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Abstract

Epilepsy is a brain disease that entails a predisposition to generate seizures. Electroen-
cephalography (EEG) is currently the gold standard for diagnosing epilepsy. Since the availability
of ictal EEGs is scarce, diagnosis is often done by experts based on visual analysis of interictal
periods. These are characterized by the occurrence of interictal epileptiform discharges (IEDs).
While this is still the gold standard, it entails several disadvantages that motivate the need for de-
veloping algorithms that automate the process, reducing subjectivity and the time spent by experts
on diagnosis. Given that deep learning is unbiased towards the features currently used in visual
inspection and is able to learn from raw data, it can be an alternative to visual inspection and
traditional machine learning methods for EEG analysis.

We trained four convolutional models (VGG, ResNet and two custom-made models) using
2-second IED epochs from patients with focal and generalized Epilepsy (39 and 40 patients, re-
spectively, 1977 epochs total), as well as normal EEGs from controls (110770 epochs from 53
controls). Five-fold cross-validation was performed on the training set and testing was done on
an independent set (734 epochs with IEDs from 10 patients, 23040 normal epochs from 14 con-
trols). We calculated the average ROC curves and corresponding areas under the curves (AUC).
Sensitivity, specificity, true positive and false positive rates were assessed at several thresholds.
Filter visualization, input maximization and occlusion were applied to gather information about
the behavior of the models.

The VGG model led to the best results in this task. It yielded an AUC of 0.96 (Confidence
Interval at 95% (CI)=0.95-0.97) on the test set. At a threshold of 0.5, every EEG of the normal
class was classified with a specificity value over 95%, with four files reaching 100% specificity.
It led to an average sensitivity of 93% and specificity of 91% on the files containing IEDs. The
intersection between the sensitivity and specificity values on the test set was 93%, with 122.41
(CI=27.63-217.20) false positives and 32.31 (CI=15.15-49.46) true positives per hour. At 99%
specificity, one sample was misclassified per 2 minutes of EEG. Filter visualization showed differ-
ences between filters of lower and higher level layers of the VGG, with higher level layers showing
patches corresponding to IED detection. Occlusion showed that IED shapes were being clearly
identified by the network in true positive cases, showing that the network detected the correct
patterns and not spurious features, making the model more empirically reliable.

We prove the potential of deep learning techniques in IED detection. This work is innovative
in its use of deep networks described in the literature, which are widely used in other areas but
not yet in the scope of IED detection. Furthermore, it showcases the usefulness of visualization
techniques in illustrating some of the processes behind classification, which is also new in the
paradigm of deep learning in EEG analysis.
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Resumo

A Epilepsia é uma doença neurológica que envolve uma predisposição para a ocorrência de
ataques epiléticos. O eletroencefalograma (EEG) é atualmente a técnica usada para o diagnóstico
da epilepsia. Dado que a aquisição do EEG ictal dos pacientes não é comum, o diagnóstico é
muitas vezes feito com base na análise visual de períodos interictais, caracterizados pela ocor-
rência de descargas epileptiformes interictais (IEDs). Embora a análise visual seja o estado da
arte, esta técnica tem desvantagens que motivam o desenvolvimento de algoritmos que automa-
tizem o processo. Os métodos de deep learning não são enviesados pelas características a que os
clínicos recorrem para a classificação dos sinais de EEG e são capazes de aprender diretamente a
partir de dados. Assim, estes métodos podem ser uma alternativa à inspeção visual e aos métodos
tradicionais de machine learning para análise de EEGs.

No âmbito deste projeto foram treinadas quatro redes neuronais convolucionais (VGG, ResNet
e dois modelos desenvolvidos pelo grupo de investigação). Para o treino dos modelos, foram us-
adas 1977 amostras de IEDs com a duração de 2 segundos (provenientes de 39 pacientes com
Epilepsia focal e 40 pacientes com Epilepsia generalizada), bem como 110770 amostras de EEGs
normais (de 53 controlos). Foi aplicada cross-validation nos dados de treino e o modelo foi val-
idado em dados independentes (734 IEDs de 10 pacientes e 23040 amostras de 14 controlos).
Calculou-se a curva ROC média das cinco iterações de cross-validation, bem como o valor da área
abaixo desta curva (AUC). Determinaram-se, para vários limiares, os valores da sensibilidade,
especificidade e as taxas de verdadeiros e falsos positivos por hora. Foram também aplicadas
técnicas de visualização dos modelos (filter visualization, input maximization e occlusion).

A rede VGG obteve os melhores resultados, com uma AUC de 0.96 (intervalo de confiança a
95% (CI)=0.95-0.97) nos dados de teste. Com um limiar de classificação de 0.5, todos os EEGs
de teste da classe normal foram classificados com uma especificidade superior a 95%, sendo que
quatro foram classificados com 100% de especificidade. Obtiveram-se uma sensibilidade e especi-
ficidades médias de 93% e 91%, respetivamente, nos ficheiros com IEDs. A interseção dos valores
de sensibilidade e especificidade foi 93%, com 122.41 (CI=27.63-217.20) falsos positivos por hora
e 32.31 (CI=15.15-49.46) verdadeiros positivos por hora. Apenas uma amostra foi incorretamente
classificada em cada 2 minutos de EEG, a uma especificidade de 99%.

A técnica de filter visualization mostrou que há diferenças visíveis entre filtros de diferentes
camadas da rede VGG, sendo que os filtros das camadas de níveis mais elevados apresentam zonas
de atividade correspondentes à deteção de IEDs. A técnica de occlusion mostrou que as formas
dos IEDs foram corretamente identificadas pelas redes, tornando o modelo mais empiricamente
fiável.

Com este trabalho, foi possível provar o potencial das técnicas de deep learning para a deteção
de IEDs, inovando pela aplicação de redes neuronais descritas na literatura e vastamente usadas
noutras áreas, mas não neste âmbito. Adicionalmente, demonstrou-se a utilidade das técnicas de
visualização de redes neuronais, constituindo também uma novidade no paradigma da deteção de
IEDs.
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Chapter 1

Introduction

1.1 Motivation and Context

Epilepsy is the fourth most prevalent neurological disorder in the world. It is a disease of the

brain that entails a predisposition to generate seizures, encompassing a plethora of syndromes and

clinical phenomenology, some similar to other diseases [1–3]. Thus, distinguishing a non-epileptic

paroxysmal event from a seizure is clinically difficult, and the rate of misdiagnosis for epilepsy is

reported to be up to 30% [4, 5]. This may result in an increased risk of recurrent seizures due to

lack of adequate treatment or prescription of potentially harmful medication to patients with other

disorders [6,7]. Accurate and timely diagnosis, therefore, is clinically highly relevant. Ideally, this

should be done in an automated way to reduce subjectivity and the time that experts spend on this

type of diagnosis.

EEG is one of the most useful techniques for diagnostics in epilepsy and classification of

epilepsy syndromes [1, 8]. Ictal EEG, i.e. the EEG measured during a seizure, is the only method

that nearly always unequivocally distinguishes an epileptic seizure from a non-epileptic one, al-

lowing certain diagnosis of the disease. However, the likelihood of acquiring an ictal EEG is low

due to the unpredictability of seizure occurrence [9,10]. In many patients, the interictal EEG shows

Interictal Epileptiform Discharges (IEDs): transient patterns that indicate an increased likelihood

of seizures. These IEDs help to differentiate epilepsy from other conditions [11, 12]. Assessment

of their presence is done by visual analysis, which has been the gold standard in the clinic for

almost over a century [13]. Yet, the learning curve is long, review times are significant, visual

assessment is subjective and inter and intra-individual variability ranges from 5 to 25% [14, 15].

Despite these limitations, visual assessment of the EEG still outperforms current computer algo-

rithms in detecting IEDs.

There is a clear need for the development of algorithms that are able to match or outperform

visual assessment of EEG data in what concerns the detection of IEDs for the timely and assertive

diagnosis of epilepsy. These should use as input the raw signal, being unbiased regarding the fea-

tures that are usually extracted in visual analysis, since this process may fail to capture important

information due to the richness of the EEG signal. Thus, Deep Learning methods appear to be
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a viable potential solution for this problem. While the application of these techniques to fields

such as image analysis is already well established, the use of Deep Learning in health, and in IED

detection in particular, is now starting to grow, making this topic of research even more relevant.

1.2 Structure of the Dissertation

This document is divided into 9 chapters. This first chapter presents the topic of the disserta-

tion, as well as the motivation for researching this subject.

Chapter 2 covers the history of the EEG, the acquisition of this type of signal as well as the

signal itself. EEG analysis and its clinical applications are also discussed.

Chapter 3 focuses on Epilepsy, including a historical overview, as well as remarks regarding

the aetiology of the disease and its manifestation through seizures. The role of the EEG signal in

the diagnosis process and the available treatments for the disease are also covered in this chapter.

Chapter 4 provides a broad overview of Deep Learning models and of the history of Deep

Learning itself. It covers the different types of learning used for Deep Learning tasks, as well

as how to assess performance and gain insight into the training process. Finally, the clinical

applications of Deep Learning are discussed.

Chapter 5 describes the State of the Art of Machine Learning methods in Epilepsy, covering

seizure detection and prediction, treatment optimization and IED detection.

Chapter 6 covers the methods that were implemented and used in the dissertation and Chapter

7 describes the results obtained with said methods. Chapter 8 concerns the discussion of the results

presented in Chapter 7.

Finally, Chapter 9 presents the main conclusions that can be drawn from this dissertation and

describes several ideas and steps for future work that will be carried out in the upcoming months.



Chapter 2

Electroencephalography

Electroencephalography (EEG) consists in the electrophysiological recording of electrical

activity produced by the brain. The neural activity detectable in the EEG is the summation of ex-

citatory and inhibitory postsynaptic potentials generated by groups of synchronously firing cortical

pyramidal cells oriented perpendicularly to the brain’s surface [16–18]. By plotting the recorded

voltages against time, it is possible to obtain a display of large scale neural dynamics [19, 20].

Figure 2.1: Cartoon showing electrode positioning on the scalp and the electrical waves recorded
in the EEG [21].

2.1 Historical Perspective

The first neurophysiological recordings were performed by Richard Caton in 1875 on the

exposed scalp of rabbits and monkeys [22, 23]. However, the first recording of a human EEG was

only made in 1924 by Hans Berger, using non-polarizable clay cylinder electrodes and a string

galvanometer [24, 25].
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After publishing his work in 1929, Berger wrote 14 original papers about the EEG. Among

other findings, these introduced the concept of brain rhythms by describing the existence of the

alpha rhythm, also known as Berger wave, as well as the beta wave [26–28]. The application of

signal processing techniques for feature extraction and finding of normative values for background

rhythms are also among Berger’s contributions to the field [29–31].

EEG recording procedures evolved rapidly through the development of innovative electrodes

and implementation of amplifiers, filters, active impedance matching and calibration [32–34]. The

release of the first commercial electroencephalograph in 1935 allowed the disseminated use of

this technique for clinical and research purposes [35]. Less than 30 years after Berger’s first

publication, EEG recordings were already being used in hospitals [18]. Since then, there have

been significant improvements in terms of hardware (amplifiers, digital electrodes, among others),

but the same level of development was not seen in EEG analysis, with visual analysis of raw

signals remaining the gold standard after a century.

2.2 Signal Acquisition

EEG signals are usually acquired non-invasively, with electrodes placed on the scalp. Abra-

sion of the scalp and conductive media are used to promote contact between the surface and the

electrodes. Invasive EEG recording is also possible, by placing electrodes along the brain’s sur-

face [17, 19].

A wide range of electrodes can be used for EEG recording. Needle electrodes are the most

common in invasive EEGs, while AgCl electrodes are usually used in the non-invasive variant.

Electrode placement on the scalp is usually done according to the 10-20 system (using 21 elec-

trodes) adopted by the International Federation in Electroencephalography and Clinical Neuro-

physiology in 1958 [36,37]. For applications that require higher electrode density, different place-

ments are used [38].

The leads from the electrodes are connected to differential amplifiers, which amplify the dif-

ferences between the inputs, reducing voltage that is common. After amplifying the difference

between 1 thousand and 100 thousand times, the signal is filtered. High-pass filtering is used to

remove slow artefacts like those related to movement. Aiming to remove higher frequency arte-

facts such as electromyographic signals, low-pass filtering is employed. Finally, notch filtering

can be used to remove the interference caused by the power line (50 or 60 Hz). The EEG signal

is then passed through an anti-aliasing filter to prevent information loss and digitized using an

analog-to-digital (A/D) converter, usually with a sampling rate between 256 and 1024Hz [39–42].

EEG signals consist of a concatenation of lines corresponding to the plot over time of the

differential voltage recorded between a pair of electrodes, which define a channel. The channels

in a recording can be set up in different ways, which are referred to as montages. Examples of

these are the common average reference montage, where the reference is the average of the outputs

of all the differential amplifiers, and the bipolar montage, in which each channel is formed by the

difference between two adjacent electrodes [16, 43].
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2.3 EEG Signal

2.3.1 Brain Signals

EEGs aim to record the electrical activity of the brain, capturing both physiological rhythmic

activity (background) and other transient processes. The resulting signal of a non-invasive record-

ing has an amplitude between 0.5 and 100 µV [16]. An example of a normal EEG can be seen in

Figure 2.2.

Figure 2.2: Example of a 2 second epoch of a Normal EEG.

Transients are relatively rare events that are not repeated periodically over time. Some of these

are physiological, corresponding to normal activity, such as the vertex waves that occur during

sleep. Others, like sharp waves and spikes, are associated with pathological events, for instance

seizures or interictal activity [44–46].

The rhythmic activity consists of sinusoidal brain waves with a specific frequency. Based

on this characteristic, these patterns can be classified as beta waves (frequency between 13Hz

and 30Hz), alpha (8-13Hz), theta (4-8Hz) and delta (up to 4Hz). Brain waves from different

groups are originated in different regions of the brain and are associated with certain mental or

cognitive states. For instance, alpha activity is mostly seen in the posterior part of the skull and

it is associated to relaxed states of wakefulness, also being recorded with closed eyes. On the

other hand, beta waves are most evident in frontal regions and occur during more active, focused

states [47–49].

2.3.2 Artefacts

The presence of corrupting artefacts and interferences in the EEG signal is inevitable. Their

origin influences the way they impact the signal, whether it is biological (i.e. related to the patient)

or technical (i.e. related to the acquisition) [19].

Muscle activity leads to EMG-related artefacts with relatively high frequencies. Eyeblink

artefacts are caused by moving or rotation of the eyeball during blinking. Since there is a potential
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difference between the cornea and the fundus of the eye (corneofundal or corneoretinal potential),

artefacts occur in the EEG when the eyeball rotates [50, 51]. An example of the effect of muscle

activity and blinking on the EEG can be seen in Figure 2.3. Even cardiac activity interferes with the

signal, appearing as artefacts that can be mistaken as spikes [52]. The concurrent measurement of

biosignals (such as ECG or certain muscle movements) may be useful, since these measurements

can be used to visually verify the occurrence of an artefact in the EEG. Technical causes of artefacts

include impedance fluctuation, mains interference or issues in the contact between the electrodes

and the skin [53].

Figure 2.3: Example of a 2 second epoch of a Normal EEG in which it is possible to see an artefact
in the last quarter of the signal.

Source separation techniques such as Independent component analysis (ICA) and several vari-

ations have been used with the aim of reducing these signal contaminates [54, 55]. More recently,

fully automated methods for artefact rejection have been developed [56].

2.4 EEG Analysis

Visual, qualitative analysis of EEG signals by experienced experts remains the gold standard

of EEG interpretation [13]. However, this approach is not without drawbacks, ranging from the

long training time of the clinicians to the inability of the human eye to fully capture the richness

of this signal. Interpreting EEG signals is a time-consuming task, so visual analysis is associated

with a high requirement of time and qualified personnel. Furthermore, intra and inter-observer

variability reduce the assertiveness of the predictions made based on visual interpretations [14,15].

To overcome these limitations, quantitative measures derived from EEG signals (quantitative

EEG or qEEG) can be used as an alternative way to extract information. This reduces variability,

as well as the amount of time and work involved in prognostication [57, 58]. Once the relevant

features are defined, methods based on qEEG can be used by non-experts to aid clinicians. Ex-

tracted measures may be used alone or in combination, by applying a mathematical model. These



2.5 Clinical applications 7

features may include relative delta power asymmetry, wavelet subband entropy, cross-correlation,

mutual information, among others [59, 60].

Quantitative EEG shows clear advantages over visual assessment of EEG signals. However,

the establishment of relevant features must be done manually and usually involves clinicians. This

process is not trivial and it leads to a low efficiency in the development of suitable algorithms

[61]. Aiming to solve this, novel approaches such as deep learning are presenting themselves as a

possible alternative to further improve EEG interpretation [62].

2.5 Clinical applications

Currently, the EEG plays an important part in research and in the diagnosis of several patholo-

gies, such as depression [63, 64], schizophrenia [65, 66], epilepsy [8, 12] and Alzheimer’s dis-

ease [67,68]. Sleep analysis [69,70] and the monitorization of procedures such as anesthesia [71]

are also applications of this technique. It allows continuous monitorization of patients’ cerebral

activity, characterization of seizures and approximate location of their origin [72, 73].

It is relevant to note that electroencephalography is only one of the techniques used to study

and monitor the brain. Others include magnetic resonance imaging (MRI) [74] and its functional

variant (fMRI) [75], computed tomography (CT) [76] and positron emission tomography (PET)

[77]. MRI and CT are medical imaging techniques that allow us to look at the structure of the brain,

while fMRI and PET enable the tracking of cerebral activity and detection of changes [78, 79].

Compared to these techniques, the high temporal resolution of the EEG (in the order of mil-

liseconds) is its main advantage. The direct measurement of brain activity, as opposed to the

tracking of indirect markers such as blood flow or metabolic activity used by other techniques,

is also a strong point. Furthermore, the equipment used for acquisition is not expensive and it

does not require a specific facility. Recordings can be done over a long period of time since the

non-invasive variant is painless, and they can even be done in ambulatory. This technique is also

safe for the patient since no radiation is used [20, 78].

However, low spatial resolution and the difficulty in reconstructing signal source constitute

some of its drawbacks. Since visual analysis is still the most common way of interpreting EEG

signals, the time and expertise invested in this task are also limitations. Despite these, electroen-

cephalography is a useful, practical and reliable tool for diagnosis and monitoring that has estab-

lished itself as standard in hospitals worldwide [18, 78].
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Chapter 3

Epilepsy

Epilepsy is a disease of the brain that entails a predisposition to generate epileptic seizures

[1, 2]. As defined by the International League Against Epilepsy in 2014, it must satisfy one of the

following conditions: at least two unprovoked seizures occurring with more than a day between

one another, one unprovoked seizure and a probability of further seizures similar to the recurrence

risk after two unprovoked seizures or the diagnosis of an epilepsy syndrome [3]. Due to the variety

of epilepsy syndromes and types of seizures, one must consider epilepsy not as a single disorder

but as a spectrum of diseases with several causes, symptoms and possible treatments [80, 81].

3.1 Historical perspective

The first description of an epileptic seizure dates from 2000 B.C., in Mesopotamia. Epilepsy

was then related to the ’hand of sin’, brought about by the God of the Moon. These beliefs

continued through Egyptian, Babylonian, Greek and Latin societies [82, 83].

In fact, the word epilepsy comes from the Greek ’to seize, possess or take hold of’, since it

was believed that epileptics had offended the Goddess of the Moon, and certain positions of the

moon melted their brains, leading to madness. Despite this, epilepsy was also considered a ’sacred

disease’ by the Greeks, synonym of genius, as it affected Hercules and Julius Caesar [84, 85].

Hippocrates, the Greek philosopher, disagreed with both these hypotheses. In his book ”On the

Sacred Disease”, he described epilepsy as a disease of the brain, discrediting divine or wicked ori-

gins [86]. He was the first to approach this disorder in a scientific way, proposing possible causes

and therapies. Although several Roman physicians shared his belief, the advent of Christianity

brought a new era of spiritualism. Epilepsy was connected to witchcraft and led to persecution un-

til the Enlightenment, in the eighteenth century. With the detachment from religion came curiosity

and the scientific method, circling back to Hippocrates’ hypothesis [85, 87].

Research on the aetiology and therapy of epilepsy continued, accelerating with technological

development and availability of techniques such as EEG and MRI [87]. The definition of the dis-

ease and of seizures themselves changed throughout the years, according to the available informa-

tion. In the 1850s, Delasiauve [88] and Reynolds [89] defined epilepsy as a disease without cause

9
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and excluded epileptic seizures of the scope of epilepsy. Gowers, in 1881, once again brought

seizures into the definition of the disease [90]. More recently, in 2005, the International League

Against Epilepsy proposed an official definition for epilepsy and seizures that was revised in 2014,

reducing dubiousness and variability in the diagnosis and communication about the disease [3,91].

Despite these paradigm-changing advances, there is still much to be discovered about the

causes, underlying processes and possible treatments of epilepsy [92]. It is also important to note

that in countries like Liberia and Swaziland, epilepsy is still linked to witchcraft and possession

by spirits. Even in countries where this disease is recognized as a neuronal problem with available

therapy, patients still suffer from societal stigma, mostly due to misinformation [82]. This can

only be solved by investing in research and improvement of public understanding of the disease,

in order to reduce an avoidable ’side effect’ of epilepsy for its patients.

3.2 Aetiology

Epilepsy is the fourth most prevalent neurological disorder in the world, affecting population

from all age groups and ethnicities [81]. In developed countries, its incidence is approximately 50

per 100 thousand people per year, with more frequent occurrence reported in children and elderly

people. This number rises to 100 per 100 thousand people in countries with poor sanitation and

inadequate health systems, where the probability of infections is higher [93].

In half of the cases, epilepsy has no discernible cause. In the other 50%, genetic or acquired

causes (or a combination of both [94]) can be identified. Epilepsies caused by genetic factors are

also referred to as ’idiopathic’, while the ones due to acquired factors are called ’symptomatic’.

Idiopathic epilepsy is characterized by absence of structural brain lesions and neurological signals,

while symptomatic epilepsy is due to some type of identifiable brain lesion [95–97].

Causes for symptomatic epilepsy range from traumatic brain injury to infections in the Central

Nervous System, cerebrovascular diseases, brain tumours, degenerative diseases like Alzheimer’s

disease, developmental disabilities such as cerebral palsy or even febrile seizures [96–98]. In

endemic zones where sanitation and health are not ideal, causes like Neurocysticercosis (a parasitic

infection of the nervous system) account for 30 to 50% of the cases of epilepsy [99].

3.3 Epileptic Seizures

An epileptic seizure, as defined by the International League Against Epilepsy in 2005, is a

transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous activ-

ity in the brain [91]. Therefore, these seizures reflect atypical electrical activity characterized

by synchronous firing of a large mass of neurons, regardless of the stimuli being excitatory or

inhibitory. Epileptic seizures increase the instability of nerve elements, facilitating further occur-

rences [100, 101].

A seizure type entails a unique pathophysiological mechanism and it may be associated with

a specific cause, having its own prognosis and adequate therapy. This is more specific than an
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epilepsy syndrome, which is a group of signs and symptoms that define a unique epilepsy condi-

tion, imperatively involving more than one seizure type [95, 102].

The classification of epileptic seizures and syndromes is dynamic, reflecting the growing

knowledge of the underlying physiology of the disease. Currently, the proposed classification

takes into account the type of seizure, whether they are focal (i.e. affecting only part of the brain)

or generalized (i.e. affecting both hemispheres of the brain), the syndrome, cause and associated

deficits [93, 95].

Seizures, also known as ictus or the ictal state, are often preceded by the aura [103]. In this

earlier phase, the emotional state of the patient and their senses such as smell and taste may be

altered [104–106]. The ictus itself may result in loss of consciousness (common in generalized

seizures), convulsions, spasms, as well as unfamiliar behaviours and sensations [107–109]. After

a seizure, in what is known as the post-ictal state, the patient may experience confusion, dizziness,

drowsiness, blurred vision or ataxia, among other symptoms. The post-ictal state usually lasts

between 5 and 30 minutes, but for some patients it may be longer, further hindering their recovery

[110, 111]. The seizures may also have longer-lasting consequences such as trauma, burns and

bleeding [109].

A particularly dangerous type of seizure is status epilepticus (SE). It is defined as an epileptic

seizure lasting for more than 5 minutes or several seizures within 5 minutes without return to the

pre-convulsive neurological baseline [112]. Prolonged and repetitive seizures are less likely to end

spontaneously (i.e. without therapy administration) and they have been linked to irreversible brain

damage and pharmacoresistence. Therefore, the clinical prognosis in cases of SE is worse than for

other types of epileptic seizures and the mortality is higher [113–115].

In general, the mortality of epileptic patients is increased, with sudden unexplained death

in epilepsy (SUDEP), suicide, status epilepticus and the effects of the seizures as some of the

causes [107, 116]. Aside from mortality, epilepsy has other consequences of neurobiological,

cognitive, physical, psychological and social nature that impair the quality of life of the patients.

Thus, reducing the frequency of the seizures is of utmost importance to reduce the impact of the

disease [92, 117]. This can be done through early, assertive diagnosis and adequate treatment,

which will be addressed in the following sections.

3.4 Diagnosis

3.4.1 Misdiagnosis

Epilepsy encompasses a plethora of syndromes and types of seizures, some of which are sim-

ilar to abnormalities associated to other diseases. Thus, distinguishing a non-epileptic paroxysmal

attack from an epileptic one is not without doubt and the rate of misdiagnosis for epilepsy is high.

It is estimated that about 30% of patients diagnosed with epilepsy actually suffer from another

condition [4, 5].
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First seizures, which are not synonym of epilepsy according to its definition, sometimes lead

to misdiagnosis. Other conditions such as diabetic seizures, nonepileptic seizure disorders, such

as Tourette Syndrome and narcolepsy, meningitis, some cardiac diseases or even eclampsia during

pregnancy are often confused with epilepsy [4, 118].

This entails increased risk, as the patients are not being treated for the disease they have and are

sometimes given medication with potentially harmful side effects that may worsen their condition

[6, 7]. Thus, proper diagnosis is of extreme importance both to reduce the frequency of seizures

and to prevent dangerous consequences of misdiagnosis.

3.4.2 EEG as a diagnostic tool in epilepsy

EEG is currently the most useful technique for this task [1, 8]. Ictal EEG, i.e. EEG measured

during a seizure, is the only method that nearly always unequivocally distinguishes an epileptic

seizure from a non-epileptic one, allowing certain diagnosis of the disease. It also aids in the

identification of the source and type of seizure, facilitating therapy administration. However,

the likelihood of acquisition of an ictal EEG is low due to the unpredictability of its occurrence

[9, 10, 119].

