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Abstract: The manual observation of sputum smears by fluorescence microscopy for the diagnosis
and treatment monitoring of patients with tuberculosis (TB) is a laborious and subjective task. In this
work, we introduce an automatic pipeline which employs a novel deep learning-based approach to
rapidly detect Mycobacterium tuberculosis (Mtb) organisms in sputum samples and thus quantify
the burden of the disease. Fluorescence microscopy images are used as input in a series of networks,
which ultimately produces a final count of present bacteria more quickly and consistently than manual
analysis by healthcare workers. The pipeline consists of four stages: annotation by cycle-consistent
generative adversarial networks (GANs), extraction of salient image patches, classification of the
extracted patches, and finally, regression to yield the final bacteria count. We empirically evaluate the
individual stages of the pipeline as well as perform a unified evaluation on previously unseen data
that were given ground-truth labels by an experienced microscopist. We show that with no human
intervention, the pipeline can provide the bacterial count for a sample of images with an error of less
than 5%.

Keywords: cycle GANs; semantic segmentation; patch extraction; saliency; classification; regression

1. Introduction

Mycobacterium tuberculosis (Mtb) is the causative microorganism of tuberculosis (TB),
one of the leading infectious causes of death worldwide [1]. The pathogen is droplet and
aerosol-transmitted, with up to 85% of the disease affecting the lungs [2]. According to
WHO, up to 2 billion individuals globally harbour the Mtb bacteria in their body, with up
to 10 million cases of active disease and 2 million deaths per year [2]. The greatest burden
of morbidity and mortality from TB occurs in low- and middle-income countries, which
have fewer healthcare resources [3]. Early TB detection increases a patient’s chance of cure
and recovery as well as helps to prevent onward disease transmission [2,4,5].

Traditionally, the main tool for TB diagnosis has been sputum smear microscopy.
Sputum samples expectorated by symptomatic patients are heat-fixed onto slides and
stained according to laboratory protocols, which label acid-fast bacteria (AFB) such as Mtb
cells. The older Ziehl–Neelsen protocol stains AFB red against a blue background for light
microscopy (usually at ×1000 magnification), whilst the newer Auramine-based protocols
stain them yellow-green against a black background for fluorescence microscopy (usually
at ×400 magnification). In order to quantify the bacterial burden within a patient’s lungs,
semi-quantitative grading scales have been developed. Sputum smear microscopy results
are generally reported as ‘negative’, ‘scanty’, ‘1+’, ‘2+’, or ‘3+’ [6,7].

In recent years, many centres worldwide have shifted their focus away from smear
microscopy towards molecular tools (e.g., the Xpert MTB/RIF assay) for TB diagnosis [8].
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However, sputum smear gradings remain useful for the triaging of disease severity and
prognosis, with possible implications for the individualization of therapy [9] and the
monitoring of treatment response where molecular tests are currently not recommended [2].

Researchers who study the metabolic adaptation of M. tuberculosis to drug pressure and
other physiological stresses are also interested in the microscopic appearances of individual
bacterial cells. Changes in the length and width of cells [10], loss of acid fastness [11], and
accumulation of intracellular lipid [11–13] may influence the transmissibility and antibiotic
tolerance of M. tuberculosis. Microscopy remains an important tool for the description and
investigation of these features.

In clinical microbiology practice, smear microscopy delivers results much more quickly
than waiting for Mtb to grow in culture [6]. When performed well, it has high specificity
(99%) in the identification of Mtb cells [7]. Switching from traditional Ziehl–Neelsen to
fluorescence Auramine-based microscopy has increased the sensitivity of smear microscopy
(from 0.34–0.94 to 0.52–0.97 according to one systematic review) [14,15]. Indeed, as shown,
amongst others, by Zou et al. [16], Mtb bacteria are more easily differentiated from their
surroundings when fluorescence microscopy is used rather than conventional microscopy;
see Figure 1. There are, however, challenges to the effective use of microscopy for clinical
patient management and the academic study of Mtb.

