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ABSTRACT OF THE DISSERTATION 

RADAR SIGNAL PROCESSING FOR INTERFERENCE MITIGATION 

by 

Zhe Geng 

Florida International University, 2018 

Miami, Florida 

Professor Hai Deng, Major Professor 

It is necessary for radars to suppress interferences to near the noise level to 

achieve the best performance in target detection and measurements. In this dissertation 

work, innovative signal processing approaches are proposed to effectively mitigate two of 

the most common types of interferences: jammers and clutter. Two types of radar systems 

are considered for developing new signal processing algorithms: phased-array radar and 

multiple-input multiple-output (MIMO) radar. 

For phased-array radar, an innovative target-clutter feature-based recognition 

approach termed as Beam-Doppler Image Feature Recognition (BDIFR) is proposed to 

detect moving targets in inhomogeneous clutter. Moreover, a new ground moving target 

detection algorithm is proposed for airborne radar. The essence of this algorithm is to 

compensate for the ground clutter Doppler shift caused by the moving platform and then 

to cancel the Doppler-compensated clutter using MTI filters that are commonly used in 

ground-based radar systems. Without the need of clutter estimation, the new algorithms 

outperform the conventional Space-Time Adaptive Processing (STAP) algorithm in 

ground moving target detection in inhomogeneous clutter. 
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For MIMO radar, a time-efficient reduced-dimensional clutter suppression 

algorithm termed as Reduced-dimension Space-time Adaptive Processing (RSTAP) is 

proposed to minimize the number of the training samples required for clutter estimation. 

To deal with highly heterogeneous clutter more effectively, we also proposed a robust 

deterministic STAP algorithm operating on snapshot-to-snapshot basis. For cancelling 

jammers in the radar mainlobe direction, an innovative jamming elimination approach is 

proposed based on coherent MIMO radar adaptive beamforming. When combined with 

mutual information (MI) based cognitive radar transmit waveform design, this new 

approach can be used to enable spectrum sharing effectively between radar and wireless 

communication systems. 

The proposed interference mitigation approaches are validated by carrying out 

simulations for typical radar operation scenarios. The advantages of the proposed 

interference mitigation methods over the existing signal processing techniques are 

demonstrated both analytically and empirically.  
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1. INTRODUCTION 

In realistic scenarios, radar systems must be capable of dealing with more than 

receiver noise when detecting targets. In this dissertation, two of the most common types 

of interferences are considered: clutter (echoes from the natural environment) and 

jamming (interfering signals directed at the radar system from either intentional or 

unintentional jammers).  

1.1. Background - Interference Suppression in Radar Systems 

1.1.1. Introduction to radar systems 

Radar systems could be classified into two types: continuous wave radar (CW) 

and pulse radar, with pulse radar used in most modern radar systems [1]. A pulse radar 

transmits and receives a train of modulated pulses. Radar processing, which can occur 

over several consecutive pulses, lies within the coherent processing interval (CPI). The 

principal subsystems of a pulse radar include the waveform generator, the transmitter, the 

antennas and the receiver [2]. Among these subsystems, the radar antennas play a very 

important role in determining the sensitivity and the angular resolution of radar. 

Specifically, in this dissertation, two types of radar antennas are considered: phased-array 

antenna and MIMO antenna. 

• Radar with Phased-array Antenna 

Unlike the reflector antenna that has a single radiator, phased-array antenna have 

hundreds of individual radiation elements. Since the magnitude and the phase of the 

voltage fed to each antenna element can be individually controlled, wavefronts with any 
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desired shape could be generated with basically no delay [3]. It allows the phased-array 

antenna to greatly outperform the conventional reflector antenna, which needs to take the 

time to move mechanically. A radar system that employs phased-array antenna is termed 

as phased-array radar. 

• Radar with MIMO Antenna 

MIMO radar employs multiple antennas and different signals are transmitted 

simultaneously from each antenna. There are basically two types of MIMO radar: 

statistical MIMO radar with widely separated antennas [4-6] and coherent MIMO radar 

with collocated antennas [7, 8]. For coherent MIMO radar, orthogonal waveforms are 

transmitted and received from each of its collocated antenna elements, and the signal 

phase relationship between the received signals are accurately known, which makes it 

possible for coherent signal processing spatially [8, 9]. Compared to the traditional 

phased-array radar, the coherent MIMO radar has a great number of advantages, such as 

improved parameter identifiability and enhanced flexibility for transmit beampattern 

design [10]. 

1.1.2. Clutter and jamming interference 

In radar the term clutter refers to the unwanted echoes received by the radar 

receivers from surface scatterers (e.g. the earth’s surface) or volume scatterers (e.g. rain) 

in the natural environment. For an airborne ground surveillance radar trying to detect a 

moving target (e.g. a vehicle) on the ground, the clutter echoes from the surrounding 

terrain are the most significant interferences. The received clutter power is determined by 

the radar antenna gain, radar transmitting power, the reflectivity of each scatterer in the 
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resolution cell, and the range from the radar to the terrain [11]. The differences between 

clutter echoes and target echoes in probability density functions (PDFs), temporal/spatial 

correlation properties and Doppler characteristics are often exploited by researchers to 

separate clutter and target signals [12, 13]. Since the ground clutter is composed of many 

scatters per resolution cell, it has to be modeled properly before any radar signal 

processing could be carried out. 

Jamming is another type of interference which threatens successful detection of 

targets. It refers to radio frequency (RF) signals originating from sources transmitting at 

the same frequency with the radar system and thereby masking the target of interest. The 

most basic form of jamming is noise jamming [14, 15]. It is capable of interfering with 

the operation of a radar by saturating its receiver with noise and could be either 

intentional (e.g. hostile electronic countermeasurements) or accidental (e.g. interferences 

from commercial wireless communication system). A more advanced form of jamming is 

to use waveforms designed to mimic target echoes with a delay to indicate incorrect 

range [16, 17]. The power of the one-way jamming signals received by a radar system is 

often much stronger than the two-way radar echo signal, hence it is capable of completely 

masking the target of interest along the line-of-sight from the jammer to the radar [18]. 

1.1.3. Current radar interference mitigation technologies 

Statistical space-time adaptive processing (STAP) is the most popular technique 

in eliminating the clutter signals and jamming signals simultaneously for moving target 

detection with the long-range surveillance airborne radar system [19, 20]. However, 

statistical STAP requires the second order statistic information, i.e., covariance matrix, of 
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the clutters be known a priori or be accurately estimated from the training data collected 

from the secondary range bins that are adjacent to the primary range bin, i.e. target 

detection bin, under the assumption that the clutters in the primary and secondary bins are 

statistically independent and identically distributed (IID) [21]. The amount of secondary 

data samples needed for accurate estimation of the clutter covariance matrix is 

determined by its dimension via the RMB rule, which was described by Reed, Mallett, 

and Brennan in [22]. Specifically, according to the RMB rule, the expected value of the 

adaptive SINR loss is approximately 3 dB when the number of IID samples is roughly 

twice the product of the number antenna elements and the number of pulses per CPI [23]. 

Since clutter is inhomogeneous in real life, it is often difficult to obtain the necessary 

amount of IID secondary data, which leads to the mismatch between the actual and the 

estimated clutter covariance matrix and significant STAP performance degradation.  

By far, common techniques coping with inhomogeneous clutter include data-

dependent training techniques, minimal sample support STAP (reduced dimension 

STAP) and covariance matrix tapers (CMT) [24]. Power-selected training (PST) and 

map-based training selection are two examples of data-dependent training techniques 

[24]. PST uses adaptive procedures to choose stronger clutter samples for clutter 

covariance matrix estimation in order to yield deeper clutter nulls [25]. As in the map-

based training selection method, mapping information is used to identify optimum 

training regions [26]. The essence of the minimal sample support STAP (reduced 

dimension STAP) method is to transform the space-time data into low-dimensional 

subspace, hence minimizing the required training data [27]. CMT was proposed in [28] 

and [29] to cope with CNR-induced spectral mismatch. The essence of CMT is to apply a 
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complex taper to the space time data to tailor the adaptive notch width and create a 

desirable adaptive filter response for specific clutter characteristics. The essence of 

techniques above is to provide accurate clutter estimation in inhomogeneous clutter. 