Recording of interictal EEGs, i.e. brain signals from prospective patients in periods where no

seizure is happening, is always possible and therefore widely used to aid in diagnosis [11, 12].

Interictal Epileptiform Discharges (IEDs) are transient patterns that help to differentiate epilepsy

from other conditions. Epileptiform patterns include mainly spikes and sharp waves, shown in

Figure 3.1, which are characterized by high amplitude and short duration (20 to 70 ms for spikes

and 70 to 200 ms for sharp waves). These patterns correspond to paroxysmal depolarization shifts

and are usually followed by a slow wave lasting 200 to 500 ms, linked to hyperpolarization. IEDs

are present in about half of the recorded EEGs from epileptic patients and this number rises to

80% with repeated recordings. EEGs recorded during sleep are more likely to include IEDs since

their incidence is higher in this state [1, 87, 120].

Figure 3.1: Interictal patterns: on the left, an interictal spike; on the right, a sharp wave [120]. It
is possible to see their high amplitude (compared to the normal amplitude of the EEG signal), as
well as short duration.

While these patterns show evidence of abnormal cortical hyperexcitability and hypersynchrony

during a seemingly asymptomatic state, they are not enough to diagnose epilepsy, since normal

subjects or patients suffering from other diseases can have EEGs where IEDs are found [12, 61].
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Despite this, the presence of IEDs can aid in the diagnosis of epilepsy and information derived

from the EEG such as the frequency of the spikes and the location of their origin in the brain can

be insightful in what concerns the determination of the epileptic syndrome [8].

Other uses of EEG in regards to epilepsy include monitoring of SE, assessing efficacy of the

prescribed therapy and choosing eligible patients for epilepsy surgery [12,121]. Aside from EEG,

imaging techniques like MRI or CT (when access to MRI is restricted) may help detect changes

that could underlie refractory focal epilepsies and assist in electing patients for surgery. While

visual analysis remains the gold standard for these techniques, automated analysis has become an

important aid and, with increasing research on this field, it may make diagnosis more efficient by

reducing time and increasing assertiveness [8, 93].

3.5 Treatment

Adequate therapy to reduce seizures is paramount for a better quality of life of epileptic

patients. Anti-epileptic drugs (AEDs) are currently the first line of therapy for epilepsy. When

one or a combination of these drugs is not effective, the epilepsy is said to be refractory. In these

cases, non-pharmacological therapy is available [83, 87, 122].

3.5.1 Anti-Epileptic Drugs

AEDs can be defined as preventive chemicals that reduce neuronal synchronicity to avoid

seizures. They are effective in up to 70% of epileptic patients, although some patients have to try

different AEDs before finding one of more drugs that reduce seizure frequency [117, 122].

Historically, the first therapy for epilepsy, bromides, was discovered in the mid-nineteenth

century by Charles Locock. It was widely used until phenobarbital and phenytoin were discovered

in the beginning of the twentieth century and became the standard treatment for epilepsy. Until

the 1990s, sodium valproate, carbamazepine, primidone and ethosuximide joined the range of

available AEDs. This group of compounds is generally referred to as ”old drugs”, as opposed to

the ”new drugs”, discovered after the 1990s. New drugs include tiagabine, pregabalin, gabapentin,

topiramate, clobazam, oxcarbazepine, vigabatrin, lamotrigine and levetiracetam [87, 123].

Currently, there are over 20 different drugs licensed for treatment of epilepsy, with different

mechanisms of action and aiming to treat different types of seizures or syndromes. Although not

all mechanisms of action are well understood, some have been widely studied. For instance, car-

bamazepine and phenytoin block sodium channels while tiagabine and vigabatrin, among others,

work by enhancing the inhibitory GABAergic system [93].

Both new and old drugs continue being used, with no significant difference in effectiveness

being recorded. Older AEDs entail lower costs and are more widely available, but newer drugs

usually show lower levels of toxicity. Choosing the appropriate therapy for the patient’s syndrome

is more important than prescribing a ’new’ or ’old’ drug since, if this choice is not correct, the

condition may be aggravated by AEDs. For instance, if a patient has seizures due to inhibitory

synchronous activity and is prescribed an anti-epileptic drug that increases inhibition or decreases
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excitation, it is likely that the frequency of the seizures will rise [93, 122]. It is also important

to take into account patient-specific characteristics such as age, sex and medication prescribed

for other conditions. Additional care needs to be taken in cases of female patients taking oral

contraceptives, since AEDs may reduce its effectiveness and the oestrogen in the contraceptives

could lead to recurrence or exacerbation of seizures [124, 125].

Aside from this, guidelines state that monotherapy (i.e. treatment with only one AED) should

be administered at the lowest effective dosage to make the patient seizure-free. If monotherapy is

not effective after trying several drugs, polytherapy (i.e. treatment with a combination of AEDs)

may be considered. This is not ideal since it increases the probability of poor compliance, drug

interactions, teratogenicity and toxic effects. If polytherapy is employed, the chosen drugs and the

dosages should be such that minimize interactions and side effects, maximising synergy [122,126,

127].

Despite all these indications and guidelines, up to 50% of epileptic patients on monotherapy

with AEDs experience side effects. These include fatigue, drowsiness, dizziness, blurred or double

vision, headaches, impaired motor skills, memory or concentration. Treatment with AEDs may

also lead to rashes, hematologic dyscrasias, hepatotoxicity, bone density loss, gingival hyperplasia

and neuropathy [109,123,126]. If these side effects cannot be eliminated by using a different AED

or polytherapy, or if a significant (or total) reduction in seizure frequency is not possible, one must

resort to non-pharmacological approaches [87, 122].

3.5.2 Non-pharmacological therapy

Non-pharmacological therapy, under the form of epilepsy surgery or vagus nerve stimulation

(VNS), can be used in cases of refractory epilepsy. Approaches such as deep brain stimulation,

other types of neurostimulation, cooling, optogenetics and dietary treatments such as the ketogenic

diet are being studied as possible therapeutics for this disease [87, 93, 128].

Epilepsy surgery may be performed in cases where the area responsible for the seizures can

be determined and is limited to a particular non-eloquent region. If the whole brain is identified

as responsible for the seizures, epilepsy surgery is not an option. However, in some patients, it is

possible to identify a trigger area, as is the case in some generalized ’thalamo-cortical’ epilepsies.

The identification of the origin of the seizures is usually done using EEG recordings. When

non-invasive EEG is not enough to identify the area, invasive EEG techniques may be employed.

Depending on the case, either resective or non-resective surgery can be performed. In resective

surgery, the origin of the seizures is removed, while in non-resective surgery there is a physical

separation between that area and the rest of the brain, without removal [129, 130]. In general,

resective surgery leads to a higher probability of the patient becoming seizure free. The procedure

with the highest success rate is the temporal lobe resection, with 70% of the patients reporting a

seizure-free life [93].

In cases of generalized refractory epilepsy or when patients fail to qualify for surgery, VNS can

be used to potentially reduce seizure frequency. A pulse generator is implanted on the patient and

connected to the vagus nerve, in the neck. By mildly stimulating this nerve regularly, it is possible
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to reduce the irregular synchronicity and thus reduce seizures. The success of this method is

largely dependent on the patient, but it has shown to reduce seizure frequency in up to 50% in 30

to 40% of the patients [131, 132]. Deep brain stimulation has recently received more attention as

a possibility of treatment for refractory epilepsy when surgery is not an option.

Despite the effectiveness of both pharmacological and non-pharmacological approaches, many

patients still have recurrent seizures or suffer from side effects of the prescribed therapies [124].

Thus, incessant research in this field is needed to reach more patients and improve their quality of

life.
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Chapter 4

Machine Learning

Machine learning can be defined as the set of computational methods that use data or expe-

rience to improve performance on a certain task, generalizing from examples [133–135]. Deep

learning is an innovative subfield of machine learning that encompasses a set of techniques and

methods inspired by the human brain and its learning processes [136].

Using machine learning methods, it is possible to create a useful approximation of reality by

taking data regarding a problem and creating an algorithm. [134, 137]. Deep learning does this

with artificial neural networks that learn from data using several layers with increasing levels of

abstraction. Since the network itself is responsible for the feature extraction process, it becomes

almost independent of human knowledge, which reduces the time needed to develop an algorithm

as well as the field expertise needed to do so [136, 138, 139].

4.1 Historical Perspective

The history of deep learning and machine learning is closely related to that of artificial in-

telligence and pattern recognition. It is also inevitably intertwined with several other areas of

knowledge such as computer science, physics, mathematics, statistics, logic, philosophy and cog-

nitive neuroscience [133, 140].

The will to ’create intelligence’ can be traced back to antiquity, where men wanted to ’forge

the gods’ [141]. However, it took years of scientific progress for the modern concept of Artificial

Intelligence to develop [142]. Developments such as the mechanical adder, the binary system

or Boolean logic, culminating in the invention of the computer in the 1940s, allowed substantial

advances in this area of research. In the 1950s, there was a growing interest in computational

approaches to learning, as learning was identified as a central part of intelligent systems and it

became possible to join that with computational power [143–145].

4.1.1 The Perceptron

The first general purpose algorithms were in the scope of neural modeling and decision theory.

The groundwork for this paradigm derived from mathematical biophysics, with Rashevsky [146]

17
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and McCulloch and Pitts [147] translating neural activity into propositional logic, allowing its

computational modeling. In 1962, Rosenblatt presented a model of an artificial neuron called the

perceptron. Its inputs (x0 to xn, with x0 being the bias, equal to 1) were combined with varying

weights (w0 to wn) as can be seen in Figure 4.1. This resulted in a weighed sum given by ∑
n
i=0 xi∗wi

that was then passed through a step function, predicting 1 if the result was above a certain threshold

(influenced by the bias) and 0 otherwise [148, 149].

Figure 4.1: Basic structure of a perceptron, as described by Rosenblatt.

This was a moment of glory for connectionists, the researchers that believed that a universal

learner could be achieved by modeling neural phenomena with neural networks, as the perceptron

was able to mimic human neurons in a concise way and solve linear classification problems with

a simple algorithm. Concurrently, other types of algorithms, like those based on the simulation of

evolutionary processes, started gaining traction among the machine learning community. Alter-

native but powerful approaches included the use of statistical decision theory [150–152] and the

development of discriminant functions based on a group of examples, of which the most popu-

lar example is Samuel’s checkers program [153]. Other methods were based on logic and graph

structures instead of statistics and mathematic, using inverse deduction and manipulating symbols

to acquire knowledge [154–156].

As can be concluded from the diverse approaches to machine learning, the 1960s were prolific

times for this field. However, this exponential growth was halted in the mid-seventies, following

the publication of ’Perceptrons’ by Minsky and Papert in 1969 [157]. In their work, Minsky and

Papert showed that perceptrons were not able to solve problems involving non-linear spaces and

thus could not be used to model problems as simple as the XOR function. As this proved that

the perceptron was not the universal learner that it initially aimed to be, connectionism was al-

most completely abandoned. Further delays in research were caused by the disillusion in artificial
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intelligence and subsequent cuts in funding by the British and American governments [158, 159].

4.1.2 The Multilayer Perceptron and Backpropagation

Some work on linear models kept being developed, but no ground-breaking discoveries were

made until 1986, when the backpropagation algorithm was rediscovered by Rumelhart [160,161],

after it was first published by Werbos in 1974 [162,163]. Backpropagation substituted the McCul-

loch and Pitts model and allowed the organization of networks of interconnected neurons.

Multilayer Perceptrons (MLPs), feedforward neural networks comprised of interconnected

neurons grouped into layers, became feasible with backpropagation. Before, this was not possible

because there was no way to derivate the error with more than one layer. MLPs included an input

and output layer and at least one layer in between (i.e. at least one hidden layer). The neurons of

these layers could have any activation function, but non-linear functions were usually used for this

purpose, as they prevented the system from collapsing to a linear modeling and allowed it to learn

more complex decision boundaries [164].

Backpropagation calculated the partial derivative of the cost function with respect to each

weight (i.e. the gradient), repeating this process backwards in the network. After calculating the

gradient for all layers, ending in the first layer, the weights were updated according to the value

of the gradient and to the defined learning rate, a small constant used to avoid large steps in the

update. The equation for weight update can be simplified as new weight = old weight - gradient *

learning rate, which indicates that positive gradients lead to a reduction in weight and vice versa,

making weights converge to a value that minimizes error [160]. This gradient descent algorithm

was quite efficient since it used this backward flow to calculate the value for the previous layers

instead of computing it from scratch.

This widened the problems that could be solved using connectionist algorithms, relaunching

research in the area. Aside from MLPs, non-linear extensions to generative linear models were

also developed, along with other algorithms like regression trees [164, 165].

The Support Vector Machine [166] was one of the most important developments in machine

learning after backpropagation. The algorithm generalized from similarities in the training data to

make predictions, knowing that non-linear feature spaces could be mapped to higher dimensions,

where the boundary between them was linear and learnable by this vector machine.

4.1.3 Long Short-Term Memory networks

A crucial development in connectionism was the Long Short-Term Memory (LSTM) network.

LSTMs are a type of recurrent neural networks (RNNs), which are cyclic graphs, unlike feedfor-

ward networks. Also, while feedforward networks map one input to one output, RNNs can have

more than one input or output (or both). RNNs possess ’memory’, which is able to store previous

information in states and use it to aid predictions, making them useful in handwriting or speech

recognition [167–169]. For instance, describing an image through a string of words is mapping

one input to many outputs, while translation is an example of multiple inputs and multiple outputs.
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Traditional RNNs have some issues dealing with long-term dependencies, along with vanish-

ing and exploding gradients. LSTMs were developed by Hochreiter and Schmidhuber to deal with

these issues [170]. They are made up of a chain of layers, similarly to traditional RNNs, but in-

stead of repeating a single network layer, the cells are composed of four layers that work together

to decide what information to keep, how to update the state of the cell and to produce an output

for the following cell (see Section 4.3.2.1 for more details).

4.1.4 ImageNet

In the following years, interest in machine learning continued to rise after IBM’s Deep Blue

defeated chess champion Garry Kasparov in 1997 [171]. In 1998, LeCun released the MNIST

database of handwritten digits, allowing researchers to use the same data and thus directly compare

results of different methods. In the same year, LeCun proposed LeNet-5, a convolutional neural

network (CNN) to automatically classify the MNIST digits [172]. CNNs are feed-forward neural

networks that use convolution operations to extract features, and they will be further discussed in

Section 4.3.1.

ImageNet, a large database that currently includes over 14 million labeled images in more than

20 thousand categories, was created in 2009 [173]. To boost the use of this database, the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) was created in 2010. It consisted in using a

subset of the ImageNet database to train a machine learning algorithm, aiming to surpass human

accuracy in image classification.

In 2012, the winner of the ImageNet Competition was AlexNet, developed by Alex Krizhevsky

[174]. AlexNet was a CNN that included 5 convolutional layers with ReLu activation, pooling and

dropout layers and a Softmax with 1000 units, optimized by a batch stochastic gradient descent

optimizer. It took five to six days to train on two Graphical Processing Units (GPUs) and it

achieved 16.4% top 5 error, against the 26% yielded by the winner of the previous year. This

innovative model is said to have been the beginning of the AI boom of the 2000s [175]. Interest in

machine learning, and in neural networks in particular, peaked, as did investment in the field. The

wider availability of GPUs, circuits that sped matrix multiplication, leading to a faster training

process, also allowed heavier architectures and more innovation in the neural networks used.

The VGG Network, developed in Oxford by Karen Simonyan and Andrew Zisserman in 2014,

was the runner-up in that year’s ILSVRC [176]. It used smaller filters than the AlexNet and its

architecture was deeper, taking two to three weeks to train on 4 GPUs. Although it did not win the

competition, its flexible architecture led to vast use in the field.

The winner of 2014’s ILSVRC was GoogLeNet, proposed by Szegedy and his team at Google

[177]. It introduced the Inception module, which consisted in using parallel filters of different

sizes to capture different patterns that were stacked in a feature map. Convolution with 1x1 filters

was used to avoid dimensionality increase within the modules. Using several of these modules

to create a wider network, GoogLeNet managed to decrease top 5 error to 6.7% and increase

computational efficiency. The team continued to improve this model over the years, leading to

several versions of the now named Inception network.
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In the following year, Microsoft’s ResNet (Residual Network) won the ImageNet competition

with a top 5 error of 3.6%, under the 5% achieved by humans [178]. The two main innovations

of the ResNet were its depth (152 layers) and the residual module. In fact, it is the use of the

residual that allows networks to have such depth without degradation and vanishing gradients.

These problems arise because, during backpropagation, repeated multiplication makes the gra-

dient increasingly small, leading to higher training errors when depth is continuously increased.

Assuming a set of connected layers have as input x and yield a function H(x), using a residual

function defined as F(x) = H(x)− x, it is possible to optimize the residual instead of the unrefer-

enced mapping without adding parameters or increasing complexity. Both functions approximate

the same target, but the residual does it more effectively due to its formulation, solving degrada-

tion. Shortcut connections were used to perform the identity mapping, carrying information from

previous layers forward in the network.

Since the goal of surpassing humans had been reached, the ImageNet Competition stopped

after 2017. Other relevant achievements in the field include Facebook’s DeepFace project [179],

which was able to identify human faces with over 97% accuracy and Google’s AlphaGo project,

which was able to defeat the Go champion in 2016. This algorithm was improved in 2017 into

AlphaZero, which was additionally specialized in other two-player games, including chess [180,

181].

4.2 Types of Learning

Although it is said that machine learning, and, consequently, deep learning algorithms ’learn

from experience’, this is not enough to explain the learning paradigm involved. The data used for

training, the type of learning and the learning task at hand are crucial when choosing an algorithm

and largely influence learner performance [182].

Data is one of the most important factors since it is used to train the learners and, as such,

it has a great impact on their performance. The data used to train algorithms is just a sample of

the real-world data, so volume (i.e. how much data is available), representativeness (i.e. how

diverse it is in relation to the real-world data) and quality (related to how noisy or omissive it is)

are some of the crucial characteristics that must be taken into account when choosing and training

learners [133, 183]. For deep neural networks in particular, the volume of data is crucial because

the layers rely solely on raw data to learn. For lower volumes, other machine learning algorithms

such as SVMs may achieve better performance.

The amount of information concerning the true class or value of each data sample is also of

paramount importance, since it influences the learning paradigm. Labeled data is data for which

the true class is known, while, for unlabeled data, the true value is not available [183].

Over time, machine learning has branched into different ways of dealing with learning, de-

pending on the task at hand and on the available data. The taxonomy of learning paradigms is

not absolute, since there are several distinguishing characteristics that can be used for this classi-

fication. For instance, learners can be classified as active or passive, according to their interaction
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with the environment. A passive learner can only observe the provided information while an active

learner can pose queries or perform experiments during training. Another possible distinction is

between batch and online learning. In batch learning, a model is built based on the available data

and it is used to make predictions. On the other hand, in online learning, the model is updated

upon the success of each interaction with the environment [182].

The degree of supervision during learning is one of the most commonly used ways to classify

the type of learning [184].

4.2.1 Supervised learning

Supervised learning is used when there is a dataset that includes the information needed to

create a model of the problem (labeled data). The algorithm looks at this information, builds the

model and, when presented with new data, it should be able to generalize and respond correctly

[183, 185].

The main tasks that can be solved with supervised learning are regression and classification

[184]. Regression predicts a numerical value for each data point, while classification aims to

predict a discrete class label for each new instance. In some cases, classification works with

continuous values, similarly to regression, but then discretizes them into classes.

4.2.2 Unsupervised learning

Unsupervised learning means finding similarities within the provided data to try to model its

structure, given that there is not enough information regarding the data to directly build a model

(unlabeled data) [184].

Association, clustering and dimensionality reduction are the types of tasks usually tackled

by unsupervised learning [182, 184]. Association aims to determine the co-occurrence of events,

while clustering groups instances through a measure of similarity. When a new instance is pre-

sented, it is assigned the class of the most similar cluster. Finally, dimensionality reduction consists

in reducing the number of variables while keeping its discriminant characteristics. This can either

be done through feature selection, which chooses the most distinguishing subset of variables or

through feature extraction, which consists of transforming the variable space into a one with lower

dimensionality.

4.2.3 Semi-supervised learning

Semi-supervised learning is used when there is a large amount of unlabeled data and a smaller

amount of labeled data. This paradigm aims to use both types of data, surpassing the performance

that could be obtained with either supervised or unsupervised learning. To do that, it is necessary

to make assumptions about the data distribution, whether it is regarding its continuity, clustering

or others [182].
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4.3 Deep Learning Models

Deep learning uses artificial neural networks (ANNs) that derive from Rosenblatt’s percep-

tron, and thus are inspired in the brain and its processes [136, 186]. As discussed in Section 4.1,

there are several types of ANNs, from which CNNs and LSTMs, a type of RNNs, can be high-

lighted.

4.3.1 Convolutional Neural Networks

CNNs are feedforward networks with layers entailing increasing levels of abstraction. These

layers are made up of interconnected neurons with learnable weights and biases. The sequence

and parameters of the layers constitute the architecture of the model, which determines what the

network learns from the data. The optimizer and the loss function are also key determinants in

how the network learns, affecting performance [136, 186].

4.3.1.1 Layers

Each network contains visible layers (i.e. the input layer and the output layer) and hidden layers.

The input layer nodes receive a single value and pass them to the first hidden layer. Hidden layers

transform data so that it can be used as an input for the next layer. The set of hidden layers in a

CNN can be divided into a convolutional and a classification subset. In traditional CNNs, hidden

layers are stacked linearly, while architectures such as Google’s Inception showcase non-linearly

stacked layers (inception module) [177]. Finally, output layers transform the output of the last

hidden layer to a range or shape that is meaningful for the problem.

Convolutional Layers
Convolutional layers are a set of filters (kernels) that slide across the input to detect if a par-

ticular pattern is present. Convolution, an element-wise product and sum between the filter and

the input matrices, is used to perform this operation. While the kernel size of each filter (i.e. its

receptive field) is a hyperparameter, they extend through the full depth of the input, generating

a 2D activation map at the end of a forward pass. Since there is a set of filters being used, the

stacking of the activation maps yields a 3D matrix [186].

Stride and padding are two other important hyperparameters of convolutional layers, respon-

sible for the control of the spatial size of the output of the layer. Stride represents the shift made

by the filter during the forward pass. This means that higher strides result in smaller outputs. If

the stride is bigger than one, it may be necessary to perform padding, usually adding zeros around

the border of the input (zero-padding), to ensure that the filter ’falls’ within the input.

As mentioned in Section 4.1.2, the use of non-linear activation functions is paramount for the

stacking of layers. These allow networks to model virtually any function, approximating the data

more accurately. Historically, the Sigmoid function given by 1/(1+e−x) was widely used for this

purpose, mapping the output to an interval between 0 and 1. However, since there is saturation

for large values of x, the gradient becomes very low and the problem of ’vanishing gradient’
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arises. To solve this issue, Hinton [187] presented the Rectified Linear Unit (ReLu) function,

given by max(0,x) [187]. Since there is no saturation of the gradient, vanishing gradients do not

occur. Also, this function is less computationally expensive and it promotes sparse activation of

the neurons, since it yields 0 for all neurons where x < 0.

Pooling Layers
Pooling layers are usually used in between convolutional layers, aiming to reduce the size of

the representation, and thus the number of parameters (weights) to be learned, while also reducing

overfitting. Pooling is usually done by taking the maximum value in a certain window (max pool-

ing), but it may be done employing an averaging function or others. Since it makes the network

focus on a smaller number of neurons, it has a regularizing effect, improving the generalization

power [188].

Dropout Layers
Another way of reducing overfitting is the use of dropout layers. These can be used after

pooling or between fully connected layers. Dropout consists on ’killing’ (i.e. not activating) a

user-defined percentage of the neurons, chosen at random, on each presentation of a training case.

By averaging the weights in the end of this process, one obtains a more general model [188].

Fully Connected Layers
Fully connected layers are responsible for producing the output. These can only deal with

one-dimensional data, so a flattening layer is needed between the previously described layers

and the fully connected ones. Flattening transforms the 3D stack of activation maps into a 1D

vector. Neurons in fully connected layers have connections to all the neurons from the previous

layer, behaving like traditional multi-layer perceptrons [186]. The final layer must have the same

number of units as the classes in the output, so a CNN for binary classification would have 2 units

in its last layer. In a binary case, the Logistic function can be used to yield the probability of each

class. The Softmax, a generalization of the Logistic function, is usually used in the last layer to

perform multi-class classification.

4.3.1.2 Optimization

Training CNNs entails high computational costs. Optimization techniques have been developed,

aiming to lower these costs and make training more efficient. In the convolutional layer subset,

the large amount of operations slows down training. The high number of parameters in the fully

connected layers further contributes to a longer training time. Optimization aims to increase the

effectiveness of the maximization of an objective function (or, inversely, the minimization of a

cost or loss function), which is a function of the network’s parameters [189, 190].

Gradient descent, described in Section 4.1.2, calculates the gradient for the entire batch of data

and performs an update [160]. For large datasets, this can result in a very slow optimization and,

for non-convex surfaces, it may also lead to convergence in a local minimum instead of a global

one. To solve these problems, some variations such as the stochastic gradient descent (SGD) and

the mini-batch gradient descent, can be used. While these reduce the time needed to converge in
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a minimum, the choice of a learning rate and the occurrence of local minima remain issues of this

class of methods [189].

There have been several methods that build on gradient descent, the most successful one being

Adam (Adaptive Moment Estimation) [191]: θt+1 = θt − η√
v̄t+ε

m̄t , where m̄t =
mt

1−β t
1

and

v̄t =
vt

1−β t
2
.

As can be seen in the formulas above, it uses the first and second moment of the gradient

(m̄t and v̄t) to adapt the learning rate, η , for each parameter. It calculates the moving average of

m̄t and v̄t and uses β1 and β2 to control the decay rates. ε is used to prevent divisions by zero.

Adam makes convergence faster, reduces fluctuations in parameter values and avoids the vanishing

learning rate problem that arises from using only the first moment to update it.

4.3.2 Recurrent Neural Networks

As described in section 4.1.3, RNNs are cyclic directed graphs like that of Figure 4.2, which

take into account the present input but also past inputs to make decisions.

Figure 4.2: Possible architecture of a RNN. It is possible to see that a module is repeated, being
applied to the past and present inputs.

Past information is kept on the network’s hidden state (ht), given by ht = φ(Wxt +Uht−1).

Thus, ht is a function of the current input, xt , and of the previous hidden state, ht−1, multiplied by

weight matrices (W and U) [192]. These matrices are the weights that determine how important

the present and past states are, and they are used to minimize the error using an algorithm called

backpropagation through time (BPTT) [162]. The mapping function is φ , which can be a logistic

function, making gradients manageable by BPTT.

