134 research outputs found

    Radar Signal Processing for Interference Mitigation

    Get PDF
    It is necessary for radars to suppress interferences to near the noise level to achieve the best performance in target detection and measurements. In this dissertation work, innovative signal processing approaches are proposed to effectively mitigate two of the most common types of interferences: jammers and clutter. Two types of radar systems are considered for developing new signal processing algorithms: phased-array radar and multiple-input multiple-output (MIMO) radar. For phased-array radar, an innovative target-clutter feature-based recognition approach termed as Beam-Doppler Image Feature Recognition (BDIFR) is proposed to detect moving targets in inhomogeneous clutter. Moreover, a new ground moving target detection algorithm is proposed for airborne radar. The essence of this algorithm is to compensate for the ground clutter Doppler shift caused by the moving platform and then to cancel the Doppler-compensated clutter using MTI filters that are commonly used in ground-based radar systems. Without the need of clutter estimation, the new algorithms outperform the conventional Space-Time Adaptive Processing (STAP) algorithm in ground moving target detection in inhomogeneous clutter. For MIMO radar, a time-efficient reduced-dimensional clutter suppression algorithm termed as Reduced-dimension Space-time Adaptive Processing (RSTAP) is proposed to minimize the number of the training samples required for clutter estimation. To deal with highly heterogeneous clutter more effectively, we also proposed a robust deterministic STAP algorithm operating on snapshot-to-snapshot basis. For cancelling jammers in the radar mainlobe direction, an innovative jamming elimination approach is proposed based on coherent MIMO radar adaptive beamforming. When combined with mutual information (MI) based cognitive radar transmit waveform design, this new approach can be used to enable spectrum sharing effectively between radar and wireless communication systems. The proposed interference mitigation approaches are validated by carrying out simulations for typical radar operation scenarios. The advantages of the proposed interference mitigation methods over the existing signal processing techniques are demonstrated both analytically and empirically

    Definizione, studio e progetto preliminare di una tecnica di geo-localizzazione di sorgenti interferenti per satelliti commerciali di telecomunicazioni

    Get PDF
    L’argomento del dottorato riguarda le telecomunicazioni satellitari commerciali. In particolare tratta della possibilità di poter definire, progettare e valutare mediante analisi e simulazioni, un sistema in grado di geo-localizzare sorgenti interferenti nell’area di copertura dell’antenna a bordo satellite per telecomunicazioni (area di servizio). Tale soluzione tecnologica rappresenta un valido supporto per intervenire a seguito di uno o più eventi interferenti. Tale intervento può essere o di tipo passivo, quanto il satellite non è provvisto di sotto-sistema di contromisura, oppure attivo quando il satellite è provvisto a bordo di sistema di contromisura

    Rethinking SEAD: Employment of contemporary Fighter Aircraft Capabilities against an A2/AD-System of Systems of a peer Adversary in Europe

    Get PDF
    The Russian full scale invasion of Ukraine has demonstrated, how relevant the discussion about a potential NATO article 5 intervention in Europe is. A frequently used term in this context is Anti Access/ Area Denial. While this term is not existent in Russian strategy, the Integrated Air Defense System it encompasses poses a major challenge to NATO’s freedom of movement in case of a conflict. The air power role Suppression of Enemy Air Defenses can provide means to tackle the threat the Russian IADS poses to NATO. This thesis elaborates on NATO’s capabilities to counter the Russian IADS with SEAD capabilities. The topics SEAD and A2/AD are analyses in an extensive literature review. A qualitative small-N study based on subject matter expert interviews is conducted in order to identify, how the way SEAD operations are executed must be adjusted based in the present SEAD capabilities in NAT

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Electronic countermeasures applied to passive radar

