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Identifying bacteria species on microscopic
polyculture images using deep learning
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Monika Brzychczy-Włoch and Bartosz Zieliński

Abstract— Preliminary microbiological diagnosis usually
relies on microscopic examination and, due to the rou-
tine culture and bacteriological examination, lasts up to
11 days. Hence, many deep learning methods based on
microscopic images were recently introduced to replace the
time-consuming bacteriological examination. They shorten
the diagnosis by 1-2 days but still require iterative culture
to obtain monoculture samples. In this work, we present
a feasibility study for further shortening the diagnosis
time by analyzing polyculture images. It is possible with
multi-MIL, a novel multi-label classification method based
on multiple instance learning. To evaluate our approach,
we introduce a dataset containing microscopic images for
all combinations of four considered bacteria species. We
obtain ROC AUC above 0.9, proving the feasibility of the
method and opening the path for future experiments with a
larger number of species.

Index Terms— Deep Learning, Medical Imaging, Microor-
ganisms, Microscopy, Neural Networks

I. INTRODUCTION

Recognizing genera and species of bacteria is crucial in
many domains, such as medicine, veterinary, biochemistry,
food industry, and farming, because they can cause many
diseases, including infectious ones. Therefore, it is necessary
to automate the recognition process and, in consequence,
accelerate bacteriological diagnosis. This would allow for
implementation of appropriate medical prophylaxis and enable
target treatment.

The standard bacterial diagnostics procedure [1], presented
in the upper part of Fig. 1, starts with collecting various types
of test materials, such as swabs, scraps of skin lesions, urine,
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blood, or cerebrospinal fluid. Then, the clinical material is
directly cultured on special media under specific temperature
conditions (usually for 1-2 days, blood and cerebrospinal fluid
samples require prior cultivation in automated closed systems
for additional 1-5 days). Often bacteria colonies are too close
to each other and it is not feasible to obtain monoculture
colonies after the first inoculation on the culture medium.

To obtain samples with single species, they need to be
separated in an iterative process (1-2 days). The initial identifi-
cation of bacteria is based on microscopic observation, which
takes into account the growth rate, type, shape, and color. Such
analysis allows only approximate identification due to species
similarity, in consequence, a bacteriological examination is
required. It is a set of pre-laboratory and laboratory procedures
aimed at identifying microorganisms and determining their
drug sensitivity. Diagnostic diagrams in bacteriology consist
of the following laboratory procedures: 1) microscopic exam-
ination of the direct preparation; 2) inoculating the material
on an appropriate medium to obtain pure bacterial cultures;
3) morphological macro and microscopic observations of the
obtained cultures; 4) testing the physiological properties of
pure cultures; 5) immunological research; and 6) determination
of sensitivity to antimicrobial substances, including drugs.
Conventional bacteriological examination may take up to 11
days.

Due to the long time required for the standard process of
species identification and its high costs [2], it is beneficial to
use methods that do not rely on conventional methods. Exist-
ing solutions can automatically distinguish between bacteria
and fungi species [3], [4] or even bacteria clones [5] using
microscopic images and deep learning methods. However, it is
only possible for monoculture images, which requires multiple
culture iterations.

In this work, we present a feasibility study for a further
acceleration of diagnosis by reducing the number of culture
iterations. For this purpose, we introduce a multi-label clas-
sification method based on multiple instance learning [6] to
address a shortage of GPU memory when training the model
on high resolution images. Firstly, we split each image into
smaller patches to which we assign the image labels. Because
each patch is associated with a label, we can train a patch
classifier. The output of its penultimate layer serves to generate
a patch representation. Finally, we aggregate representations
of all patches belonging to the analyzed image and pass the
cumulative representation to the classifier.
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Fig. 1. Standard microbiological diagnosis requires iterative species division culture and biochemical tests, extending the diagnosis process up to
11 days. While the existing methods for automatic species identification do not require biochemical tests, they still need iterative species division
and culture as they require monoculture images. In contrast, our method works on polyculture images. Hence, diagnosis shortens to 2 − 7 days.

