109 research outputs found

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syväoppimisella lähestymistavalla. Tiivistelmä. Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat menetelmät epilepsian havaitsemiseen EEG-tallenteista. Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali segmentoitiin epookkeihin. Kukin koeryhmä sisältää 3–4 koetta, jotka eroavat menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä riippuvaisella EEG-datalla. VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman luokittelijan opettamiseksi

    A Multi-Tier Distributed fog-based Architecture for Early Prediction of Epileptic Seizures

    Get PDF
    Epilepsy is the fourth most common neurological problem. With 50 million people living with epilepsy worldwide, about one in 26 people will continue experiencing recurring seizures during their lifetime. Epileptic seizures are characterized by uncontrollable movements and can cause loss of awareness. Despite the optimal use of antiepileptic medications, seizures are still difficult to control due to their sudden and unpredictable nature. Such seizures can put the lives of patients and others at risk. For example, seizure attacks while patients are driving could affect their ability to control a vehicle and could result in injuries to the patients as well as others. Notifying patients before the onset of seizures can enable them to avoid risks and minimize accidents, thus, save their lives. Early and accurate prediction of seizures can play a significant role in improving patients’ quality of life and helping doctors to administer medications through providing a historical overview of patient's condition over time. The individual variability and the dynamic disparity in differentiating between the pre-ictal phase (a period before the onset of the seizure) and other seizures phases make the early prediction of seizures a challenging task. Although several research projects have focused on developing a reliable seizure prediction model, numerous challenges still exist and need to be addressed. Most of the existing approaches are not suitable for real-time settings, which requires bio-signals collection and analysis in real-time. Various methods were developed based on the analysis of EEG signals without considering the notification latency and computational cost to support monitoring of multiple patients. Limited approaches were designed based on the analysis of ECG signals. ECG signals can be collected using consumer wearable devices and are suitable for light-weight real-time analysis. Moreover, existing prediction methods were developed based on the analysis of seizure state and ignored the investigation of pre-ictal state. The analysis of the pre-ictal state is essential in the prediction of seizures at an early stage. Therefore, there is a crucial need to design a novel computing model for early prediction of epileptic seizures. This model would greatly assist in improving the patients' quality of lives. This work proposes a multi-tier architecture for early prediction of seizures based on the analysis of two vital signs, namely, Electrocardiography (ECG) and Electroencephalogram (EEG) signals. The proposed architecture comprises of three tiers: (1) sensing at the first tier, (2) lightweight analysis based on ECG signals at the second tier, and (3) deep analysis based on EEG signals at the third tier. The proposed architecture is developed to leverage the potential of fog computing technology at the second tier for a real-time signal analytics and ubiquitous response. The proposed architecture can enable the early prediction of epileptic seizures, reduce the notification latency, and minimize the energy consumption on real-time data transmissions. Moreover, the proposed architecture is designed to allow for both lightweight and extensive analytics, thus make accurate and reliable decisions. The proposed lightweight model is formulated using the analysis of ECG signals to detect the pre-ictal state. The lightweight model utilizes the Least Squares Support Vector Machines (LS-SVM) classifier, while the proposed extensive analytics model analyzes EEG signals and utilizes Deep Belief Network (DBN) to provide an accurate classification of the patient’s state. The performance of the proposed architecture is evaluated in terms of latency minimization and energy consumption in comparison with the cloud. Moreover, the performance of the proposed prediction models is evaluated using three datasets. Various performance metrics were used to investigate the prediction model performance, including: accuracy, sensitivity, specificity, and F1-Measure. The results illustrate the merits of the proposed architecture and show significant improvement in the early prediction of seizures in terms of accuracy, sensitivity, and specificity