Another line of research is to avoid the clutter estimation completely by using 

non-adaptive clutter suppression approaches. Time Average Clutter Coherent Airborne 

Radar (TACCAR) is one of the airborne radar systems using a non-adaptive clutter 

suppression approach to remove ground clutter through direct moving target indication 

(MTI) cancellation processing by tracking clutter Doppler frequency and then 

compensating out clutter Doppler frequency [30]. The clutter cancellation performance of 

TACCAR is limited by the fact that clutter Doppler frequencies are extended in a certain 

range and cannot be compensated simultaneously through a single Doppler-tracking loop 

[31, 32]. Another non-adaptive clutter processing approach is using displaced phase 

center antenna (DPCA) to emulate surface-based MTI radar clutter processing [33]. 

However, the DPCA method requires the exact relationship between the radar platform 

velocity and antenna element spacing to be known, which may not be practical in typical 

radar detection scenarios [34]. The deterministic STAP (D-STAP) approach presented in 

[35] operates on a snapshot-by-snapshot basis to determine the adaptive weights and can 

be readily implemented in real time. The major problem with classic D-STAP is that 

when a mismatch between the nominal and the actual target direction-of-arrival (DOA) 

exists, the performance of the classic deterministic STAP approach would be 

compromised. 

A lot of spatial signal processing techniques have been proposed to eliminate 

jamming signals received through the antenna sidelobe, such as Sidelobe Blanking (SLB) 
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system [36] and Sidelobe Canceller (SLC) system [37]. In an SLB system, the signals 

entering the sidelobes are distinguished from the signals entering the main beam by using 

two parallel channels (i.e. the main channel and the auxiliary channel), thereby the former 

could be suppressed [36]. In an SLC system, the DOA and the powers of the jamming 

signals are estimated adaptively, so that nulls could be formed in the radar receiving 

antenna beampattern in the jamming directions [37]. However, both SLB and SLC are 

not applicable for the cases where the jamming interference enters the radar receiver 

through the antenna mainlobe.  

1.2. Problem Statement 

Radar systems must be capable of dealing with interferences other than receiver 

noise in order to detect the target successfully. For airborne radar trying to detect a 

ground moving target, the clutter echoes from the surrounding ground are the most 

significant interferences. However, current clutter suppression technologies either suffer 

from dramatic performance degradation in inhomogeneous clutter due to a lack of enough 

IID training samples or have high computational complexity. Jamming is another type of 

interference that is capable of completely masking the target of interest along the line-of-

sight from the jammer to the radar. Unfortunately, current jamming elimination 

technologies are not applicable for the cases where the jamming interference enters radar 

receiver through the antenna mainlobe.  

Phased-array radar has been used for various radar missions over the past 

decades. In recent years, many studies have been focused on applying MIMO techniques 

to radar systems to enhance radar performances. It has been demonstrated in many 
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literatures that, compared with conventional phased-array radars, coherent MIMO radar 

provides higher angle/Doppler resolution, lower probability of intercept (LPI) and better 

interference suppression performance.  

In this dissertation, innovative clutter suppression approaches are proposed for 

both phased-array radar and MIMO radar to minimize the training samples required for 

accurate clutter estimation, thereby improving the clutter suppression and moving target 

detection performance for airborne radar in heterogeneous clutter. To cope with jamming 

in mainlobe direction, an innovative jamming elimination approach is proposed based on 

coherent MIMO radar adaptive beamforming. 

1.3. Contribution of the Dissertation 

An image feature-based target-interference recognition approach termed as 

BDIFR is proposed for phased array radar to cope with inhomogeneous clutter and 

jamming signals. Since the moving targets and the interferences are well separated in 

beam-Doppler domain, image processing techniques are used in BDIFR to discriminate 

target from interference (clutter and jamming). Meanwhile, an innovative moving target 

detection algorithm based on Doppler compensation and digital beamforming is also 

proposed. The moving platform effects on the Doppler spectrum are compensated using a 

Doppler compensation matrix, and then the Doppler-compensated clutter is eliminated 

using direct cancellation processing in time domain. Since accurate clutter estimation is 

unnecessary, both of the algorithms outperform the conventional STAP algorithm in 

ground moving target detection in inhomogeneous clutter. 
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Moreover, innovative STAP-based clutter suppression approaches are proposed 

for airborne radar ground moving target detections in inhomogeneous clutter. A time-

efficient reduced-dimensional clutter suppression algorithm termed as RSTAP is 

proposed for MIMO radar to minimize the IID training samples required for accurate 

clutter estimation. To deal with highly inhomogeneous clutter, a robust deterministic 

STAP algorithm operating on snapshot-to-snapshot basis is also proposed, which could 

be applied to both phased-array radar and MIMO radar. The performance of the proposed 

RSTAP filter and the robust D-STAP filter for phased-array radar and MIMO radar 

structure is evaluated and compared. 

To cope with jamming in mainlobe direction, an innovative jamming elimination 

approach is proposed based on coherent MIMO radar adaptive beamforming. Since the 

waveform transmitted from each antenna element of the MIMO antenna array is designed 

to be orthogonal to each other, a coherent wave transmitted by an antenna element could 

be identified and extracted from the received echo signal through a matched filter 

correlated only to that waveform. After that, by applying a space-domain digital filter at 

the matched filter outputs, interference signals received at both antenna mainlobe and 

sidelobes from wireless systems will be canceled while target signals will be enhanced. 

1.4. Dissertation Organization 

In Chapter 2, an innovative ground moving target detection method termed as 

beam-Doppler image feature recognition (BDIFR) is introduced based on the distinctive 

moving target and interference (clutter and jamming) features in the beam-Doppler 

domain. In Section 2.1, the signal models for airborne phased-array radar are presented. 
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In Section 2.2, the transformation of radar echo data from space-time domain to Beam-

Doppler domain using the 2D DFT and the minimum variance (MV) method is discussed. 

In Section 2.3, the minimum-distance based region growing (MDB-RG) algorithm is 

developed for radar target and interference feature extraction in beam-Doppler domain. In 

Section 2.4, the target detection based on the feature metric is introduced. Simulation 

results are given in Section 2.5 by assuming various airborne radar operation scenarios. 

In Section 2.6, the performance of the proposed BDIFR approach is evaluated. Finally, a 

brief summary of the chapter is provided in Section 2.7. 

In Chapter 3, an efficient ground moving target detection approach is introduced 

for airborne radar using clutter Doppler compensation and digital beamforming. In 

Section 3.1, Doppler compensation for the moving platform effects on the Doppler 

Spectrum is discussed. In Section 3.2, the pulse canceller is applied to the Doppler-

compensated beam-Doppler domain radar data to eliminate the clutter signals. In Section 

3.3, the performance of the proposed clutter suppression approach is evaluated based on 

the MTI Improvement Factor (IF), Minimum Detectable Velocity (MDV) and Usable 

Doppler Space Fraction (UDSF). In Section 3.4, simulation results are provided. A 

summary of Chapter 3 is given in Section 3.5. 

In Chapter 4, STAP-based clutter suppression approaches are proposed for 

airborne MIMO radar to deal with heterogeneous clutter. In Section 4.1, signal models 

for airborne MIMO radar are presented. In Section 4.2, fully adaptive STAP (FA-STAP) 

is discussed. In Section 4.3 and Section 4.4, the RSTAP filter and D-STAP filter are 

proposed. Meanwhile, the performance of the proposed RSTAP filter and the robust D-
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STAP filter for phased-array radar and MIMO radar structure is evaluated and compared. 

A brief summary of the chapter is given in Section 4.5.  

In Chapter 5, an innovative interference mitigation approach which allows radar 

systems to effectively eliminate the jamming interference from any direction is proposed. 

The process of MI-based cognitive radar waveform design is detailed in Section 5.1. The 

interference mitigation processing method based on MIMO radar beamforming is 

presented in Section 5.2. The required interference mitigation for radar and wireless 

system to operate normally in the presence of each other is derived in Section 5.3. 

Simulations are carried out by assuming a general spectrum sharing scenario between S-

band MIMO radar and wireless systems, and the simulation results are given in Section 

5.4. Finally, a summary of Chapter 5 is provided in Section 5.5. 

In Chapter 6, the main points of the research are summarized, the limitations of 

the research are discussed, and the direction for future research is implicated. 