(a) (b)

(c) (d)

Figure 1. (a,c) Images of a slide acquired using fluorescence microscopy with Fuchin stain
(×1000 magnification), and (b,d) images of the same slides acquired using conventional microscopy
(×800 magnification).

Although laboratory consumables for microscopy are generally inexpensive, the
procedure is time-consuming, which creates cost implications for laboratory staffing. The
wide range of diagnostic sensitivity that are reported for TB smear microscopy also reflect
the difficulty and subjectivity associated with performing the technique.

Retaining a high level of proficiency as a microscopist requires a regular investment of
time. General guidelines recommend that practitioners must examine at least 25 slides per
day to remain competent [6]. Each slide is divided into smaller microscopic fields which are
analysed one-by-one, and it is inevitable that human error and fatigue may affect specificity
and sensitivity performance [17]. Some slides are difficult to read because some AFB have
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atypical appearances, and some non-bacterial components (artefacts) within the sputum
matrix look similar to Mtb cells and may be mistaken for them.

Many of the aforementioned challenges to manual, that is, human-based analysis of
microscopic slides can be addressed by means of modern computer vision and machine
learning techniques. Indeed, this is the nature of the key contributions of the present work.
More specifically, we introduce herein the following novelties:

• We describe a fast method for extracting a new representation of microscopic slides,
which enhances the differentiation of bacteria from their background;

• We describe a novel method for the detection of salient, that is, bacteria-containing
regions within microscopic slides, which uses cycle-consistent generative adversarial
networks to synthesise slides with bounding box annotations;

• We introduce a transfer learning-trained convolutional neural network-based refine-
ment of the list of salient regions detected in the previous step;

• We propose a convolutional neural network-based method for counting bacteria,
which appear in highly variable ways, in image patches, using regression as a means
of increasing the robustness of the count.

2. Related Work

Deep learning algorithms utilising convolutional neural networks (CNNs) or deep
convolutional neural networks (DCNNs) [18] have been successful in tackling similar
bacteria/cell detection in other branches of biomedical science over the last decade. For
example, a recent work on neurological tissue, “Find-My-Cells”, employed DCNN to
identify astrocytes in brain disorders, with performance equivalent to that of a human
specialist [19]. That project also highlighted how an automated neural network might be
able to reach more objective decisions across an entire dataset of images because it can view
all of the data simultaneously, whilst a human operator can only assess image sections
sequentially [19]. Decisions made by the network are also deterministic, which means that
consistent results will be obtained from training the network [19]. In contrast, a clinician
reviewing the same sample on different occasions may reach different conclusions.

It is difficult to detect and count contacting and overlapping bacilli in sputum, and
most of the existing algorithms fail to do so accurately [20]. Indeed, most reliably detect only
isolated bacilli. A representative example is the work of Sotaquirá et al. [21], which used
conventional bright field microscopy and simple colour thresholding for the localization
of bacteria. Their count was rather crudely estimated based on the average bacterial size
and the corresponding areas of the detected salient regions. In empirical experiments, this
method achieved an error of 14.3%.

A more recent work by Mithra et al. also made use of conventional microscopic
images [22]. They, similar to Sotaquirá et al., segmented via colour space transformation
and colour thresholding [21,22]. An intermediate step was proposed to categorize segments
according to their length, area, density, and appearance histogram properties in order to
determine if they contained bacteria or not. Finally, they employed four distinct types of
classifiers to determine the number of bacteria in each image. Unfortunately, the method
was analysed rather poorly, without any error analysis being reported. In one of the most
recently published papers on the topic, Vente et al. proposed a fairly complex method for
the localization of bacteria, employing edge detection, Fourier analysis, and morphological
operators [12], and thereafter estimating the bacterial count in the regions of interest using
simple regression. The authors reported an error of 6.5% in the empirical experiments.

