955 research outputs found

    Automated methods for tuberculosis detection/diagnosis : a literature review

    Get PDF
    Funding: Welcome Trust Institutional Strategic Support fund of the University of St Andrews, grant code 204821/Z/16/Z.Tuberculosis (TB) is one of the leading infectious causes of death worldwide. The effective management and public health control of this disease depends on early detection and careful treatment monitoring. For many years, the microscopy-based analysis of sputum smears has been the most common method to detect and quantify Mycobacterium tuberculosis (Mtb) bacteria. Nonetheless, this form of analysis is a challenging procedure since sputum examination can only be reliably performed by trained personnel with rigorous quality control systems in place. Additionally, it is affected by subjective judgement. Furthermore, although fluorescence-based sample staining methods have made the procedure easier in recent years, the microscopic examination of sputum is a time-consuming operation. Over the past two decades, attempts have been made to automate this practice. Most approaches have focused on establishing an automated method of diagnosis, while others have centred on measuring the bacterial load or detecting and localising Mtb cells for further research on the phenotypic characteristics of their morphology. The literature has incorporated machine learning (ML) and computer vision approaches as part of the methodology to achieve these goals. In this review, we first gathered publicly available TB sputum smear microscopy image sets and analysed the disparities in these datasets. Thereafter, we analysed the most common evaluation metrics used to assess the efficacy of each method in its particular field. Finally, we generated comprehensive summaries of prior work on ML and deep learning (DL) methods for automated TB detection, including a review of their limitations.Publisher PDFPeer reviewe

    Detection Technique of Squamous Epithelial Cells in Sputum Slide Images Using Image Processing Analysis

    Full text link
    A good quality sputum is important to detect diseases. The presence of squamous epithelial cells (SEC) in sputum slide images is important to determine the quality of sputum. The presence of overlapping SEC in sputum slide images causes the process become complicated and tedious. Therefore this paper discusses on technique of detection and summation for Squamous Epithelial Cell (SEC) in sputum slide image. We addressed the detection problem by combining K-means and color thresholding algorithm. The design of aided system is evaluated using 200 images and the proposed technique is capable to detect and count each SEC from overlapping SEC image. Total of 200 images were clustered to 10 groups, labelled as Group Cell 1 to group Cell 10 that correspond to the number of cells in the image. Therefore, each group will contain 20 images. The accuracy of the algorithm to detect SEC was also measured, and results show that in 91% which provides a correct SEC detection and summation

    Detection Technique of Squamous Epithelial Cells in Sputum Slide Images using Image Processing Analysis

    Get PDF
    A good quality sputum is important to detect diseases. The presence of squamous epithelial cells (SEC) in sputum slide images is important to determine the quality of sputum. The presence of overlapping SEC in sputum slide images causes the process become complicated and tedious. Therefore this paper discusses on technique of detection and summation for Squamous Epithelial Cell (SEC) in sputum slide image. We addressed the detection problem by combining K-means and color thresholding algorithm. The design of aided system is evaluated using 200 images and the proposed technique is capable to detect and count each SEC from overlapping SEC image. Total of 200 images were clustered to 10 groups, labelled as Group Cell 1 to group Cell 10 that correspond to the number of cells in the image. Therefore, each group will contain 20 images. The accuracy of the algorithm to detect SEC was also measured, and results show that in 91% which provides a correct SEC detection and summation

    Tuberculosis bacteria detection and counting in fluorescence microscopy images using a multi-stage deep learning pipeline

    Get PDF
    The manual observation of sputum smears by fluorescence microscopy for the diagnosis and treatment monitoring of patients with tuberculosis (TB) is a laborious and subjective task. In this work, we introduce an automatic pipeline which employs a novel deep learning-based approach to rapidly detect Mycobacterium tuberculosis (Mtb) organisms in sputum samples and thus quantify the burden of the disease. Fluorescence microscopy images are used as input in a series of networks, which ultimately produces a final count of present bacteria more quickly and consistently than manual analysis by healthcare workers. The pipeline consists of four stages: annotation by cycle-consistent generative adversarial networks (GANs), extraction of salient image patches, classification of the extracted patches, and finally, regression to yield the final bacteria count. We empirically evaluate the individual stages of the pipeline as well as perform a unified evaluation on previously unseen data that were given ground-truth labels by an experienced microscopist. We show that with no human intervention, the pipeline can provide the bacterial count for a sample of images with an error of less than 5%.Publisher PDFPeer reviewe

    Tuberculosis Extra Pulmonary Bacilli Detection System Based on Ziehl Neelsen Images with Segmentation

    Get PDF
    Tuberculosis Extra Pulmonary (TBEP) is one of the infectious diseases that can cause death. The bacterium Mycobacterium tuberculosis is the cause of this disease. Patients suffering from this disease must be treated quickly. Currently, patients need a long time and a large cost in detecting the bacteria that cause this disease. The technique used is to take the patient's lung fluid by biopsy and given Ziehl Neelsen chemical dye and then observed using a microscope. This study aims to help detect bacteria quickly and precisely by processing the image produced by the microscope. The technique used is to develop the segmentation method. The segmentation process carried out is to develop a Hue Saturation Value (HSV) color space transformation technique with Active Contour, Edge Detection, and Otsu techniques. The images used in this research are 51 images taken from H. Adam Malik Hospital, Medan and have been validated by an expert. Of the several segmentation methods used in this study, the maximum or best result in detecting Tuberculosis Extra Pulmonary (TBEP) bacilli is the Otsu method. So the method developed is very helpful in accelerating the detection of TBEP

    Hardware and software integration and testing for the automation of bright-field microscopy for tuberculosis detection

    Get PDF
    Automated microscopy for the detection of tuberculosis (TB) in sputum smears would reduce the load on technicians, especially in countries with a high TB burden. This dissertation reports on the development and testing of an automated system built around a conventional microscope for the detection of TB in Ziehl-Neelsen (ZN) stained sputum smears. Microscope auto-focusing, image analysis and stage movement were integrated. Images were captured at 40x magnification

    A novel algorithm for detection of tuberculosis bacilli in sputum smear fluorescence images

    Get PDF
    This work proposes an algorithm aimed at recognizing and accounting Koch bacilli in digital images of microbiological sputum samples stained with auramine, in order to determine the degree of concentration and the state of the disease (tuberculosis). The algorithm was developed with the main objective of maximizing the sensitivity and specificity of the analysis of microbiological samples (recognition and counting of bacilli) according to each preparation method (direct and diluted pellets) in order to reduce the subjectivity of the visual inspection applied by the specialist at the time of analyzing the samples. The proposed algorithm consists of a background removal, an image improvement stage based on consecutive morphological closing operations, a segmentation stage of objects of interest based on thresholdization and a classification stage based on SVM. Each algorithmic stage was developed taking into account the method of preparation of the sample to be processed, being this aspect the main contribution of the proposed work, since it was possible to achieve very satisfactory results in terms of specificity and sensitivity. In this context, sensitivity levels of 91.24% and 93.79% were obtained. Specificity levels of 90.33% and 94.85% were also achieved for direct and diluted pellet methods respectively
    • …
    corecore