    C-Trend parameters and possibilities of federated learning

    Get PDF
    Abstract. In this observational study, federated learning, a cutting-edge approach to machine learning, was applied to one of the parameters provided by C-Trend Technology developed by Cerenion Oy. The aim was to compare the performance of federated learning to that of conventional machine learning. Additionally, the potential of federated learning for resolving the privacy concerns that prevent machine learning from realizing its full potential in the medical field was explored. Federated learning was applied to burst-suppression ratio’s machine learning and it was compared to the conventional machine learning of burst-suppression ratio calculated on the same dataset. A suitable aggregation method was developed and used in the updating of the global model. The performance metrics were compared and a descriptive analysis including box plots and histograms was conducted. As anticipated, towards the end of the training, federated learning’s performance was able to approach that of conventional machine learning. The strategy can be regarded to be valid because the performance metric values remained below the set test criterion levels. With this strategy, we will potentially be able to make use of data that would normally be kept confidential and, as we gain access to more data, eventually develop machine learning models that perform better. Federated learning has some great advantages and utilizing it in the context of qEEGs’ machine learning could potentially lead to models, which reach better performance by receiving data from multiple institutions without the difficulties of privacy restrictions. Some possible future directions include an implementation on heterogeneous data and on larger data volume.C-Trend-teknologian parametrit ja federoidun oppimisen mahdollisuudet. Tiivistelmä. Tässä havainnointitutkimuksessa federoitua oppimista, koneoppimisen huippuluokan lähestymistapaa, sovellettiin yhteen Cerenion Oy:n kehittämään C-Trend-teknologian tarjoamaan parametriin. Tavoitteena oli verrata federoidun oppimisen suorituskykyä perinteisen koneoppimisen suorituskykyyn. Lisäksi tutkittiin federoidun oppimisen mahdollisuuksia ratkaista yksityisyyden suojaan liittyviä rajoitteita, jotka estävät koneoppimista hyödyntämästä täyttä potentiaaliaan lääketieteen alalla. Federoitua oppimista sovellettiin purskevaimentumasuhteen koneoppimiseen ja sitä verrattiin purskevaimentumasuhteen laskemiseen, johon käytettiin perinteistä koneoppimista. Kummankin laskentaan käytettiin samaa dataa. Sopiva aggregointimenetelmä kehitettiin, jota käytettiin globaalin mallin päivittämisessä. Suorituskykymittareiden tuloksia verrattiin keskenään ja tehtiin kuvaileva analyysi, johon sisältyi laatikkokuvioita ja histogrammeja. Odotetusti opetuksen loppupuolella federoidun oppimisen suorituskyky pystyi lähestymään perinteisen koneoppimisen suorituskykyä. Menetelmää voidaan pitää pätevänä, koska suorituskykymittarin arvot pysyivät alle asetettujen testikriteerien tasojen. Tämän menetelmän avulla voimme ehkä hyödyntää dataa, joka normaalisti pidettäisiin salassa, ja kun saamme lisää dataa käyttöömme, voimme lopulta kehittää koneoppimismalleja, jotka saavuttavat paremman suorituskyvyn. Federoidulla oppimisella on joitakin suuria etuja, ja sen hyödyntäminen qEEG:n koneoppimisen yhteydessä voisi mahdollisesti johtaa malleihin, jotka saavuttavat paremman suorituskyvyn saamalla tietoja useista eri lähteistä ilman yksityisyyden suojaan liittyviä rajoituksia. Joitakin mahdollisia tulevia suuntauksia ovat muun muassa heterogeenisen datan ja suurempien tietomäärien käyttö

    Magnetoencephalography

    Get PDF
    This is a practical book on MEG that covers a wide range of topics. The book begins with a series of reviews on the use of MEG for clinical applications, the study of cognitive functions in various diseases, and one chapter focusing specifically on studies of memory with MEG. There are sections with chapters that describe source localization issues, the use of beamformers and dipole source methods, as well as phase-based analyses, and a step-by-step guide to using dipoles for epilepsy spike analyses. The book ends with a section describing new innovations in MEG systems, namely an on-line real-time MEG data acquisition system, novel applications for MEG research, and a proposal for a helium re-circulation system. With such breadth of topics, there will be a chapter that is of interest to every MEG researcher or clinician