3. Proposed Method

The present section explains the key steps of the proposed algorithm in detail, namely
(i) the extraction of an enhanced representation of the input slide, (ii) semantic segmentation
of the slide, (iii) salient image patch extraction, and (iv) regression-based inference of the
bacterial count from the extracted patches.
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3.1. Image Processing-Based Enhanced Representation Extraction

The ability to create high-quality microscopic images is dependent on the quality
of the clinical samples collected and various choices pertaining to the smear preparation
and staining. Thick smears from very mucous samples can be associated with excessive
background staining, and artefacts may interfere with bacterial identification. Some Mtb
cells are less acid-fast than others, particularly during treatment. This may reduce their
capacity to retain Auramine-O, reducing the intensity of their fluorescence in comparison
to the background and making them harder to identify.

To address the aforementioned issues, amongst others, in the present work, we propose
an image processing-based stage as a means of enhancing the image content of interest and
suppressing confounding content, including artefacts. Our starting point is the observation
that the bacteria of interest is characterized both by its size and shape, namely they form
mostly straight, thin, and elongated structures (n.b., this is not the case with all types of
bacteria). This observation strongly motivates the use of Hessian-based ridge detection [23].
In particular, the eigendecomposition of the Hessian matrix allows for a differentiation
between different kinds of local image behaviour, leading to the straightforward process of
distinguishing between blob-like structures, uniform regions, and elongated structures of
interest herein. In particular, consider the Hessian matrix with the size of 2 × 2 pixels, at
the scale σ and the image locus x:

H =

[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
(1)

where Lxx(x, σ) is the convolution of the second-order derivative of a Gaussian ∂2

∂2x g(x, σ)
with the second derivative of an input image at point x, likewise for Lxy and Lyy [24,25].
The scale of the Hessian is governed by the value of σ—the smaller its value, the finer (i.e.,
more local) the scale, and conversely, the greater its value, the coarser (i.e., more global) the
scale. The determination of the value of this parameter can be see as a trade-off emerging
from the observation that tuberculosis bacteria in fluorescence images can be distinguished
from the remainder of the image content both by its characteristic shape and apparent
brightness. In some instances, the shape is less informative, e.g., due to the close packing of
different individual bacteria when the brightness becomes the primary cue; similarly, in
some instances, the bacteria do not exhibit the expected brightness when it is the shape
that becomes the most useful cue. Thus, both aspects of appearance need to be taken
into account for maximum robustness, which affects the choice of σ. The value we used,
namely σ = 5, was determined experimentally (compare with other related work [24–26]).
In principle, when the proposed method is applied on novel data, this value should be
adapted to match the scale of bacteria in images and image contrast, which is a matter of
simple scaling.

In the proposed method, the computed Hessian matrices across all image loci are next
used to extract the pseudo-likelihood of each pixel being incident on a bacterium. Recall
that the Hessian is informative regarding the nature of local appearance variation in an
image [27]. In particular, considering the bacilli form elongated structures, we are interested
in the loci which exhibit significant change in one principal direction (perpendicular to
a bacterium) and little change in the other (along a bacterium), and these can be readily
identified using the corresponding Hessian matrix eigenvalues [28]. More specifically, to
create an enhanced image (in the context of our end goal), each pixel in the original image
is replaced with the absolute value of the lower-magnitude value of the Hessian eigenvalue
computed at the locus; see Figure 2. The initially appealing alternatives, which take into
account both eigenvalues such as the use of the ratio of the two eigenvalues, were found
unsuitable due to an increase in noise and dynamic range.
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(a) Original.

(b) Enhanced.

Figure 2. (a) Example of the typical fluorescence microscopic image used, and (b) the corresponding
enhanced output.