This algorithm has a similar principle to backpropagation, but it calculates the errors for each

time step, accumulating them. The update of the weights is done in the end, given that W and

U are the same throughout the network. This process is repeated until the error is minimized.

BPTT becomes slow when there are many time steps, since there is a hidden unit per time step.

Sometimes, a high number of time steps is necessary for longer persistence in memory, but it may

make the network very computationally expensive. Newer algorithms such as the Truncated BPTT

allow processing of a pre-determined amount of time steps, reducing training time [193].
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4.3.2.1 Long Short-term Memory

LSTM units can be used as building blocks of an RNN, constituting LSTM networks, mentioned

in Section 4.1.3. They have a more constant error (i.e. the error has a smaller variation between

training epochs) than traditional RNNs (such as the previously described ones that entail the rep-

etition of a single module with a simple structure, similar to a layer of a feedforward network),

allowing the use of more time steps [194].

Each LSTM unit has four layers: a memory cell, an input gate, an output gate and a forget

gate [195, 196], as can be seen in Figure 4.3.

Figure 4.3: Representation of a LSTM unit. The forget gate (first vertical line on the left) decides
how much of the previous hidden state, ht−1, should be kept according to ft . The input gate
(second vertical line) performs an analogous decision, given by it . The cell state is updated from
Ct−1 to Ct after the operations represented by the third vertical line. The output (last vertical line)
is given by the multiplication of the value at the output gate, ot , and the result of the application of
the hyperbolic tangent to the updated cell state Ct .

The cell state carries the flow of information through the network, with the cell state being

changed in each unit by its layers. The forget gate decides how much of the previous hidden

state, ht−1 should be kept according to ft = σ(Wf [ht−1,xt ] + b f ), which is also a function of

the current input xt . The sigmoid maps the result between 0 and 1, with 1 meaning that all the

information from the previous hidden state is kept. The input gate performs an analogous decision,

given by it = σ(Wi[ht−1,xt ] + bi). Concurrently, a vector of candidate values to add to the cell

state is created according to At = tanh(Wc[ht−1,xt ] + bc). A hyperbolic tangent function is used

in this step, with the same purpose as the sigmoid in the previous ones. The cell state is then

updated using Ct = ft ∗Ct−1 + it ∗At . The output of each unit is given by the multiplication of

the value at the output gate, calculated through ot = σ(Wo[ht−1,xt ] + bo) and the result of the

application of the hyperbolic tangent to the previously calculated cell state. The resulting formula

is ht = ot ∗ tanh(Ct). This output may exist for every unit if the mapping done by the network is
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one to many or many to many. However, it is possible to have outputs for some units or just for

one of them, if the mapping is one to one or many to one.

It is important to note that there are variants of the traditional LSTM, such as the peephole

LSTMs or LSTMs with coupled forget and input gates [195].

4.4 Performance Estimation

4.4.1 Metrics

To assess the performance of an artificial neural network on a given dataset, a range of metrics

can be used, depending on the problem. Accuracy is a common metric for this purpose, as it calcu-

lates the rate of true classifications: (TN+TP)/(TN+TP+FP+FN), in which TN is true positive, TN

is true negative, FP is false positive and FN is false negative. However, the choice of this metric

is not trivial since some problems may not have the same cost value associated with erring a pos-

itive or negative observation [197]. In these situations, metrics such as sensitivity (TP/(TP+FN)),

specificity (TN/(TN+FP)) or precision (TP/(TP+FP)), among many others, may be better suited to

assess performance.

Performance estimation may also be done using graphical methods such as the Receiver Op-

erating Curve (ROC curve), created by plotting the sensitivity against the false positive rate, given

by 1-specificity for several thresholds. The area under this curve (AUC) can also be used as a

performance measure.

4.4.2 Overfitting

The values of the metrics described above are not enough to assess the performance of an

algorithm. The data that is used in their calculation is of the utmost importance, since the learner

will usually demonstrate better performance on the data it has already seen (i.e. training data)

than on unseen data. If this difference in performance is very large, the model is said to have high

variance, which means it is learning spurious patterns from the training data instead of learning

relevant features that it can generalize when presented with new data. This phenomenon is also

known as overfitting [198].

Overfitting may be reduced using several techniques, including an appropriate choice of ar-

chitecture and optimizer, which have been previously discussed. The use of regularization (com-

plexity reduction) under the form of dropout or pooling layers further contribute to lower model

variance. Adding a regularization term on the norm of the weights is also an option to reduce

overfitting since it penalizes complexity in the model [199]. Batch normalization, which is done

by normalizing the inputs and scaling the activation, also contributes to this end goal [200].

If the volume of training data is not large enough, data augmentation can be used to increase

it and reduce overfitting. Data augmentation consists in creating new data based on the available

data, allowing the network to look at more examples and becoming more robust. It is worth

pointing out that data augmentation is only applied to the training dataset. Simple techniques
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for this include flipping the inputs vertically or horizontally, translating objects, rotating, scaling,

cropping or adding gaussian noise do the input [199].

More advanced techniques for data augmentation involve the use of Generative Adversarial

Networks (GANs) or neural style transfer. GANs are a set of two neural networks, in which one

produces an artificial input and the other evaluates it to see if it is a good enough forgery of the

available training data [201]. Neural style transfer consists in updating the input instead of the

weights, to match a style (captured by a set of parameters) from another input [202].

4.4.3 Cross-validation

Cross-validation includes a set of methods that allow performance estimation in unseen data

when a separate set of data is not available for testing. The simplest form of cross-validation is

the holdout method, which is the splitting of the available data into two sets, one used for training

and another one for testing [203]. This way, by calculating metrics for both sets, it is possible to

assess the occurrence of overfitting.

K-fold cross-validation is another way of performing cross-validation, and it is particularly

useful when the available data is not enough to split into training and testing. Unlike the holdout

method, all the available data is used to train the algorithm. This is done through an iterative

process where the data is randomly shuffled and partitioned into k folds, with one of them being

used for testing and the rest (k-1) for training, changing the testing fold in each iteration. The

algorithm’s performance can be averaged over these folds, leading to a more accurate estimate of

the training and test error, as well as overfitting [203]. This may be computationally expensive

since the algorithm is trained from scratch k times. Leave-one-out cross-validation is a particular

case of k-fold cross-validation, where k is equal to the number of points in the dataset.

4.5 Visualization

Although deep neural networks have shown great potential across areas, these algorithms are

not without shortcomings. Aside from the high computational cost and training time, alleviated by

optimization, and the possibility of overfitting, reduced with the methods described in the previous

section, the lack of interpretability of the models is one of the main issues of neural networks.

In particular, the limited understanding of the features learnt by each layer and of the deci-

sion process hinder further optimization of the model, its adaptability and transferability to new

applications [204]. In fact, it has been shown that neural networks can demonstrate high levels of

certainty in their predictions when unrecognizable features are being learnt from the input, which

weakens the confidence of experts on these decisions [205].

Understanding neural networks poses a challenge due to the large number of interacting, non-

linear parts, as well as the number of learnt parameters. This issue is worsened in deep neural

networks due to their size [206]. Without deep and clear understanding of neural networks, the

development of better models is reduced to trial and error, which is scientifically unsatisfactory

[207].
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Deep neural network visualization is an active field of research focused on addressing this

interpretability issue. Visualization only started being studied in the 2010s, with the rise of deep

learning due to the ImageNet Competition, but significant contributions to the field have already

been produced [204]. It is relevant to mention that some of the research groups focused on the de-

velopment of deep learning models have dedicated themselves to solving this underlying mystery,

overlapping the two areas of study.

Current visualization techniques are diverse in what concerns the types of algorithms used,

their aim and the information they reveal. While visualization algorithms are becoming progres-

sively diverse, some of them have been more widely used and suffered continuous improvement,

becoming increasingly important in the field.

4.5.1 Activation Maximization

Activation maximization was first developed by Erhan et al. as a way to interpret the features

learnt by the networks [208]. It attempts to mimic the structure of the visual cortex, building on

the hierarchy of the learnt features. To do this, Erhan et al. searched for inputs that maximized

the activation of a given unit, based on the idea that a pattern that leads to a strong activation of a

neuron may be a good representation of what it is learning. In the first layer, given that the units

are linear functions of the input, this method yields particularly clear results.

This search for inputs that maximize the activation can either be done in the training data or

it may be transformed in an optimization problem, leading to the synthetic generation of an input

that maximizes said activation. This is done through gradient ascent in the input space, changing

each pixel of the input in the direction of the gradient in each iteration and keeping the weights

constant.

In greater detail, the algorithm can be described as the synthesis of an input x∗ that maximized

the activation of a given neuron, described as: x∗ = argmax(ai,l(θ ,x)), where θ are the model

parameters. The gradients are computed using backpropagation, with fixed theta values. The

input x is updated according to x← x+η ∗ δai,l(θ ,x)
δx , where η is the learning rate or step size for

the gradient ascent.

Similarly to gradient descent, gradient ascent involves the choice of hyperparameters, namely

the learning rate and the number of iterations, which impact the obtained result. The starting input

is also a relevant parameter. One can use existing images and change them through gradient ascent,

but it is also possible to use random noise or a uniform input.

Figure 4.4 shows the results obtained by Erhan et al. using the MNIST dataset on several layers

of the network. It is possible to see that the first layers learn Gabor-like features while subsequent

layers learn increasingly complex patterns, looking like pseudo-digits by the third layer. While

several random initializations were used, they mostly let to the same input pattern, showing that

the activation was unimodal.
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Figure 4.4: Results of the application of activation maximization on the MNIST dataset. The
outcome on 36 units is shown, throughout different layers: first layer (left), second layer (center)
and third layer (right). Adapted from Erhan et al. [208].

Le et al. [209] used the same principle to verify that their network was learning to identify

faces, using images of faces in the test set as well as the previously described optimization method.

As Le et al. notes, these methods can be employed complementarily. Using existing images may

suffer from fitting to noise while using gradient ascent may lead to a local minimum.

Simonyan et al. [210] built on this, generating an image representative of each class of the

dataset used in that work, analogously to the class model of faces produced by Le et al.. Simonyan

et al. were also the first to use regularization in the gradient ascent process. In this context, regular-

ization is equivalent to the establishment of image priors, which is relevant when visualizing higher

layers, making the patterns more interpretable. This is given by x∗ = argmax(ai,l(θ ,x)−λ (x)),

in which λ (x) can be any regularization parameter. In this case, the L2 norm was used, prevent-

ing pixels with extreme values from dominating the patterns. Other functions can be used for

this purpose, including gaussian blur, which penalizes high frequency information [206]. Total

variation [211], jitter [212] or data-driven priors [213] may also be used. An alternative to regular-

ization is the use of a generator network to update the input pixels [205]. Generative Adversarial

Networks can be used for this purpose.

Google developed a technique called Deep Dreaming, based on activation maximization, us-

ing a positive feedback loop to enhance what the network is seeing in a certain image [212]. This

overinterpretation is highly dependent on the layer used and the training data. While lower-level

layers will represent mostly orientations or other generic features, higher-level layers will show-

case the complex, input-like features that it has learnt, depending on the type of images it was

trained on. It is possible to use test images as input, but it is also possible to apply this technique

to random noise, yielding an output entirely based on the network’s knowledge. While the aim of
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Deep Dreaming was to get a qualitative sense of the abstraction achieved by a particular layer, it

has been used for artistic purposes due to its visually interesting outputs.

4.5.2 Deconvolutional Networks

Deconvolutional networks (DeconvNets) aim to explain what the neural network is doing

from the perspective of the input image, by finding the pattern of the input that activates a specific

neuron. To do this, the feature map of the neuron is projected to the dimension of the input by

means of a neural network that performs the inverse operations of a convolutional neural network

– a deconvolutional neural network [204].

DeconvNets were developed by Zeiler et al. [214], initially with the aim of reconstructing

natural images through generic features. The same type of algorithm was used for hierarchical

image decomposition [215] and later for the visualization of hidden features [207].

A DeconvNet can be seen as the reverse of a convolutional network, as shown in Figure 4.5. It

includes deconvolutional layers, which use transposed versions of the filters in the corresponding

convolutional layers, as well as unpooling layers, which usually entail the insertion of zeros in the

feature maps due to the lack of available information. Finally, reverse rectification layers consist

in passing the unpooled feature maps through a ReLu function.

Figure 4.5: Structure of a DeconvNet compared with the original convolutional network [204].

To perform visualization with DeconvNets, the feature maps from all the neurons are captured

when an image is used as input. Then, the feature map of the selected neuron is kept, setting all

others to zero. The chosen feature map is projected to the dimension of the image using the Decon-

vNet, and this process is repeated in order to visualize several neurons. Aside from enabling the

visualization of the patterns responsible for activation of specific neurons, this technique provides

some insight in what concerns the training process of the network. If the DeconvNet finds noisy
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patterns, this may indicate that the network has not been trained long enough, or that overfitting is

occurring.

4.5.3 Network Inversion

While the previously described techniques aim to visualize the network at a neuronal level,

network inversion’s goal is to provide a comprehensive perspective of higher structures (i.e. layers

or the whole network). With this technique, the feature maps from all the neurons of a layer

are used to reconstruct the input. It projects a layer’s feature map onto the image dimension,

showcasing the features learnt by the layer itself [204].

The idea behind this algorithm was first used in the visualization of traditional computer vision

methods, such as Local Binary Descriptors (LBD) [216]. Two adaptations were proposed for

visualization in convolutional networks: regularizer-based network inversion [211, 217] and the

UpconvNet-based network inversion [218, 219].

The regularizer-based network inversion uses the same network architecture and parameters of

the original network. It aims to reconstruct an image, x∗, minimizing the error between the target

feature map of the reconstruction and that of the original image. This can be quantified through the

expression x∗ = argmax(C∗L(A(x)−A(x0))−λ (x)) where L is the loss function defined between

the feature maps (usually the Euclidean distance) and λ is the regularizer, which restricts x∗ to a

natural image. This can be an alpha-norm regularizer or it can take on any other form, including

the ones discussed in Section 4.5.1. C is a constant that trades off the loss and the regularizer.

To perform this minimization, one starts with an image made of noise (or a hand-made prior),

x0, computing the feature map of its target layer, A(x0), as well as that of the original image, A(x).

Each pixel of the input, x0, is iteratively changed through gradient descent. This process stops

at a stage, x∗, in which the feature map preserves the information retained by the target layer.

The main issue with this technique is the computation time, which is relatively large due to the

computation of the gradient. The need for regularization to ensure a natural image can also be

seen as a disadvantage.

The UpconvNet method has a more complex implementation, since a whole network must

be built, but it entails several advantages. The computational effort is made only once, to train

the network, with the feature maps being obtained with a single forward pass after this process.

Furthermore, the UpconvNet implicitly learns the natural image prior without the need for regu-

larization.

Given a feature vector, the UpconvNet is able to predict the average of the input images that

could have led to that vector. To do this, the network includes reversed convolutional layers, as

well as reversed rectification and reversed pooling. While the DeconvNet transposes the filters

of the original network, the UpconvNet retrains them, based on a set of training images and their

feature vectors. It then uses a leaky ReLu function to ensure all the feature maps are positive, as

well as a 2-fold upsampling.

Dosovitskiy et al. were able to prove, through the application of the UpconvNet to deep neural

networks, that this method led to better visualization quality than the previous one, in particular
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in fully connected layers (see Figure 4.6) [219]. Furthermore, the authors showed that all layers

preserve the colours and rough position of the objects, and that the encoding of this information

varies according to the type of layer: fully connected layers hold information on the probability

values, higher convolutional layers on the non-zero activation and lower convolutional layers store

it on the weights themselves.

Figure 4.6: Results of the reconstruction of AlexNet through application of regularizer-based net-
work inversion and UpconvNet. [204], adapted from [219].

4.5.4 Network Dissection

Unlike the previously described categories of methods, which aim to reveal the patterns that a

neuron or layer is able to capture, network dissection’s goal is to relate what is learnt to a semantic

concept, linking perceptible visible patterns to easily interpretable concepts [204].

This method was first described by Bau et al. [220], who took the Broadly and Densely named

(Broden) dataset and used a single forward pass through each tested network (without any addi-

tional training or backpropagation) to assess the correlation between the activation of each unit

and each concept. The Broden dataset is comprised of several smaller datasets that are labeled,

covering a wide range of object classes, scenes and textures. The algorithm used by Bau et al.

started by calculating the activation map for each neuron, given an image from the Broden dataset.

For the maps with activations higher than a certain threshold, upsampling with bilinear interpola-

tion was applied in order to restore the dimension of the input. Thresholding was applied to select

the regions with high activation, which were compared to the labels in the ground truth using the

intersection-over-union score. If this value was high, the neuron that produced the activation map

in study was said to be a detector for the concept. Counting the number of concepts aligned with

neurons in a layer (unique detectors), one can estimate the interpretability of said layer.

Bau et al.’s method assumes that each concept can be linked to a single neuron. However, it is

not illogical to consider that a set of neurons might work in tandem to detect a concept. With this

in mind, Fong et al. developed an alternative method, Net2Vec, with the same goal [221]. This

algorithm learns a set of weights (using stochastic gradient descent) for each concept to linearly

combine the activations of a set of k filters of a given layer. This is used to determine the sets

of neurons with higher activation. Similarly to the previous method, the intersection-over-union

score is used to determine which sets are detectors of a concept.
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With Net2Vec, the authors were able to prove that feature representation is distributed and,

by varying the hyperparameter k, it was possible to show that smaller sets led to higher activation

(better detection). Other relevant conclusions drawn from network dissection by Bau et al. include

the low impact of initialization conditions on interpretability and the decrease in interpretability

when batch normalization is used.

4.6 Deep Learning in Health

The application of machine learning to healthcare was vastly motivated by the increase in

volume, source diversity and complexity of healthcare data that arose from the developments in

areas such as medical imaging, genomics, electronic health records and pervasive sensing, among

others. This made traditional analytic methods unable to deal with the rapid influx of data, often

unstructured and poorly annotated [222, 223]. Other characteristics of current healthcare data

include high dimensionality, heterogeneity, temporal dependency, sparsity and irregularity [223].

Therefore, for a machine learning method to be useful in this area, it must be able to predict and

classify with high accuracy despite these characteristics.

Deep learning methods brought a change in the basic assumptions of AI algorithm design,

eliminating the need for a supervised definition of the feature space and thus allowing the discovery

of novel and more sophisticated features [223, 224]. The ability to handle data multi-modality

and perform end-to-end learning are also differentiating factors of these algorithms [223]. While

traditional machine learning algorithms have proved to be very useful in some applications, it is

expected that the potential that deep learning has shown in areas such as computer vision and

natural speech processing can be translated to healthcare, vastly improving the current methods

[223, 225].

4.6.1 Current Limitations

While the potential of deep learning in healthcare is undeniable, there are still some limitations

that must be taken into account when thinking of applying this type of algorithms.

One of the issues related to deep learning is the lack of interpretability of the models. Methods

aiming to be applied in healthcare should be transparent and able to justify its decision, allowing

the theoretical and clinical plausibility of the result to be checked [197, 222]. Understanding

the results also increases their reliability and trustworthiness by experts. To solve, or at least

attenuate, the lack of interpretability of deep learning models, several visualization methods have

been developed (see Section 4.5 for more details). However, in some cases, the benefits of a robust

and reliable classifier that has a strong correlation with diagnosis of therapy are enough to justify

the use of ’black box’ models.

The possibility of overfitting and the need for large amounts of data can also be pointed out

as limitations of deep learning. While overfitting can occur with any machine learning algorithm,

the likelihood of it happening on a deep learning model trained on a small dataset is much higher.

Imbalanced datasets such as those involving newly discovered or rare diseases may also lead to
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overfitting [224]. Thus, if the amount of data available for a particular problem is small, traditional

machine learning methods should be preferred over deep learning approaches. In alternative,

overfitting reduction techniques such as those described in Section 4.4.2 may be applied.

The computational cost of training an artificial neural network is sometimes considered an

issue of deep learning [226]. However, while training these algorithms can be time-consuming,

testing (i.e. classifying new samples or making predictions) with a neural network only involves

one forward pass through the network, which usually takes mere seconds. In healthcare applica-

tions, if enough data is available to train the algorithm offline, only testing is required on a daily

basis. In this case, time should not be considered a limitation for applying a deep learning method.

Finally, choosing the ’right’ type of neural network, as well as its architecture, is often seen

as a potential problem [226]. This can only be solved with a thorough literature review of similar

applications, as well as experimentation. However, this should not be regarded as an issue but as

an opportunity for further research and discovery.
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Chapter 5

State of The Art - Machine Learning in
Epilepsy

Machine learning methods have been widely employed in EEG analysis and in their transver-

sal application across areas of knowledge, from brain-computer interfaces to the diagnosis, mon-

itoring and treatment of diseases (see Section 2.5 for more details). The application of Deep

Learning methods for this purpose is now growing, along with the popularity of the field itself, as

mentioned in Section 4.1.

The automation of EEG analysis for the purpose of aiding in the diagnosis of epilepsy started

in the early 1970s [227]. Automated seizure detection is of the utmost importance, as it aids in

diagnosis and can potentially help in the therapeutic process as well. The same can be said for the

detection of transient patterns such as interictal discharges, as these can also be helpful for diag-

nosis. Predicting the occurrence of seizures is equally important, as it can allow timely therapy or

pre-emptive actions. In what concerns the treatment of the disease, namely with neurostimulation,

the analysis of the EEG can also be of use to optimize the closed loop processes used [228].

The following subsections will focus on the work that has been developed in this area, with

more focus being given to the detection of interictal epileptiform discharges, as it will be a corner-

stone subject of this dissertation.

5.1 Epileptic Seizure Detection

Systems designed for the detection of epileptic seizures can tell clinicians that seizures are

happening and provide them with useful information for their management and aftermath. This is

not trivial since it is not common for the patient to have their EEG recorded unless they are already

in the hospital due to previous seizures or other complications. The likelihood of capturing EEG

signals from ictal periods can be increased through ambulatory EEG recordings or video EEG

monitoring [229].

Despite these constrains in data acquisition, there has been extensive work developed in seizure

detection. Most algorithms start with the extraction of values, patterns or other biomarkers (i.e.

37
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features) from the EEG and then perform classification of the signal as ictal or normal (binary

problem), or as ictal, interictal or normal (multi-class problem) [230].

The first steps in the field were reported by Gotman [231, 232] using mimetic methods. These

are rule-based systems that collect features that mimic those used by experts in their classification

process, aiming to reproduce it in an automated manner. The use of ANNs with supervised [233]

and unsupervised learning methods [234] aimed at reducing the number of parameters considered

when assessing if an EEG segment was ictal.

Over time, the automated analysis of EEG signals moved from descriptive and heuristic meth-

ods to more advanced approaches, including time and frequency analysis. Wavelet transform and

its variants have been some of the most widely used techniques for feature extraction in seizure

detection [235–239]. Wavelet transforms decompose the signals into time components at multiple

levels of resolution, which can be processed further or used as input of a classifier. Other tech-

niques such as spectral analysis through the computation of the Fourier transform have also been

extensively applied in feature extraction [240, 241].

Principal component analysis (PCA) was one of the approaches used by several authors [235,

242] to reduce the dimensionality of the feature space. Subasi et al. [236] compared PCA to

other reduction techniques such as independent component analysis (ICA) and linear discriminant

analysis (LDA). This study proved that using any of these techniques led to an improvement in the

classifier’s performance (in this case, an SVM). It also showed that LDA was the most effective

method to increase the accuracy of the classifier, but it took considerably longer to train than the

other alternatives.

Non-linear methods, such as approximate entropy calculation have also been used for seizure

detection [243]. Using approximate entropy analysis, Ocak et al. [239] concluded that normal

EEG behaves like a gaussian linear stochastic process while ictal signals showcase a higher de-

gree of nonlinearity, allowing successful detection of these segments. Kannathal et al. [244] ex-

tracted several entropy measures from the EEG, namely spectral entropy, Renyi’s entropy and

Kalmogorov-Sinai entropy, as well as approximate entropy. This work shows that entropies are

smaller during seizures, showing a reduction in the intra-cortical information flow, related to an

overall decrease in neuronal processing during the ictal stage.

In what concerns the classification process itself, the trend moved from mimicking experts

[231, 232] to using more advanced machine learning classifiers such as KNN [245], SVMs [236,

240] and decision trees [241, 246]. Other classifiers such as gaussian mixture models [235] and

mixture of experts (a type of algorithm where several learners specialize on certain areas or tasks

and a gating network chooses which learner to use in each case) [238] have also been successful

in this task. The mixture of experts employed by Subasi et al. [238] consisted in a set of linear

classifiers that specialized in different parts of the signal, with the output of the classifier being a

mixture of the outputs of the individual classifiers, weighed by their level of expertise in a specific

area.

Neural networks of several types have more recently been used as classifiers instead of per-

forming feature extraction [233, 234]. Most approaches so far [237, 242] use extracted features
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as inputs for these networks. Jahankhani et al. [237] used statistical information extracted from

wavelet coefficients to compare the performance of a multilayer perceptron (MLP) and a radial

basis function network (RBF). While the detection accuracy was similar (97% for the MLP and

98% for the RBF), the RBF network was significantly faster during training. The innovative work

by Ghosh-Dastidar et al. [247, 248] presented the application of a multi-spiking neural network

to the seizure detection task. This algorithm used EEG wavelet features as input and trained the

ANN, in which the connection between two neurons was done through multiple synapses.

Newer methods like the one developed by Acharya et al. [229] applied a 13-layer CNN end-to-

end, allowing the network to perform both extraction of discriminant features and classification.

To train this network, Acharya et al. used a dataset from Bonn University, in which the CNN

yielded an accuracy of 88.7%, 95% sensitivity and 90% specificity. This dataset has been used in

other papers aiming to detect seizures, enabling comparison of the algorithms’ performances. For

instance, Ghosh-Dastidar et al.’s multi-spiking neural network reported 92.5% accuracy [247,248],

while Martis et al.’s approach using empirical mode decomposition and decision trees led to 95.3%

accuracy, 98% sensitivity and 97% specificity [246].

Acharya et al.’s CNN was far from achieving the best reported performance on this dataset,

not even being able to beat Acharya et al.’s approach with highest accuracy [249] (99.7%), en-

tailing the extraction of non-linear features and the use of a fuzzy classifier. However, it showed

that CNNs can successfully detect epileptic seizures using the raw EEG signal as input, allowing

the fusion of the feature extraction and classification steps, getting closer to the current trend in

applications of neural networks [136].