To evaluate our approach, we introduce a dataset containing
microscopic images for all combinations of four considered
bacteria species. Moreover, we provide results for different
variants of our method and compare them with existing
state-of-the-art approaches. Additionally, we preform extensive
ablations studies: on set of species of high resemblance as
well as how image magnification and amount of training
data influence the performance. Our contributions can be
summarized as follows:

• Shortening the time of bacteria identification with meth-
ods classifying polyculture images.

• Introducing multi-MIL, a multi-label classification
method based on multiple instance learning, with in-
creased interpretability compared to existing methods.

• Providing a methodology for creating controlled datasets
of polyculture images of exactly known species, similar
to real-life images.

II. RELATED WORKS

For various medical purposes, e.g. an epidemiological in-
vestigation [5] and an infection diagnosis [3], the classification
of microbiological organisms, especially bacteria, is essential.
Traditional methods of microorganism identification and clas-
sification are expensive and labour-intensive [7]. Therefore,
researchers have been developing machine learning techniques
to improve or even automate recognition of non-living in-
fectious agents (e.g. viruses [8]) and microorganisms such

as algae [9], bacteria [10], fungi [11], and protozoa [12].
However, according to our best knowledge, existing methods
focus on identifying a single microbe per microscopy image.

Identification of microbes can be described in the context of
types of imaging, taxonomy, and computational methods such
as deep learning. However, due to the variety of approaches,
we decided to present the related works chronologically,
emphasizing computer vision methods and bacteria species
identification.

One of the first works [13] clustered dinoflagellate cyst
with self-organized maps (SOMs) on microscope-mounted
camera images. Later, in [14] an artificial neural network
was trained using contour invariant moment and morpholog-
ical features extracted from microscopy images to identify
wastewater bacteria. Just a year later, a probabilistic neural
network [15] was used to classify five microorganisms, stained
with fluorescent dyes and captured with a light microscope.
The authors used nine morphological features to describe
microbes in images of single bacteria extracted from the
original microscopy image. At the same time, in [16], decision
trees were used to identify Mycobacterium tuberculosis from
ZN-stained sputum smear images. Hiremath and Bannigidad
of [17] exploited information about cocci bacteria geometry
and extracted morphological features, such as sphericality, to
train a 3σ method, kNN, and ANN classifiers.

In successive years, researchers explored the classification
of micro-organisms using methods such as random forest for
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Fig. 2. In our database, bacteria species were mixed in all possible combinations to create samples containing 1, 2, 3, and 4 different species. The
abbreviation EC refers to Escherichia coli, LP to Lactobacillus plantarum, NG to Neisseria gonorrhoeae, and SA to Staphylococcus aureus.

classification of tuberculosis bacteria [18], minimal sequential
optimization for an algae image classification [19], genetic
programming for representing an image and optimum-path
forest classifier [20]. The last work examined bright-field mi-
croscopy images of the 15 most common species of protozoan
cysts, helminth eggs, and larvae with fecal impurities. Priya
and Srinivasan of [21] also delve into tuberculosis research
by extraction of fifteen Fourier descriptors passed to a multi-
layer perceptron with activations classified via support vector
machines. Meanwhile, five species of Staphylococcus bacteria
were identified in hyperspectral microscopic images [22], and
their classification was conducted with SVM and Partial Least
Square Discriminant Analysis (PLS-DA).

Then, [3] classified bacteria colony using deep learning
approach. Similarly, in [23] authors used textures features
extracted from CNNs to identify gut bacteria in larval zebrafish
using 3D light-sheet fluorescence microscopy images. Lak-
shmi and Sivakumar of [24] compared a multitude of methods,
i.e. kNN, SVM, RF, ANN, and CNN which achieved the
highest accuracy. In [25], a system for environmental microor-
ganism classification on microscopic images was presented,
and the authors used Conditional Random Fields (CRF) and
Deep Convolutional Neural Networks (DCNN).