3.2. Semantic Segmentation Using Cycle-Consistent Adversarial Networks

A generative adversarial network (GAN) in its simplest form comprises two CNNs,
one referred to as the generator and one as the discriminator, which are trained jointly [29].
Given the data in the input domain, the generator synthesises the data in the target do-
main [30,31]. On the other hand, the discriminator tries to distinguish between the real data
in the target domain and the synthetic data produced by the generator [29,30]. The joint
training of the two networks drives the generator to improve its achievement of realism
for the synthetically generated data, and the discriminator to become more nuanced in its
discrimination. This process can be seen as a competition between two players, each trying
to beat the other in a min–max game [32].

A cycle-consistent GAN consists of two complementary GANs and aims to learn
domain translation, with the key idea being that each generator learns to synthesise data
from the corresponding domain. In our scenario, these two domains are called ‘labelled’
and ‘unlabelled’ smear images. In more detail, using labelled images, one generator learns
to synthesise the corresponding unlabelled images, whereas the other uses unlabelled
images as input and generates labelled synthetic ones.

Following experimental results reported in previous work [33], we used input image
patches with the size of 256 × 256 pixels and additionally re-scaled them to 384 × 384
pixels using bicubic interpolation [34], which was found to effect an improvement in
performance. We also introduced alterations to the network architecture by including
three further residual blocks as a means of improving the detection of bacteria with lower
brightness.

As regards the discriminators, which classify overlapping patches, we adopted an
architecture similar to that of the PatchGAN [35–37]. However, evidence shows that the



Information 2022, 13, 96 6 of 16

relatively large patch size (70 × 70 pixels) used by most previous work is unsuitable for
the context of tasks in which the generators are trying characteristics that are finer grained
and more nuanced in appearance [38]. Hence, we use much smaller 30 × 30-pixel patches
herein instead. Additionally, to further increase the sensitivity and robustness of the model,
we introduce a change to the usual number of strides at different layers. In particular, as
a means of facilitating the learning in the proximity of the image border, we introduce a
reflection pad of size 3. Table 1 summarizes the key changes.

Table 1. Key parameters of the five-layer discriminators used in the present work. Changes from
the usual values used in previous work are shown without highlighting, whereas our task-specific
alterations are shown using bold font.

Layer Kernel Size Strides Padding

Layer 1 3 × 3 2 3
Layer 2 3 × 3 1 1
Layer 3 3 × 3 1 1
Layer 4 3 × 3 3 1
Layer 5 3 × 3 2 1

Training the Cycle-Gan

Here, we summarize the key settings pertaining to the training of our cycle-GAN. To
start with, considering the complexity of the learning task at hand, the number of epochs
used to train our cycle-GAN was set to 300, which is a considerably higher number than
that used in most previous work [33]. Another crucial aspect of training which needs to be
correctly determined so as to facilitate successful cycle-GAN learning concerns the learning
rates of the generators and discriminators. In particular, a sense of competitive equilibrium
has to be maintained between the two kinds of sub-network. If the discriminators are
considerably more effective, the network will overfit and the generators’ learning will
never converge. Similarly, if generators are more effective, mode collapse is likely, and
the desired state of the overall network may never be achieved. Other works that employ
cycle-GANs for highly specialised tasks have shown the benefit of differing learning rates
for the two sub-networks [38,39]. Similarly, the learning rate of the generators was set to
0.0006 and that of the discriminators to 0.0002. Similar considerations led us to effect a
reduction in the (linear) learning rate after 50 epochs—significantly earlier than most other
work [33]. We also adopted the use of AdaBelief, a new optimizer which has shown to
converge as quickly as adaptive optimizers (such as Adam [40]) and to generalize better
than Stochastic Gradient Descent (SGD) [41] in complex architectures such as GANs [42];
see Figure 3. Finally, to maximize the robustness and the generalizability of the learning
process, we performed synthetic data augmentation. In particular, we increased the amount
of training data by approximately 50% by adding images randomly rotated by ±25◦ and
reflected about the vertical or the horizontal axis [43]. Note that this kind of augmentation
is particularly principled in the context of the present task because, unlike in the case of
natural images wherein there is an inherent asymmetry in directions (e.g., the horizontal
and vertical directions are objectively defined and cannot be swapped one for another), in
the microscopy slides of interest here, all directions are interchangeable and in that sense
equivalent.
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(a) (b) (c)

Figure 3. Comparison of training losses observed with the use of different optimizers. Note that the
adopted AdaBelief effects the smoothest learning behaviour. (a) Adam; (b) SGD; (c) AdaBelief.