5.2 Epileptic Seizure Prediction

Seizure prediction systems must be able to warn clinicians regarding the risk of a patient

having a seizure in the near future by detecting pre-ictal changes [230]. Epileptic seizures (usu-

ally generalized seizures) are sometimes caused by abrupt transitions, without presenting changes

in the EEG in the pre-ictal period [250]. However, many seizures (particularly focal ones) are

preceded by several physiological changes such as increased cerebral blood flow and oxygen

availability, changes in heart rate, among others. Small groups of neurons (known as bursters)

start showing abnormal electrical discharges, aiming to recruit neighbouring neurons [227]. All of

these changes translate to alterations in the EEG signal that can be used to predict the imminence

of an epileptic seizure.

In 1975, Viglione et al. [251] took the first steps in this field. However, this work, as well as

the ones that succeeded it until the early 2000s, focused only on recordings of the pre-ictal pe-

riod. They did not include interictal recordings, neglecting specificity [227]. From 2003 onwards,

several studies on large databases challenged the predictions made in previous works due to their

lack of statistical significance and overoptimistic results. Several guidelines and frameworks were

proposed to ensure the quality of further work [252], focusing mainly on the prospective proof of

the algorithms’ predictive power.
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While the first studies on seizure prediction used scalp EEGs [251], intracranial EEG (iEEG)

has been more widely used for this task since the 1990s [227]. EPILEPSIAE is currently the

largest database of EEG and iEEG recordings used for seizure prediction, including data from 275

patients [252].

A plethora of different methods can be used for seizure prediction using normal, pre-ictal

and interictal EEG recordings. Similarly to what was previously reported for seizure detection,

most approaches to seizure prediction still entail a first step of feature extraction followed by

classification by simple thresholding or other machine learning technique [252]. The extracted

features can be broadly classified as linear or non-linear and univariate, if they are extracted from

a single channel, or multivariate, if extracted from several channels [253].

Mormann et al. [254] compared the performance obtained with features from each of the afore-

mentioned categories in the seizure prediction task. The authors compared linear univariate linear

measures (statistical moments, spectral band power, autocorrelation), univariate non-linear mea-

sures (estimate of an effective correlation dimension, largest Lyapunov exponent, local flow, algo-

rithmic complexity, surrogate time series and surrogate correction, loss of recurrence), bivariate

linear measures (maximum linear cross-correlation) and non-linear measures (non-linear interde-

pendency, phase synchronization). They were able to conclude that univariate measures seemed

to be more sensitive to changes right before a seizure while bivariate measures were able to follow

dynamic changes up to hours before a seizure. In what concerned linearity, linear measures per-

formed as well as non-linear ones, showing that the presence of non-linearity on the signal itself

may not be directly related to the significance of these more complex measures [227]. However,

the discriminant power or superiority of a measure or type of measure was not proven, and the

authors indicated a combination of univariate and bivariate measures as the most promising path

to seizure detection.

Aarabi et al. [255] followed this suggestion and developed an algorithm based on five univari-

ate measures (correlation dimension, correlation entropy, noise level, Lempel-Ziv complexity and

largest Lyapunov exponent) and non-linear interdependence, a bivariate measure. Classification

was carried out per patient, using a rule-based system that integrated the results of the feature ex-

traction stage. This method yielded a 79.9% sensitivity 30 minutes before the seizure and 90.2%

sensitivity 50 minutes before the seizure, at 97% specificity.

Later, Aarabi et al. [256] explored another approach using only univariate features that were

used to create patient specific neural mass models to simulate the brain’s dynamics. This led

to 82.9% sensitivity 30 minutes prior to the seizure and 90.1% sensitivity 50 minutes before the

seizure at 100% specificity. While this method showed higher performance than the one using a

combination of univariate and bivariate features, the second study was performed on EEGs from

a larger number of patients (21 against the 11 used in the previous work [255]), even though

these were drawn from the same database (FPSEEG, a subset of EPILEPSIAE). Furthermore, the

application of the neural mass model could have had an impact on performance, since the previous

work used only the features.
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While the previous work focused only on iEEG signals, Bandarabadi et al. [257] took advan-

tage of both types of data present in EPILEPSIAE and compared the performance of an algorithm

based on the relative combinations of sub-band spectral powers on scalp EEG and iEEG. The

features were selected to reduce dimensionality and fed to an SVM. The authors reported similar

performance on both types of data, with iEEG leading to a slightly higher sensitivity and needing

less features to reach the same FPR.

Despite the availability of a wide range of classifiers, most methods for seizure prediction use

thresholding [255] or SVMs [257]. Mirowski et al. [258] experimented with different classifiers,

namely logistic regressors and CNNs. CNNs led to the best performance on 15 patients of the

FPSEEG database, yielding 71% sensitivity at 100% specificity, 50 minutes before the seizure.

RNNs have also been used as a classifier, using the raw signal and the result of its wavelet decom-

position as input [259]. However, this study was done using data from only two patients, lacking

significance.

The use of end-to-end ANNs seems like a logical next step in seizure prediction research, as it

can extract features that differ from the ones currently being used and lead to a higher performance.

5.3 Treatment Optimization

Currently, epilepsy treatment is done in a scheduled manner or when motivated by the occur-

rence of a seizure. It may entail the administration of AEDs, VNS or, when it is necessary and

possible to identify the origin of the seizure, epilepsy surgery (see Section 3.5 for more details).

Closed-loop systems can be used as an alternative way to monitor patients and administer treat-

ment. These systems are based on the continuous monitoring of the patient’s signals (in this case,

the EEG signal), which can then be used in seizure detection or prediction [230].

The response of a closed-loop system can be warning the patient, a family member of a clin-

ician. Some devices for this purpose are already being commercialized, such as the SmartWatch

and Epilert, which send alarms to the smartphones of caretakers when they detect the beginning

of a seizure [230]. The system’s response can also include real-time therapy administration upon

imminence or risk of a seizure. This can stop the occurrence of the seizure altogether or at least

alleviate some of its effects, making treatment more efficient [230]. An example of this type of

response is NeuroPace, a neurostimulation implantable device that delivers pulses when possi-

ble seizure activity is detected instead of providing a stimulus continuously or periodically. This

reduces the battery use compared to continuous neurostimulators and reduces the side effects of

long-term stimulation [252]. However, the clinician is responsible for the determination of the

type of epileptic patterns of the patient and this device can only be used in patients with focal

epilepsy with one or two well-defined sites of epileptic activity origin.

As previously discussed, detection algorithms are currently able to classify EEG patterns with

high sensitivity and specificity, and thus are good candidates for treatment optimization systems.

Prediction algorithms, on the other hand, still present some limitations and, while they show great

potential, their applicability to closed-loop therapy delivery is still relatively low [227]. However,
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the application of seizure detection algorithms in closed-loop systems still has some limitations,

such as the choice of parameters for the detection itself (as seen in the section concerning epilep-

tic seizure detection), as well as for the stimulation or drug delivery [260]. A possible way to

overcome this limitation is the use of reinforcement learning algorithms. These can adapt to the

patient’s brain activity and optimize the treatment strategy automatically. While these methods are

very promising, studies have been mostly limited to deep brain stimulation in animals [261, 262].

5.4 Interictal Epileptiform Discharge Detection

The detection of interictal epileptiform discharges (IEDs) differs from the applications dis-

cussed in the previous sections, as its usefulness is directed towards the diagnosis process and its

efficiency and not towards prevention and treatment (although there is a connection between the

number of IEDs and treatment in some epilepsy syndromes, such as absence epilepsy). As seen in

Section 3.4.2, IEDs are transient patterns that can be observed in up to 80% of the interictal EEG

recordings from epileptic patients, thus being an efficient tool for the diagnosis of the disease [61].

Currently, an expert analyses the EEG signal in 10 to 20 second segments, determining if they

include one of these patterns or not. With the disadvantages of the visual analysis techniques

in mind (see Section 2.4 for more details), the need for automated detection systems for IEDs

becomes evident [61].

This is not a trivial task due to a plethora of factors, starting with the complexity related to

the human labeling of IEDs. Textbook definitions of these transients are oversimplified and neu-

rophysiologists have not been able to agree on a precise definition. Furthermore, the morphology

of the transients and background rhythms are patient dependent, which makes IED identification

more complex. The similarities between IEDs and other transients (such as exaggerated alpha

activity and sleep related activities), as well as artefacts, further contribute to the difficulties in

labeling [263].

Another hindrance is the type of EEG labeling that is performed by experts, particularly in

what concerns signals from epileptic patients. EEG signals are often labeled as control or epilep-

tic, or ictal and interictal for patients, with no identification of epochs with transients. This is

enough for seizure detection and prediction algorithms like those described in sections 5.1 and

5.2, but EEG data with epochs labeled as IED or not IED is required for the successful training

of supervised learning algorithms for IED detection. Labeling from several experts is advised,

since different EEGers often identify different events and an average is needed to establish con-

sensus [61].

Despite these issues, extensive research has been carried out aiming to detect IEDs in EEG

signals. Table A in the Appendix summarizes the approaches developed between 1979 and 2018,

succinctly describing the methods used.

Until 2000, the vast majority of the algorithms were based on mimetic methods, aiming to

emulate the analysis process of an expert. Features such as the relative amplitude of the half-

waves, duration and sharpness were widely used by several authors [44,231,264–269]. Gotman et
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al. started by developing a method based on these features [44] and later adapted it to detect IEDs

in different states (active wakefulness, quiet wakefulness, desynchronized EEG, phasic EEG and

slow EEG) [264, 265]. Hostetler et al.’s algorithm [267], also based on these features, was able to

reach 89% consistency in its predictions, surpassing 83% of the EEGers it was compared to.

These features started to be combined with other methods such as expert systems [268, 270,

271] and template matching [269]. Expert systems aimed to integrate contextual information,

either spatial or temporal (or both) into the classification process, while template matching com-

pared each IED candidate pattern to a set of templates, classifying it as an epileptic transient if the

similarity is above a certain threshold.

Template matching using raw data has also been extensively used for IED detection [15, 272–

280]. While some of the results of this type of method are described qualitatively and the differ-

ences in training sets, as well as in the templates themselves, render direct result comparison im-

possible, several of these algorithms yielded satisfactory results. For instance, Lodder et al. [281]

reached a mean sensitivity of 90% with 2.36 false positive detections per minute and Nonclercq et

al. [277] reached 90.6% sensitivity at 89.9% selectivity.

Another type of method described in the literature involves the use of mimetic features as

input for an ANN, which acts as a classifier [282–285]. Other types of features, such as those

derived from wavelet [245, 286–300] and Hilbert transforms [301], as well as Lyapunov expo-

nents [288,289,302] have also been used to this end. The use of wavelet transforms in this context

was motivated by its ability to perform a multi-resolution analysis in the frequency domain, over-

coming the limitations posed by other methods such as the Fourier transform. Wavelet transforms

have led to good results, such as those reported by Artameeyanant et al. [296] (76.55% sensitivity,

81.30% specificity, 89.47% accuracy) and Song et al. [300] (96.0% sensitivity, 93.6% specificity,

94.8% accuracy).

ANNs have also been combined with expert systems for this task [286,303,304]. In this type of

methods, ANNs are usually used to pre-classify EEG segments into categories (eg. spikes, muscle

activity, eye blinks or sharp alpha activity in Tzallas et al.’s work [304]), which are then classified

by the expert system using contextual information. Tzallas et al. achieved 84.44% accuracy using

this system, while Argoud et al.’s [303] algorithm yielded 70.78% sensitivity at 69.12% specificity

in spike detection and 71.91% sensitivity at 79.19% specificity for sharp waves.

Pang et al. [305] tested several ANN-based methods with different features to compare them

and assess their performance on a different dataset than the one that was initially used. The algo-

rithms developed by Webber et al. [282], Kalacyi et al. [306], Ozdamar et al. [307] and Tarassenko

et al. [308], based on 3-layer ANNs with varying number of nodes on the input and hidden layers

and different input features, were applied to a dataset comprised of records from 7 epilepsy pa-

tients and 8 normal controls. Webber et al.’s method, based on mimetic features, led to the best

performance, achieving 86.61% sensitivity and 86.32% selectivity.

While many authors have used multi-layer perceptrons (MLPs) or slight variants to detect

IEDs, different types of ANNs have been tested for this task. James et al. [283] and Kurth et al.

[309] used a Kohonen’s self-organizing feature map, which is a single layer ANN with neurons that
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get specifically tuned for a certain input pattern through unsupervised learning. The LAMSTAR

network, which uses self-organizing maps combined with statistical decision tools, was employed

by Nigam et al. [310]. Other feedforward network approaches included Wilson et al.’s monotonic

network [284], Ubeyli et al.’s [311] mixture of experts and Song et al.’s [300] extreme learning

machine, which transforms the learning problem into a linear system through which the weights

can be determined. Ubeyli et al. used probabilistic neural networks, which handle multi-class

problems by decomposing it into dichotomies that can be decided by neurons, in several works

[312, 313]. Aside from feed-forward networks, RNNs have also been an option for IED detection

[288,291,297,314]. The use of CNNs as an end-to-end classifier [315,316] is starting to grow, as

these networks have shown potential in many different applications. CNNs have even been used as

a feature extractor by Thomas et al. [317], followed by classification with an SVM. This algorithm

yielded 83.86% accuracy and 55% precision at 80% sensitivity. Machine learning classifiers such

as SVMs have been extensively for this task [289, 290, 318–321] and others such as KNN [245,

294, 322] and genetic algorithms [245, 293] have also been employed.

The vast majority of these studies were developed using proprietary datasets, hindering the

possibility of result comparison. However, a five-class dataset was made public by Andrzejak

[323], with each set including 100 single channel EEG segments of 23.6s without discernible

artefacts. Sets A and B (intracranial) were recorded from 5 normal controls with eyes open and

closed, respectively; sets C and D (extracranial) were recorded from 5 epilepsy patients in seizure

free intervals in the epileptogenetic zone (D) and hippocampal formation of the opposite side of

the brain (C); set E contained seizure activity from those patients. Several authors have used this

dataset or parts of it [245, 288–292, 294, 295, 302, 311–313, 322, 324–326], enabling some further

comparisons. Guler et al. achieved 68.8% accuracy with a MLP, 72.0% with a PNN, 75.6%

with an SVM, using wavelet transform and Lyapunov exponents [288] and 96.79% accuracy with

an RNN, using Lyapunov exponents as input [324]. Ubeyli et al.’s PNN trained with Lyapunov

exponents as input [313] yielded 98.05% accuracy, showing that Lyapunov exponents may be

more appropriate than their combination with wavelet transforms for this purpose. Even higher

performance was reached using eigenvector methods for feature extraction, with a PNN yielding

97.63% accuracy [312]. With the same feature extraction methods, the authors obtained 99.3%

accuracy with an SVM [290] and 98.15% accuracy with a RNN [291].

Other methods trained using Andrzejak’s dataset include the one developed by Guo et al. [245],

which combined wavelet transform, genetic algorithms and KNN. It was found that using KNN

without the genetic algorithm led to 67.2±1.2% accuracy, while the combination with the genetic

algorithm increased this value to 93.5±1.2%. Orhan et al. [295] tried another approach using the

wavelet transform, k-means and a MLP (using the output of k-means as input). This led to 98.80%

accuracy, 99.33% specificity and 98.02% sensitivity in the diagnosis of epilepsy. Iscan et al. [326]

compared several classifiers, namely SVM, least-squares SVM (LV-SVM), KNN, Parzen window,

LDA, decision tree, Naïve Bayes, nearest mean and quadratic classifier. The authors used cross

correlation to extract time features and power spectral density to extract frequency features, which

were used as input to the classifiers. It was found that the combination of both types of features
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increased the accuracy of the algorithms, and that LV-SVM, binary decision trees and quadratic

classifiers yielded the highest scores.

Another relevant comparison can be drawn between ANN performance with parameterized

and raw data. Webber et al. [282] used a 3-layer network with fully connected layers, with either

raw data or mimetic features as input. This algorithm led to an intersection between sensitivity

and selectivity of 73% for parameterized data and 43% for raw data. Ko et al. [327] tried to detect

IEDs using a MLP and raw EEG data, but the performance of the algorithm was below random,

leading the authors to conclude it was impossible to perform this classification on raw data.

This has since been disproven, as CNNs have been shown to detect IEDs with high accuracy.

Johansen et al. [316] achieved an AUC value of 0.947 with a CNN comprised of 3 convolutional

layers, trained on raw data. Tjepkema et al. [315] trained one and two-dimensional CNNs, as

well as LSTMs with raw data. Two-dimensional CNNs yielded 0.94 AUC for the test set, as well

as 47.4% sensitivity at 98.0% specificity with only 0.6 false detections per minute. As previously

mentioned, the use of CNNs is growing in this field, and training on raw data to achieve end-to-end

classifiers has proven to be possible, achieving satisfactory results.

While some algorithms, like Wilson et al.’s SpikeDetector [284], have become commercially

available, it is relevant to discuss why the algorithms described in this section, some of which

showcasing satisfactory results, are not widely used in clinics.

Some studies present algorithms trained on data from very small groups of patients ( [304,328]

- 1 patient, [273, 308] - 2 patients). Since IEDs have patient dependent characteristics in what

concerns their morphology, a robust algorithm ready for clinical use would have to be trained on a

larger database to account for patient variability. Also, many algorithms are trained using routine

EEGs, which are shorter than the long-term recordings used for diagnosis and thus contain less

artefacts [329]. This reduces the robustness of the algorithms in what concerns artefact occurrence

and lowers their potential for clinical use.

Another issue is the lack of a baseline comparison for the algorithms, which is related to the

diversity of training datasets (since there is no database used by all authors to either train or test

their algorithms) and to the way performance is assessed. Several methods for statistical analysis

are used in the studies and the shown metrics are not always comparable. While many report

sensitivity and specificity, as well as false positive detections per hour, many studies do not present

a detection rate per hour, which has a direct impact on the significance of the results. For instance,

if there is a high number of spikes (i.e. high frequency of IED occurrence), it is possible to obtain

an algorithm with high sensitivity and specificity, but also with a high rate of false detections [61].

For an algorithm to be used in a clinical context, it must be able to reduce the time spent in

signal analysis without compromising performance (preferably improving it). This implies that

the computational burden of the algorithm must be low enough to allow online classification after

training to avoid long computation times. It also means that training must be previously done, on

a large and diverse dataset, to ensure robustness. Algorithms with low sensitivity cannot be used

since the expert still needs to spend time looking for the IEDs that were not detected. On the other

hand, algorithms with low specificity cannot be used either, due to the number of false detections
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that have to be manually rejected [329]. Therefore, a detection rate that is consistent with the

frequency of IED occurrences, along with high sensitivity and specificity are crucial requirements

for these algorithms.

They must also be user-friendly and present results in a clear and easily interpretable manner

to fit in the diagnosis workflow. As most algorithms developed under an academic setting do not

include a user interface, since it is not needed in an early stage of development, this means that

a large improvement is needed in what concerns user interface and experience, as well as result

visualization. Before reaching the clinics, beta testing with clinicians should be carried out in

order to fix issues related to these aspects.

With this in mind, it is possible to conclude that the wide majority of the described algorithms

could not be used in clinics. It is also worth mentioning that efforts towards the creation of robust,

user-friendly software in an academic setting promote technology transfer and may speed up the

process of getting an algorithm to the clinics.
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Methods

6.1 EEG data and pre-processing

6.1.1 EEG Data

We used EEG data from 217 patients between 4 and 72 years of age, randomly selected from

the digital database of the Medisch Spectrum Twente in the Netherlands. This dataset included in-

terictal EEGs from patients with focal (50 patients) and generalized (49 patients) epilepsy, contain-

ing interictal epileptiform discharges (sharp waves, spikes, spikeslow-waves or polyspike-waves:

IEDs). We also included EEGs with non-epileptiform abnormalities (51 patients) and normal

EEGs (67 patients).

This was done based on the diagnosis and notes from the EEGers (eg. searching for ’fo-

cal epilepsy’ or ’normal EEG’ in the conclusion of the report. The complete clinical report and

the EEG recording itself were reviewed by the expert (Michel van Putten or Marleen Tjepkema-

Cloostermans). Epileptic EEGs were annotated by the expert so that IEDs could be easily identi-

fied. Epochs in which there was uncertainty regarding the occurrence of an IED were not labeled,

ensuring that all the annotations corresponded to the unequivocal presence of an epileptiform dis-

charge. In turn, this led to some epochs in epileptic EEGs including unidentified IEDs. Epochs of

the Normal and Abnormal classes were not labeled.

The recordings were made with twenty-one silver/silver chloride cup electrodes placed on the

scalp according to the international 10-20 system [37]. All EEGs were obtained as part of routine

care, and anonymized before further analysis.

6.1.2 EEG pre-processing

EEG data was filtered in the 0.5-35Hz range to reduce artefacts. We downsampled it to 125Hz

to reduce input size (and consequently computational complexity). Subsequently, signals were re-

referenced to a longitudinal bipolar montage. The 18 channels of this montage are represented

in Fig. 6.1, which shows the connection between the numerical order of the channels and their

positions in space. While this is not the only montage used in visual analysis when experts are

47



48 Methods

searching for IEDs (switching between montages is often a useful tool), it is a good approximation

of a real-life scenario. We split each recording into 2s non-overlapping epochs, yielding a 18x250

(channels x time) matrix for each epoch. The duration of the epochs was chosen based on the fact

that IEDs have less than 1s duration and 2s allows the preservation of temporal context.

The pre-processing routine is summarized in Fig. 6.2 and it was implemented in Matlab

R2019a (The MathWorks, Inc., Natick, MA). The resulting epochs were used as input for the

neural networks described in 6.2.

Figure 6.1: Representation of the 18 channels in the longitudinal bipolar montage. Electrodes are
represented as black circles, with each channel shown as a connecting line between electrodes.

Figure 6.2: Schematic representation of the pre-processing steps applied to all EEG data.

6.1.3 Problem Definition

We tackled several classification problems in this project, and different datasets were created

accordingly 1. The data included in each of these sets, as well as the duration, total number of

epochs and number of epochs of the positive class in the corresponding training and test set is

shown in Table 6.1.

The first goal was IED detection using Focal and Generalized epilepsy data as positive (label

’1’) and normal EEG data the negative class (’0’). Two different sets were created for this purpose.

Set A (see Fig. B.1) included the full extent of the recordings from all the epilepsy patients

(both focal and generalized), as well as all the normal recordings. IED epochs from the epileptic

1The rationale for the creation of some of the datasets will be discussed further in Chapter 8
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Table 6.1: Number of patients, duration, total epochs and epochs of the positive class of each
created dataset for the training and test sets. For multi-class problems (sets G through J), the
number of epochs of all classes is stated, since there is no positive class.

Train Test
Classes Patients Duration (h) Epochs Positive Duration (h) Epochs Positive

Set A N + F + G 166 62.6 112747 1977 13.2 23774 734
Set B N + F + G 166 24.3 43867 2220 8.8 15886 452
Set C N + A + F + G 217 40.5 72279 2015 11.4 20470 658
Set D F + G 99 1.1 1972 556 0.4 693 294
Set E N + A 118 39.3 70746 3864 11.1 19916 7738
Set F N + A + F + G 217 41.3 74330 44525 10.6 19108 12267
Set G N + F + G 166 50.5 90954 23533 F 12.4 22354 5695 F

20080 G 7545 G
47341 N 8844 N

Set H N + F + G 166 24.1 43460 1506 F 8.2 14674 309 F
772 G 132 G
41182 N 14233 N

Set I N + A + F + G 217 64.6 116265 24258 F 17.8 32066 5240 F
21614 G 6542 G
43306 N 13460 N
27087 A 6824 A

Set J N + A + F + G 217 41.4 74498 1548 F 10.5 18854 267 F
744 G 109 G
44951 N 11842 N
27275 A 6636 A

recordings constituted the positive class, with all the remaining data belonging to the negative

class. Set B (see Fig. B.2) had the same positive class, but the negative class was only comprised

of normal EEGs, with the normal part of the recordings of epilepsy patients being discarded.

Another approach to this problem was the inclusion of EEGs with non-epileptiform abnormal-

ities in the negative class. A new set (set C, see Fig. B.3) was built with the same positive class as

sets A and B and a negative class including normal and non-epileptic abnormal EEGs (once more,

the normal part of the recordings of epilepsy patients was discarded).

We also tackled the problem of distinguishing between Focal and Generalized epilepsy based

on IEDs. For that purpose, we created set D (see Fig. B.4) containing Focal IEDs as the positive

class and Generalized IEDs as the negative class.

Distinguishing normal from abnormal EEGs was also a problem addressed in this project.

Set E (see Fig. B.5), with normal EEGs as the negative class and abnormal, non-epileptic EEGs

labeled ’1’. Set F (see Fig. B.6) had the same negative class, with the positive one including

abnormal EEGs with epileptiform and non-epileptiform abnormalities (only IED epochs from

epilepsy patients were used, discarding the normal part of the signal).

We also addressed multi-class problems in this project. The first one concerned the distinction

between Focal epilepsy (labeled as ’0’), Generalized epilepsy (’1’) and normal signals (’2’), while

the second one added the abnormal, non-epileptic EEGs as a fourth class (’3’). Set G (see Fig.

B.7) was created for the 3-class problem, with IEDs from Focal and Generalized epilepsy labeled

as ’0’ and ’1’, respectively, and the normal part of the signal labeled as ’2’, having the same label

as the EEGs from normal controls. Set H (see Fig. B.8) was the same, without the normal part of

the EEGs from epilepsy patients. Sets I and J (see Figs. B.9 and B.10) were the equivalents for

the 4-class problem.
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6.1.4 Dataset Creation

EEG data was randomized and split into a training/validation set containing 80% of the record-

ings and a test set comprised of the remaining 20%. All epochs from a patient were used either

for training or testing. We applied five-fold cross validation on the training/validation set, further

partitioning it in each iteration. One of these partitions was used to validate the model and the

others were used for training, changing the validation partition in each iteration. Fig. B.11 in the

Appendix illustrates this division.

6.2 Deep Learning Models

The models were implemented in Python 2.7 using Keras 2, Theano and a CUDA-enabled

NVIDIA GPU (GTX-1080), running on CentOS 7. Stochastic optimization was performed using

an Adam optimizer [191] with a learning rate of 2∗ 10−5, β1=0.91, β2=0.999, and ε = 10−8. A

sparse categorical cross entropy function was used to estimate loss and a batch size of 64 was used.

6.2.1 VGG

The VGG network was created in 2014 in Oxford by Karen Simonyan and Andrew Zisser-

man from the Visual Geometry Group [176], and it is comprised of several sets of padding and

convolutional layers followed by max pooling. After these, flattening precedes a set of two fully

connected layers with ReLu activation functions intercalated by dropout. Finally, a fully connected

layer with a Softmax activation function produces the output. This simplified architecture can be

seen in Fig. 6.3. Fig. B.12 in the Appendix shows the full architecture of the model.