In recent years, CNN with Raman spectroscopy was used
in [26], which used the database of thirty yeast and bacterial
isolates of five species. Arredondo-Santoyo, et al. of [27]
investigated standard features, expert features, and features
extracted using deep neural networks. This approach involved
various machine learning algorithms,i.e. logistic regression,
KNN, SVM, and random forest for classification. They also
present the problem of dye decolorization in fungal strains.
Fungus classification was also focus of [28] with the use of
Fisher Vector and Random Forest on features extracted from

AlexNet neural network [29]. Seven food-borne pathogens,
captured with hyperspectral imaging, were classified using
pixel features and a classifier based on SVM, competitive
adaptive weighted sampling, and particle swarm optimiza-
tion [30]. A novel approach based on coherent time-lapse
images was used in [31] to detect live bacteria, even mixes
of two species.

In the latest research, [5] used attention-based multiple
instance learning pooling to classify clones of Klebsiella pneu-
moniae as well as persistence homology to obtain explanations
of the model and description of each clone. Yu, et al. of [32]
created a hierarchical classification model for taxonomy pur-
poses with PCA, LDA, and random forest, using gold nanopar-
ticles measurements. Then, transfer learning was used in [33]
with ResNet-18 [34] to detect longitudinal bacterial fission
and in [35] with atrous convolution. Finally, [36] used various
convolutional architectures to generate image representation
which were then concatenated and classified with xgboost [37].
More detailed insights about microbe classification can be
found in reviews [38]–[40].

According to our best knowledge, none of the aforemen-
tioned works consider a dataset of mixed bacteria species
captured on microscopy images as an alternative approach
for iterative species division and culture in microbiological
diagnosis. Therefore, in this work, we describe the results of
a feasibility study on this problem.

III. MATERIALS

For this feasibility study, we selected four representative
species of Gram-positive (Lactobacillus plantarum, Staphylo-
coccus aureus) and Gram-negative bacteria (Escherichia coli,
Neisseria gonorrhoeae) with significantly different morphol-
ogy [41]–[43]. All microorganisms came from the American
Type Culture Collection (ATCC).
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Fig. 3. Our method identifies bacteria species based on a ninput image. Its following steps divide the image into patches, create their
representations, and aggregate and classify them.

L. plantarum belongs to the genus Lactobacillus called
Lactic Acid Bacteria (LAB) and is facultatively anaerobic or
strictly anaerobic rods. These microorganisms are a component
of microbiota of the mouth, vagina, stomach, intestines, and
genitourinary tract, especially in breastfed infants. Also, they
are found in water, sewage, plants, food products, human
body, and warm-blooded animals. The LAB bacteria are most
commonly isolated in urine specimens and blood cultures
due to transient bacteremia, endocarditis, or opportunistic
septicemia. Lactobacillus strains are also very widely used
as probiotics [44]. S. aureus is the best-known, highly vir-
ulent member of the genus Staphylococcus which are im-
portant pathogens in humans, causing a wide spectrum of
life-threatening systematic diseases, including infections of
the bones, skin, soft tissue, urinary tract, and opportunistic
infections. They also cause sepsis and septic shock [45]. E. coli
is an important member of the family Enterobacteriaceae and
the most common aerobic, Gram-negative rods in the gastroin-
testinal tract. This bacteria is associated with various diseases,
including gastroenteritis and extraintestinal infections such as
urinary tract infections, meningitis, sepsis, and hemorrhagic
colitis. Moreover, the presence of E. coli in the human intestine
is an important indicator of fecal contamination of water, food,
and medicines [46]. N. gonorrhoeaea is the etiological factor
of gonorrhea, one of the most widespread sexually transmitted
diseases. These bacteria are strictly human pathogens [47].
Pure cultures of E. coli (strain ATCC 25922) were grown
overnight at 37◦C on MacConkey agar (MAC agar, Merck
Germany), L. plantarum (strain ATCC14431) was isolated
from MRS medium (De Man, Rogosa and Sharpe agar, Ox-
oid, UK), N. gonnorhoeae was selected from Theyer-Martin
medium (T-M medium, Graso, Poland), and S. aureus was
cultiveted on Columbia CNA Agar with 5% Sheep Blood
(CNA agar, Becton Dickinson, Germany). Then, samples of