    Deep Learning Approach for Postprocessing Regularization in Seizure Preduction

    Get PDF
    RÉSUMÉ L’épilepsie est considérée parmi l’une des maladies neurologiques les plus couramment diag-nostiquées. Cette condition est caractérisée par l’apparition de crises non provoquées. Près du tiers des patients épileptiques sont pharmaco-résistants. Ainsi, des traitements alternatifs sont considérés, tels que la chirurgie ou la stimulation électrique. Pour atténuer les dommages chroniques de la stimulation électrique programmée, il faut prévoir l’épisode de crise pour déployer sélectivement toute technique préventive. La prévision des crises a été un grand défi pour les neuroscientifiques et les ingénieurs au cours des dernières décennies. Bien que le domaine de l’intelligence artificielle ait connu une percée remarquable au cours des dernières années, la prédiction des crises est toujours difficile en raison de la quantité limitée de données relatives aux patients. De plus, la plupart des résultats des études de prévision des crises ne peuvent être comparés en raison de l’aspect unique du signal d’électroencéphalogramme (EEG) d’un patient. La prévision des crises est basée sur la discrimination de la phase « pré-ictale », qui est une phase transitoire (30-60 min) qui se produit avant l’apparition de la crise. Les classificateurs d’apprentissage automatique sont entraînés à partir de mesures soigneusement choisies du signal EEG et sont optimisées pour distinguer la phase « pré-ictal de l’activité EEG normale (phase inter-ictale). En raison du rapport signal-bruit élevé de l’enregistrement EEG, la plupart des classificateurs sont enclins à produire de fausses alarmes. Par conséquent, l’étape de régularisation post-traitement est recommandée pour une meilleure optimisation. Les méthodes de régularisation appliquées dans la prévision de crise sont la technique de puissance de tir et le filtre Kalman. Ces méthodes sont, au mieux, des estimateurs quadratiques linéaires. Dans cette étude, nous proposons d’appliquer des méthodes plus personnalisées et spécifiques aux patients; ces méthodes apprennent la meilleure fonction de régularisation uniquement à partir des données. Nous avons prouvé que le réseau neuronal à longue mémoire à court terme (LMCT) peut apprendre une fonc-tion de régularisation optimisée en fonction de chaque individu. Nos modèles ont été formés et testés sur Epilepsy ecosystem database [1].----------ABSTRACT Epilepsy is considered among the most commonly diagnosed neurological diseases. It is a condition characterized by the occurrence of unprovoked seizures. Almost third of epilepsy patients are drug-resistants. Thus, alternative treatments are considered, such as surgery or electrical stimulation. To mitigate the chronic harm of prescheduled electrical stimulation, one needs to forecast the seizure episode to selectively deploy any preventive technique. Seizure forecasting has been a great challenge for neuroscientists and engineers in the last decades. Although the Artificial Intelligence realm has witnessed a remarkable breakthrough in the last few years, seizure prediction is still challenging due to the limited amount of patient data. Additionally, most findings of seizure prediction studies cannot be benchmarked due to the patient-specific aspect of electroencephalogram (EEG) signal. Seizure prediction is based on discriminating the preictal phase, which is a transitional phase (30-60 min) that occurs prior to the seizure onset. Machine learning classifiers are trained on carefully selected measures of the EEG signal, and optimized to distinguish the preictal phase from the normal EEG activity (interictal phase). As a result of the high signal to noise ratio (SNR) in the EEG recording, most classifiers are prone to produce false alarms. Therefore, post-processing regularization step is recommended for a better optimization. The regularization methods applied in seizure prediction are firing power technique and Kalman filter. These methods are, at best, a linear quadratic estimators. In this study, we proposed applying more customized and patient-specific methods that learn the best regularization function purely from data. We proved that Long Short-Term Memory (LSTM) neural network can learn an optimized regularization function based on each individual. Our models were trained and tested on Epilepsy ecosystem database [1]
    • …
    corecore