Figure 6.3: Simplified architecture of the VGG C model. Five blocks comprised of padding,
convolutional and pooling layers are followed by flattening and three fully connected layers, in-
tercalated with dropout.

The first two sets of layers were comprised of two padding layers intercalated with convolu-

tional layers with 3x3 filters (64 filters in the first set and 128 in the second one), ending with 2x2

max pooling. The following three sets included one more padding and convolutional layer, with

1x1 filters, before pooling. The number of filters doubled to 256 in the convolutional layers of the

third set and then again to 512 in the fourth set, which was also the same number of filters used
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for the final set. The filters of the last convolutional layer of each block had stride of 2, which

changes the receptive field of the neurons and makes filtering faster. The last fully connected layer

was changed to 2, 3 or 4 units instead of the original 1000, depending on the problem at hand.

6.2.2 ResNet

The ResNet was created by Google in 2015 [178]. Its depth and the use of residual modules

were the main innovations of this model (see Section 4.1.4 for more details), which, in turn, led to

an improvement in performance in the ImageNet competition and decrease in computation time.

The ResNet is comprised of a first convolutional layer followed by a max pooling layer. Four

residual modules with blocks of 2 or 3 layers (depending on the architecture) intercalated with

residual connections are repeated several times. Finally, average pooling is followed by flattening

and by a fully connected layer with Softmax activation.

While a 152-layer architecture of the ResNet was used in the ImageNet competition, there are

variants of this model with less layers, including the ResNet50, which was used in this project.

The simplified architecture of the ResNet50 can be seen in Fig. 6.4, with each block representing

a residual module as described in 4.1.4. Fig. B.13 in the Appendix shows the full architecture of

the model.

Figure 6.4: Simplified architecture of the ResNet50 model. A convolutional and a pooling layer
are followed by four sets of repeated residual modules. Pooling and flattening precede a fully
connected layer.

The first layers of the model used in this project were common to all the ResNet architec-

tures. The convolutional layer was comprised of 64 7x7 filters with stride 2, followed by 3x3 max

pooling. The residual modules included three convolutional layers with 1x1, 3x3 and 1x1 filters,

respectively. The number of filters doubled per module, starting with 64, 64 and 256 in the first

one (i.e. the last module had 512, 512 and 2048 filters). The first and last modules were repeated

3 times, the second module was repeated 4 times and the third module 6 times. Finally, average

pooling, flattening and a fully connected layer with Softmax activation completed the model. In

this project, 2 units were used instead of the original 1000 in the output of the ResNet.
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6.2.3 Custom-made models

We used two other models in this project, which were not based on any networks from the

literature. The following sections describe the architectures of these models.

6.2.3.1 M1

The first model, named M1, was comprised of a 1x1 zero-padding layer, followed by a con-

volutional layer with 128 3x3 filters and ReLu activation. Max pooling with 2x2 pool size and

strides ensued, followed by a 0.5 dropout. Flattening and a fully connected layer with Softmax

activation and 2 output units completed the model. Fig. 6.5 shows the simplified architecture of

this model (see Appendix Fig. B.14 for the detailed architecture).

Figure 6.5: Simplified architecture of the M1 model. The first layer performs zero-padding, fol-
lowed by a convolutional, pooling and dropout layers. Flattening precedes the fully connected
layer.

6.2.3.2 M2

The second model, named M2, included the same initial three layers of M1. These were fol-

lowed by another set of a convolutional layer, max pooling and dropout with the same parameters.

Flattening preceded three fully connected layers. The first two had ReLu activation, with 128 and

64 output units, respectively. The final fully connected layer had Softmax activation and two units.

Fig. 6.6 shows the simplified architecture of this model (see Appendix Fig. B.15 for the detailed

architecture).

Figure 6.6: Simplified architecture of the M2 model. The first layer performs zero-padding. Two
blocks of convolutional, pooling and dropout layers follow. Flattening precedes three fully con-
nected layers.
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6.3 Visualization Techniques

6.3.1 Filter Visualization

To visualize the filters, we calculated and normalized the gradients of the input with regard

to the loss for each filter of each convolutional layer. Then, starting with a synthetically gener-

ated gray image with random noise with the same dimensions as the EEG epochs, we performed

gradient ascent for 10 thousand iterations with a step size of 0.1. The filters with the highest loss

values in the end were assumed to have a more relevant shape and, as such, only the best 64 filters

according to this criterion were plotted and analysed.

6.3.2 Input Maximization

For this visualization technique, instead of staring with random noise, the inputs of the dataset

itself were used. The border points of the input were not included in the analysis to avoid border

artefacts. Similarly to what was done in filter visualization, we calculated and normalized the

gradient and performed gradient ascent for 10 thousand iterations and a step size of 0.2. The areas

of the input where the value at the end of this process was higher were the ones that had led to

the highest activation of the filters and were plotted with warmer colors. The rationale for this

technique is based on the idea that a high response to a certain pattern could be a good initial

representation of what the hidden unit is doing [208].

6.3.3 Occlusion

This technique aims to show the areas of the input of highest importance for classification

by covering patches of the input iteratively and calculating the network’s response to the resulting

signal. In this case, a significant change in the response shows that the covered patch at hand had

a great impact on the way the model made its decision [207].

To do this, a grid was applied to each sample and, in each iteration, the contents of a patch of

that grid were set to zero, leaving the remaining sample untouched. The probability resulting from

the network’s prediction was stored in the center of the occluded patch so that it could be compared

to the prediction without occlusion. After going through the whole image, we calculated the

difference between the value in each grid patch center and the original prediction of the network,

and the patches with higher differences were plotted with warmer colors. The dimensions of the

grid varied between 10 and 50 for the time axis and between 1 and 6 for the channel axis.

6.4 Performance assessment

6.4.1 Binary problems

Receiver Operating Characteristic (ROC) curves were calculated for each of the cross-validation

iterations using 101 discretizations. This was then averaged, yielding an average ROC curve for
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each set. The area under said curve (AUC) was calculated. Confidence Intervals (CIs) at 95%

were calculated for the ROCs and AUCs.

We calculated the Sensitivity, Specificity, the number of True Positives, True Negatives, False

Positives and False Negatives, as well as the corresponding rates per hour using a threshold of

0.5 and at another threshold where the values of Sensitivity and Specificity were as similar as

possible (achieved by calculating the minimum of the difference). Confidence Intervals at 95%

were calculated for these parameters. The False Positive rate per hour was also assessed at a

Specificity of 99%. These routines were implemented in Matlab R2019a (The MathWorks, Inc.,

Natick, MA).

Confusion matrices using a threshold of 0.5 were generated in Python2.7.

6.4.2 Multi-class problems

We generated two types of ROC curves for multi-class problems. The first type treated the

problem as binary (one-against-all), choosing one of the classes as positive and the remaining as

negative. This yielded a set of ROC curves, one for each class, obtained using the same method as

described above for binary problems. This was implemented in Matlab R2019a (The MathWorks,

Inc., Natick, MA).

The second type of ROC curves took a more global approach, combining all the classes us-

ing macro-averaging, creating a single ROC curve per problem. Macro-averaging was used as it

calculated the metrics for each class independently, weighing them equally, which reduced the po-

tential impact of class imbalance in performance assessment (since micro-averaging would have

weighed the classes based on their relative size, giving more importance to correct classifications

in classes containing more samples). The routine used to generate these curves was implemented

in Python2.7.

The Accuracy, Sensitivity and Specificity were calculated per class using a threshold where the

values of Sensitivity and Specificity were as similar as possible, analogously to what was described

for binary problems. This routine was also implemented in Matlab R2019a (The MathWorks, Inc.,

Natick, MA).
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Results

7.1 IED detection

The main goal of this thesis was the detection of IEDs (i.e. obtaining the probability of an

EEG epoch containing an IED) using the models described in 6.2. The four networks were trained

for this purpose. The results yielded by the models for this classification problem are shown below.

7.1.1 Normal vs IEDs with full epileptic EEG - Set A

We first trained the VGG with the full EEG recordings of epilepsy patients (containing normal

epochs and IEDs) and normal controls, weighing both classes equally. When applied to the test

set, this approach yielded the confusion matrix at a threshold of 0.5 (and respective normalization)

shown in Fig. C.1. This corresponded to 97.0% accuracy, with 23070 out of 23774 samples being

classified correctly. However, 82.6% of IEDs were misclassified as normal.

Different weights were then assigned to both classes, with the positive class (i.e. the IEDs)

being weighed more heavily. Fig. C.2 shows the normalized confusion matrices obtained with a

threshold of 0.5 when weights of 10, 50 and 100 were assigned to the positive class. Accuracy

values at this threshold were 95.1%, 94.2% and 91.5%, with 20.7%, 20.2% and 10.5% of IED

epochs being classified as Normal.

All four models were trained using weights 100:1. Fig. C.3 shows the average ROC curves

for the training and test sets after 5-fold cross-validation for the different models, with the 95%

confidence interval as a shaded area. The AUC values obtained with the VGG model were 0.99

(CI=0.99-0.99) for the training set and 0.91 (CI=0.89-0.94) for the test set. The ResNet yielded

0.94 (CI=0.85-1.00) on the training set and 0.76 (CI=0.69-0.84) on the test set. The AUC values

for M1 and M2 were 0.91 (CI=0.88-0.95) and 0.99 (CI=0.99-0.99) for the training set, with 0.70

(CI=0.62-0.78) and 0.91 (CI=0.89-0.94) having been obtained for the test set.

Visualization techniques were applied to the VGG model trained using set A and weights

100:1. Fig. 7.1 show examples of the results yielded by the filter visualization technique. These

show the native shape of the filters, since random noise was applied in the input and gradient ascent

was performed to maximize loss, aiming to show how the filter looks the first time it is convolved

55
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with the EEG input, before gradient descent (since, then, the filters become different in each pass

for the different inputs). These figures can be understood as images with the same dimensions as

the 2 second, 18-channel EEG epochs used as input, since those dimensions were also applied to

the synthetic input used in the algorithm.

Examples of the results of input maximization are shown in Fig. 7.2. For each epoch, the

average activation value over all the filters of all the convolutional layers is shown. The numerical

values of the average activation correspond to a color scale where warmer colors equal higher

activation, and, as such, areas plotted with warmer colors correspond to higher average activation.

Fig. 7.3 shows examples of the results obtained when occlusion is applied to the VGG network

trained with weights 100:1, with set A. Two examples are provided for cases of true positive, false

positive, true negative and false negative, along with the probabilities assigned by the model to

each epoch. The scale shows the difference between the probability for each epoch and the value

obtained with an occluded patch. Higher differences are plotted in warmer colors, showing that

removing the patch centered in that area led to a significant change in classification, indicating that

that area is important to the networks decision process.

Figure 7.1: Examples of results of the application of filter visualization to the VGG model, trained
using set A and weights 100:1. The two first panels (first row, on the left) show filters from lower-
level layers; the remaining panels concern filters of higher-level layers. These have the same
dimensions as the 2s, 18-channel EEG epochs used as input. They show the native shape of each
represented filter, before any forward pass of the network.



7.1 IED detection 57

Figure 7.2: Examples of input maximization for the VGG model, trained using set A and weights
100:1. These illustrate three different EEG epochs and the average relative activation caused by
each part of the signal over all the filters in the three convolutional layers. Higher activations are
plotted in warmer colors and the corresponding numerical values are the average activations.

TP 0.9905 TP 0.9999 TN 0.0017 TN 0.0057

FP 0.6824 FP 0.5886 FN 0.0003 FN 0.3671

Figure 7.3: Examples of occlusion for the VGG model trained using set A with weights 100:1
in cases of: First row, left: True Positive; first row, right: True Negative; second row, left: False
Positive; second row, right: False Negative. The probability assigned by the network regarding
the occurrence of an IED in each sample is shown. The scale shows the difference between the
probability assigned to the epoch and the probability obtained when a patch is occluded, and
warmer colors are assigned to higher differences. Thus, areas plotted in warmer colors are more
important for classification.

7.1.2 Normal vs IEDs after removal of normal epochs - Set B

After the removal of all normal epochs from the EEG recordings of epilepsy patients, the

training set became about 1/3 of the original training set. All the models were trained using 100:1

weights for the positive class. Fig. 7.4 shows the average ROC curves for the training and test

sets after 5-fold cross-validation for the different models, with the 95% confidence interval as a

shaded area. The AUC values obtained with the VGG model were 0.99 (CI=0.99-1.00) for the
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training set and 0.96 (CI=0.95-0.97) for the test set. The ResNet yielded 0.97 (CI=0.93-1.00) on

the training set and 0.89 (CI=0.84-0.94) on the test set. The AUC values for M1 and M2 were 0.94

(CI=0.93-0.96) and 0.96 (CI=0.94-0.98) for the training set, with 0.84 (CI=0.83-0.85) and 0.91

(CI=0.88-0.94) having been obtained for the test set.

Table 7.1 shows the false positive and true positive rates per hour for the four models at a

threshold where the sensitivity equals the specificity. For the VGG, this occurred at 93% sensi-

tivity/specificity for the test set and 98% for the training set. The model led to a false positive

rate per hour of 122.41 (CI=27.63-217.20) on the test set and 22.30 (CI=6.32-38.28) on the train-

ing set. True positive detections were 47.72 (CI=45.60-49.84) and 91.03 (CI=80.35-100.22) per

hour, on the test and training set, respectively. Setting the specificity threshold at 99%, the false

positive rates per hour of this model were 16.50 (CI=4.95-28.06) and 32.31 (CI=15.15-49.46),

for the training and test set. At 94% sensitivity/specificity, on the training set, the ResNet led

to 99.03 (CI=17.96-169.71) false positive detections per hour and 86.41 (74.04-95.87) true pos-

itive detections per hour. On the test set, the ResNet achieved 293.79 (CI=79.69-507.89) false

positives per hour and 42.98 (CI=35.43-50.37) true positives per hour at a sensitivity/specificity

of 83%. Setting the specificity threshold at 99%, the false positive rates per hour of this model

were 0.00 (CI=0.00-0.02) and 17.49 (CI=7.05-27-95), for the training and test set. For model M1,

false positives per hour were 145.94 (CI=87.30-204.59) and 307.11 (CI=203.93-410.39) on the

training and test set, respectively. The true positive rate was 83.55 (CI=70.79-96.31) and 42.20

(CI=38.48-45.93) per hour, at a sensitivity/specificity of 91% for the training set and 82% for the

test set. For model M2, this intersection occurred at 88% for the training set and 83% for the

test set. false positive detections were 195.02 (CI=7.19-382.85) and 301.85 (CI=76.55-527.14),

respectively. The model detected 80.99 (CI=64.47-97.52) true positives per hour on the training

set and 42.61 (CI=37.13-48.10) on the test set.

Table C.1 shows the number of epochs, the number of IEDs, the sensitivity and specificity

values at a threshold of 0.5, as well as the number of true positives, true negatives, false positives

and false negatives at this threshold. The Normal class was classified with an average specificity of

98.64%, with 95.11% being the lowest value among all files. Four files were fully classified with

100% specificity. The average sensitivity and specificity values for the Focal class were 91.32%

and 89.59%, respectively. Six files were classified with 100% sensitivity and the specificity was

consistently higher than 80%, except in one of the files. For the Generalized class, the average

sensitivity was 95.23% and the average specificity was 92.63%. Six files of this class were also

classified with 100% sensitivity and specificity was above 87% in all files. Grouping the classes

with IEDs, the average values for sensitivity and specificity in the classification were 93.28% and

91.11%, respectively.

Occlusion was applied to all the models, yielding examples such as the ones shown in Fig.

C.4. One example of each classification outcome is shown for each model, along with the corre-

sponding probability of the epoch containing an IED.
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Table 7.1: Average sensitivity (Sens), specificity (Spec), false positive (FP/hour) and true positive
rates per hour (TP/hour) for the VGG, ResNet, M1 and M2 models trained with 100:1 weights
using Set B (left: training set; right: test set). These values were calculated based on the results of
5-fold cross-validation, using a threshold where the sensitivity is equal to the specificity. The 95%
CIs of each parameter are also presented.

Train Test
Sens Spec FP/hour TP/hour Sens (%) Spec (%) FP/hour TP/hour

VGG
98.53
(97.61-
99.46)

98.69
(97.75-
99.63)

22.30
(6.32-
38.28)

91.03
(80.35-
100.22)

93.05
(88.92-
97.19)

93.00
(87.58-
98.42)

122.41
(27.63-
217.20)

47.72
(45.60-
49.84)

Res
94.06
(89.35-
95.92)

94.21
(90.02-
95.92)

99.03
(17.96-
169.71)

86.41
(74.04-
95.87)

83.67
(69.12-
98.23)

83.20
(70.96-
95.44)

293.79
(79.69-
507.89)

42.98
(35.43-
50.37)

M1
91.06
(83.08-
99.05)

91.45
(88.01-
94.89)

145.94
(87.30-
204.59)

83.55
(70.79-
96.31)

82.30
(75.04-
89.56)

82.44
(76.53-
88.34)

307.11
(203.93-
410.39)

42.20
(38.48-
45.93)

M2
88.05
(76.94-
99.15)

88.57
(77.57-
99.58)

195.02
(7.19-
382.85)

80.99
(64.47-
97.52)

83.10
(72.40-
93.79)

82.74
(69.86-
95.62)

301.85
(76.55-
527.14)

42.61
(37.13-
48.10)

(a) VGG (b) ResNet (c) M1 (d) M2

Figure 7.4: Upper row: average ROC curves of the models applied to the training set of Set B;
bottom row: average ROC curves of the models applied to the test set of Set B. These were built
based on the results of 5-fold cross-validation, with weights 100:1. The 95% CI of the ROC
curves is shown as a shaded area. The resulting AUC value and corresponding 95% CIs are also
presented.



60 Results

7.1.3 Normal and Abnormal vs IEDs after removal of normal epochs - Set C

All the models were trained using 100:1 weights for the positive class. Fig. C.5 shows

the average ROC curves for the training and test sets after 5-fold cross-validation for the differ-

ent models trained with weights 100:1, with the 95% confidence interval as a shaded area. The

AUC values obtained with the VGG model were 1.00 (CI=1.00-1.00) for the training set and 0.86

(CI=0.83-0.88) for the test set. The ResNet yielded 0.95 (CI=0.92-0.98) on the training set and

0.73 (CI=0.66-0.80) on the test set. The AUC values for M1 and M2 were 0.94 (CI=0.91-0.97)

and 0.93 (CI=0.92-0.94) for the training set, with 0.78 (CI=0.75-0.82) and 0.90 (CI=0.89-0.90)

having been obtained for the test set.

Table C.2 shows the false positive and true positive rates per hour for the four models at a

threshold where the sensitivity equals the specificity. For the VGG, this occurred at 79% sensi-

tivity/specificity for the test set and 85% for the training set. The model led to a false positive

rate per hour of 348.60 (CI=111.15-586.06) on the test set and 247.32 (CI=116.88-377.76) on the

training set. True positive detections were 49.30 (CI=40.99-57.60) and 41.69 (CI=33.75-49.62)

per hour, on the test and training set, respectively. Setting the specificity threshold at 99%, the

false positive rates per hour of this model were 23.14 (CI=6.12-40.17) and 17.09 (CI=1.65-32.53),

for the training and test set. At 94% sensitivity/specificity, on the training set, the ResNet led

to 103.46 (CI=23.00-199.50) false positive detections per hour and 43.56 (CI=39.48-52.28) true

positive detections per hour. On the test set, the ResNet achieved 172.4 (CI=29.28-315.53) false

positives per hour and 46.18 (CI=41.42-50.94) true positives per hour at a sensitivity of 74% and

specificity of 90%. For model M1, false positives per hour were 140.52 (CI=43.29-137.75) and

404.78 (CI=170.19-639.36) on the training and test set, respectively. The true positive rate was

45.11 (CI=38.12-52.10) and 47.82 (CI=39.22-56.42) per hour, at a sensitivity/specificity of 92%

for the training set and 76% for the test set. For model M2, this intersection occurred at 88% for

the training set and 80% for the test set. False positive detections were 200.43 (CI=57.31-343.57)

and 342.32 (CI=119.49-565.16), respectively. The model detected 43.32 (CI=38.50-48.14) true

positives per hour on the training set and 49.37 (CI=42.60-56.13) on the test set.

Table C.3 shows the number of epochs, the number of IEDs, the sensitivity and specificity

values at a threshold of 0.5, as well as the number of true positives, true negatives, false positives

and false negatives at this threshold. The Normal class was classified with an average specificity

of 98.47%, with 92.47% being the lowest value among all files. Four files were fully classified

with 100% specificity. For the Abnormal class, the average specificity was 97.19%, with one

file being classified with 100% specificity and 87.79% being the minimum value on the test set.

The average classification specificity in both classes was 95.55%. The average sensitivity and

specificity values for the Focal class were 64.09% and 92.67%, respectively. In one of the files,

no IEDs were detected, leading to a sensitivity of 0%. For the Generalized class, the average

sensitivity was 93.24% and the average specificity was 83.41%. Four files classified with 100%

sensitivity and specificity was above 61% in all files. Grouping the classes with IEDs, the average

values for sensitivity and specificity in the classification were 78.66% and 88.04%, respectively.
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Occlusion was applied to all the models, yielding examples such as the ones shown in Fig. C.6.

Two examples of each classification outcome are shown for each model, given the wide diversity

of input shapes given to the networks. The corresponding probability of each epoch containing an

IED is also presented.

7.2 Focal vs Generalized Epilepsy - Set D

The VGG and the ResNet were trained with equal weights assigned to both classes (assuming

Focal IEDs as the positive class). Fig. 7.5 shows the average ROC curves for the training and test

sets after 5-fold cross-validation for both models, with the 95% confidence interval as a shaded

area. The AUC values obtained with the VGG model were 0.99 (CI=0.99-1.00) for the training set

and 0.87 (CI=0.85-0.89) for the test set. The ResNet yielded 0.98 (CI=0.98-0.99) on the training

set and 0.79 (CI=0.78-0.80) on the test set.

If a threshold where the sensitivity is equal to the specificity is used, the resulting values for

these parameters, as well as for the average of true and false positives and negatives obtained

per hour are shown in Table C.4. For the VGG model, this intersection occurred at 96% for the

training set and 81% for the test set. False detections were 48.96 (CI=0.00-109.49) and 199.48

(CI=86.94-312.02), respectively. The model detected 491.31 (CI=430.56-552.06) true positives

per hour on the training set and 616.62 (CI=509.89-723.36) on the test set. The false negative rate

was 18.59 (CI=2.38-34.80) and 147.01 (CI=40.27-253.75) for the training and test set and true

negative detections were 1241.1 (CI=1133.20-1349.00) and 813.51 (CI=733.78-893.33). In what

concerns the ResNet, on the training set (sensitivity/specificity of 94%), false positive detections

were 73.51 (CI=52.95-94.07) per hour and false negative detections were 30.00 (CI=19.84-40.16)

per hour; 479.89 (CI=424.86-534.93) true positives and 1216.6 (CI=1146.00-1287.20) true neg-

atives were detected per hour. At 78% sensitivity/specificity, on the test set, these values were

222.86 (CI=143.03-302.69), 161.56 (CI=141.76-181.36), 602.08 (CI=582.28-621.88) and 813.51

(CI=733.78-893.33), respectively.

Occlusion was applied to both models, yielding examples such as the ones shown in Fig.

7.6 . Two examples of each classification outcome are shown for each model, along with the

corresponding probability of the epoch belonging to the Focal class.
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Figure 7.5: Left: ROC curves for the VGG (first panel: training set; second panel: test set). Right:
ROC curves for the ResNet (first panel: training set; second panel: test set). These were built
based on the results of 5-fold cross-validation. The 95% CI of the ROC curves is shown as a
shaded area. The resulting AUC value and corresponding 95% CIs are also presented.
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TP 0.7275 TN 0.3552 FP 0.7612 FN 0.4147

TP 0.7421 TN 0.2038 FP 0.9268 FN 0.0194

TP 0.9235 TN 0.03433 FP 0.9592 FN 0.1652

TP 0.5429 TN 0.1323 FP 0.5448 FN 0.5429

Figure 7.6: Examples of the results obtained with occlusion for the models trained with Set D.
First and second rows: VGG; third and fourth rows: ResNet. First column: True Positives; second
column: True Negatives; third column: False Positives; fourth column: False Negatives. The
probability assigned by the networks regarding the occurrence of an IED in each sample is shown.
The scale shows the difference between the probability assigned to the epoch and the probability
obtained when a patch is occluded, and warmer colors are assigned to higher differences. Thus,
areas plotted in warmer colors are more important for classification.

7.3 Abnormality Detection - Sets E and F

The VGG and the ResNet were trained using Normal data as the negative class and EEGs

with non-epileptiform abnormalities as the positive class (Set E), with equal weights assigned to
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both classes. The VGG model was also trained using a set which also included IEDs, both Focal

and Generalized, in the positive class (Set F).

Fig. C.7 shows the average ROC curves for the training and test sets after 5-fold cross-

validation for both models, with the 95% confidence interval as a shaded area. The AUC values

obtained without the IEDs in the positive class with the VGG model were 1.00 (CI=1.00-1.00) for

the training set and 0.57 (CI=0.46-0.69) for the test set. The ResNet yielded 0.82 (CI=0.67-0.98)

on the training set and 0.44 (CI=0.37-0.50) on the test set. When the IEDs were added, the VGG

yielded an AUC of 1.00 (CI=1.00-1.00) for the training set and 0.75 (CI=0.72-0.77) on the test set.

Table C.5 shows the false positive and true positive rates per hour for the VGG trained with

both sets and for the ResNet trained without IEDs in the positive class, at a threshold where the

sensitivity equals the specificity. Trained with Set E, at sensitivity/specificity of 99%, the VGG

yielded 9.38 (CI=0.00-21.62) false positive detections per hour on the training set and 322.18

(CI=152.71-491.66) on the test set. The true positive rate was 662.36 (CI=600.92-723.80) and

444.94 (CI=338.61-551.27), respectively, at 64% sensitivity and 70% specificity. Using Set F,

the intersection on the training set occurs at the same value, with a false positive rate of 7.53

(CI=1.31-13.65) and true positive rate of 1067.2 (CI=1054.30-1080.10). On the test set, at 74%

sensitivity/specificity, there were 169.71 (CI=144.53-194.90) false positive detections per hour

and 854.14 (CI=747.03-961.25) true positive detections per hour. For the ResNet model, the false

positive rate was 192.37 (CI=117.18-267.56) and the true positive rate was 538.84 (CI=450.75-

626.92) on the training set, at a sensitivity of 81% and specificity of 83%. On the test set, at a

sensitivity of 48% and specificity of 76%, there were 265.06 (CI=166.28-363.85) false positive

detections per hour and 335.86 (CI=279.50-392.23) true positive detections per hour.