    Get PDF
    Passive Radar (PR) is a form of bistatic radar that utilises existing transmitter infrastructure such as FM radio, digital audio and video broadcasts (DAB and DVB-T/T2), cellular base station transmitters, and satellite-borne illuminators like DVB-S instead of a dedicated radar transmitter. Extensive research into PR has been performed over the last two decades across various industries with the technology maturing to a point where it is becoming commercially viable. Nevertheless, despite the abundance of PR literature, there is a scarcity of open literature pertaining to electronic countermeasures (ECM) applied to PR. This research makes the novel contribution of a comprehensive exploration and validation of various ECM techniques and their effectiveness when applied to PR. Extensive research has been conducted to assess the inherent properties of the lluminators of Opportunity to identify their possible weaknesses for the purpose of applying targeted ECM. Similarly, potential jamming signals have also been researched to evaluate their effectiveness as bespoke ECM signals. Whilst different types of PR exist, this thesis focuses specifically on ECM applied to FM radio and DVB-T2 based PR. The results show noise jamming to be effective against FM radio based PR where jamming can be achieved with relatively low jamming power. A waveform study is performed to determine the optimal jamming waveform for an FM radio based PR. The importance of an effective direct signal interference (DSI) canceller is also shown as a means of suppressing the jamming signal. A basic overview of counter-ECM (ECCM) is discussed to counter potential jamming of FM based PR. The two main processing techniques for DVB-T2 based PR, mismatched and inverse filtering, have been investigated and their performance in the presence of jamming evaluated. The deterministic components of the DVB-T2 waveform are shown to be an effective form of attack for both mismatched filtering and inverse filtering techniques. Basic ECCM is also presented to counter potential pilot attacks on DVB-T2 based PR. Using measured data from a PR demonstrator, the application and effectiveness of each jamming technique is clearly demonstrated, evaluated and quantified

    Electronic warfare self-protection of battlefield helicopters : a holistic view

    Get PDF
    The dissertation seeks to increase understanding of electronic warfare (EW) self-protection (EWSP) of battlefield helicopters by taking a holistic (systems) view on EWSP. It also evaluates the methodologies used in the research and their suitability as descriptive tools in communication between various EWSP stakeholders. The interpretation of the term "holistic view" is a central theme to the dissertation. The research methodology is bottom-up – which is necessary since no previous work exists that could guide the study – and progresses from analysis to synthesis. Initially several methods are evaluated for presenting findings on EWSP, including high-level system simulation such as Forrester system dynamics (FSD). The analysis is conducted by a comprehensive literature review on EW and other areas that are believed to be of importance to the holistic view. Combat scenarios, intelligence, EW support, validation, training, and delays have major influence on the effectiveness of the EWSP suite; while the initial procurement decision on the EWSP suite sets limits to what can be achieved later. The need for a vast support structure for EWSP means that countries with limited intelligence and other resources become dependent on allies for support; that is, the question of EWSP effectiveness becomes political. The synthesis shows that a holistic view on EWSP of battlefield helicopters cannot be bounded in the temporal or hierarchical (organizational) senses. FSD is found to be helpful as a quality assurance tool, but refinements are needed if FSD is to be useful as a general discussion tool. The area of survivability is found to be the best match for the holistic view – for an EWSP suprasystem. A global survivability paradigm is defined as the ultimate holistic view on EWSP. It is suggested that future research should be top-down and aiming at promoting the global survivability paradigm. The survivability paradigm would give EWSP a natural framework in which its merits can be assessed objectively.reviewe

    General use of UAS in EW environment--EW concepts and tactics for single or multiple UAS over the net-centric battlefield

    Get PDF
    With the development of technology, Electronic Warfare has been increasing for decades its importance in modern battles. It can even be referred to as the heart of today's net-centric battlefield. Unmanned Aerial Systems are gaining more importance every single day. Nations are working on more complex and more effective UAS in order to accomplish missions that are very difficult, or even impossible for manned aircraft. Electronic Warfare missions are often dangerous and risky. Mounting Electronic Warfare equipment on a UAS and using it to conduct the EW mission is the most rational solution, since it does not endanger human life. This thesis will examine the possible ways in which UAS can be paired with EW equipment. These two technologies can be integrated into a single mission over the net-centric battlefield. Furthermore, this thesis will try to explain the concepts and tactics required to use these integrated technologies more effectively. At the end of the thesis, a scenario will be run to help the reader understand the applicability of these tactics in the real environment.http://archive.org/details/generaluseofuasi109454512Turkish Air Force author.Approved for public release; distribution is unlimited