2. RADAR INTERFERENCE SUPPRESSION WITH BEAM-DOPPLER IMAGE 

FEATURE RECOGNITION (BDIFR) 

Since the clutter is inhomogeneous in real life, it is often difficult to obtain the 

necessary amount of IID secondary data, which leads to the inaccurate estimation of the 

clutter covariance matrix and significantly performance degradation of conventional 

clutter suppression techniques (e.g. STAP). For avoidance of accurate clutter estimation 

in inhomogeneous clutter, an innovative ground moving target detection method based on 

the distinctive moving target and interference (clutter and jamming) features in the beam-
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Doppler domain is proposed in this chapter. This image-feature based target-interference 

recognition approach is termed as beam-Doppler image feature recognition (BDIFR).  
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Figure 2.1 Procedures of the BDIFR method 

The procedures of the BDIFR method are illustrated in Figure 2.1. Firstly, the 

received radar echo data in space-time domain are transformed from the space-time 

domain to the beam-Doppler domain via 2D-DFT or minimum variance (MV) method 

depending on the number of space-time snapshots available. After that, the noise signals 

on the beam-Doppler image are removed using denoising processing. Following the 

denoising processing, the target and interference features become separable, and the 
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minimum-distance based region growing (MDB-RG) algorithm is used to generate 

feature blocks from the beam-Doppler image. Since the target feature blocks are in 

pointed shape while the interference feature blocks are in extended shape, the target 

detection is then carried out by comparing the size of the feature blocks with the 

predetermined threshold Г0. 

The rest of the chapter is organized as following. In Section 2.1, signal models for 

airborne phased-array radar is presented. In Section 2.2, the transformation of radar echo 

data from space-time domain to Beam-Doppler domain using the 2D-DFT or MV method 

is discussed. In Section 2.3, MDB-RG is developed specifically for radar target and 

clutter feature extraction in beam-Doppler domain. In Section 2.4, the target detection 

based on the feature metric is introduced. In Section 2.5, simulation results are given by 

assuming various airborne radar operation scenarios. In Section 2.6, the performance of 

the proposed BDIFR approach is evaluated. A brief summary of Chapter 2 is given in 

Section 2.7. 

2.1. Signal Models for Airborne Phased-array Radar 

An airborne radar with uniform linear antenna array of N antenna elements is 

considered for clutter mitigation in this chapter. The airborne radar platform is depicted 

in Figure 2.2, where Rr and R0 are the range from radar to the r-th clutter ring and the 

range from radar to the target, respectively; 0 and 0 are the elevation angle and the 

azimuth angle of the target, respectively; r and kr , are the elevation angle and the 

azimuth angle of the k-th clutter patch on the r-th range ring, respectively. To simplify 

the problem, it is assumed that the velocity of the airborne radar platform is aligned with 
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y-axis, i.e. va = [0 va 0]T. It is further assumed that there are M coherent pulses in one CPI 

for the radar operation.  
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Figure 2.2 Airborne radar platform geometry. 

2.1.1. Components of a radar signal 

The spatial-temporal samples of radar echoes from the antenna array during a CPI 

are arranged into the following 1NM vector 

TNMxnmxxNxxx )] ,() ,( )0 ,1(  ),0()1 ,0()0 ,0([ x        (2.1) 

where ),( nmx is the radar echo data sample at element n for pulse m with 10  Nn

and 10  Mm . Furthermore, the component vectors of target, thermal noise, clutter 

and jamming are represented by jcnt xxxx  and ,, , respectively, and are expressed as 

T

t NMtnmttNttt )]1 ,1() ,( )0 ,1(  ) ,0()1 ,0()0 ,0([  x             (2.2) 

T

n NMnnmnnNnnn )]1 ,1() ,( )0 ,1(  ) ,0()1 ,0()0 ,0([  x    (2.3) 

T

c NMcnmccNccc )]1 ,1() ,( )0 ,1(  ) ,0()1 ,0()0 ,0([  x          (2.4) 

T

j NMjnmjjNjjj )]1 ,1() ,( )0 ,1(  ) ,0()1 ,0()0 ,0([  x  (2.5) 
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where ),( and ),( ),,(),,( nmjnmcnmnnmt are the k-th element of jcnt xxxx  and ,, with

,1 NMk   respectively. The relationship between (m, n) and k is given by 








 


N

k
m

1
                                                        (2.6) 

  1 mNkn                                                       (2.7) 

where    denotes the floor function. 

The radar echo vector in (2.1) may contain target, noise, clutter and jamming, i.e., 

H1 hypothesis; or clutter and noise only, i.e. H0 hypothesis. It follows that 












1

0

:             

:                     

H

H

tjcn

jcn

xxxx

xxx
x                                            (2.8) 

To represent clutter and target signals in the beam-Doppler domain, the priority task is to 

find the covariance matrix of the received radar signals. The covariance matrix of radar 

data vector x is given by 

][ HE xxR                                                         (2.9) 

where the superscript H denotes the conjugate transpose. Assume that cnt xxx ,, and jx  

are statistically mutually independent, R is further written as 












1

0

:               

:                       

H

H

tjcn

jcn

RRRR

RRR
R                                 (2.10) 

where Rt, Rn, Rc and Rj are the covariance matrices of the target, noise, clutter, jamming 

and component vectors cnt xxx ,,  and jx , respectively.  
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2.1.2. Point target model 

When far-field point target model is assumed, the covariance matrix of the target 

signal, Rt, is given by 

   H

ttttttt

H

ttt E ),(),(2  vvxxR                         (2.11) 

where t is the single-pulse signal-to-noise ratio (SNR) for a single receiving element of 

the antenna. ),( ttt v in (2.11) is the target spatio-temporal steering vector, and is given 

by  

)()(),( ttttttt  abv  .                                              (2.12) 

)( tt a in (2.12) denotes the target spatial steering vector and is represented as 

 TNjj

tt
tt ee

 2)1(2
   1)(


 a                                   (2.13) 

where t  is the target spatial frequency. t could be further written as 

00
0 cossin 



d

t                                               (2.14) 

where 0d  is antenna array element spacing, λ is the radar wavelength , 0  and 0  denote 

target elevation and azimuth angles, respectively. )( tt b in (2.12) denotes the target 

temporal steering vector, and is expressed as 

 TMjj

tt
tt ee

 2)1(2
    1)(


 b                                    (2.15) 

where t  is the target normalized Doppler frequency. When target Doppler frequency is

df , t  is given by 

r

d
t

f

f
 .                                                    (2.16) 
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2.1.3. Noise 

Assume that the noise samples are uncorrelated spatially and temporally, the 

following relationships are obtained  

 
2121

2*

,, nnmnmn xxE            (2.17) 

 
2121

2*

,, mmmnmn xxE             (2.18) 

where  is given by 










0,0

0,1
                      (2.19) 

Hence the noise covariance matrix, nR , is given by 

  NM

H

nnn E IxxR
2                                            (2.20) 

where 2 is the variance of the white noise and INM is an NMNM   identity matrix. 

2.1.4. Clutter 

The clutter covariance matrix cR can be estimated from the following equation 

   



cN

k

H

kkkkk

H

ccc EE
1

2
,,}{}{  vvxxR                        (2.21) 

where cN is the number of independent ground clutter patches that are evenly distributed 

in azimuth on the range ring, and k  is the random complex amplitude of the clutter from 

the k-th clutter patch.  kk  ,v  in (2.21) denotes the spatio-temporal steering vector 

pointing in the direction of the k-th clutter patch and is given by 

  )()(, kkkk  abv                                                   (2.22) 



17 

where  denotes Kronecker product, )( ka and )( kb are the spatial and temporal 

steering vectors of k-th clutter patch, respectively. )( ka is given by 

    1)(
2)1(2 TNjj

k
kk ee

 
 a                                   (2.23) 

where k  is the spatial frequency of the clutter patch and is calculated as 

rkrk

d



 cossin ,

0 .                                              (2.24) 

r  and kr , are the elevation angle and the azimuth angle of the k-th clutter patch on the 

range ring, respectively (refer to Figure 2.2). )( kb in  (2.22) is expressed as 

                                   1)(
2)1(2 TMjj

k
kk ee

 
 b                                  (2.25) 

where k  is the normalized Doppler frequency of the clutter patch. Assume that the 

Doppler frequency of k-th clutter patch is kdf , and the pulse repetition frequency (PRF) of 

the radar waveform is rf , k is then given by 

     
r

kd

k
f

f ,
 .                                                      (2.26) 

Assume that the clutter-to-noise-ratio (CNR) per element per pulse of the k-th clutter 

patch is k , the clutter covariance matrix Rc given in (2.21) could be further expressed as 

   )()()()(
1

2

k

H

k

N

k

k

H

kkc

c

 aabbR  


.                              (2.27) 
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2.1.5. Jamming 

Assume that the jammer power spectral density received by one array element 

from a single jammer located at azimuth angle j  and elevation angle j  is J0. The 

received jamming-to-noise ratio (JNR) per element is then given by 

00 / NJj        (2.28) 

where N0 is the receiver noise power spectral density. The jamming steering vector is 

expressed as 

T
d

Nj
d

j

jjj

jjjj

ee 









 








coscos2)1(coscos2 00

   1),( a .                 (2.29) 

And the jammer space-time snapshot is 

jjj aαx  .     (2.30) 

where jα is the random vector containing the jammer amplitudes, and is expressed as 

 TMjjjj 1,1,0,   α .           (2.31) 

Assume that the jammer samples from different pulses are uncorrelated and the jamming 

signal is stationary over a CPI, the jammer space-time covariance matrix is given by 

   H

jjjM

H

jjj aaIxxR  2       (2.32) 

where IM is an M × M  identity matrix. 