7.4 Three-class problem - Sets G and H

The VGG model was trained with these datasets using 3 units in the last fully connected layer.

Figs. C.8 and C.9 show the performance of the VGG model when trained using the full EEGs

from epilepsy patients and data from the Normal class (Set G) or only IEDs and data from the

Normal class (Set H), respectively, using per-class ROC curves.

Using a threshold where the sensitivity is equal to the specificity, Table C.6 shows the accuracy,

sensitivity and specificity obtained on the test set of Set G and Set H for each class. The Focal

class was detected with an accuracy of 60.05% (CI=51.01-69.09) at a sensitivity/specificity of 60%

using Set G and 79.37% (CI=63.73-95.01) at a sensitivity/specificity of 80% using Set H. For the

Generalized class, this intersection occurred at 90% on the test set (detection accuracy of 89.99%

(CI=82.87-97.11)) with Set H. Trained with Set G, the sensitivity was 57% with a specificity of

55% and accuracy of 56.06% (CI=51.60-60.52). The Normal class was detected with an accuracy

of 95.11% (CI=60.79-69.43) (sensitivity/specificity of 65%) using Set G and 82.34% (CI=68.85-

95.84) using set H, at a sensitivity of 82% and specificity of 83%.

Fig. 7.7 shows the macroaveraged ROC curves for the training and test set of these datasets,

pertaining to all classes. The model achieved an AUC of 0.86 on the training set of Set G and 0.97
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on the training set of Set H. On the test set, the VGG yielded AUCs of 0.72 and 0.94 for Set G and

H, respectively.

Figure 7.7: Macroaveraged ROC curves for the VGG model trained using Set G (upper row) and
Set H (bottom row). The first column shows the results on the training set and the second one
presents the results on the test set of these datasets. The AUC value is also showcased.

7.5 Four-class problem - Sets I and J

The VGG model was trained with these datasets using 4 units in the last fully connected

layer. Figs. C.10 and C.11 show the performance of the VGG model when trained using sets the

full EEGs from epilepsy patients, as well as data from the Normal and Abnormal classes (Set I)

or only with IEDs and data from the Normal and Abnormal classes (Set J), respectively, using

per-class ROC curves.

Using a threshold where the sensitivity is equal to the specificity, Table C.7 shows the accuracy,

sensitivity and specificity obtained on the test set of Set I and Set J for each class. The Focal

class was detected with an accuracy of 55.51% (CI=47.42-63.61) at a sensitivity/specificity of

55% using Set I and 77.34% (CI=59.00-95.67) at a sensitivity of 79% and specificity of 77%

using Set J. For the Generalized class, this intersection occurred at 67% on the test set (detection

accuracy of 67.87% (CI=61.33-74.40)) with Set I. Trained with Set J, the sensitivity was 87% with

a specificity of 85% and accuracy of 85.54% (CI=76.01-95.08). The Normal class was detected

with an accuracy of 61.11% (CI=57.49-64.74) (sensitivity/specificity of 61%) using Set I and

74.37% (CI=71.26-77.47) using set I, at a sensitivity/specificity of 74%. For the Abnormal class,

the intersection was the same using Set J, with an accuracy of 74.76% (CI=72.55-76.96). Using

set I, the detection accuracy was 71.17% (CI=58.91-83.43), with sensitivity/specificity of 71%.
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Fig. 7.8 shows the macroaveraged ROC curves for the training and test set of these datasets,

pertaining to all classes. The model achieved an AUC of 0.89 on the training set of Set I and 0.93

on the training set of Set J. On the test set, the VGG yielded AUCs of 0.65 and 0.82 for Set I and

J, respectively.

Figure 7.8: Macroaveraged ROC curves for the VGG model trained using Set I (upper row) and
Set J (bottom row). The first column shows the results on the training set and the second one
presents the results on the test set of these datasets. The AUC value is also showcased.



Chapter 8

Discussion

8.1 IED Detection

8.1.1 Class imbalance and weights

The problem of IED detection was the main issue tackled in this dissertation. The first ap-

proach used was training one of the models (in this case, the VGG) with Set A weighing both

classes equally. As shown in Fig. C.1, the high accuracy (97.0% on the test set, at a threshold

of 0.5) achieved by the model is due to the large number of negative (i.e. Normal) samples when

compared to the IEDs (both Focal and Generalized, which amount to approximately 3% of the test

set of Set A). In fact, 83% of IEDs were misclassified, as can be seen in the normalized confusion

matrix.

To reduce this class imbalance, higher weights were assigned to the positive class (i.e. IEDs).

Weights of 10, 50 and 100 were used for this purpose. Fig. C.2 shows that the use of class

weights reduces misclassification of the positive class, with true positives rising from 17% without

class weights to 90% with weights of 100:1. The number of IEDs being misclassified as Normal

(false negatives) decreased from 83% to 10%, at a threshold of 0.5. This showed that the use of

class weights was an effective way of reducing class imbalance, allowing the network to learn

potentially relevant features for the detection of epileptic discharges.

8.1.2 Performance on Set A

All the models (VGG, ResNet, M1 and M2) were trained using Set A and 100:1 class weights.

Since a high AUC value indicates high predictive ability of a model, given that the ROC curve is

a tradeoff between sensitivity and the false positive rate (FPR), the AUC values shown in Fig. C.3

prove that all the models were able to distinguish IEDs from normal EEG epochs.

The VGG and M2 yielded the best performances, with both models yielding 0.99 (CI=0.99-

0.99) AUC on the training set and 0.91 (CI=0.84-0.94) on the test set of Set A. It is relevant to

point out that model M2 and the VGG have a large complexity gap (M2 has 2 only convolutional

layers and the VGG includes 13 layers of this type), and, as such, it is interesting to see that they

67
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are able to reach the same performance on this problem, with this dataset. The ResNet and M1

led to lower AUCs: 0.94 (CI=0.85-1.00) and 0.91 (CI=0.88-0.95) on the training set, respectively.

On the test set, these models yielded AUCs of 0.76 (CI=0.69-0.84) and 0.70 (CI=0.62-0.78). The

confidence intervals were also wider for these models, in particular for the test set, showing a

higher uncertainty in the classification process.

Although these results were an improvement from those obtained without class weights, Fig.

7.3 suggests that there were several samples being ’misclassified’ by the model (the VGG, in this

case) as IEDs (false positives) that were, in fact, IEDs. This happened because, as mentioned in

6.1.1, IEDs in which the experts were in doubt were not annotated, which led to some IEDs being

labeled as normal. This means that the actual performance of the networks was potentially better

than that shown by the ROCs of Fig. C.3. A way to assess this difference was to remove all the

normal epochs from the epileptic EEGs, which led to the creation of Set B.

8.1.3 Performance on Set B

The four networks were retrained using Set B and class weights 100:1 to assess the difference

in performance in the IED detection task. Comparing Figs. C.3 and 7.4, it is possible to confirm

that, as expected, there was an improvement in the performance of all the models on the test set.

The VGG network reached 0.96 (CI=0.95-0.97) on the test set of Set B, followed in performance

by M2 (0.91 (CI=0.88-0.94)), ResNet (0.89 (CI=0.84-0.94)) and finally M1 (0.84 (CI=0.83-0.85)).

Table 7.1 shows that the VGG network also achieved the highest intersections of sensitivity

and specificity both on the training and test sets (98% and 93%, respectively), with false positive

rates of 22.30 (CI=6.32-38.28) and 122.41 (CI=27.63-217.20) per hour on these sets. These were

less than half of the next lowest rates, obtained by the ResNet (99.03 (CI=17.96-169.71) and

293.79 (CI=79.69-507.89)), showing that the VGG model was effective in minimizing the number

of normal epochs seen as epileptiform discharges. If we set specificity to 99%, as a doctor might

want to do in a clinical setting to see only the epochs in which there is a high certainty of the

occurrence of an IED, the false positive rate for the VGG becomes 16.50 (4.95-28.06) on the

training set and 32.31 (15.15-49.46) on the test set. This shows that an increase in specificity

of only 1% on the training set reduces false positives by 5.8 per hour, with roughly one sample

being misclassified in each 4 minutes of recording. On the test set, this reduction is almost four-

fold when compared to the values on Table 7.1, with one sample being misclassified in each 2

minutes of recording. This model also yielded the highest true positive rates per hour, with 91.03

(CI=80.35-100.22) on the training set and 47.72 (CI=45.60-49.84) on the test set.

This threshold variation can be very useful in clinics, as experts can choose a certain specificity

to limit the epochs that have to be manually reviewed, accepting or rejecting the classification of

the model. Clinicians can start with the epochs with higher probabilities, where it is more likely

that they will indeed find IEDs, allowing them to diagnose patients by looking at a very small

number of epochs. If these are not enough for diagnosis, the threshold can be reduced and more

epochs will be manually reviewed.
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Even with a threshold of 0.5, it is possible to see that every file of the Normal class on the test

set is classified with a specificity value over 95%, with several files reaching 100% specificity (i.e.

there were no false positives, see Table C.1). This indicates that experts will not be shown many

epochs in which the network sees IEDs, if any, if they are analysing a normal EEG, even at a low

threshold. In turn, this makes it easier to analyse more EEGs in less time and improve diagnosis.

In what concerns the classification of the classes containing IEDs, it is possible to see in Table

C.1 the average sensitivity value is 93% and the average specificity is 91%. The model’s perfor-

mance is slightly better in the Generalized class, which can be explained by the lower number

of IEDs in most of the files belonging to the Focal class (one file contained only one IED, for

instance). Despite this, the obtained results clearly show that it is possible to use the proposed

method to automatically detect IEDs with a high sensitivity and specificity, even at a low thresh-

old.

Notwithstanding the results we obtained, it is not valid to draw a general conclusion regarding

the superiority of the VGG model for the IED detection task. While it led to the best results in

this experiment, given that all the models were trained using the same set of hyperparameters, it is

possible that these were more optimized for this network than for some of the other models, im-

pacting their performance negatively. To assess this, it would be necessary to run hyperparameter

optimization for each model separately and compare the results of that experiment.

It is relevant to mention that the use of visualization techniques, in this case occlusion, was

able to show that this ’incorrect misclassification’ of IEDs was happening in Set A, allowing us

to account for human error and improve the models’ learning process and, consequently, perfor-

mance. In fact, it is possible to confirm that this does not continue to happen in set B (cf. Figs 7.3

and C.4). In this case, since all the mislabeled epochs were removed, false positives correspond

to samples that were truly misclassified. This is an example of the usefulness and importance of

visualization and model interpretability, in particular in a field where human error is abundant.

While these results were satisfactory and proved that the networks were able to detect IEDs,

it was still valid to question whether the networks were actually learning to detect IEDs or just

abnormalities in general, since these had not been included in these experiments. Set C was then

created to answer this question.

8.1.4 Performance on Set C

All the models were trained using Set C and 100:1 class weights to assess if the networks

were learning to distinguish IEDs rather than any abnormality. This was done by including non-

epileptiform abnormalities in the training set, as part of the negative class.

Model M2 yielded the highest AUC when applied to the test set of Set C (0.90 (CI=0.89-0.90),

as seen on Fig. C.5). On the training set, this model led to an AUC of 0.93 (CI=0.92-0.94).

The VGG model scored higher on the training set (AUC of 1.00 (CI=1.00-1.00)) but led to an

AUC of 0.86 (CI=0.83-0.88) on the test set. This is probably due to the higher complexity of

the model, which makes it more prone to overfitting. Model M1 achieved a higher AUC than the

ResNet on the test set (0.78 (CI=0.75-0.82) versus 0.73 (0.66-0.80)) but not on the training set
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(0.94 (CI=0.91-0.97) versus 0.95 (CI=0.91-0.98)). Despite the low AUC obtained on the test set,

Table C.2 shows that the ResNet yielded the lowest false positive rates on both sets, respectively

103.46 (CI=23.00-199.50) and 172.4 (CI=29.28-315.53). If specificity is set at 99%, these values

become 0.00 (CI=0.00-0.02) and 17.49 (CI=7.05-27-95). While the False Positive rate is very low

on the training set, the value obtained on the test set is slightly higher than what was found for

the VGG (17.09 (CI=1.65-32.53)), which suggests some overtraining of the ResNet. While the

True Positive rates were rather similar across models, the highest value was obtained by M1 on

the training set (45.11 (CI=38.12-52.10)) and by M2 on the test set (49.37 (CI=42.60-56.13)).

Comparing these results with the ones obtained with Set B (cf. Figs. 7.4 and C.5), it is

possible to conclude that there was a decrease in the performance of all models. On the test

set, the VGG went from an AUC of 0.96 (CI=0.95-0.97) to 0.86 (CI=0.83-0.88) and M2’s AUC

decreased from 0.91 (CI=0.88-0.94) to 0.90 (CI=0.89-0.90). Comparing Tables 7.1 and C.2, it is

possible to see an increase in the false positive rates of all models, further showcasing the decrease

in performance. This loss of predictive power is partially due to the increase in difficulty of the

problem, since the models now need to learn the differences between epileptiform discharges and

other abnormalities. However, it is also caused by the inclusion of more samples (the test set went

from 8.8h to 11.4h and the training set increased from 24.3h to 40.5h), which further diluted the

(already small) number of IEDs. This means that a possible way to further improve these results

is to change (increase) the weights of the positive class to account for this even bigger imbalance.

Alternative ways of dealing with this issue, including gathering more data, using synthetic data or

data augmentation techniques, will be discussed in Section 9.2.

Taking into consideration the Tables C.1 and C.3, which show the values of sensitivity and

specificity at a threshold of 0.5 for each file on the test set for Set B and Set C, respectively,

it is possible to see that the average value of specificity in the Normal class remained almost

unchanged, with an equal number of files having 100% specificity. The Abnormal class is also

classified with high specificity (96%). However, the average sensitivity and specificity of the

detection of epileptic classes decreased to 79% and 88%, respectively (versus 93% and 91% on

Set B). Again, this was most likely caused by the ’dilution’ of IEDs in the new dataset, widening

the volume gap between classes.

Despite this decrease in performance, the results yielded by the models on this set were still

quite above random. In fact, the results on true positive cases obtained when occlusion was applied

to the models trained with this set (see Fig. C.6) clearly showcase the detection of the IED shapes.

Thus, it was possible to conclude that the networks were indeed able to distinguish IEDs from

other types of abnormalities as well as normal EEGs, meaning that these networks are suitable to

aid in the diagnosis of Epilepsy through the detection of epileptiform discharges.

8.1.5 Visualization

Three visualization techniques (filter visualization, input maximization and occlusion) were

applied to the VGG network trained with Set A and class weights 100:1.
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Filter visualization showed that the VGG’s filters differ in what concerns general shape when

lower-level layers are compared with higher-level layers. As shown in Fig. 7.1, lower level filters

have a somewhat noisy, quite regular pattern across the sample, while filters in higher level layers

are active in more specific parts of the signal. These patterns found on filters of higher level layers

are closer to an ’IED detector’, since their shapes start to resemble epileptiform discharges. In the

two panels on the right side of the first row of Fig. 7.1, it is possible to see some activity across

channels, suggesting the detection of Generalized discharges. It is also possible to see some iso-

lated patches of activity in the panel on the right, suggesting the detection of Focal discharges. The

second row of Fig. 7.1 further illustrates these detection patterns, with the two panels on the left

including patches of focal IED detection and the two on the right showing more generalized detec-

tion filters. While the first panel on the left has some vertical activity across channels suggesting

Generalized detection, the upper channels, on the right side of the filter, show a very clear and

isolated detection area that looks like a focal IED. The second panel shows several of these Focal

IED-shaped areas, with reduced activity in the remaining filter. The two panels on the left show

four and two (respectively) patches of vertical activity (across channels), suggesting the detection

of Generalized discharges.

Activation maximization (Fig. 7.2) showed that the parts of the signal that deviate the most

from what would be expected in a normal EEG (baseline) led to the highest average activation

of all the filters in the VGG. While this makes sense, since these could be parts of the signal

associated with abnormalities, the results are not particularly enlightening. On one hand, not all

of these areas are highlighted. On the other hand, the highlighted areas have different shapes in

different samples (as can be seen by comparing the highlighted areas on the left and right panels

of Fig. 7.2), not being directly connected to a ’typical’ shape of an IED. However, this is not

uncommon, since, as stated by Ancona et al. [330], it is difficult to relate the results obtained

with this type of method to a variation of the input. This is particularly true in our case, since the

average activation of all the filters is used. In future work, we should change parameters such as

the number of iterations and the step size, aiming to make this technique more revealing.

The application of the occlusion technique to the VGG model trained with Set A showed that

the network was, in fact, detecting IEDs. This can be concluded since the IED shapes are the

patterns highlighted as relevant for classification (see true positive panels of Fig. 7.3). This is a

result of the utmost importance, since it proves that the model was learning to perform the desired

task in the ’correct’ way, i.e. learning features of the epileptiform discharges and not any other

spurious characteristics. Furthermore, as mentioned in 8.1.2, this technique also showed that there

were mislabeled samples being ’misclassified’ by the network as False Positives.

When applied to the four models trained using Set B, occlusion shows that all of them are able

to correctly detect IEDs, as these shapes are clearly the relevant areas for the positive classification

of a sample (see true positive panels of Fig. C.4). The false positive panels of Fig. C.4 show that

the mislabeled epochs were indeed removed, as the misclassified samples are negatives (normal

EEG epochs) with parts of the signal or artefacts that are ’seen’ as the networks as IEDs. Looking

at the false negative panels, it is interesting to see that misclassification happens most commonly
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in cases where the epoch from the positive class is noisy or has many IEDs. Finally, it is also pos-

sible to see that most detections occur in the second quarter of the epoch, which incites questions

regarding whether the networks are more prone to detect IEDs in this area (for instance, due to

experts tending to annotate samples approximately 500ms before the discharge occurs). To answer

this, a temporal shift should be applied to the samples and these new epochs should be classified

by the networks. A correct classification would indicate independence regarding the position of

the IED. If incorrect classifications occur (proving the opposite), a way to solve the issue would be

to retrain the models with these shifted samples, to make sure the networks have enough examples

of IEDs in different parts of the epoch, making their detection independent of this factor.

Set C included samples from EEGs with non-epileptiform abnormalities, introducing a variety

of new epoch shapes when compared to the previous sets. These can be seen in Fig. C.6, on some

of the true negative and false positive panels, showing that the networks are able to classify some of

them correctly (true negatives, mostly chaotic signals) and some of them are getting misclassified

(false positives, usually containing some waves losely resembling IEDs). The true positive panels

still show that IED shapes are being clearly detecting and used for classification, further proving

that the models can learn to identify IEDs instead of abnormalities in a more general sense.

8.1.6 Contextualization in the Literature

As mention in Section 5.4, there have been several attempts to detect IEDs in EEGs of epilepsy

patients using a plethora of machine learning methods. However, it is not trivial to compare the

performance obtained by different authors due to the diversity of datasets used. Despite this hin-

drance, it is relevant to assess where our approach stands in the current context. It is, nonetheless,

important to keep in mind that all the comparisons drawn in this section are done across datasets,

so the differences in performance should not be judged as absolute.

Using template matching, Lodder et al. [281] achieved 90% mean sensitivity and 2.36 false

detections per minute. The dataset used in this work included 20-30 minute recordings from 23

epilepsy patients. With data from only 3 patients, Nonclercq et al. [277] were able to get a similar

sensitivity value with template matching and k-means. At a sensitivity and specificity of 93%, our

false positive rate per minute was 2.04 on the test set, using set B for training, which surpasses the

results obtained by these authors. Furthermore, setting the specificity to 99%, our false positive

rate per minute becomes 0.5 on the test set, increasing the gap between the performance of our

method when compared to [281] and [277].

The combination of ANNs and expert systems has also been used in this problem. Usually,

ANNs categorize the inputs and expert systems incorporate spatial context and provide a final

classification. Using this type of approach trained with 12h recordings from 7 patients, Argoud et

al. [303] achieved 70.78% sensitivity and 69.12% specificity in spike detection, as well as 71.91%

sensitivity and 79.19% specificity for sharp waves detection, both of which are below what was

obtained using our approach.

Pang et al. [305] compared four different ANN-based methods ( [308], [282], [306] and [307])

using the same dataset consisting of 8 channel EEG signals from 7 epilepsy patients and 6 normal
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controls. This study revealed that Webber et al.’s algorithm, based on using mimetic features as

input for a simple ANN, led to the best performance. It yielded 86.61% sensitivity and 86.32%

selectivity, which is still inferior to our performance.

Artameeyanant et al. [296] used a set of 100 single-channel EEGs and developed an approach

based on wavelet transform coupled with a neural network trained with parameterized data, which

yielded 76.55% sensitivity at 81.30% specificity, coming short of our intersection between sensi-

tivity and specificity at 93% on the test set. Using a similar dataset of 100 single-channel EEGs,

Song et al. [300] developed another approach, involving the extraction of the wavelet transform,

as well as complexity based features. A genetic algorithm and a neural network were then applied,

leading to a sensitivity of 96% and 93.6% specificity. While these values are higher than what

was obtained in our experiments, it is necessary to take into account the vast difference between

datasets and the fact that the false detection rate is not stated in Song et al.’s work. If this rate is

high, the algorithm loses clinical relevance as the experts are still required to review many normal

epochs which are being classified as IEDs.

Other neural network-based approaches were developed by Guler et al. [324] and Ubeyli et

al. [290,291,312,313]. Guler et al. achieved 96.79% accuracy using Lyapunov exponents as input

features for a RNN, with the dataset provided by Andrzejak et al. [323]. Using the same dataset

for training, Ubeyli et al. achieved 98.05% accuracy with Lyapunov exponents and a PNN, as well

as 99.3% accuracy using eigenvector methods for feature extraction and a SVM classifier. There

were more authors experimenting with Andrzejak’s dataset. Using a combination of KNN and a

genetic algorithm, Guo et al. [245] achieved 93.5% accuracy and Orhan et al.’s [295] approach

involving a wavelet transform, k-means and a MLP led to 98.80% accuracy, 99.3% specificity and

98.02% sensitivity. However, apart from Orhan et al’s work, the threshold at which the accuracy

was calculated is not mentioned. As such, despite these values being higher than the 93% we

reached on the test set of Set B, at a threshold of sensitivity/specificity of 93%, it is possible that

they were calculated at lower thresholds. Also, the dataset used in these papers is vastly different

from the one used in our work, which further complicates this comparison.

Thomas et al. [317] used a CNN as a feature extractor in their approach, followed by an

SVM as a classifier. This was trained on 30 minute recordings of 63 controls and 93 epilepsy

patients, leading to a 0.935 mean AUC across 4 cross-validation folds, which is lower than our

0.96 (CI=0.95-0.97) obtained on the test set when the VGG is trained with Set B.

Looking at more recent deep learning approaches where neural networks are used as end-to-

end classifiers, Johansen et al.’s [316] 5 layer CNN trained on 30 minute EEG recordings from

5 epilepsy patients yielded an AUC of 0.947, just slightly lower than the 0.96 (CI=0.95-0.97)

obtained in our experiments. Tjepkema et al. [315] used a set of 50 patients and 50 controls to

train a 19 layer, 2D CNN. The results were validated on a set of 5 patients and 12 controls, leading

to 0.94 AUC for the test set, with 0.6 False detections per minute at 98% specificity. While these

results were close to what we obtained (AUC of 0.96 and 0.5 false detections at 99% specificity),

the validation set used in [315] is smaller and thus may lead to larger variability, which means that

validation on other/more data could have led to different results.
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Apart from the comparison of model performances, which can only be done in a relative way,

it is relevant to reinforce that our work is innovative in what concerns the current paradigm due to

the application of network architectures from the literature. While architectures such as the VGG

and the ResNet have been widely used in other areas, such as image analysis, their use in health-

related problems, and in automated EEG analysis in particular, is still scarce. In the narrower scope

of IED detection, there are currently no publications using these type of networks. Furthermore,

the application of visualization techniques, which provide insight into the networks’ behavior

and processes, also showcases great innovation. In fact, the application of occlusion allowed us

to improve our dataset to account for human errors and it also showed that the networks were

detecting IED shapes in the EEG signals, proving the success of our approach. Currently, there

are no publications which show the application of these techniques in this type of problem, further

showcasing the importance of the developed work.

8.2 Focal vs Generalized Epilepsy

Set D was used to assess if it was possible to train networks to distinguish Focal from General-

ized Epilepsy based on IEDs. No class weights were used given that the class imbalance between

Epilepsy classes was not very large. The VGG and the ResNet were trained for this purpose, with

the VGG leading to the best performance, with an AUC value of 0.98 (CI=0.98-0.99) on the test set

and 0.99 (CI=0.99-1.00) on the training set. At 96% sensitivity and specificity, on the training set,

it was able to detect 491.31 (CI=430.56-552.06) Focal samples and 1241.1 (CI=1133.20-1349.00)

Generalized IEDs per hour. True positive detections were ten times more frequent than false pos-

itive detections (in which ’Positive’ is equivalent to a Focal IED), with true negatives being 66

times more frequent than false negatives (in which ’Negative’ is equivalent to a Generalized IED)

on the training set. On the test set, at 81% sensitivity and specificity, the VGG detected 616.62

(CI=509.89-723.36) Focal epochs per hour and 836.88 (CI=724.34-949.42) Generalized IEDs per

hour. While the number of samples used in this experiment was quite low, both models performed

above random, suggesting that it is possible to distinguish Focal from Generalized IEDs.

Turning to the results of the application of occlusion to both models (see Fig. 7.6), it becomes

less clear that this distinction can be performed using the available dataset and the chosen methods.

Both Focal and Generalized samples appear to be classified as positive and negative, despite Focal

being the positive class. This is due to the fact that the IEDs are labeled per patient and not per

discharge. It is not uncommon for patients with Focal epilepsy to have Generalized discharges

and vice-versa. If this were to happen in the recordings used in the dataset (which Fig. 7.6

proves it did), the network would be getting IED shapes of both types in both classes. While in

a clinical setting this is not critical, since the expert diagnoses the patient based on the patterns

found throughout their EEG, taking multiple IEDs and their (dis)similarity into account, in the

case of neural networks, this makes it almost impossible to learn robust and discriminant feature

of either class.
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Given these findings, it becomes impossible to escape the question of how the numerical results

contrast with what was shown by occlusion. The most likely answer is that, since the dataset was

small, the generalization power of the obtained results is low. While the difference between the

results on the training and test set is not too large, an external set could be used to assess if this

is the case. A more thought-provoking answer is that the networks may be detecting something

other than the IED’s shape and using it to classify each epoch as being from a patient with Focal

or Generalized epilepsy.