each bacteria were isolated from single bacterial colonies
using a 1 µl calibrated loop (Bionovo, Poland) and mixed
on the surface of a basic microscope slide in a drop of saline.
Bacteria species were mixed in all possible combinations to
create samples containing up to 4 different species. Additional
replicate was made for each mix, resulting in two microscopic
preparation on two different slides. After fixing the slides over
the flame of a hot burner for 10 seconds, they were Gram-
stained using a commercially available kit (Merck, Poland)
according to the manufacturer’s instructions [42], [48]. Finally,
microscopic images of samples were taken from 10 different
locations per slide. The resolution of obtained images was
4912 × 3684 pixels. Images were taken using an Olympus
BX63 microscope with 100× super-apochromatic objective
under oil-immersion. The photographic documentation was
then produced with an Olympus Hamamatsu camera ORC and
CellSense software (Olympus).

IV. METHODS

To identify bacteria species, we develop a pipeline which
for a given image returns labels yc ∈ {0, 1} for c = 1, .., C
corresponding to each of C bacteria species. The pipeline
starts with an image preprocessing and extracting its patches
X = {x1, .., xn}. Then, it generates representations of patches
{h1, .., hn} using a representation network f without the
last layer (denoted f−1). Patches’ representations are then
aggregated into an image representation h using various types
of pooling p. Finally, a multi-label classifier g obtains C
predictions.

A. Preprocessing images and extracting patches
First, we decrease each image size by two in each dimension

(magnification: 1/4x) and we divide images into patches of
resolution 250×250 pixels using a sliding window mechanism
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TABLE I
RESULTS OF PATCH-BASED (CNN) AND IMAGE-BASED METHODS (REMAINING ROWS) FOR ALL THREE SCENARIOS PRESENTED IN SECTION V.

RESULTS IN BOLD ARE STATISTICALLY BETTER ACCORDING TO THE WILCOXON SIGNED-RANK TEST.

Accuracy (%) ROC AUC
Method poly-poly mono-poly mono-mono poly-poly mono-poly mono-mono

CNN 84.8± 1.7 62.3± 2.6 0.935± 0.014 0.821± 0.022

Instance + MV 87.7± 1.9 60.6± 1.4 n/a n/a
Instance + mean 87.7± 1.8 60.7± 1.5 0.943± 0.012 0.835± 0.038
Instance + max 74.1± 3.9 72.7± 5.4 72.7± 5.4 0.954± 0.010 0.827± 0.055

Embedding + mean 90.4± 0.9 81.8± 0.8 61.8± 1.5 0.960± 0.007 0.887± 0.014 0.754± 0.115
Embedding + max 89.9± 1.0 82.6± 1.6 60.5± 2.1 0.961± 0.015 0.887± 0.012 0.735± 0.137

RNN 86.7± 2.2 79.0± 2.4 61.6± 1.1 0.912± 0.014 0.852± 0.016 0.698± 0.017
AbMILP 90.1± 1.6 85.2± 1.1 62.3± 2.2 0.972± 0.009 0.899± 0.012 0.846± 0.037

multi-AbMILP 89.0± 5.9 95.4± 2.4 64.1± 1.5 0.944± 0.041 0.950± 0.029 0.860± 0.062
multi-LA 91.6± 0.7 96.0± 2.5 71.1± 4.2 0.954± 0.014 0.986± 0.014 0.882± 0.037

with stride 125. This introduces some redundancy in informa-
tion but allows us to include each bacteria cell. Some patches
may not contain any material or bacteria overlapping so much
that is impossible to classify them. This is due to bacterial cells
being characterized by low density, they refract and absorb
light poorly, which makes it difficult to distinguish them
from the background, therefore they are clearly visible in the
microscope only after staining. The microscopic preparation is
prepared on a degreased, cooled glass slide by applying and
spreading (smear) drops of the bacterial suspension using a
loop. Although there are loops with a strictly defined mesh
diameter, eg 1 µl, 10 µl (so-called calibrated loops), while
making a smear, even a calibrated loop cannot be controlled
in any way by the random pattern of cells obtained on the
slide. To reduce use of such uncontrolled patterns, we calculate
the standard deviation σp of the pixel intensities and remove
patches with σp 6∈ [2, 15]. The interval value for standard
deviation σp was obtained experimentally using a training
dataset to maximize the number of patches with clearly visible
bacteria cells. Finally, following a good practice [49] and
previous research [5], [28], [50], we normalize the remaining
patches by subtracting the mean and dividing by the standard
deviation. Both values are again derived from training patches.
On average, we’ve obtained 160 patches per image resulting
in total in 47149 patches obtained from 293 images. Detailed
information about each experiment are presented in Table II.