2.2. Radar Data Transformation 

The received radar echo data in space-time domain are transformed from the 

space-time domain to the beam-Doppler domain via 2D-DFT or MV method depending 

on the number of space-time snapshots available. If only one snapshot is available, the 
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radar echo data is transformed to the beam-Doppler domain using 2D-DFT. An MTI filter 

will be added for preprocessing purpose. In contrast, if multiple snapshots are available, 

the radar echo data is transformed to the beam-Doppler domain using the MV method 

and the MTI filter is not required.  

The rest of this section is organized as follows. Radar data transformation from 

space-time domain to beam-Doppler domain via 2D-DFT is discussed in Section 2.2.1. 

The signal-to-clutter power ratio (SCR) improvement provided by the MTI filter is 

evaluated in Section 2.2.2. Finally, the MV method is presented in Section 2.2.3. 

2.2.1. Radar data transformation using the 2D-DFT and the MTI filter 
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Figure 2.3 Four different interpretations of the received data related by DFT. 

By performing DFT on the radar echo data in the space-time domain, three more 

different representations of the data may be produced, which are summarized in Figure 

2.3. It should be noted that, in some literatures, space-time domain is called element 

space (pre-Doppler), beam-time domain is called beam space (pre-Doppler), space-

Doppler domain is called element space (post-Doppler), and beam-Doppler domain is 

called beam space (post-Doppler). It could be seen from Figure 2.3 that the radar data 
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representation in beam-Doppler domain is obtained by applying the 2D-DFT (i.e. Spatio-

Temporal DFT) to the radar data in the space-time domain. The radar data transformation 

process is detailed in the following. 

Firstly, the radar data is transformed from space-time domain to the beam-space 

domain using spatial DFT. For convenience, the 1NM  target vector tx is rearranged as 

an NM  matrix: 
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Applying 1-D Fourier Transform to the rows of Xt (spatial DFT), it follows that 
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Assume that the clutter amplitudes k (k = 1, 2, …Nc) satisfy 
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                       (2.35) 

where Pt is the peak transmit power, Tp is the transmit pulse width, Gt is the full-array 

transmit power gain, g is the element pattern, N0 is the receive noise power spectral 

density, Ls is the system loss, and k  is the effective RCS of the k-th clutter patch.  
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Similarly, the 1NM  clutter vector cx could also be organized as an NM 

matrix: 
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The normalized Doppler k  and spatial frequency in k are related by 
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Applying 1-D Fourier Transform to the rows of Xc, it follows that 
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Likewise, the NM × 1 jamming vector jx and white Gaussian noise vector nx could also be 

organized as M × N matrices jX and nX , respectively. Assume that the 1-D spatial DFT of

jX and nX are expressed as  
jDF X1 and  nDF X1 , respectively. The 1-D spatial DFT of 

radar data X for Hypothesis H0 and H1 is then expressed as 
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After the radar data in the space-time domain is transformed to the beam-time 

domain using spatial DFT, the double delay line canceller is applied to the beam-time 

image to reduce the clutter levels before further processing. Pulse cancellers are a type of 

the most popular and the simplest MTI filters. The impulse responses of the single delay 

line canceller (i.e. two pulse canceller), the double delay line canceller (i.e. three pulse 

canceller) and the triple delay line canceller (i.e. four pulse canceller) are, respectively, 

given by 

 )()()(1 Tttth                                                  (2.40) 

)2()(2)()(2 TtTttth                                        (2.41) 

)3()2(3)(3)()(3 TtTtTttth                              (2.42) 

where (.) is the delta function. The responses of different MTI filters that may be 

applied in the beam-time domain to reduce clutter levels are plotted in Figure 2.4, where 

the blue line, red line and the green line represent the two pulse canceller, three pulse 

canceller and the four pulse canceller, respectively.  

 

Figure 2.4 Responses of different MTI filters 

The selection of the optimum MTI filter depends heavily on the intrinsic clutter 

motion and the clutter spectrum spread due to platform motion. In most radar 
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applications, the response of a single delay line canceller is not acceptable since it does 

not have a wide notch in the stop-band. It could be seen from Figure 2.4 that both the 

double delay line canceller and the triple delay line canceller have better response than 

the single delay line canceller in the stop-band and pass-band. However, the improved 

clutter cancellation performance of the higher-order MTI filters has an associated cost: 1) 

the detection of low-speed targets becomes more difficult [37]; 2) fewer pules are 

available for the coherent integration for MTI filters. Taking into consideration of both 

the advantages and disadvantages of the different MTI filters, a double delay line 

canceller is applied to the radar data in the beam-time domain. The double delay line 