    Evaluation of HRI payloads for rapid precision target localization to provide information to the tactical warfighter

    Get PDF
    High Resolution Imagery (HRI) with precise location and targeting data for the warfighter has become an integral part in today's asymmetric warfare environment. This thesis conducted practical testing of systems and employed qualitative research methods to evaluate HRI payloads for SUAS to provide rapid precision target localization to the warfighter. The research attempted to evaluate new HRI systems integration with the current SUAS's to produce accurate or reduced error images for intelligence and targeting data. The targeting solutions were to be evaluated against those calculated solutions achieved on a manned aircraft. This part of the evaluation was not completed due to the discovery of radio frequency noise interference induced by systems modifications required to fit the small confines of the SUAS platform. Targeting solution research was conducted using archival images from a manned flight mission. Once the system and technology is modified to eliminate the radio frequency noise there is a high probability of successfully proving the desired capability.http://archive.org/details/evaluationofhrip109455512Approved for public release; distribution is unlimited

    Statistical assessment on Non-cooperative Target Recognition using the Neyman-Pearson statistical test

    Get PDF
    Electromagnetic simulations of a X-target were performed in order to obtain its Radar Cross Section (RCS) for several positions and frequencies. The software used is the CST MWS©. A 1 : 5 scale model of the proposed aircraft was created in CATIA© V5 R19 and imported directly into the CST MWS© environment. Simulations on the X-band were made with a variable mesh size due to a considerable wavelength variation. It is intended to evaluate the Neyman-Pearson (NP) simple hypothesis test performance by analyzing its Receiver Operating Characteristics (ROCs) for two different radar detection scenarios - a Radar Absorbent Material (RAM) coated model, and a Perfect Electric Conductor (PEC) model for recognition purposes. In parallel the radar range equation is used to estimate the maximum range detection for the simulated RAM coated cases to compare their shielding effectiveness (SE) and its consequent impact on recognition. The AN/APG-68(V)9’s airborne radar specifications were used to compute these ranges and to simulate an airborne hostile interception for a Non-Cooperative Target Recognition (NCTR) environment. Statistical results showed weak recognition performances using the Neyman-Pearson (NP) statistical test. Nevertheless, good RCS reductions for most of the simulated positions were obtained reflecting in a 50:9% maximum range detection gain for the PAniCo RAM coating, abiding with experimental results taken from the reviewed literature. The best SE was verified for the PAniCo and CFC-Fe RAMs.Simulações electromagnéticas do alvo foram realizadas de modo a obter a assinatura radar (RCS) para várias posições e frequências. O software utilizado é o CST MWS©. O modelo proposto à escala 1:5 foi modelado em CATIA© V5 R19 e importado diretamente para o ambiente de trabalho CST MWS©. Foram efectuadas simulações na banda X com uma malha de tamanho variável devido à considerável variação do comprimento de onda. Pretende-se avaliar estatisticamente o teste de decisão simples de Neyman-Pearson (NP), analisando as Características de Operação do Receptor (ROCs) para dois cenários de detecção distintos - um modelo revestido com material absorvente (RAM), e outro sendo um condutor perfeito (PEC) para fins de detecção. Em paralelo, a equação de alcance para radares foi usada para estimar o alcance máximo de detecção para ambos os casos de modo a comparar a eficiência de blindagem electromagnética (SE) entre os diferentes revestimentos. As especificações do radar AN/APG-68(V)9 do F-16 foram usadas para calcular os alcances para cada material, simulando uma intercepção hostil num ambiente de reconhecimento de alvos não-cooperativos (NCTR). Os resultados mostram performances de detecção fracas usando o teste de decisão simples de Neyman-Pearson como detector e uma boa redução de RCS para todas as posições na gama de frequências selecionada. Um ganho de alcance de detecção máximo 50:9 % foi obtido para o RAM PAniCo, estando de acordo com os resultados experimentais da bibliografia estudada. Já a melhor SE foi verificada para o RAM CFC-Fe e PAniCo
    • …
    corecore