B. Generating patches’ representations
To derive a meaningful patch representation, we use a

transfer learning technique. We pretrain ResNet-18 [34] neural
network on ImageNet [51]. Then, we replace the last layer
of the pretrained neurons with four neurons corresponding
to four bacteria species and finetune the model (denoted f )
with previously extracted patches. The resulted model without
the final layer (denoted f−1) is used to generate patches’
representation hi.

C. Aggregation and classification
Here, we first recall the multiple instance learning defi-

nition and then provide its specific implementations, includ-
ing instance and embedding-based methods, recurrent neural
network, attention-based methods, and our novel multi-label
Multiple Instance Learning (multi-MIL).

a) Definition: A typical supervised problem assumes that
a single input x corresponds to a single output y of the
model. However, in Multiple Instance Learning (MIL) [52],
each input is represented by a bag of instances X = {xi}ni=1

of variable size n, which also corresponds to a single output
y. Moreover, in the standard MIL assumption there is binary
y ∈ {0, 1} and hidden binary labels yi ∈ {0, 1} of each
instance (unavailable during training), where y = 1 if at least
one yi = 1. However, this assumption does not fit multi-label
classification of bacteria species with C binary outputs.

b) Instance and embedding-based methods: The simplest
MIL approaches, called instance-based methods, aggregate
the predictions for bag instances using maximum (MAX),
average (AVG) or majority voting (MV) operator: y =
p({f(x1), .., f(xn)}), where p ∈ {MAX,AV G,MV }. On
the other hand, more complicated embedding-based methods
apply maximum or average pooling to embeddings of bag
instances and then apply a classifier to derive an output
y = g(h), where h = p({h1, .., hn}), and hi = f−1(xi).

c) Recurrent networks: Embeddings {h1, .., hn} can also
be considered as a sequence [53] and passed to Recurrent
Neural Network (RNN) that jointly aggregates and classifies
bags of various sizes. We employ this strategy with LSTM [54]
and GRU [55] models to extend the number of baseline
approaches.

d) Attention-based MIL: Embedding-based methods are
imperfect because they apply pooling operations to all em-
bedding without considering the importance of particular in-
stances. As a result, a classifier can obtain irrelevant features.
Hence, weighted average poolings were introduced based on
the attention mechanism: Attention-based Multiple Instance
Learning Pooling (AbMILP) [6] and Loss-based Attention
(LA) [56].

In the case of AbMILP, pooling p is defined as

p({h1, .., hn}) =
n∑

i=1

aihi, (1)

where weight ai is described by

ai =
exp

(
wT tanh(V hi)

)∑N
j exp (wT tanh(V hi))

, (2)

with trainable parameters w and V . Notice that the sum of all
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TABLE II
NUMBER OF IMAGES AND PATCHES IN TRAINING DATASETS FOR EACH

EXPERIMENT AVERAGED OVER 5 FOLDS.

SA + EC + NG + LP
Dataset Magnification % of dataset # of images # of patches Section

poly 1x 100 139 91 340 VII-B
mono 1x 100 36 23 537 VII-B
poly 1/4x 10 13 2 093 VII-C
poly 1/4x 50 69 11 124 VII-C
poly 1/4x 100 138 21 727 IV, VII-C

mono 1/4x 100 35 5 627 IV, VII-C
poly 1/16x 100 130 4 673 VII-B

mono 1/16x 100 31 1 199 VII-B
SA + SH + SAP

Dataset Magnification % of dataset # of images # of patches Section
poly 1/4x 100 70 13 236 VII-A

mono 1/4x 100 30 6 534 VII-A

weights within the bag equals 1. Hence, the model works for
various sizes of a bag.