canceller output of  XDF1 is given by 

         TMDDDD FFFF XXXX 2,12,11,11

~~~~
                         (2.43) 

where  XmDF ,1

~
is the m-th row of  XDF1

~
 and is given by 

       XXXX 2,11,1,1,1 2
~

  mDmDmDmD FFFF .                     (2.44) 

The MTI filter output in beam-time domain,  XDF1

~
, is then transformed to the 

beam-Doppler domain using the temporal DFT. Finally, the radar data image in the 

beam-Doppler domain, )(
~

2 XDF , for Hypothesis H0 and H1 is expressed as 
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where )(
~

and )(
~

),(
~

),(
~

2222 tDnDjDcD FFFF XXXX represent the clutter component, jamming 

component, noise component and the target component of the beam-Doppler image, 
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respectively. It should be noted that the beam-Doppler image obtained in (2.45) via 2D-

DFT is of low image resolution, which only consists of a total of MN pixels. 

2.2.2. SCR improvement provided by MTI filter 

In previous section, the double delay line canceller is applied to the radar data 

image in the beam-time domain to reduce the clutter levels before further data 

transformation. The improvement of SCR provided by the double delay line canceller is 

demonstrated in the following. If the radar data is transformed from the beam-time 

domain to the beam-Doppler domain directly without using the MTI filter, the target 

component of the beam-Doppler image is given by 
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Specifically, when ϑt = 0, 
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The absolute value of   02 | ttDF X is given by 
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In contrast, if the double delay line canceller is applied to the radar data image in 

the beam-time domain, for ϑt = 0, the target component of the MTI filter output,

  01 |
~

ttDF X , is expressed as an (M-2)×N matrix 
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And the target component of the beam-Doppler image is given by 
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It should be noted that    111
)2(22


 tt Mjj

ee


 for 17.0t , which means that as 

long as the normalized target Doppler is greater than 0.17, the SNR is enhanced at the 

double delay line canceller. Even in the case where the target is slow moving, e.g. 

1.0t , the SCR is also expected to be increase since the ground is stationary. 
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The SCR improvement provided by the double delay line canceller could be 

investigated based on the improvement factor (IF), i.e. the SCR at the output of the 

double delay line canceller divided by the input SCR. The Fourier Transform of the three 

pulse canceller impulse response is expressed as 

fTjfTj eefH  4221)(   .                                         (2.51) 

The clutter power at the output of an MTI is given by 


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 dffHfWCo

2
)()( .                                               (2.52) 

where )( fW  is the Gaussian-shaped clutter power spectrum and is expressed as 
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where cP  and t  are the clutter power and the clutter root mean square (rms) frequency, 

respectively. Assuming rff  , which is valid since the clutter power is more significant 

for small f, it follows that 
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The MTI improvement factor using three pulse canceller is then: 
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2.2.3. Radar data transformation using the MV method 

In the MV method, the radar data in the beam-Doppler domain are estimated by 

filtering the space-time radar data with a bank of two-dimensional narrowband beam-
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Doppler bandpass filters. The beam-Doppler bandpass filters are configured to minimize 

the variance of the outputs of a data-adaptive narrowband filter at each beam and each 

Doppler frequency of interest in order to reject unwanted signal power in an optimum 

way [38-42]. To develop the MV algorithm for the beam-Doppler representation of 

airborne radar data, the power density of radar echo data at beam angle s , i.e., spatial 

frequency, and the normalized Doppler frequency s has to be estimated. In order to 

avoid altering the power of the transformed radar data, the peak response ),( ssG  of the 

2-D bandpass filter in the MV algorithm is constrained to be one, or equivalently 
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where and are the narrowband beamformer and Doppler filter in the beam 

and  Doppler domains, respectively. The constraint in (2.56) can be further expressed 

using vector notations as 
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H
gvvg      (2.57) 

where 

TNMgnmgNgg )]1,1(),( )1,0(   )0,0([  g                      (2.58) 

                                                        (2.59) 
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 v .          (2.60) 

The total power, i.e. the variance of the filter bank output  in terms of covariance 

matrix R of the input data is given by [38] 

.                                                 (2.61) 
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To minimize the variance of the filter output in (2.61) subject to the constraint given in 

(2.56), one can obtain the coefficients of the optimum filter, which gives the most 

accurate estimation of the input data in beam-Doppler domain, using the Lagrange 

multiplier as follows  
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The minimum value of  2
yE  is given by  
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Therefore, using the MV method, the power spectral density ),(ˆ
ss p of the radar echo 

signals in the beam-Doppler domain is obtained as 

 2
min),(ˆ yEss p .                                             (2.64) 

 Further considering (2.63), the airborne radar echo signals with or without target are 

obtained as the following image in the beam-Doppler domain 
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where IR is the interference matrix given by 

njcI RRRR  .        (2.66) 

If the target is present in the expected target direction ),( tt  , using Woodbury’s 

identity, it follows that 
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Hence (2.65) is rewritten as 
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Or equivalently, 
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It should be noted that, since RI is unknown, it has to be estimated from the radar data. 

Assume that U independent measurements are available, RI is estimated as 





U

i

H

iiI
U 1

1ˆ xxR          (2.70) 

where ix is the i-th interference training data vector. Based on experimental results, the 

radar data could be transformed into beam-Doppler domain without significant 

information loss as long as U meets the following requirement 

MNU 3 .       (2.71) 
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2.3. Minimum-distance-based Region Growing (MDB-RG) Algorithm 

After the radar data is transformed into the beam-Doppler domain using the 2D-

DFT or the MV method, denoising processing is performed to remove noise signals. In 

denoising processing, if the magnitude of an image pixel is less than a pre-defined 

threshold, T0, the pixel is considered to be white noise and its value will be re-set as zero; 

otherwise, the pixel is considered to be either target or clutter and its value remains 

unchanged. There is a trade-off between the probabilities of the two types of errors in the 

threshold selection process, which is detailed in Section 2.6. With the white noise 

removed from the beam-Doppler image, the remaining non-zero image pixels are either 

the target or the interference signals. Since the moving target and the interference signals 

generally have different image features in the beam-Doppler domain, they could be 

separated from each other using region growing (RG). 

RG is a fundamental image segmentation technique, which is essentially a process 

of pixel classification, wherein the image pixels are segmented into subsets, or regions, 

that are uniform in some measurable properties such as brightness and color [43]. 

Although RG has been one of the most popular and intensively studied image-

segmentation methods [43-48] and has been used for many different applications [43-45, 

47], none of the existing RG algorithms is applicable to the moving target detection 

problem in this chapter. Therefore, an innovative MDB-RG algorithm is developed in the 

following to separate the target signal from the interferences for moving target detection. 
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2.3.1. Basic principles of MDB-RG algorithm 

Before the MDB-RG algorithm is developed, some concepts and terminologies 

need to be defined first.  

Definition 1 (Pixel cluster): A pixel cluster is defined as a set of non-zero pixels 

for a data image in the beam-Doppler domain. 

Definition 2 (Pixel distance): The distance between two nonzero pixels  ad iip ,  

and  ad jjq , , where the subscripts d and a represent the Doppler index and beam index, 

respectively, in a beam-Doppler image. Specifically, the distance between two pixels in 

this chapter is defined as 

2222 )()(, aaaadddd jiRjiRqp                                (2.72) 

where dR and aR are the actual image resolutions in Doppler and beam domains, 

respectively; d and a are the weighting parameters used to adjust the effects of Doppler 

and beam resolutions, respectively.  

Definition 3 (Pixel connectivity): Two non-zero pixels AP and BP in a beam-

Doppler image are defined as connected under the minimum range  , if 

 BA PP ,                                                       (2.73)   

or if a series of ordered non-zero pixels },,,{ 21 UPPP  can be found such that the 

following conditions are simultaneously satisfied: 

 , 1 PPA                                                      (2.74) 

2  ,1,,2 ,1 ,, 1  UUuPP uu                                    (2.75) 

  1 ,,  UPP BU                                                (2.76) 
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Definition 4 (Connected cluster):  a connected cluster is a pixel cluster in which 

any two pixels are connected. 

Definition 5 (Feature block):  a feature block is a connected cluster in which any 