3.3. Extracting Salient Patches from Synthetically Labelled Images

Considering that the images based on the enhanced representation described in
Section 3.1 are greyscale and the superimposed bounding box red, the localization of
the former is a rather straightforward task; see Figure 4. We start by simple colour thresh-
olding, localizing pixels with the red channel value between 150 and 215 (within the range
of 0–255), and the green and blue channel values between 90 and 160. The subsequent ap-
plication of morphological dilation and erosion ensures that the extracted salient structures,
which correspond to bounding box contours, are properly closed, thus suppressing the
effects of noise.

(a) Real input. (b) Synthetic output.

(c) Real input. (d) Synthetic output.

Figure 4. Examples of (a,c) complex and cluttered original input images and (b,d) the corresponding
output images generated using the proposed cycle-GAN, showing synthetically superimposed
bounding boxes around the bacterial content of interest.
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To further increase the robustness of our approach, we followed the aforementioned
low-level processing with a more semantic, domain knowledge-driven refinement. More
specifically, guided by the understanding of the size of bacteria in slides, we imposed
certain constraints on the extracted bounding boxes. Using the Douglas–Peucker algo-
rithm [44], we first computed a polygonal approximation of imperfectly extracted and
possibly overlapping bounded boxes, and then rejected any candidate with a perimeter
outside the range of 70–600 pixels. Finally, we extracted the ultimate patches using minimal
bounding boxes enveloping the convex hulls of all connected salient structures.

3.4. Classifying Cropped Patches

Heretofore, the aim was to extract as many patches that were of sufficiently bacteria-
like appearance by using a rather coarse criterion that facilitates fast processing. As a result,
we set the acceptance level relatively low, preferring to capture probable false positives
rather than miss them entirely. The goal of the next phase was then to determine whether
a selected bacterium patch was a true positive by using more nuanced local appearance.
This was challenging because bacteria may overlap, thus greatly increasing the variation in
possible appearance. In order to address this variability, we pursued a machine learning
approach whereby the discrimination between bacterial and non-bacterial patches was
formulated as a classification problem, which was solved using a convolutional neural
network. To this end, we applied and compared a number of state-of-the-art models, namely
the ResNet family [45], the DenseNet family [46], and the SqueezeNet1_1 family [47]. Each
model’s first convolutional layer was replaced with one that consisted of one input channel,
one kernel 3 × 3, one stride 1, and three 3 × 3 layers. The alterations were motivated by
the fact that our slide representation was monochrome (that is, single channel) and the
objects of interest were thin, elongated structures that frequently appeared near the image
boundary. Every model’s last linear layer was replaced with a single-output linear layer.
The linear layer’s output weights were then fed into the sigmoid function. Finally, binary
cross entropy was employed as the loss function, and the models were pre-trained on
ImageNet.

Approximately 5000 patch images were used for training, with a balanced split be-
tween positive and negative examples. Positive examples were extracted using the method
explained in Section 3.3, whereas negative ones were selected by randomly sampling from
the slides and accepting those patches which did not overlap with any of the positive
ones. Approximately 700 images were used for testing. A three-pixel-wide frame was
constructed on a randomly chosen positive image (which was known to contain bacteria) to
approximate the boundary box formed from the projected labels and to prevent overfitting
on the training data. The learning rate was set to 0.0001, with a circular scheduler that had
a step size equal to five times the size of the dataset (which in turn was dependent on the
batch size) [48]. The base learning rate and the upper learning rate were set to 0.0001 and
0.0002, respectively. Stochastic gradient descent was used as the optimizer since it had
been demonstrated to generalize better than Adam [40] in related image classification prob-
lems [42]. The model was trained for 100 epochs, with a 0.03 loss and accuracy tolerance,
resulting in the termination of training following 20 epochs of no improvement.