8.3 Normal vs Abnormal EEGs

The first approach used to assess if the models were able to distinguish normal EEG epochs

from those with abnormalities was carried out by training the VGG and ResNet with Set E, with

no weights assigned to the classes since there was no significant class imbalance. Both models

scored high on the training set, with the VGG reaching an AUC value of 1.00 (CI=1.00-1.00)

and the ResNet yielding 0.82 (CI=0.67-0.98). However, the results on the test set were quite low,

with AUCs of 0.57 (CI=0.46-0.69) for the VGG and 0.44 (CI=0.37-0.50) for the ResNet (see Fig.

C.7). This clearly showed overtraining of both models, which were overfitting the training set and

not learning robust features. One of the main reasons for this was imposed by the dataset itself:

EEGs containing abnormalities are not always abnormal and, since these were not annotated, many

normal epochs in these EEGs were being used as part of the positive class, ’confusing’ the models.

An attempt to reduce the relative percentage of normal epochs in the positive (i.e. Abnormal)

class was made by including Focal and Generalized IEDs in the dataset, creating Set F. The VGG

model was trained using this dataset, assessing if it was possible to distinguish normal EEGs from

both epileptiform and non-epileptiform abnormalities. The network’s performance on the training

set remained the same but the AUC value for the test set rose to 0.75 (CI=0.72-0.77), showing

improvements regarding what was obtained with Set E. Table C.5 shows that the intersection

between the sensitivity and specificity values occurred at a higher threshold on the test set for

the VGG trained with Set F (74%), maintaining the same intersection on the training set when

comparing to what was obtained with Set E (99%). Thus, overtraining was reduced when training

with Set F compared to Set E, although it was still happening.

The total number of IEDs was quite small when compared to the volume of data in the Nor-

mal or Abnormal class, so the improvement in performance shown despite this scarcity of ’truly

positive’ samples shows that it is possible for the network to perform this task successfully, if a

correctly labeled dataset is given.
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8.4 Multiclass problems

8.4.1 Three-class problem

This three class problem was an extension of the IED detection problem described in 8.1, as

it assesses if it is possible to train the VGG to distinguish Focal IEDs from Generalized IEDs and

from Normal EEG epochs. We attempted to do this using the full EEG from epilepsy patients (Set

G, without removal of the normal epochs from epileptic EEGs) and using only the IEDs of the

patients (Set H).

Looking at the macroaveraged ROC curves (Fig. 7.7), it is possible to see that there was a

clear improvement when the normal epochs of the epileptic EEGs were removed. Trained using

set G, the VGG yielded an AUC of 0.86 on the training set, with this value rising to 0.97 when

Set H was used. On the test set, this difference was even larger, with the AUC value going from

0.72 to 0.94. This improvement is also shown in the per-class ROC curves (cf. Figs. C.8 and C.9),

with higher AUCs being achieved in all the classes using Set H. Table C.6 is consistent with these

results, showing intersections between the sensitivity and specificity values at a higher threshold

on Set H, on the test set, for all the classes. The Generalized class showed the highest increase

in the threshold, going from a sensitivity of 57% and specificity of 55% to a threshold of 90%,

the highest among all the classes. On the other hand, the Focal class had the lowest values of

sensitivity (81%) and specificity (79%).

8.4.2 Four-class problem

A further extension of the problem including data from the Abnormal class was explored. The

same approaches as described above led to the creation of two analogous datasets (Set I and Set

J), with which the VGG was trained.

Consistently with what was observed in the previous section, the macroaveraged ROC curves

(Fig. 7.8) and corresponding AUC values improved when the normal epochs were removed from

the epileptic EEGs. The AUC score of the model went from 0.89 to 0.93 on the training set

and from 0.65 to 0.82 on the test set. While this was still below the 0.93 obtained for the previous

problem, a performance decrease was expected due to the introduction of a new class. The problem

is even more difficult since it was proven in section 8.3 that distinguishing Normal from Abnormal

epochs is quite complex given the lack of annotations in the Abnormal class.

Looking at the per-class ROCs (cf. Figs C.10 and C.11), the improvement from Set I to Set J is

also noticeable, with all the AUC values increasing. Table C.7 reinforces this improvement, with

intersections occurring at higher values of sensitivity and specificity on the test set of Set J. Once

again, the Generalized class had the higher threshold, with 88% sensitivity and 86% specificity on

Set J. The Abnormal class led to the lowest intersection value (75%).

Comparing Tables C.6 and C.7, it is possible to see that there was a decrease in the intersection

of the sensitivity and specificity values in all the classes. This was more noticeable in the Normal
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class (83% on Set H to 74% on Set J), which makes sense given that the new class (i.e. Abnormal)

included normal epochs (as shown in Section 8.3), making the learning process more complex.

Still, the obtained results show that the distinction between classes is possible using these

methods. However, this could be improved using more IED data (i.e. Focal and Generalized class)

and including only abnormal epochs of the Abnormal class (which would require labeling).

8.5 Limitations

The main limitation in these experiments was the scarceness of IED data, which caused class

imbalance and made it overall more difficult for the networks to learn relevant features due to the

reduced number of samples. The mislabeling of some IEDs as normal epochs can also be seen as a

limitation, since it impacted the number of available IEDs and led to ’incorrect misclassifications’

by the models.

Another issue that affected some of the experiments (since not all of them included this class)

was the lack of labeling of the Abnormal class. This made problems such as those described in

sections 8.3 and 8.4.2 much more difficult because normal epochs were being fed to the network

as part of both the Normal and the Abnormal classes.
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Chapter 9

Conclusions and Future work

9.1 Conclusions

With this work, we show that it is possible to automatically detect Interictal Epileptiform

Discharges in EEGs using deep learning methods.

The VGG network yielded the best performance with the set of hyperparameters used, achiev-

ing an AUC of 0.96 (CI=0.95-0.97) when distinguishing focal and generalized IEDs from normal

EEGs. The false positive detection rate per hour was 122.41 (CI=27.63-217.20) at 93% sensitiv-

ity/specificity, dropping to 32.31 (15.15-49.46) at a specificity of 99%. At a 0.5 threshold, the

average specificity when classifying normal EEGs was 98.64%, with four EEGs in the test set

being classified with 100% specificity. EEG files containing IEDs were classified with an average

sensitivity of 93.28% and average specificity of 91.11%. This network was able to reach an AUC

of 0.86 (CI=0.83-0.88) when abnormal EEGs were added to the negative class, proving that the

model learns to distinguish IEDs and not abnormalities in a general sense. At a threshold of 0.5,

the average specificity of detection in the negative class was 95.55%, with EEGs from the positive

class being classified with 78.66% average sensitivity and 88.04% average specificity.

Aside from the main question, this dissertation also showed that it is possible to distinguish

focal from generalized IEDs using neural networks, even with a very reduced number of samples.

We also show that it is possible to distinguish focal IEDs from generalized IEDs and from normal

(and abnormal) EEGs.

Furthermore, it was possible to show the relevance of the use of network visualization tech-

niques, as well as the practical applicability of the information they reveal. Filter visualization

showed that the filters present in higher level layers of the VGG showcase activity in patches

resembling IEDs in isolated channels (focal) and vertically, across channels (generalized). The

application of occlusion revealed the presence of mislabeled epochs, allowing performance im-

provements in later approaches. It also confirmed that IEDs were being clearly identified in true

positive cases, proving that the network was learning relevant features.

Despite the limitations in what concerns annotations and the volume of the available data, this

dissertation shows the potential of deep learning techniques in this field, in which the automation of

79
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EEG analysis could result in a significant reduction of workload for clinicians, providing objective

and reliable results in the diagnosis of Epilepsy. This work is innovative in its use of neural

networks described in the literature and in the application of probing techniques to said networks,

both of which are not common in healthcare applications and have not been published in the scope

of IED detection.

9.2 Future Work

9.2.1 Model Performance

This dissertation was not a self-contained project, but rather the first step towards a larger

and more comprehensive take on the problem of IED detection, as well as other deep learning

approaches in health (such as prognostication in postanoxic coma). It showed what was already

possible given the available data and allowed us to identify limitations and prospective ways to

make the models more robust in future experiments.

With that in mind, the first priority in what concerns future work is obtaining more IED data

(both focal and generalized). A larger number of samples containing IEDs can reduce class imbal-

ance and provide the networks with more varied and meaningful examples, making the features

learned more relevant. The annotation of abnormal EEGs would also be very helpful, particularly

if problems in which normal and abnormal EEGs are not in the same class are to be addressed.

Since it is not trivial to obtain very large amounts of IED data, the application of data aug-

mentation techniques and the use of synthetic data are also being considered. Data augmentation

can be done by shifting epochs containing IEDs temporally (in the x axis), by adding noise to

existing samples or by switching the position of the channels concerning both brain hemispheres.

Synthetic data can be generated using mathematical models of IEDs (to which noise can also be

added) or using Generative-Adversarial Networks (GANs). It is also possible to train the first lay-

ers of the model with synthetic data and then refine this by training higher level layers with patient

data, thus requiring less of the latter. Another possible approach is self-supervision, in which data

is automatically labeled by finding relations between input patterns.

Trying other simpler models, similar to M1 and M2, can also be a possibility, in particular

in problems where overtraining is observed even for a low number of training iterations. Taking

blocks from models described in the literature may be an option to decide on the architecture

of these simpler models. Understanding the lower results of the ResNet when compared to the

VGG in the IED detection task would also be of interest, since this can be due to the chosen

hyperparameters but also to the types of filters, skip connections and other characteristics of the

architecture.

Other types of networks such as recurrent neural networks (LSTMs and others) which take

into account the temporal relationship between samples could also be an alternative approach to

this problem. Another possibility is to apply networks from the literature with pre-trained weights.

While the datasets used in this problem are far from those which were originally used to train the
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networks, it could be interesting to see how much this initial training can impact the problem at

hand and potentially improve performance.

Since clinicians often resort to different montages when analysing EEGs, it would be interest-

ing to train networks with data from several montages and see if one of them led to better results,

or even if adding a final classifier, creating an ensemble model, could improve the overall perfor-

mance. Another way to experiment with ensemble models would be to build binary classifiers for

each class and join them to perform the final classification. Yet another idea would be, if enough

data was available, to train per patient classifiers, since IEDs from a single patient are usually

similar in shape. These could then be assessed on their own or combined, allowing comparisons

to be drawn with the patient-independent classifier. Furthermore, attempting to cluster IEDs per

shape instead of patient (thus including several patients per cluster) and building classifiers based

on said clusters, could also improve performance.

While it was possible to prove that networks use spatial information in their classification

process in what concerns IEDs, it would be interesting to see what the models could discern based

on single-channel EEG. While this approach could be more appropriate for other problems (such

as postanoxic coma prognostication, in which the EEG pattern in analysis is usually consistent

across channels), it would make the process of synthesizing data from mathematical models easier.

It would also be possible to combine the results from per-channel classifiers, incorporating some

spatial notions (albeit not as strongly as when the model is trained with the full EEG).

Another interesting question concerns the spatial gap in the bipolar montage, used in these

experiments, and how it can affect model performance. In this montage, there is an abrupt spatial

transition from the right to the left hemisphere of the brain, breaking the spatial continuity of

the electrodes. Since 2D networks take spatial context into account, it would be of interest to

suppress this discontinuity. A possible way to do this is by using 3D networks and ’plotting’ each

electrode’s position in one of the dimensions of the input.

Some other ideas that can be explored in future work are the optimization of the deep learning

models’ hyperparameters, as well as the train/test split ratio. The use of an external validation set,

ideally with data from a different medical center, would greatly add to the proof of robustness of

the trained models.

9.2.2 Visualization

The visualization techniques applied in this dissertation were able to reveal crucial information

that enforced confidence in the models’ decisions and suggested ways to improve the training

process. However, improving these techniques and building on them is paramount to extend the

current understanding of the networks, the way they learn and, consequently, classify samples.

Both occlusion and input maximization have parameters such as the number of iterations,

step size and window size that can be optimized. In what concerns window size in occlusion,

experimenting with single channel windows as well as vertical windows could provide information

regarding how the networks see focal and generalized IEDs, respectively. Also, several approaches

described in the literature use grey masks for occlusion instead of black (or an average of the
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image/signal instead of zero), which could also impact the results obtained with these techniques.

Furthermore, obtaining the results of occlusion for different networks working on the same task,

using the same signal as input, can showcase differences between the models and the way they

look at the EEGs and the IEDs in particular.

Creating a prototypical pattern of an IED based on the network’s perception of the discharge

itself would show how the model sees and identifies the IED. This prototype could also be used for

training, serving as synthetic data. Furthermore, if clustering of IED types is successful, getting

prototypes of each cluster using the models would be even more interesting, as it would showcase

the differences in the perception of the network of these different shapes.

Exploring other visualization approaches described in the literature (see section 4.5) and com-

bining them can aid in creating a robust framework that allows us to probe deeper into the networks

and gain further insights.



Appendix A

State of the Art of Machine Learning in IED Detection

Table A.1: State of the Art of Machine Learning in IED Detection

Ref Author Year Dataset Method Results

[44] Gotman 1976 16 channel recordings from 30
normal subjects and 63 epilepsy
patients (2min each)

Mimetic method based on features such as relative am-
plitude and duration of both half-waves, relative sharp-
ness, total duration

605 sparks/sharp waves (SSW) detected in 30mins of
recording of epileptic patients, 1 artefact detected as
SSW; 4 SSWs detected in 30mins of recordings of nor-
mal subjects, 3 artefacts detected as SSW

[231]
Gotman 1982 16 channel recordings from 24

epilepsy patients (6h recordings)
See [44] Average of 41 valid and 39 false SSW detections in 6h

[266]
Oliveira 1983 4 channel EEG from 10 epilepsy

patients
Mimetic method based on features such as sharpness of
the peak, steepness and duration

When compared to 8 electroencephalographers
(EEGers), the specificity of the classifier was higher
than the lowest of the EEGers, but the sensitivity was
lower
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[264]
Gotman 1991 20 100min recordings from

epilepsy patients, 16 channel EEG
State analysis + mimetic method to classify the record-
ing in one of 5 states (active wakefulness, quiet wakeful-
ness, desychronized EEG, phasic EEG and slow EEG)
and apply an adaptation of the detection algorithm de-
scribed in [44]

16.2% error in the state classification

[265]
Gotman 1992 See [264] See [264] 16.5% error in the state classification; 43% and 41% true

detections on the training and test set, respectively; 52%
and 56% false detections on the training and test set,
respectively

[331]
Gabor 1992 8 channel EEG from 5 epilepsy pa-

tients
ANN (3 layers) with the spatial distribution of the aver-
age voltage slopes used as input

Recognition of unequivocal epileptiform complexes
with a sensitivity of 94.2% (±7.3%)

[267]
Hostetler 1992 6 20min recordings from epilepsy

patients, 16 channel EEG
Mimetic method based on the ratio of spike and aver-
aged background amplitudes

89% consistency in its detections, surpassing 83% of the
EEGers to which it was compared

[272]
Sankar 1992 11 recordings from epilepsy pa-

tients, 16 channel EEG
Parametric method (autocorrelation) + template match-
ing

The maximum percentage of real epileptic patterns de-
tected was 17.5%

[268]
Dingle 1993 11 recordings from epilepsy pa-

tients, 16 channel EEG
Mimetic method to detect candidate patterns in a single
channel + expert system to detect multichannel events

45-71% epileptiform events were detected at 100% se-
lectivity, 60-100% were detected with up to 9 false de-
tections per hour

[269]
Pietila 1994 12 recordings from 6 epilepsy pa-

tients
Mimetic method using features such as amplitude and
the second derivative of the signal + template matching

97% sensitivity at 78% specificity in files with clear
spike-slow-wave bursts, 31% sensitivity at 33% speci-
ficity in the others

[282]
Webber 1994 2 to 3min recordings from 10

epilepsy patients, 49 channel EEG
Mimetic method + ANN (3 layers, fully connected) with
either parameterized or raw EEG data used as input

Intersection between sensitivity and selectivity occurred
at 73% for parameterized data and at 46% for raw data

[306]
Kalayci 1995 16 channel EEG from 5 epilepsy

patients
Wavelet transform (Daubechies 4 and Daubechies 20) +
ANN (3 layers, 3 to 8 neurons as input for the hidden
layer)

The best result was 90.3% accuracy, 87.3% sensitivity
at 93.3% specificity when using Daubechies 20 and 8
neurons for the hidden layer

[270]
Benlamri 1997 137 recordings of normal subjects

and epilepsy patients, 8 and 16
channel EEG

Mimetic method + expert system to classify epilepti-
form events based on parameters such as orientation,
synchrony, amplitude and duration

87% accuracy (119 recordings were correctly classified)
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[301]
Feucht 1997 19 channel EEG from 10 epilepsy

patients
Hilbert transform + ANN (MLP was compared to other
classifiers such as LDA and cascade-correlation neural
networks)

84.6% mean selectivity, 88.1% mean sensitivity, 89.3%
mean specificity; all classifiers showed the same perfor-
mance in terms of false detections, with MLP reaching
the highest number of correctly identified spikes

[286]
Park 1998 16 channel EEG from 32 epilepsy

patients
Wavelet transform (Daubechies 4) + ANN (3 layers,
with the output of the wavelet transform as input) + ex-
pert system

97% sensitivity ar 89.5% selectivity for parameterized
data

[307]
Ozdamar 1998 16 channel EEG from 5 epilepsy

patients
ANN (trained with backpropagation, with varying num-
ber of input layers and nodes)

Best performance was achieved with 30 input nodes and
6 hidden layers, with 86% and 82% true classification
rates for the training and test sets, respectively

[308]
Tarassenko 1998 20 channel recordings from 2

epilepsy patients (31 and 77
recordings, respectively)

Time and frequency analysis (mobility, complexity, au-
toregressive modeling) + ANN (three layers, with fea-
tures as input)

85.6-95.6% accuracy, 83.1-97.3% sensitivity, 85.9-
95.5% specificity in spike detection for patient-specific
classifiers

[283]
James 1999 16 channel EEG from 15 epilepsy

patients for training, 7 recordings
from epilepsy patients and one
normal EEG for testing

Mimetic method, using features such as amplitude, du-
ration, slope and sharpness + ANN (self-organizing fea-
ture map) + fuzzy logic to combine spatial information

55.3% sensitivity at 82% selectivity, 7 false detections
per hour on the test set

[284]
Wilson 1999 20 channel EEG recordings from

50 epilepsy patients (40 for train-
ing, 10 for validation) and 10 con-
trol subjects

Mimetic method + ANN (monotonic neural network) 89.9% sensitivity, 80.1% selectivity, 99.6% specificity
on the validation set

[332]
Goelz 2000 11 recordings, total 278min, 16

channel EEG
Wavelet transform (continuous wavelet transform with
the complex-valued psi-1 wavelet) + thresholding

84% sensitivity, 12% selectivity

[333]
Calvagno 2000 36 recordings of 8 channel EEG Wavelet transform + smoothed nonlinear energy opera-

tor (SNEO)
Showed the possibility of detecting spikes with the pro-
posed method

[271]
Black 2000 521 recordings, average 20min, 16

channel EEG
Mimetic method + expert system to integrate spatial and
temporal information

76% sensitivity, 41% selectivity, 0.41 false detections
per hour
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[327]
Ko 2000 300 single channel EEG record-

ings with an IED and 300 without
(2/3 for training and 1/3 for test-
ing) from 20 patients

ANN (three layers, 30 nodes in the input layer and 6 in
the hidden layer, using raw data as input)

Performance below random

[309]
Kurth 2000 32 channel EEG from 4 patients ANN (Kohonen feature map) 80.2% average sensitivity and selectivity at crossover

threshold

[334]
Nuh 2002 8 channel EEG data divided into

2.56s segments
ANN (wavelet neural network) 82.6% detectability, 90.4% selectivity

[287]
Liu 2002 8 channel EEG from 81 epilepsy

patients, over 800h of recordings
Wavelet transform + ANN (MLP with input features
such as amplitude, duration, sharpness and slope) + ex-
pert system to reject artefacts

98% correct detection of sharp transients, false detection
rate of 6.1%

[285]
Castellaro 2002 2000 EEG traces Mimetic method + ANN (MLP with three or four layers,

with 32 output nodes) + expert system
94% of properly classified traces by the ANN, 80% by
the expert system

[328]
Latka 2003 19 channel EEG from 1 epilepsy

patient
Wavelet transform (mexican hat) + thresholding 70% sensitivity, 67% selectivity

[305]
Pang 2003 8 channel EEG from 7 epilepsy pa-

tients and 6 normal controls
ANN (compared methods developed by Tarassenko
[308], Webber [282], Kalayci [306] and Ozdamar [307])

Webber’s algorithm led to the best performance, with
86.61% sensitivity and 86.32% selectivity

[335]
Durka 2004 EEGs from an online database,

with data split into 4 groups (sin-
gle spikes and sharp waves, test
signals, series of spikes, artefacts)

Parametric representation (matching pursuit) + thresh-
olding

92% sensitivity, 84% selectivity

[336]
Adjouadi 2004 20-30min recordings from 18

epilepsy patients
Walsh transform 85% precision, 79% sensitivity, 7.2 false detections per

hour

[318]
Acir 2004 19 channel EEG from 25 epilepsy

patients (18 for training, 7 for test-
ing)

Parametric representation for pre-classification into
spike candidates and trivial non-spikes + SVM

90.3% sensitivity, 88.1% selectivity, 9.5% false detec-
tion rate

[310]
Nigam 2004 200 single channel EEG segments

(100 from normal controls, 100
from epilepsy patients), 23.6s

Non-linear pre-processing to extract relative amplitude
and frequency + ANN (LAMSTAR neural network, uses
self-organising maps, features used as input)

1.6% miss rate, 97.2% accuracy
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[319]
Acir 2005 19 channel recordings from 29

epilepsy patients (19 for training,
10 for testing)

ANN (2 perceptrons with 6 features as input) to clas-
sify EEG peaks into definite IEDs, definite non-IEDs
and possible IEDs + SVM to separate the third group

89.1% sensitivity, 85.9% selectivity, 7.5 false detections
per hour

[314]
Srinivasan 2005 200 single channel EEG segments

(100 from normal controls, 100
from epilepsy patients), 23.6s

Extraction of morphological features such as dominant
frequency, average power and normalized spectral en-
tropy + ANN (Elman RNN)

99.6% accuracy with a single input feature

[288]
Guler 2005 Andrzejak’s dataset Wavelet transform (Daubechies 2) + adaptive neuro-

fuzzy inference system (ANFIS, 20 extracted features
from the wavelet transform as input)

98.68% accuracy

[324]
Guler 2005 Sets A, D and E from Andrzejak’s

dataset
Lyapunov exponents + ANN (Elman RNN compared
with MLP)

Best performance was achieved by the RNN, leading to
96.79% accuracy

[304]
Tzallas 2006 5s EEG recording from an

epilepsy patient
Parametric appoach (time-varying autoregressive model
with parameters estimated via Kalman filtering) +
thresholding

The parametric approach reached better results than
SNEO

[337]
Xu 2006 EEG recordings from a normal

subject and 8 epilepsy patients
Morphological filtering (average weighted combination
of open-closing and close-opening operation) + thresh-
olding

91.62% detection rate

[303]
Argoud 2006 12h EEG recordings from 7

epilepsy patients
Wavelet transform (coiflet wavelet function) + ANN (4
networks to detect 4 types of patterns: spikes, sharp
waves, ocular artefacts and noise) + expert system

70.78% sensitivity, 69.12% specificity in spike detec-
tion; 71.91% sensitivity, 79.19% specificity for sharp
waves

[338]
Exarchos 2006 16 channel recordings from 12

normal controls and 13 epilepsy
patients, 15min each

Mimetic method for transient detection + feature selec-
tion + association rule mining

87.38% accuracy, 77.5-91.3% sensitivity, 91.75-99.23%
specificity, 83.10-93.55% selectivity

[339]
Tzallas 2006 16 channel recordings of 12 nor-

mal controls and 13 epilepsy pa-
tients

ANN to classify segments into spikes, muscle activity,
eye blinks or sharp alpha activity (trained with 16 fea-
tures as input) + expert system

84.44% accuracy

[340]
Xu 2007 EEG recordings from 2 normal

subjects and 10 epilepsy patients
Morphological filtering to separate background activ-
ity from spikes (average weighted combination of open-
closing and close-opening operation) + thresholding

This type of morphological filtering led to less false de-
tections (7.52%) than traditional morphological filtering
(20.48%) and mexican-hat wavelet functions (16.72%)
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[289]
Guler 2007 Andrzejak’s dataset Wavelet transform + Lyapunov exponents + SVM com-

pared to ANNs (probabilistic neural network and MLP,
using features as input)

75.6%, 72.0%, 68.8% accuracy for SVM, PNN and
MLP, respectively

[302]
Adeli 2007 Set of healthy controls, interictal

and ictal periods from Andrzejak’s
dataset

Wavelet transform + Lyapunov exponents and correla-
tion dimension

Correlation dimension is discriminant for higher fre-
quency (beta and gamma subbands), LLE is discrimi-
nant for the alpha band

[341]
Inan 2007 19 channel EEG from 8 epilepsy

patients
ANN for pre-classification + fuzzy C-means clustering
compared to k-means

Fuzzy C-means with pre-classification led to the best re-
sults, 93.3% sensitivity, 74.1% specificity

[273]
El-Gohary 2008 32 channel EEG from 2 epilepsy

patients
Template matching 96% sensitivity, 4.8 false detections per hour

[342]
Indiradevi 2008 EEG recordings from 22 epilepsy

patients
Wavelet transform (Daubechies 4) + thresholding 91.7% sensitivity, 89.3% specificity, 78.1% selectivity,

90.5% accuracy

[290]
Ubeyli 2008 Andrzejak’s dataset Eigenvector methods for feature extraction + SVM com-

pared to ANN (MLP) with features used as input
SVM achieved the highest accuracy (99.3%)

[312]
Ubeyli 2008 Andrzejak’s dataset Eigenvector methods for feature extraction + ANN

(probabilistic neural network (PNN) compared to MLP)
trained with features as input

PNN achieved the highest accuracy (97.63%)

[311]
Ubeyli 2008 Andrzejak’s dataset Wavelet transform + ANN (Mixture of experts (ME)

compared with MLP)
ME achieved the highest accuracy (93.17%)