pixel inside is not connected to any pixel outside the cluster. 

Set any non-zero 

pixel as the seed 

pixel of a connected 

cluster.

Grow the connected cluster 

by merging the adjacent 

pixels and change their 

status to “1”. 

All non-zero pixels 

processed? 
YES

No

Find a non-zero pixel with 

status “0” as the seed pixel 

for forming the next 

connected cluster. 

STOP

Initialize the 

processing status of 

all the pixels to “0”. 

 

Figure 2.5 Flowchart of the MDB-RG algorithm 

The flowchart of the MDB-RG algorithm is shown in Figure 2.5. Prior to the 

application of the RG algorithm, all non-zero pixels in a radar image are labeled as 

processing status “0”; but if any of them is merged into a connected cluster, the 

processing status of the pixel is switched “1”. Any non-zero image pixel with a status of 

“0” can be selected as the “seed” pixel of an initial connected cluster. A connected cluster 

is “grown” from its boundary pixels only by merging into the cluster all adjacent outside 

pixels with “0” status within the minimum distance of the boundary. The growing of the 

connected cluster continues along its new boundary until it reaches the image boundary 

or there are no status “0” non-zero pixels within the minimum distance; and the final 

connected cluster becomes a feature block. The same MDB-RG process is repeated until 

each of the non-zero pixels is in a feature block. The final result of MDB-RG consists of 

multiple separated features blocks and should be independent of the selection of the 
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initial “seed” pixels or the order of the region-growing performed on the boundary pixels 

in generating feature blocks.  

2.3.2. Implementation of the MDB-RG algorithm on the radar data image 

Assume that the radar data image obtained in beam-Doppler domain are 

expressed as 

],,2 ,1  ,,2 ,1 ),,([ YyXxyxp  P        (2.77) 

where x and y are the image pixel indices in Doppler and beam domains, respectively; X 

and Y are the image resolution in the beam domain and the Doppler domain, respectively. 

When the radar data image obtained in beam-Doppler domain is obtained via 2D-DFT, it 

is easy to obtain NYMX  , , and the total number of pixels are given by MN. In 

contrast, when the radar data image in beam-Doppler domain is obtained using the MV 

method, the image resolution is determined by the step size of the Doppler frequency and 

the spatial frequency.  

After denoising processing, the non-zero radar data become a set of I non-zero 

pixels, which are given by 

 },,2 ,1 ,0) ,({ Iiyxp ii υ .                  (2.78) 

The pixels in (2.78) represent either target or interference signals and their processing 

status are set to be “0” prior to the MDB-RB processing, i.e.  

 },,2 ,1,0) ,({ Iiyxs ii S                  (2.79) 

where ) ,( ii yxs represents the processing status of the pixel of index ) ,( ii yx . 

The specific steps of carrying out the MDB-RG algorithm on the radar data image 

in (2.78) are detailed as follows. 
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Step 1: Initialize the MDB-RG for the radar image by setting any non-zero pixel k 

)1( Ik   in (2.78) as the seed pixel of a connected cluster C with the initial region 

growing result B containing no feature blocks, i.e. }{B . It follows that 

 )},({ kk yxpC                                                  (2.80) 

1),( kk yxs                                                         (2.81) 

Step 2: Find all boundary pixels of C and grow the connected cluster by merging 

the adjacent pixels within the minimum distance of the boundary pixels. For an arbitrary 

boundary pixel ),( llA yxpp  , the 8 adjacent outside pixels, which are represented by 

{ 8 ,,2 ,1 ),,(  iyxpp i

l

i

l

i

B
}, are considered to be merged into the connected cluster C. 

The indices ),( i

l

i

l yx are related to the index ),( ll yx by 
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The pixel ),( i

l

i

l yxp is merged into C, i.e.  

i

BpCC , 1),( i

l

i

l nms                (2.83)           

if and only if the following conditions are met simultaneously: 

YyXx i

l

i

l  1  ,1                                                    (2.84) 

0),( ,0),(  i

l

i

l

i

l

i

l yxsyxp                                                  (2.85) 

i

BA pp , .                                                             (2.86) 

The above region-growing process is repeated for all the boundary pixels of C. 
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Step 3: Identify the new boundary pixels of the expanded connected cluster C and 

repeat Step 2 until C cannot be grown anymore and it becomes a feature block. The 

region growing result is updated as: 

CBB                                                      (2.87) 

Step 4: Find a non-zero pixel with its processing status equal to “0” as the seed 

pixel for forming the next feature block and repeat Steps 1-3 until all non-zero pixels are 

processed with the status equal to “1”, and the final processing result B is the collection 

of one or multiple feature blocks. 

With the above MDB-RG algorithm applied, an airborne radar data image in 

beam-Doppler domain is segmented into multiple disjointed feature blocks. Because the 

generated feature blocks represent clutters and target, the segmentation results should be 

unique and independent of how the MDB-RG is performed, as stated in the following 

theorem.     

Theorem 1: The MDB-RG processing results of radar image data are unique and 

independent of the initial pixels chosen for region-growing or the orders or directions of 

the region growing when the MDB-RG is implemented. 

Proof:  It is assumed that a non-zero radar image pixel pz belongs to two different 

feature blocks B1 and B2 generated from two separate applications of the MDB-RG 

algorithm to the same radar image data. Consider two arbitrary pixels pz1 and pz2 

satisfying the following conditions: 

 222111  and  ,  ,  , zzzzzz pppppp  BB                             (2.88) 

Since all pixels inside a feature block are connected, there is a unique ordered 

pixel path from pz1 to pz, according the definitions in (2.73)-(2.76). Similarly, there 
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should be a unique ordered pixel path from pz to pz2 as well. Combining those two paths, 

one can conclude that there is a unique, ordered pixel path from pz1 to pz2 satisfying pixel 

connection condition. Therefore, any pixel in B1 is connected to any other pixel in B2. 

Hence, B1 and B2 actually are the same feature block, which contradicts the original 

assumption that B1 and B2 are different feature blocks. By far, it is proved that the MDB-

RG processing result of a radar data image in Doppler-beam domain is unique and is 

indifferent to the region growing procedures. 

2.4. Target/Interference Recognition based on the Size of Feature Blocks 

With the MDB-RG processing, the beam-Doppler radar data image becomes a 

collection of feature blocks that are either a target or clutters. By comparing the pixel 

concentration level of each obtained feature block measured by a metric called block size 

with a pre-selected threshold, the identity of feature blocks can be recognized as either 

target or clutters. To further develop a target detection algorithm based on segmented 

radar image with MDB-RG, the size of a pixel cluster or a feature block for feature-based 

target detection has to be defined. 

Definition 6 (cluster/block size): The size of a pixel cluster/feature block 

containing   pixels },...,,,{ 210 pppp  is defined as the maximum distance between 

two pixels in the cluster/feature block: 













1 if     ,0

2 if   ,,1,,max
,

kjpp
Γ

kj
kj .   (2.89) 
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Figure 2.6 Black and white Beam-Doppler image. 

In target/interference recognition processing, the following detection criterion is 

used to determine whether a feature block Bi with a block size of Γi is target or 

interference:   









ceInterferen isBlock  Feature

Target  isBlock  Feature

0

0

Γ

Γ
Γi                              (2.90) 

where target/interference recognition threshold 0Γ is determined by the image resolution, 

the number of transmitted pulses in a CPI, and the number of data elements. In practice, 

Γ0 is set according to the size of generated feature blocks. The detailed steps are as 

following: 

Step 1: Convert the beam-Doppler image to black and white image. An 

illustration example is provided in Figure 2.6 under the assumption that M = N = 18. 

Step 2: Count the number of 1s in the whole image matrix, record the number as 

n1.  

Step 3: Count the number of 1s in the center 1/N columns of the image matrix 

(i.e. mainlobe data), record the number as n2. 
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Step 4: Assume that the generated feature blocks are of sizes Γ1, Γ2, …, ΓW and 

the maximum feature block size is Γmax. Γ0 is then set as , 

where ε = 2~3 depending on the RCS of the expected target. 

2.5. Simulation Results 

In this section, simulations are carried out to demonstrate the performance of the 

proposed BDIFR algorithm. According to [24], clutter heterogeneity could be classified 

into five types: amplitude heterogeneity, spectral heterogeneity, CNR-induced spectral 

mismatch, edge effects, and target-like signals in the secondary data (TSD). In this 

section, two types of clutter heterogeneity are considered: amplitude heterogeneity and 

spectral heterogeneity.  

Amplitude heterogeneity is the most common type of clutter heterogeneity. The 

possible causes of amplitude heterogeneity, which is the most common type of clutter 

heterogeneity, include shadowing and obscuration, range-dependent change in clutter 

reflectivity, and strong stationary discretes. In this section, we consider the 

inhomogeneous ground clutter where clutter reflectivity varies over range and angle, and 

it is assumed that the clutter power follows the Gamma probability distribution. It should 

be noted that the larger the ratio of the mean of the Gamma distribution to the standard 

deviation (mean/std), the more homogeneous the clutter is. Specifically, according to 

[39], when mean/std is greater than 1/3, only minor SINR loss is induced with respect to 