In comparison, LA model simplifies the computation of
weights to

ai =
exp

(
wThi

)∑N
j exp (wThj)

, (3)

with trainable parameter w. Moreover, w is reused as the
parameter of classifier g to model hidden labels of instances
and increase the interpretability. It is possible thanks to the
simplified ai computations and the same dimension of h and
hi.

Both AbMILP and LA return an aggregated bag representa-
tion, which is passed to the classifier g to obtain a prediction.

e) Multi-MIL: When there is a single output label, LA
can be used to directly link the weights of instances with their
influence on a prediction. However, LA cannot be directly
used in a multi-label setup. At the same time, AbMILP can
be used, but the correspondence between weights and influence
is difficult to observe. Therefore, we introduce a multi-label
version of those models, called multi-AbMILP and multi-
LA. For this purpose, we provide separate weighted average
pooling and classifier for each class

y = [yc], where hc = gc(hc) and ht = pt(hi). (4)

Hence, there are four different pairs of poolings and classifiers
for four considered bacteria species. As a result, we obtain
a direct correspondence of weights and influence, which
improves the interpretability of the methods.

V. EXPERIMENTAL SETUP

We repeat all experiments five times. Each time, for each
mix, we randomly assign one of its two slides to the training
set and the second one to the testing set. This way, we elimi-
nate the possible environmental bias. Moreover, all models are
trained in three scenarios:

• poly-poly: f , p, and g are trained both on monoculture
and polyculture images,

• mono-poly: f is trained on only monoculture images, but
p and g are trained on both types of images,

• mono-mono:f , p, and g are trained only on monoculture
images.

However, they are always tested using all images. We decided
to use three training scenarios to estimate the importance of
species combinations for the model training. It is essential
because the number of combinations grows exponentially with
the number of species. From this perspective, the poly-poly
scenario obtains the highest accuracy but requires polyculture
images. At the same time, the mono-mono scenario obtains
the lowest accuracy but requires only monoculture images.
That is why we test a third scenario, where the representation
network f is trained on monoculture images while pooling p
and classifier g use both monoculture and polyculture images.
Because p and g have much fewer parameters than f , the last
scenario can be used in future research to limit the number of
polycultures images.

To finetune the representation network, we use batch size
64, an initial learning rate of 10−4, which decreases 10 times
every 1000 iteration. Hyperparameters were obtained from the
preliminary experiments with learning rates from the range
[0.00000001, 0.001] and batch size values from {16, 32, 64}.
In the preliminary experiments, we operated only the training
set. All network layers are finetuned with binary cross-entropy
loss and trained for 5000 iterations until the loss function
reaches the plateau. Training images were augmented using
color jittering, random rotation (90◦, 180◦, 270◦), and random
flip with an augmentation probability of 0.5. During the testing
phase of the model, images are not augmented.

We performed the hyperparameters search for the classi-
fication network using grid search over learning rate from
the range [0.000005, 0.001] and weight decay from the range
[0.00001, 0.05]. We use a standard number of three attention
heads [6] and batch size 1 due to the variability of the bag
length.

We perform all the experiments on a workstation with four
12 GB GPU and 64 GB RAM. On average, it takes 10 hours to
train the representation network and 2 hours to generate patch
representations for the classification step. Training pooling and
classifier lasts up to 4 hours. Both networks were implemented
using PyTorch and Adam optimizer [57] with parameters β1 =
0.9 and β2 = 0.999.

VI. RESULTS AND DISCUSSION

Table III presents the overall accuracy and ROC AUC in
three considered scenarios (described in Section V) for ten
different methods. In bold, we mark the best method and
methods that are not significantly worse. We obtain them by
comparing the best method to all others using the Wilcoxon
signed-rank test. Results are significantly different if the p-
value is smaller than 0.05.