[343]
De Lucia 2008 21 channel EEG from 7 epilepsy

patients
ICA and PCA + mixture of Gaussians ICA led to the best performance, yielding 65±22% sen-

sitivity at 86±7% specificity

[344]
Keshri 2009 Single channel EEG, 4min record-

ings
Deterministic Finite Autodata 95.68±3.22% accuracy

[345]
Kutlu 2009 19 channel EEGs Deterministic Finite Autodata 95.68±3.22% accuracy

[346]
Guo 2009 100 EEG segments of normal sub-

jects and 100 of epilepsy patients
Wavelet transform + ANN (3 layers, 16 input neurons,
10 in the hidden layer, 1 in the output)

98.17% sensitivity, 92.12% specificity, 95.2% accuracy

[291]
Ubeyli 2009 Andrzejak’s dataset Eigenvector methods for feature extraction (power spec-

tral density) + RNN compared with MLP
RNN achieved the highest accuracy (98.15%)
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[325]
Ubeyli 2009 Sets A, D and E from Andrzejak’s

dataset
Wavelet transform + ANN (combined MLP) 94.83% accuracy

[274]
Vijayalakshmi 2010 Single channel EEG segments Template matching + thresholding Template matching can provide good results for spike

detection

[313]
Ubeyli 2010 Andrzejak’s dataset Lyapunov exponents + ANN (probabilistic neural net-

work (PNN), compared with MLP, trained with features
as input)

PNN achieved the highest accuracy (98.05%)

[320]
Lima 2010 Sets A and E from Andrzejak’s

dataset
Wavelet transform (Daubechies 4) + SVM and least-
squares SVM (LS-SVM)

Both types of SVM achieved good discrimative power
when trained with raw data, as well as with features

[321]
Kelleher 2010 16 channel EEG from 8 general-

ized epilepsy patients, 20-40mins
SVM with gaussian kernel, trained with features as input
with 5-fold cross-validation

93.47% ROC for the patient-specific classifier

[292]
Abibullaev 2010 Andrzejak’s dataset Wavelet transform (Daubechies 2,4; Biorthogonal

1.3,1.5) + ANN (MLP)
95.49% sensitivity, 93.80% specificity, 94.69% accu-
racy

[347]
Boos 2011 35 EEG segments of sharp waves,

spikes, background activity, alpha
waves, artefacts and blinks

Extraction of morphological features + ANN (MLP with
3 layers, 7 to 11 neurons in the hidden layer, with fea-
tures as input)

90% correct identification

[275]
Ji 2011 21 channel EEGs from 2 epilepsy

patients, 46-50min
Template matching Patients may have different patterns in different chan-

nels, so multi-channel templates may be adequate

[348]
Juozapavicius 2011 Several 1h EEG recordings Morphological filtering (open-close-close-open) +

thresholding
Recognized epileptic spikes but also spikes not related
to epilepsy, as well as false positives in noisy areas

[276]
Ji 2011 19 channel EEG recordings Template matching Automatic detection is a useful assistant tool

[293]
Haydari 2011 Data from [328] Genetic algorithm + wavelet transform (Daubechies 4)

+ thresholding
96% sensitivity, 88.8% selectivity for an optimal thresh-
old of 33%

[245]
Guo 2011 Andrzejak’s dataset Wavelet transform + genetic algorithm + KNN 93.5±1.2% accuracy for the genetic programming +

KNN algorithm, 67.2±1.2% for the KNN alone

[294]
Wang 2011 Andrzejak’s dataset Wavelet transform + KNN + expert system 100% accuracy with 5-fold cross-validation
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[326]
Iscan 2011 Andrzejak’s dataset Cross correlation method to extract time features, power

spectral density to extract frequency features + SVM,
LV-SVM KNN, Parzen window classifier, LDA, De-
cision tree, Naive Bayes, Nearest mean classifier,
Quadratic classifier

LV-SVM, binary decision trees and quadratic classifiers
led to highest accuracies; combination of time and fre-
quency features led to higher accuracy

[322]
Martinez-
Vargas

2011 Andrzejak’s dataset Time-frequency analysis (parametric and non-
parametric) + KNN

All time-frequency approaches showed similar out-
comes, with accuracies ranging from 96% to 99%

[295]
Orhan 2011 Andrzejak’s dataset Wavelet transform (Daubechies 2) + K-means + ANN

(MLP, using the output of k-means as input)
98.80% accuracy, 99.33% specificity and 98.02% sensi-
tivity in the diagnosis of epilepsy

[277]
Nonclercq 2012 EEG recordings from 3 epilepsy

patients, 20-30min
Template matching + K-means 90.6% sensitivity, 89.9% selectivity

[296]
Artameeyanant 2012 6 groups of 100 single channel

EEG segments of 23.6s (spike,
epileptic, eyes closed, eyes
opened, body movement, normal)

Wavelet transform + ANN (trained using features such
as approximate entropy, derived from the wavelet trans-
form, as input)

76.55% sensitivity, 81.30% specificity, 89.47% accu-
racy

[297]
Sezer 2012 EEG recordings from 240 normal

controls and 240 epilepsy patients
Wavelet transform (Daubechies 2) + ANN (MLP, Elman
network, general regression network, probabilistic net-
work)

General regression network getting 100% sensitivity,
specificity, selectivity and accuracy on a random test set

[298]
Suresh 2013 EEG recordings from normal con-

trols and epilepsy patients
Wavelet transform (Daubechies 4) + energy estimation
+ ANN (trained using the features as input)

Spikes were successfully detected

[281]
Lodder 2013 20-30min recordings from 23

epilepsy patients; 8 used for train-
ing, 15 for testing

Template matching Mean sensitivity of 90% with 2.36 false positives per
minute

[279]
Liu 2013 16 channel EEGs from 3 normal

controls and 12 epilepsy patients
Nonlinear energy operator (k-NEO) + Mimetic method
+ Adaboost classifier

87.4-93.9% accuracy, 87.9-95.5% sensitivity, 86.7-
92.4% specificity for spike detection in the test set

[299]
Halford 2013 100 30s EEG recordings from 100

epilepsy patients
Wavelet transform + Fourier transform + bayesian clas-
sifier + ANN

Average sensitivity of 58.4% and specificity of 68.3%,
over all the classifiers and feature sets

[300]
Song 2013 100 single channel EEG record-

ings from 5 normal controls and 5
epilepsy patients, 23.6s each

Wavelet transform (Daubechies 4) + extraction of com-
plexity based features + genetic algorithm + ANN (ex-
treme learning machine (ELM))

96.0% sensitivity, 93.6% specificity, 94.8% accuracy
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[349]
Radmehr 2013 EEG from 1 epilepsy patient Wavelet transform + parametric method (time-varying

autorregressive model (TVAR)) + thresholding
It was possible to detect spikes

[350]
Chavakula 2013 75 EEG samples during sleep, 8

during wakefulness
Wavelet transform + thresholding + SVM compared to
Bayesian classifier

SVM led to the best ROC curve; it was possible to detect
spikes in all stages of the sleep cycle and wakefulness

[351]
Zhou 2013 21 channel EEGs from 100 pa-

tients (30s each)
Wavelet transform (Daubechies 2 and 4) + KNN (k=3,
10-fold cross-validation)

Wavelet features improve classification in up to 5.75%
in sensitivity and 6.76% in specificity

[13] Lodder 2014 8 EEGs from epilepsy patients
used for training, 15 for testing

SVM + template matching 95% of IEDs were detected after 15 iterations

[352]
Janca 2014 EEG recordings from 30 patients

with refractory epilepsy
Envelope modeling + thresholding 97.4±12.2% sensitivity, 36.3±22.7% selectivity,

8.2±7.4 false positive detections per minute

[353]
Horak 2015 12-24 channel EEG from 9

epilepsy patients
Template matching + SVM Template matching led to higher agreement with experts

when compared to template matching + SVM

[354]
Chaibi 2015 2min segments of stereotactic

EEG
Wavelet transform (continuous and discrete) + thresh-
olding

Discrete wavelet transform leads to better performance
in low signal to noise ratios (85.50% sensitivity)

[316]
Johansen 2016 30min recordings from 5 epilepsy

patients
ANN (1D CNN with 5 layers) AUC of 0.947

[355]
Thomas 2016 30min recordings from 50

epilepsy patients
K-means + K-medoids + fuzzy C-means clustering + ag-
glomerative clustering + affinity propagation template
matching

The affinity propagation-based template matching sys-
tem led to the highest AUC (0.953)

[280]
Jing 2016 30min recordings from 100

epilepsy patients
Dynamic time warping (DTW) + Template matching The algorithm reduces the time spent on annotating

spikes in about 70%

[315]
Tjepkema 2018 50/12 EEGs from normal controls

and 50/5 from focal epilepsy pa-
tients for training/testing

ANN (1 and 2D CNNs and LSTMs) 0.94 AUC for the test set; 47.4% sensitivity, 98.0%
specificity, 0.6 false detections per minute

[356]
Bagheri 2018 EEGs from 63 normal controls

and 93 epilepsy patients (average
28.5min)

SVM (single SVM compared to SVM cascade, 5-fold
cross-validation)

The cascade method increases precision, decreasing
false positive detections

[317]
Thomas 2018 30min EEG recordings from 63

normal controls and 93 epilepsy
patients

ANN (CNN, used for waveform classification) + SVM
(4-fold cross-validation)

83.86% accuracy, 55% precision at 80% sensitivity,
0.935 mean AUC
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Appendix B

Supplementary Figures of Chapter 6 -
Methods

Figure B.1: Schematic view of Set A.

Figure B.2: Schematic view of Set B.
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Figure B.3: Schematic view of Set C.

Figure B.4: Schematic view of Set D.

Figure B.5: Schematic view of Set E.

Figure B.6: Schematic view of Set F.

Figure B.7: Schematic view of Set G.
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Figure B.8: Schematic view of Set H.

Figure B.9: Schematic view of Set I.

Figure B.10: Schematic view of Set J.

Figure B.11: Separation of the data into the train/validation and test sets.
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Figure B.12: Architecture of the altered VGG C model.
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Figure B.13: Architecture of the altered ResNet50 model.

Figure B.14: Architecture of the M1 model.



98 Supplementary Figures of Chapter 6 - Methods

Figure B.15: Architecture of the M2 model.



Appendix C

Supplementary Figures of Chapter 7 -
Results

Figure C.1: Left: confusion matrix for the VGG network applied to the test set of Set A, with
threshold set at 0.5, without weights. Right: normalization of the confusion matrix shown on the
left.

Figure C.2: Normalized confusion matrix for the VGG network applied to the test set of Set A,
with threshold set at 0.5, with weights 10:1 (left), 50:1 (center) and 100:1 (right).
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(a) VGG (b) ResNet (c) M1 (d) M2

Figure C.3: Upper row: average ROC curves of the models applied to the training set of Set
A; bottom row: average ROC curves of the models applied to the test set of Set A. These were
built based on the results of 5-fold cross-validation, with weights 100:1. The 95% CI of the ROC
curves is shown as a shaded area. The resulting AUC value and corresponding 95% CIs are also
presented.
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Table C.1: Number of epochs (Epochs), number of IEDs (IEDs), Sensitivity (Sens), Specificity
(Spec), True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN)
in each recording on the test set of set B, classified by the VGG with weights 100:1, at a threshold
of 0.5.

Epochs IEDs FP FN TP TN Sens (%) Spec (%)
Normal 603 0 0 0 0 603 - 100.00

538 0 6 0 0 532 - 98.88
673 0 0 0 0 673 - 100.00
748 0 34 0 0 714 - 95.45
643 0 1 0 0 642 - 99.84
598 0 15 0 0 583 - 97.49
753 0 2 0 0 751 - 99.73

2053 0 16 0 0 2037 - 99.22
2067 0 51 0 0 2016 - 97.53
2760 0 135 0 0 2625 - 95.11
1521 0 5 0 0 1516 - 99.67
598 0 12 0 0 586 - 97.99

1273 0 0 0 0 1273 - 100.00
586 0 0 0 0 586 - 100.00

Focal 280 117 86 5 112 77 95.73 47.24
1154 39 32 12 27 506 69.23 94.05
1162 3 16 0 3 562 100.00 97.23
204 3 9 1 2 192 66.67 95.52
583 15 10 0 15 558 100.00 98.24

2903 65 134 12 53 2704 81.54 95.28
665 3 4 0 3 658 100.00 99.40
614 1 14 0 1 559 100.00 97.72
663 10 125 0 10 528 100.00 80.86
613 10 58 0 10 545 100.00 90.38

Generalized 618 43 70 1 42 505 97.67 87.83
594 8 29 0 8 557 100.00 95.05
592 9 33 0 9 550 100.00 94.34
590 9 18 2 7 563 77.78 96.90
626 4 24 0 4 598 100.00 96.14
631 34 25 3 31 572 91.18 95.81
195 4 40 0 4 151 100.00 79.06
604 21 32 3 18 551 85.71 94.51
588 36 62 0 36 490 100.00 88.77
638 3 13 0 3 622 100.00 97.95
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TP 1.0000 TN 0.0057 FP 0.6824 FN 0.3672

TP 1.0000 TN 0.0021 FP 0.6276 FN 0.1049

TP 1.0000 TN 0.0210 FP 0.9678 FN 0.0012

TP 0.9879 TN 0.3481 FP 0.8091 FN 0.4147

Figure C.4: Examples of the results obtained with occlusion for the models trained with Set B
and weights 100:1. First row: VGG; second row: ResNet; third row: M1; fourth row: M2. First
column: True Positives; second column: True Negatives; third column: False Positives; fourth
column: False Negatives. The probability assigned by the networks regarding the occurrence of
an IED in each sample is shown. The scale shows the difference between the probability assigned
to the epoch and the probability obtained when a patch is occluded, and warmer colors are assigned
to higher differences. Thus, areas plotted in warmer colors are more important for classification.
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Table C.2: Average sensitivity (Sens), specificity (Spec), false positive (FP/hour) and true positive
rates per hour (TP/hour) for the VGG, ResNet, M1 and M2 models trained with 100:1 weights
using Set C (left: training set; right: test set). These values were calculated based on the results of
5-fold cross-validation, using a threshold where the sensitivity is equal to the specificity. The 95%
CIs of each parameter are also presented.

Train Test
Sens (%) Spec (%) FP/hour TP/hour Sens (%) Spec (%) FP/hour TP/hour

VGG
85.04
(76.44-
93.65)

85.87
(78.40-
93.34)

247.32
(116.88-
377.76)

41.69
(33.75-
49.62)

79.07
(65.75-
92.39)

79.94
(66.27-
93.60)

348.60
(111.15-
586.06)

49.30
(40.99-
57.60)

Res
93.84
(89.92-
97.76)

94.05
(88.61-
98.68)

103.46
(23.00-
199.50)

43.56
(39.48-
52.28)

74.08
(66.44-
81.71)

90.08
(81.84-
98.32)

172.4
(29.28-
315.53)

46.18
(41.42-
50.94)

M1
92.32
(83.74-
1.00)

91.97
(86.40-
97.54)

140.52
(43.29-
137.75)

45.11
(38.12-
52.10)

76.70
(62.91-
90.49)

76.71
(63.21-
90.21)

404.78
(170.19-
639.36)

47.82
(39.22-
56.42)

M2
88.91
(80.84-
96.99)

88.56
(80.42-
96.70)

200.43
(57.31-
343.57)

43.32
(38.50-
48.14)

79.18
(68.33-
90.04)

80.30
(67.48-
93.12)

342.32
(119.49-
565.16)

49.37
(42.60-
56.13)

(a) VGG (b) ResNet (c) M1 (d) M2

Figure C.5: Upper row: average ROC curves of the models applied to the training set of Set
C; bottom row: average ROC curves of the models applied to the test set of Set A. These were
built based on the results of 5-fold cross-validation, with weights 100:1. The 95% CI of the ROC
curves is shown as a shaded area. The resulting AUC value and corresponding 95% CIs are also
presented.
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Table C.3: Number of epochs (Epochs), number of IEDs (IEDs), Sensitivity (Sens), Specificity
(Spec), True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN)
in each recording on the test set of set C, classified by the VGG with weights 100:1, at a threshold
of 0.5.

Epochs IEDs FP FN TP TN Sens (%) Spec (%)
Normal 793 0 4 0 0 789 - 99.50

533 0 9 0 0 524 - 98.31
563 0 5 0 0 558 - 99.11
673 0 0 0 0 673 - 100.00
603 0 7 0 0 596 - 98.84
663 0 5 0 0 658 - 99.25
603 0 0 0 0 603 - 100.00
593 0 0 0 0 593 - 100.00
2053 0 69 0 0 1984 - 96.64
1895 0 26 0 0 1869 - 98.63
1723 0 23 0 0 1700 - 97.34
598 0 45 0 0 553 - 92.47
1273 0 0 0 0 1273 - 100.00
610 0 9 0 0 601 - 98.52

Abnormal 623 0 53 0 0 570 - 91.49
658 0 0 0 0 658 - 100.00
533 0 12 0 0 521 - 97.75
393 0 48 0 0 345 - 87.79
668 0 20 0 0 648 - 97.01
429 0 24 0 0 399 - 94.33
477 0 4 0 0 473 - 99.16
637 0 4 0 0 633 - 99.37
512 0 20 0 0 492 - 96.09
633 0 19 0 0 614 - 97.00
981 0 88 0 0 893 - 91.03

Focal 577 39 35 12 27 503 69.23 93.49
523 95 22 60 35 406 36.84 94.86
611 5 11 1 4 595 80.00 98.18
883 11 47 4 7 825 63.64 94.61
534 67 65 6 61 402 91.04 86.08
606 3 12 0 3 591 100.00 98.01
639 53 1 53 0 585 0.00 99.83
550 43 42 23 20 465 46.51 91.72
581 23 164 3 20 394 86.96 70.61
612 6 4 2 4 602 66.67 99.34

Generalized 618 43 85 0 43 490 100.00 85.22
594 8 27 1 7 559 87.50 95.39
654 20 182 0 20 452 100.00 71.29
489 122 101 14 108 266 88.52 72.48
195 4 74 0 4 117 100.00 61.16
589 11 36 0 11 542 100.00 93.77
604 21 33 5 16 550 76.19 94.34
1121 34 116 2 32 971 94.12 89.33
614 12 14 1 11 588 91.67 97.67
510 89 112 5 84 309 94.38 73.40
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TP 0.9777 TN 0.0001 FP 0.5857 FN 0.4893

TP 0.9992 TN 0.0000 FP 0.9999 FN 0.0073

TP 0.9639 TN 0.0000 FP 0.5461 FN 0.4119

TP 0.6789 TN 0.0000 FP 0.6147 FN 0.0006

TP 1.0000 TN 0.0000 FP 0.6898 FN 0.1551

TP 0.9995 TN 0.0835 FP 0.8055 FN 0.0000

TP 0.8555 TN 0.0002 FP 0.6919 FN 0.4987

TP 0.9999 TN 0.4898 FP 0.6423 FN 0.5925

Figure C.6: Examples of the results obtained with occlusion for the models trained with Set B and
weights 100:1. First and second rows: VGG; third and fourth rows: ResNet; fifth and sixth rows:
M1; seventh and eighth rows: M2. First column: True Positives; second column: True Negatives;
third column: False Positives; fourth column: False Negatives. The probability assigned by the
networks regarding the occurrence of an IED in each sample is shown. The scale shows the
difference between the probability assigned to the epoch and the probability obtained when a
patch is occluded, and warmer colors are assigned to higher differences. Thus, areas plotted in
warmer colors are more important for classification.
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Table C.4: Average sensitivity (Sens), specificity (Spec), false positive (FP/hour), false negative
(FN/hour), true positive (TP/hour) and true negative rates (TN/hour) per hour for the VGG and
ResNet models trained with Set D (top: training set, bottom: test set). These values were cal-
culated based on the results of 5-fold cross-validation, using a threshold where the sensitivity is
equal to the specificity. The 95% CIs of each parameter are also presented.

Train
Sens (%) Spec (%) FP/hour FN/hour TP/hour TN/hour

VGG
96.26
(92.91-
99.60)

96.12
(91.24-
1.00)

48.96
(0.00-
109.49)

18.59
(2.38-
34.80)

491.31
(430.56-
552.06)

1241.1
(1133.20-
1349.00)

Res
94.05
(91.8-
96.21)

94.27
(92.45-
96.09)

73.51
(52.95-
94.07)

30.00
(19.84-
40.16)

479.89
(424.86-
534.93)

1216.6
(1146.00-
1287.20)

Test
Sens Spec FP/hour FN/hour TP/hour TN/hour

VGG
80.75
(66.77-
94.73)

80.75
(69.89-
91.61)

199.48
(86.94-
312.02)

147.01
(40.27-
253.75)

616.62
(509.89-
723.36)

836.88
(724.34-
949.42)

Res
78.84
(76.25-
81.44)

78.5
(70.79-
86.20)

222.86
(143.03-
302.69)

161.56
(141.76-
181.36)

602.08
(582.28-
621.88)

813.51
(733.78-
893.33)

(a) VGG, set E (b) ResNet, set E (c) VGG, set F

Figure C.7: Upper row: average ROC curves of the models applied to the training set of Sets E/F;
bottom row: average ROC curves of the models applied to the test set of Sets E/F. These were
built based on the results of 5-fold cross-validation. The 95% CI of the ROC curves is shown as a
shaded area. The resulting AUC value and corresponding 95% CIs are also presented.
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Table C.5: Average sensitivity (Sens), specificity (Spec), false positive (FP/hour) and true positive
rates per hour (TP/hour) for the VGG model trained with Set E and Set F and for the ResNet
model trained with Set E(left: training set; right: test set). These values were calculated based
on the results of 5-fold cross-validation, using a threshold where the sensitivity is equal to the
specificity. The 95% CIs for each parameter are also presented.

Train Test
Sens Spec FP/hour TP/hour Sens (%) Spec (%) FP/hour TP/hour

VGG
(Set E)

99.18
(98.43-
99.93)

99.19
(98.16-
100.00)

9.38
(0.00-
21.62)

662.36
(600.92-
723.80)

63.62
(48.42-
78.83)

70.73
(55.33-
86.13)

322.18
(152.71-
491.66)

444.94
(338.61-
551.27)

ResNet
(Set E)

81.33
(63.79-
98.86)

83.04
(76.67-
89.41)

192.37
(117.18-
267.56)

538.84
(450.75-
626.92)

48.03
(39.97-
56.08)

75.92
(66.94-
84.89)

265.06
(166.28-
363.85)

335.86
(279.50-
392.23)

VGG
(Set F)

98.96
(97.63-
100.00)

98.96
(98.11-
99.81)

7.53
(1.31-
13.65)

1067.2
(1054.30-
1080.10)

73.92
(64.65-
83.18)

73.66
(69.76-
77.57)

169.71
(144.53-
194.90)

854.14
(747.03-
961.25)

(a) Focal (b) Generalized (c) Normal

Figure C.8: Upper row: average ROC curves of the VGG model applied to the training set of Set
G; bottom row: average ROC curves of the VGG model applied to the test set of Set G. These
were built based on the results of 5-fold cross-validation. The 95% CI of the ROC curves is shown
as a shaded area. The resulting AUC value and corresponding 95% CIs are also presented.
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Table C.6: Average per class accuracy (Acc), sensitivity (Sens) and specificity (Spec) for the VGG
model trained with Set G and Set H. These values were calculated on the test set, based on the
results of 5-fold cross-validation, using a threshold where the sensitivity is equal to the specificity.
The 95% CIs of each parameter are also presented.

Set G Set H
Class Acc (%) Sens (%) Spec (%) Acc (%) Sens (%) Spec (%)

Focal
60.05
(51.01-
69.09)

59.53
(32.05-
87.01)

60.24
(38.98-
81.50)

79.37
(63.73-
95.01)

80.65
(51.76-
100.00)

79.34
(62.88-
95.80)

Generalized
56.06
(51.60-
60.52)

57.29
(38.80-
75.77)

55.44
(39.76-
71.11)

89.99
(82.87-
97.11)

90.61
(76.71-
100.00)

89.99
(82.69-
97.28)

Normal
95.11
(60.79-
69.43)

64.42
(55.10-
73.75)

65.56
(52.50-
78.62)

82.34
(68.85-
95.84)

82.32
(67.81-
96.83)

83.13
(58.91-
100.00)

(a) Focal (b) Generalized (c) Normal

Figure C.9: Upper row: average ROC curves of the VGG model applied to the training set of Set
H; bottom row: average ROC curves of the VGG model applied to the test set of Set H. These
were built based on the results of 5-fold cross-validation. The 95% CI of the ROC curves is shown
as a shaded area. The resulting AUC value and corresponding 95% CIs are also presented.
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(a) Focal (b) Generalized (c) Normal (d) Abnormal

Figure C.10: Upper row: average ROC curves of the VGG model applied to the training set of Set
I; bottom row: average ROC curves of the VGG model applied to the test set of Set I. These were
built based on the results of 5-fold cross-validation. The 95% CI of the ROC curves is shown as a
shaded area. The resulting AUC value and corresponding 95% CIs are also presented.

(a) Focal (b) Generalized (c) Normal (d) Abnormal

Figure C.11: Upper row: average ROC curves of the VGG model applied to the training set of Set
J; bottom row: average ROC curves of the VGG model applied to the test set of Set J. These were
built based on the results of 5-fold cross-validation. The 95% CI of the ROC curves is shown as a
shaded area. The resulting AUC value and corresponding 95% CIs are also presented.
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Table C.7: Average per class accuracy (Acc), sensitivity (Sens) and specificity (Spec) for the VGG
model trained with Set I and Set J. These values were calculated on the test set, based on the results
of 5-fold cross-validation, using a threshold where the sensitivity is equal to the specificity. The
95% CIs of each parameter are also presented.

Set I Set J
Class Acc (%) Sens (%) Spec (%) Acc (%) Sens (%) Spec (%)

Focal
55.51
(47.42-
63.61)

55.15
(45.93-
64.37)

55.59
(44.37-
66.81)

77.34
(59.00-
95.67)

79.03
(51.76-
100.00)

77.31
(58.36-
96.26)

Generalized
67.87
(61.33-
74.40)

67.69
(49.28-
86.10)

67.91
(55.45-
80.37)

85.54
(76.01-
95.08)

87.52
(78.75-
96.30)

85.53
(75.92-
95.15)

Normal
61.11
(57.49-
64.74)

61.66
(55.70-
67.61)

60.72
(50.97-
70.46)

74.37
(71.26-
77.47)

74.20
(64.30-
84.10)

74.65
(65.12-
84.17)

Abnormal
71.17
(58.91-
83.43)

71.40
(53.07-
90.31)

71.11
(51.91-
90.31)

74.76
(72.55-
76.96)

74.49
(67.62-
81.35)

74.90
(68.11-
81.70)
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