the RMB rule for conventional STAP. Therefore, to demonstrate the performance of the 

proposed algorithm in inhomogeneous ground clutter, we set mean/std as 1/10.  

     /// 221max nnn 
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Spectral heterogeneity of clutter is caused by intrinsic clutter motion (ICM) due to 

soft scatterers such as trees, ocean waves and weather effects [24]. Since the null width 

for clutter suppression is set to fit the mean spectral spread, when ICM exists the null 

width would be too narrow for some range cells and too wide for others, which may lead 

to either residue clutter that degrades SINR and increases false alarm rate, or target signal 

cancellation (i.e. over-nulling). In simulations, we assume that the primary data has an 

rms clutter velocity spread of 0.5 m/s. 

2.5.1. Scenario 1: 2D-DFT is used for radar data transformation 

Table 2.1 Radar system, interference and target parameters used in Example 1 to Example 4 

   Example 1 Example 2 Example 3 Example 4 

R
a

d
a

r
 S

y
st

e
m

 

P
a

r
a
m

e
te

r
s 

Number of antenna elements N 22 32 32 32 

Number of pulses per CPI M 22 32 32 32 

PRF fr 300 Hz 300 Hz 300 Hz 300 Hz 

Wavelength λ 0.67 m 0.67 m 0.67 m 0.67 m 

Platform height H 9000 m 9000 m 9000 m 9000 m 

Platform velocity va 50 m/s 50 m/s 90 m/s 50 m/s 

In
te

r
fe

r
e
n

c
e 

P
a

r
a
m

e
te

r
s 

Clutter range Rc 13650m 13650m 13650m 13650m 

Clutter velocity spread (rms) σv 0.5 m/s 0.5 m/s 0.5 m/s 0.5 m/s 

Number of clutter patches Nc 360 360 360 360 

CNR ξc 40 dB 40 dB 40 dB 40 dB 

Azimuth angle of the jammer θj --- --- --- 0.25 

Elevation angle of the jammer ϕj --- --- --- 0 

JNR ξj --- --- --- 30 dB 

T
a
r
g
e
t 

P
a
r
a
m

e
te

r
s 

Target azimuth angle ϕt 0 0 0 0 

Target elevation angle θt 0.07 0.07 0.07 0.07 

Target spatial frequency ϑt 0 0 0 0 

Target Doppler frequency fd 75 Hz -50 Hz 75 Hz -50 Hz 

Target normalized Doppler ϖt 0.25 -0.17 0.25 -0.17 

SNR ξt 0 dB 0 dB 0 dB 0 dB 

 

When only one snapshot is available, 2D-DFT is used to transform the space-time 

domain radar data to the beam-Doppler domain. Since the beam-Doppler image obtained 

via 2D-DFT is of low image resolution, the MTI filter (e.g. three pulse canceller) is 

applied to the image to reduce the clutter levels and to prepare the image for further 
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processing. Four examples are given to demonstrate the performance of the proposed 

BDIFR algorithm in this scenario, and the radar parameters used in simulation are shown 

in Table 2.1. The radar mainlobe is assumed to be pointing at the expected target 

direction. The BDIFR processing results for Example 1, Example 2, Example 3, and 

Example 4 are shown in Figure 2.7, Figure 2.8, Figure 2.9, and Figure 2.10, respectively. 

It could be seen in all these figures that target feature blocks and the interference feature 

blocks are successfully separated. 

  
(a) (b) 

 

 
B1: interference block Γ1 

= 28.31 

 
B2: target block  

Γ2 = 0.5 

(c) (d) 

Figure 2.7 BDIFR processing results for Example 1. 

 (a) Radar data image obtained in beam-Doppler domain via 2D-DFT; (b) MTI filter (three pulse canceller) 

output; (c) denoised radar data image and (d) feature blocks generated via MBD-RG. 
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(a) (b) 

 

 
B1: interference block 

Γ1 = 42.45 

 
B2: target block 

Γ2 = 0.5 

(c) (d) 

  

Figure 2.8 BDIFR processing results for Example 2. 

 (a) Radar data image obtained in beam-Doppler domain via 2D-DFT; (b) MTI filter (three pulse canceller) 

output; (c) denoised radar data image and (d) feature blocks generated via MBD-RG. 

  

In Example 1, Example 2 and Example 3, the interference signal consists of only 

ground clutters and the jamming signal doesn’t exist. In both Example 1 and Example 2, 

the slope of the clutter ridge is one, i.e. the clutter is unambiguous in Doppler. Comparing 

the simulation results for Example 1 and Example 2, it could be seen that the resolution of 

the radar data image in beam-Doppler domain is improved with the increase of M and N. 

Therefore, the minimum detectable velocity (MDV) and the accuracy of the target 

Doppler estimation also increase with M and N. Fortunately, the computational 

complexity doesn’t increase much with M and N since only one space-time snapshot is 

used and the interference covariance matrix estimation is unnecessary. It could also be 
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seen from Figure 2.7 and Figure 2.8 that the size of the interference feature block also 

increases with M and N. 

In Example 3, with the increase of the platform velocity, the clutter becomes 

Doppler-ambiguous. It could be seen in Figure 2.9 that the slope of the clutter ridge 

increases to β = 1.8 and the clutter spectrum folds over into the observable Doppler 

space. Since in this example the clutter occupies a larger portion of the Doppler space, it 

is reasonable to expect that the performance of the proposed BDIFR method degrades. 

  
(a) (b) 

  

 

 
Γ1 = 11.4 

 
Γ2= 34.1 

 
Γ3 =  0.5 

 
Γ4 = 12.2 

(c) (d)  

  

Figure 2.9 BDIFR processing results for Example 3. 

(a) Radar data image obtained in beam-Doppler domain via 2D-DFT; (b) MTI filter (three pulse canceller) 

output; (c) denoised radar data image and (d) feature blocks generated via MBD-RG. 
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(a) (b) 

 

 
B1: interference block 

Γ1 = 42.45 

 
B2: target block 

Γ2 = 0.5 

(c) (d) 

  

Figure 2.10 BDIFR processing results for Example 4.  

(a) Radar data image obtained in beam-Doppler domain via 2D-DFT; (b) MTI filter (three pulse canceller) 

output; (c) denoised radar data image and (d) feature blocks generated via MBD-RG. 

In Example 4, a jamming signal with a spatial frequency of 0.25 is taken into 

consideration in addition to the ground clutter signal. It is interesting to notice that the 

size of the interference feature block in this example is the same with that of the 

interference feature block in Example 2. The reason is that the block size in the BDIFR 

algorithm is defined as the maximum distance between two pixels in the feature block 

instead of the number of pixels in the feature block. Although a vertical line appears at 

the spatial frequency of 0.25, the maximum distance between the two pixels in the 

interference feature block is still the distance between the two pixels located at the lower 
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left corner and the upper right corner. Hence the size of interference feature block in 

Example 2 and Example 4 are the same. 

2.5.2. Scenario 2: MV method is used for radar data transformation 

Table 2.2 Radar system, interference and target parameters used in Example 5 to Example 8 

   Example 5 Example 6 Example 7 Example 8 

R
a
d

a
r
 S

y
st

e
m

 

P
a
r
a
m

e
te

r
s 

Number of antenna elements N 10 16 16 16 

Number of pulses per CPI M 10 16 16 16 

PRF fr 300 Hz 300 Hz 300 Hz 300 Hz 

Wavelength λ 0.67 m 0.67 m 0.67 m 0.67 m 

Platform height H 9000 m 9000 m 9000 m 9000 m 

Platform velocity va 50 m/s 50 m/s 100 m/s 50 m/s 

In
te

r
fe

r
e
n

c
e 

P
a

r
a
m

e
te

r
s 

Clutter range Rc 13650m 13650m 13650m 13650m 

Clutter velocity spread (rms) σv 0.5 m/s 0.5 m/s 0.5 m/s 0.5 m/s 

Number of clutter patches Nc 360 360 360 360 

CNR ξc 40 dB 40 dB 40 dB 40 dB 

Azimuth angle of the jammer θj --- --- --- 0.25 

Elevation angle of the jammer ϕj --- --- --- 0 

JNR ξj --- --- --- 30 dB 

T
a

r
g
e
t 

P
a

r
a
m

e
te

r
s 

Target azimuth angle ϕt 0 0 0 0 

Target elevation angle θt 0.07 0.07 0.07 0.07 

Target spatial frequency ϑt 0 0 0 0 

Target Doppler frequency fd 45 Hz -15 Hz 45 Hz -15 Hz 

Target normalized Doppler ϖt 0.15 -0.05 0.15 -0.05 

SNR ξt 0 dB 0 dB 0 dB 0 dB 

 

When multiple partially independent measurements are taken, the MV method is 

used to transform the space-time domain radar data to the beam-Doppler domain. With 

the assumption that 45 space-time snapshots are available, four examples are given to 

demonstrate the performance of the proposed BDIFR algorithm in this scenario.  The 

radar system, interference, and target parameters used in these examples are shown in 

Table 2.2. The BDIFR processing results for Example 5, Example 6, Example 7, and 

Example 8 are shown in Figure 2.11, Figure 2.12, Figure 2.13 and Figure 2.14, 

respectively. Comparing the simulation results for this scenario with those with Scenario 

1, it could be seen that when multiple space-time snapshots are available, both the radar 
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data image resolution and the target detection performance of the proposed BDIFR 

algorithm increases dramatically. Specifically, point target with a normalized Doppler of 

-0.05 are successfully detected in both Example 6 and Example 8. In the following, a 

detailed analyzation of the simulation results for Scenario 2 is presented. 

  
(a) (b) 

  

 

 
B1: interference block  

Γ1 = 254.6 

 
B2: target block  

Γ2 = 2 

(c) (d) 

  

Figure 2.11 BDIFR processing results for Example 5.  

(a) 3-D radar data image in beam-Doppler domain; (b) 2-D radar data image in beam-Doppler domain; (c) 

denoised radar data image and (d) feature blocks generated via MBD-RG. 

In Example 5, Example 6 and Example 7, the interference signal consists of only 

ground clutters and the jamming signal doesn’t exist. In both Example 5 and Example 6, 

the slope of the clutter ridge is one, i.e. the clutter is unambiguous in Doppler. Comparing 

the simulation results for Example 5 and that for Example 3, it could be seen that 

although only 10 antenna elements and 10 pulses per CPI are used in Example 5 and 32 

antenna elements and 32 pulses per CPI are used in Example 3, the image resolution of 
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the radar data image in Example 5 is much higher than that in Example 3. Comparing the 

simulation results in Figure 2.11 and Figure 2.12, it could be seen that although the 

resolution of the radar data image in beam-Doppler domain also increases with M and N, 

the improvement is less noticeable compared to the improvement in Scenario 1. This is 

good news: in the MV method, the computational complexity increases linearly with M 

and N due to the calculation of the covariance matrix. 

  
(a) (b) 

  

 

 
B1:interference block  