A. Polyculture images in all training steps (poly-poly)
To estimate the upper bound of problem performance, we

train the models in the first scenario with monoculture and
polyculture images. Almost all of the methods obtain ROC
AUC over 0.9. Nevertheless, the highest ROC AUC is obtained
with embedding-based methods, AbMILP, and multi-AbMILP
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Fig. 4. The most important patches according to AbMILP and multi-AbMILP models. Description over each set presents how many additional
species are present in the image except the primary species.

(0.961, 0.944, and 0.972 respectively). This is expected be-
cause distributions of training and testing sets are similar
and the information about polyculture images is propagated
throughout the entire pipeline. However, this solution does
not scale up for the growing number of recognized bacteria
species because it is impractical to create polyculture images
of all possible mixes.

B. Polyculture images in the pooling and the classifier
(mono-poly)

In the second scenario, the representation network is trained
only on monoculture images, but the pooling and classifier are
also trained on polyculture images. In this case, the CNN and
instance-based methods work the same as in the mono-mono
scenario. One can observe that results for multi-MIL methods
are better than in the poly-poly scenario. Both multi-AbMILP
and multi-LA give ROC AUC over 0.95. It indicates that
multi-MIL methods do not require polyculture images when
training the representation network. Therefore, they should
behave satisfactorily when the number of recognized species
grows.

C. Only monoculture images in all training steps
(mono-mono)

In the third scenario, all steps are trained only with mono-
culture images containing single bacteria species. We observe
a big decrease in accuracy for this scenario across all methods.
It indicates that the polyculture information is crucial when
training the pooling and classifier because when trained on
single bacteria images, the model becomes confused seeing

an image of polyculture. However, polyculture images are not
necessary to train the representation network. Moreover, ROC
AUC of attention-based methods AbMILP, multi-AbMILP, and
multi-LA, is relatively high, again confirming their relevance.

D. Interpretability aspects of methods
Figure 4 presents the most important patches, i.e. patches

with the largest weights in a pooling method. AbMILP model
focuses on images with mixed bacteria species, while multi-
AbMILP prefers images focused on one species. A similar
trend is observed in Figure 5, where we additionally present
the least important patches, i.e. patches with the smallest
weight in a pooling method. The figure shows that the Ab-
MILP does not capture the nature of each species, while
multi-AbMILP focuses on the most important patches with
characteristic features of a given species. For example, in
NG, we observe that the least important are patches with
purple rods, while the most important ones are round and pink,
which corresponds to the nature of NG that is a Gram-negative
(pink) cocci (round). Therefore, we conclude that current MIL
approaches cannot explain the results for each task, like the
AbMILP model, which always weighs the patches similarly,
no matter which species it predicts. In contrast, the multi-MIL
models provide individual prediction interpretations for each
task, making them more interpretable.

VII. ABLATION

In this section, we provide additional results on bacteria
species identification using polyculture images. Firstly, we
study how the deep learning models perform on bacteria
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Fig. 5. The least and the most important patches according to AbMILP
and multi-AbMILP models.

species that are much more similar. Then, we analyze how
the image magnification influences the model effectiveness,
as well as how many training examples are required to obtain
a meaningful model.

A. SA+SH+SAP

In this experiment, we check the performance of deep
learning algorithms on polyculture bacteria images of species
of a high resemblance. We use Gram-stained images of
bacteria from the Staphylococcus group. They cause a wide
spectrum of life-threatening systemic diseases and can be
found on the skin, in the nostrils, urinary tract, and female
reproductive tract. Those species can be commonly found in
the human population and even 30% of humans can carry
Staphylococcus aureus. In our subjective opinion, they are very
similar to each other and the difference (mostly in the cell
size) is barely perceptible in microscopic slides by the human
eye. We are studying the following 3 species: Staphylococcus
haemolyticus (SH), Staphylococcus saprophyticus (SAP), and
Staphylococcus aureus (SA). Examples of those species are
presented in Figure 6. It is worth noting that even though
those species are very similar and present a challenge to a
deep learning model, our database contains only 3 of them
which makes the classification problem slightly easier.