3.5. Counting Bacteria

In the final stage of our algorithm, we used regression to infer the number of bacteria
present in an input image patch. As we explain in more detail in the next section, we
compared a number of different architectures and modified them all by replacing their last
linear layer with a single output layer. The mean squared error (MSE) loss function was
used for training, and Adam [42,49] was used as the optimizer, with a circular scheduler
having the lower and upper boundaries of 0.0001 and 0.00015, respectively; the step size
used was equal to twice the size of the dataset. Because patches with more than three
bacteria are exceedingly uncommon, we used a relatively low batch size that resulted in
a model update following every few examples, thus avoiding the dominance of patches
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containing a single or two bacteria. Therefore, the batch size was set to 22, or about 5% of
the dataset size, in order to maximize the generalizability of the learning.

4. Experimental Evaluation

In this section, we describe an empirical assessment of the proposed algorithm using
real-world data. We begin with a description of the data used and follow up with an
ablation study of the different stages of our pipeline. Note that the implementation of the
proposed method was performed using Pytorch, as were all experiments presented in the
present article.

4.1. Data Acquisition

The dataset used in this article comprises microscopic images obtained from a clinical
cohort study based in Mbeya, Tanzania, acquired independently, i.e., not specifically for the
purpose of the present work. In brief, 46 adults (40 newly and 6 previously diagnosed) with
sputum smear-positive pulmonary TB were recruited and followed up until the end of a 6-
month course of standard TB treatment, between February 2017 and March 2018. Smears on
microscopy slides were prepared from sputum samples collected pre-treatment and at the
end of months 2, 4, and 6 of therapy. The slides were stained using the standard Auramine-
O method, and the smears were scanned systematically by an experienced microscopist
through a fluorescein isothiocyanate filter using a Leica DMLB epifluorescence microscope
at ×1000 magnification. All fields containing Auramine-stained, yellow-green AFB were
photographed using a digital camera and stored. A total of 230 slides were examined, and
30 images were generated for each AFB-positive slide.

For our experiments, 500 images were selected across all time points of sample col-
lection to ensure that the automated detection and counting networks of Mtb bacteria
presented in this work would not be confounded by any changes in the morphology of Mtb
cells during or after TB treatment. These images were reviewed within an annotation tool
for image labelling by an independent microscopist who had not participated in the original
project. Rectangular boxes were superimposed around bacteria within each image and
used to tag areas of interest which could contain multiple microorganisms. Overlapping
boxes were merged.

4.2. Results

To facilitate an in-depth, nuanced understanding of each stage in the proposed pipeline
we performed an ablation study; that is, we evaluated each stage of our algorithm in turns
and discussed its contribution to the overall performance [50].

4.2.1. Semantic Segmentation Using Cycle-Gan

To gain insight into the performance of our semantic segmentation, we examined the
overlap between ground truth segmentation and that achieved using our automatic method.
In other words, we were interested in quantifying the degree of coincidence between two
binary images, each comprising regions of interest and the remaining image content, as
illustrated in Figure 5.

We started by looking at the usual metrics for this kind of assessment, namely the
Jaccard index (also sometimes referred to as the intersection over union, IoU) [51] and
the dice coefficient [52]. On our test set, we found these to be 94% and 89%, respectively,
suggesting highly effective performance. Indeed, after examining the data manually, we
found that the slight deviation from perfect performance was due to boundary effects,
which is the slight misalignment of the exact boundaries between the ground truth and the
predicted regions of interest rather than an entirely mistaken focus.
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(a) Ground truth. (b) Predicted.

