coated PVDF/PAni was investigated as a promising system for temperature (5 times better sensitivity), vibration (2 times better voltage generation), and airflow sensing. The graphene-coated composite has been further investigated as a water tide energy harvesting piezoelectric nanogenerator, the system generates ~ 40 mV for a synthetic ocean wave with a flow rate of 30 mL/min. Additionally, fabricated a low-cost, single-step, sophisticated graphene-enhanced elastomeric nanocomposite sensor for multifunctional usage by using a batch mixer. This nanocomposite ink was then fabricated into flexible keypad & forecepad and separation devices. Furthermore, the study also showed the enhanced battery performance of chemical vapor deposited pyrolytic carbon coatings on nanoparticles and nanofibers

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact
    corecore