Fig. 6. Examples of images in the SA+SH+SAP database. The ab-
breviation SA refers to Staphylococcus aureus., SH to Staphylococcus
haemolyticus, and SAP to Staphylococcus saprophyticus

In Table III, we present the results on the datasets consisting
of similar bacteria species. One can observe that the multi-
MIL approach once again surpasses all the other methods,
especially in a poly-poly scenario. Also, we observe that the
accuracy of the models is poor in the mono-mono scenario.
This is strictly related to the high resemblance of the staphy-
lococci species to each other and the overfitting of the model.
Indicating, that it is important to use polyculture images in the
training phase to obtain a meaningful model.

B. Image magnification
In this ablation study, we test 3 magnification of patches.

We followed the same procedure for patch generation as in
Subsection IV-A (1/4x) and introduced images in original size
(1x) and in size decreased by 4 in each dimension (1/16x).
Fig. 7 presents that using 1/4x magnification, in almost all
cases, results in the best performance.

C. Percent of training data
We trained models with 10%, 50% and 100% of training

data to study the amount of images needed for satisfactory re-
sults. Testing was performed on entire testing set in each case.
Fig. 8 shows majority of methods have the best performance
when trained on 100% of data but CNN-based methods can
be also used with only 50% of training data.

VIII. CONCLUSIONS

This work introduces multi-label classification methods
based on multiple instance learning to identify bacteria species
on polyculture images. Our method takes advantage of the fact
that the multiple instance learning methods automatically as-
sign interpretable weights to instances. Moreover, it introduces
a mechanism that allows for multi-label classification without
a decrease in the aforementioned interpretability. Experiments
conducted on the specially created bacteria mixes database
resulted in high ROC AUC values of up to 0.972, which
supports the success of this feasibility study. In the future,
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TABLE III
RESULTS FOR THE SECOND DATABASE CONTAINING 3 SPECIES FROM STAPHYLOCOCCUS GROUP.

Accuracy (%) ROC AUC
Method poly-poly mono-poly mono-mono poly-poly mono-poly mono-mono

CNN 81.4± 1.8 80.3± 1.5 0.961± 0.003 0.969± 0.004

Instance + MV 84.9± 2.5 79.7± 2.1 n/a n/a
Instance + mean 84.9± 2.5 80.0± 1.9 0.964± 0.001 0.962± 0.003
Instance + max 60.3± 4.6 62.9± 3.4 0.985± 0.003 0.991± 0.002

Embedding + mean 82.0± 1.7 92.6± 2.0 41.8± 5.9 0.973± 0.001 0.979± 0.002 0.885± 0.064
Embedding + max 83.4± 4.1 85.7± 4.5 35.7± 4.2 0.971± 0.006 0.975± 0.002 0.853± 0.065

RNN 60.3± 3.4 58.6± 12.2 84.7± 3.3 0.911± 0.024 0.927± 0.027 0.963± 0.025
AbMILP 83.4± 3.8 84.9± 3.8 35.4± 2.6 0.981± 0.004 0.987± 0.003 0.962± 0.009

multi-AbMILP 91.7± 2.8 90.8± 1.2 70.7± 3.2 0.983± 0.004 0.959± 0.005 0.915± 0.020
multi-LA 95.3± 2.0 91.3± 2.9 63.6± 6.4 0.987± 0.003 0.975± 0.011 0.904± 0.018

Fig. 7. Results of models trained with different magnification of patches.

we plan to expand the database to new bacteria species
and other microorganisms, thus creating a tool for a fast
and reliable microbiological diagnosis and, in consequence, a
faster treatment. Additionally, we plan to analyze how different
imaging techniques for capturing the bacteria species, such
as novel microscopes that operate in nanoscale resolutions,
influence the performance of artificial intelligence methods.
However, those novel solutions are in early adaptation stages
and it is challenging to create a substantial dataset for deep
learning methods.
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[3] B. Zieliński, A. Plichta, K. Misztal, P. Spurek, M. Brzychczy-Włoch,
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[55] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[56] X. Shi, F. Xing, Y. Xie, Z. Zhang, L. Cui, and L. Yang, “Loss-based
attention for deep multiple instance learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp.
5742–5749.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3209551

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