(c) Ground truth. (d) Predicted.

Figure 5. Examples of (a,c) ground truth and (b,d) the corresponding predicted saliency of input
slide regions shown as binary images.

To test the aforementioned anecdotal observation, we next introduced a custom per-
formance metric, designed specifically for the task at hand. In particular, we devised a
way of deeming each detected salient region as correct or not, allowing us to quantify the
number of false positives and false negatives, as well as the distance (error) between each
true positive and the corresponding ground truth. To do this, we computed the centroid of
each predicted salient region, and if possible, coupled it with the centroid of a ground truth
salient region. To determine the pairing, the Euclidean distance between each predicted
centroid and all ground truth centroids was calculated, and the nearest one was selected
as the correct one. A distance threshold of 35 pixels was also used to reject the coupling
of centroids that were excessively far apart. Unpaired predicted regions were considered
as false positives. Similarly, unpaired ground truth centroids were considered as false
negatives.

Out of 294 ground truth centroids, 3 were not paired, and out of 331 labelled predic-
tions, 40 were not paired. The L1, L2, and Lin f distances between paired centroids were
found to be 31.49, 13.82, and 10.19 pixels, respectively. Considering that the average width
of a single bacillus was between 50 and 120 pixels, these numbers corroborated our previous
observation that our segmentation was highly successful, and that the errors suggested
by the Jaccard index were mostly due to small misalignments between the predicted and
ground truth salient regions. Such errors had little effect on the performance of the entire
pipeline as they did not change the actual bacterial count in the patches passed for further
processing.

4.2.2. Deep Learning-Based Patch Classification

We next turn our attention to the analysis of the second stage of our algorithm, namely
the more nuanced, deep learning-based classification of candidate patches as bacteria-
containing ones and those void of bacterial content. Used as the baseline model, we
compared a wide range of different architectures, namely ResNet [45], DenseNet [46], and
SqueezNet [47], all modified as per Section 3.4. Following training and validation, we
evaluated only the model on the test set that came out on top during the validation.

During training, all models reached 100% accuracy; see Figure 6. Greater differenti-
ation was observed during validation, with ResNet50 achieving the highest accuracy of
99.74%, see Table 2. Other ResNet models also performed well, as did SqueezeNet, with the
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exception of the shallowest ResNet18. Both DenseNet models were significantly worse, and
interestingly, the deeper DenseNet169 in particular. In fact, we found that deeper models
performed worse, with the validation accuracy decreasing together with the network depth.

Table 2. Validation accuracy achieved by different models. Bold font is used to highlight the best
performance according to different criteria (columns).

Model Accuracy Precision Recall F1-Score

ResNet18 97.28% 0.974 0.949 0.961
ResNet34 99.35% 0.970 0.951 0.960
ResNet50 99.74% 0.990 0.967 0.960
ResNet101 99.61% 0.983 0.958 0.970
ResNet152 99.48% 0.980 0.954 0.967
DenseNet121 95.20% 0.952 0.928 0.939
DenseNet169 88.41% 0.900 0.849 0.874
SqueezeNet 99.38% 0.980 0.958 0.969

Having been identified as the best performing model during validation, we henceforth
adopted ResNet50 as the classifier to evaluate the test set. In summary, we found that the
proposed machine learning-based filtering increased the overall sensitivity of the pipeline
in the discrimination between bacteria-containing patches and those void of bacteria, from
89% attained at the previous, coarse filtering stage, to 97%. Similarly, specificity was
increased to 99%, which, to the best of our knowledge, exceeded the performance of all
previous work and thus became the new state of the art [53–57].

(a) Training.

(b) Validation.

Figure 6. (a) Training and (b) validation accuracy across epochs of the compared models based on
different modified architectures. Interestingly, deeper models performed worse,with the validation
accuracy decreasing together with the network depth.
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4.3. Bacterial Count

The final stage of our algorithmic pipeline, and the ultimate nexus, concerns the
counting of bacteria in the patches identified as containing bacteria by the preceding stages.
Recall that our approach uses regression analysis, thus predicting a real number, although
the actual count can only possibly be an integer. This decision was motivated by the desire
to retain information about the uncertainty involved in inferring the bacterial count. Thus,
the predicted pseudo-count of 1.05 can be interpreted as more confidently corresponding
to a single bacterium than, say, 1.48 (whereas 1.51 would tilt the decision towards the count
of 2). Our approach also allows for the cancellation of uncorrelated errors across the slide,
as observed in previous research [12].

A summary of our experimental results is shown in Table 3. The best performance
was obtained using the simplest and shallowest model, namely ResNet18. Its error of less
than 5% is a significant improvement on all previous work, therefore we likewise note here
the attainment of the new state of the art [12,21,22]. The visualizations shown in Figure 7
provide further insight into the learning achieved using ResNet18. Both the activation
maps and the ultimate count predictions confirm that the network is correctly capturing
salient content and appropriately utilizing it to form the ultimate prediction.

Interestingly, note that all models in Table 3 overestimate the bacterial count (the
aforementioned ResNet18 the least so). To understand why this is the case, in addition to
the ultimate assessment criterion, which is the accuracy of the final count, we include in the
table three additional metrics computed during training, namely the mean squared error
(MSE), the mean absolute error (MAE), and the coefficient of determination (R2). Indeed,
an examination of the last of these suggests that overly flexible models, which are very
deep models with higher numbers of free parameters, overfit during training.

Table 3. Performance statistics on unseen test data (second column), and training statistics (columns
3–5). Observe that the more flexible, deeper models tend to overfit and thus perform less well on
novel data. This is demonstrated by the training R2 metric, which is low for these models.

Test TrainingModel Count (Ground Truth = 377) MSE MAE R2

ResNet18 394 0.0054 0.0345 0.006439
ResNet34 407 0.0444 0.0457 0.006506
ResNet50 414 0.0457 0.0425 0.006523
ResNet101 431 0.0253 0.0236 0.000656
ResNet152 496 0.0231 0.0201 0.000095
DenseNet121 575 0.0104 0.0603 0.000345
DenseNet169 667 0.0086 0.0406 0.000356
SqueezeNet1_1 404 0.0082 0.0227 0.006571

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. GradCAM visualization of trained ResNet18’s last layer response to different types of input.
Shown are (a) an input patch containing three unusually shaped bacteria with clogged stomata and
(b) the corresponding bottleneck layer activations, which show the highest responses around the
most salient content; (c) a background patch and (d) the corresponding bottleneck layer activations,
which are nearly non-existent. As expected, the patch in (a) results in the regression prediction for
the bacterial count of 2.847, and the patch in (c) for a count of 0.0256.

5. Conclusions

Although sputum smear microscopy is being replaced by Xpert MTB/RIF and other
molecular assays in many settings worldwide, it still retains a role for some aspects of
disease severity assessment and treatment monitoring. The microscopic evaluation of Mtb
cells remains important as a research tool. Improved, automated tools to standardize and
accelerate image analysis will be beneficial. We have demonstrated how our approach
can detect bacilli with a range of morphologies, unlike previous methods which assume
a much more uniform appearance [21,22,54,55]. Additionally, unlike existing methods
in the literature, our algorithm is capable of correctly counting bacteria near the image
border while also exhibiting greater robustness in challenging conditions, owing to the
probabilistic nature of the inference at its crux.

Moving forward from these encouraging results, our future work will focus on the
extension of the proposed method for the analysis of Mtb bacteria in different growth
conditions and under drug pressure. This will include the quantification of the development
of intracellular lipid bodies, or the loss of acid-fastness staining characteristics [10,13].
Considering that the proposed method still requires manual microscopy to generate ‘field
of interest‘ images from stained slides, which is a laborious task, our future work will also
include the automation of the image collection process.
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