Γ1 = 254.6 

 
B2: target block  

Γ2 = 3.6 

(c) (d) 

  

Figure 2.12 BDIFR processing results for Example 6.  

(a) 3-D radar data image in beam-Doppler domain; (b) 2-D radar data image in beam-Doppler domain; (c) 

denoised radar data image and (d) feature blocks generated via MBD-RG. 
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B1: clutter block  

Γ1 = 87.7 

 
B2: clutter block  

Γ2 = 202.2 

 
B3: target block  

Γ3 = 3.6 

 
B4: clutter block  

Γ4= 89 

(c) (d) 

  

Figure 2.13 BDIFR processing results for Example 7.  

(a) 3-D radar data image in beam-Doppler domain; (b) 2-D radar data image in beam-Doppler domain; (c) 

denoised radar data image and (d) feature blocks generated via MBD-RG. 

In Example 7, with the increase of the platform velocity, the clutter becomes 

Doppler-ambiguous. It could be seen in Figure 2.13 that the slope of the clutter ridge 

increases to β = 2 and the clutter spectrum also folds over into the observable Doppler 

space. Although the clutter occupies a larger portion of the Doppler space, the impact of 

the aliases is less serious than that in Scenario 1 due to the high resolution of the beam-

Doppler image. In Example 8, a jamming signal with a spatial frequency of 0.25 is taken 

into consideration in addition to the ground clutter signal. It could be seen from Figure 
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2.14 that the size of the interference feature block in this example is the same with that of 

the interference feature block in Example 6. 

 
(a) 

 

 
B1: clutter block  

Γ1 = 254.6 

 
B2: target block  

Γ2 = 3.6 

(b) (c) 

  

Figure 2.14 BDIFR processing results for Example 8.  

(a) 2-D radar data image in beam-Doppler domain; (b) denoised radar data image and (c) feature blocks 

generated via MBD-RG. 

2.6. Performance Evaluation 

Since MV method presented in Section 2.5.2 provides high image resolution and 

better imager feature separation than the 2D-DFT method proposed in Section 2.5.1, the 

performance of the proposed BDIFR algorithm is evaluated under the assumption that 

MV method is used for domain transform. The detection probability and false alarm rate 

in the denoising and MDB-RG processing are investigated separately at first, and then 

combined together to evaluate the overall performance of BDIFR.  
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In denoising processing, a false alarm occurs whenever the amplitude of the 

received noise signal exceeds the denoising threshold T0 when H0 is true. Since the 

envelope of the noise voltage output N is Rayleigh distributed, the probability density 

function (PDF) of N is given by [49-51] 
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where v is the amplitude of the noise voltage. The false alarm rate, i.e. the probability 

that N is greater than the denoising threshold T0 when H0 is true, is then obtained as 
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The denoising threshold T0 is given by 
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The probability of detection is the probability that the amplitude of a sample of the radar 

echo signal exceeds the denoising threshold T0 when H1 is true. Assume that the SNR per 

pulse is 
22 /TA , taking into consideration of (2.93), the detection probability for a single 

radar pulse is given by 
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where I0 is the zero order Bessel function of first kind and QM(.) represents the Marcum’s 

Q-function. Since M pulses are used for coherent processing, the noise power is reduced 

by a factor of 1/M, while the desired signal power remains unchanged. When Pfa1 is small 

and Pb1 is large, the detection probability in denoising processing could be approximated 

by 

 MPAMQP faTd /)ln(2/1 1

1

2

1

              (2.95) 

where Q(.) represents the Q-function given by 
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To evaluate the detection probability and false alarm rate in MDB-RG processing, 

we define the following: 

Definition 7 (Transition area and clean area): If the distance between the target 

pixel cluster and clutter pixel cluster is less than or equal to , which is a pre-determined 

threshold for MDB-RG processing, the target falls into a transition area; otherwise, the 

target lies in clean area. 

With the definition above, the target pixel cluster in the transition area will be 

mischaracterized as part of the clutter pixel cluster, while the target pixel cluster in the 

clean area will be successfully detected. Thus, the detection performance of BDIFR in 

MDB-RG processing is determined by the size of the transition area and clean area. 

Since moving target signals generally do not overlap with the clutter in the beam-Doppler 

plane, the detection probability 2dP  in this process is calculated as: 
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where trA  and clA  are the size of transition area and clean area, respectively. As shown 

in the simulation results, the features of the clutter signals in the beam-Doppler plane for 

the case where the clutter is unambiguous are different from those where the clutter is 

ambiguous in Doppler. Thus, trA  and clA are calculated in different ways for the two 

cases accordingly as:  
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where W is the total number of feature blocks generated in the MDB-RG process, and  

is the slope of the clutter ridge and calculated as 

r
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Since the amplitude of the clutter signal is Rayleigh-distributed, some pixels may 

be clamped in the denoising process. As a result, the clutter pixels which are connected to 

the clutter ridge form their own feature block. If the formed feature block has a size less 

than Γ0, a false alarm happens. But in general, the false alarm rate in region growing 

processing, i.e. Pfa2, is almost zero.  
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Figure 2.15 Radar target detection tree with denoising and MDB-RG processing.  
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The possible detection results in the denoising and MDB-RG processing are 

summarized in Figure 2.15. The notations P1(Hi; Hj) and P2(Hi; Hj) represent the 

probability of declaring Hi when Hj is true in denoising processing and MDB-RG 

processing, respectively. Y and N stand for “target detected” and “no target detected”, 

respectively. Since MDB-RG processing follows the denoising process and is assumed to 

be reliable in the sense that it preserves the pixels which have survived the denoising 

process and doesn’t generate extra new pixels, P2(H1;H0) is approximately equal to 1faP  

and P1(H1;H0) is approximately 0. According to Figure 2.15, the overall detection 

probability Pd and false alarm rate Pfa are calculated as: 

21112111 );();( ddd PPHHPHHPP  ,                               (2.100) 

1012011 );();( fafa PHHPHHPP  .                                (2.101) 

Assume that T0 = 3.5 and β = 6, the false alarm rate vs. detection probability plot is given 

in Figure 2.16 for Example 6 and Example 7 in Section 2.5.2, respectively. 

 
Figure 2.16 Detection probability and false alarm rate of the BDIFR approach for Example 6 and 7. 

As expected, the performance of BDIFR is better for the unambiguous clutter 

scenario, where there is at most one angle where the clutter has the same Doppler as the 

target. For most cases in airborne radar target detection, the clutter is unambiguous due to 
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the relatively low velocity of the radar platform. Thus, the detection probability and false 

alarm rate of the proposed BDIFR algorithm are decent when detecting ground moving 

targets in inhomogeneous clutter. 

For purpose of comparison, the output SINR of the adaptive filter in conventional 

STAP in homogeneous clutter and inhomogeneous clutter with amplitude heterogeneity 

and ICM is plotted in Figure 2.17 (a). Radar and clutter parameters for Example 6 are 

used for simulations. The clutter is assumed to be the Gamma distributed, and the ratio of 

the mean of the Gamma distribution to the standard deviation is denoted by mean/std. 

The rms value for the clutter velocity in the primary unit is selected as σv = 0.5 m/s and 

clutter is assumed to be unambiguous in Doppler. 100 Monte Carlo trials are carried out 

and the average output SINR is employed. The six cases considered include:  

Case 1: Clutter is homogeneous and the covariance matrix is known;  

Case 2: mean/std = 2/3, σv2 = 0.4 m/s;  

Case 3: mean/std = 1/3, σv2 = 0.3 m/s;  

Case 4: mean/std = 1/5, σv2 = 0.2 m/s;  

Case 5: mean/std = 1/8, σv2 = 0.1 m/s; and  

Case 6: mean/std = 1/10, σv2 = 0.05 m/s.  

where σv2 represents the rms velocity of clutter in secondary training data cells. The 

smaller the difference between σv (i.e. 0.5 m/s) and σv2, the more homogenous the data is; 

on the other hand, larger mean/std indicates the more homogeneous the clutter 

amplitudes. For Cases 2- 6, K = 2MN = 512 samples are available and used for clutter 

estimation with the sample matrix inversion (SMI) method. 
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It is shown in Figure 2.17 (a) that when the normalized target Doppler is -0.05, 

the output SINR of the adaptive filter is 21.93 dB, 17.43 dB, 15.02 dB, 12.65 dB, 10.68 

dB and 9 dB, for the six different cases, respectively. The target detection probabilities 

versus output SINRs for various false alarm rates are plotted in Figure 2.17 (b). It is 

found that for a fixed false alarm rate of 10-3, the target detection probabilities are 0.8942 

and 0.6554 for Cases 5 and 6, respectively. Therefore, it is proved that the proposed 

algorithm outperforms conventional STAP in highly inhomogeneous ground clutter 

environments. 

  

(a) (b) 

Figure 2.17 Performance of conventional STAP in inhomogeneous clutter.  

(a) Output SINR for different target Doppler. (b) Detection probability vs. false alarm rate. 

2.7. Summary of Chapter 2 

In this chapter, the BDIFR approach is developed to detect ground moving target 

in inhomogeneous clutter, where the assumption of independent and identically 

distributed clutter is not justified and no sufficient secondary data are available for 

accurate clutter matrix estimation. Through various simulations, it has been demonstrated 

that BDIFR is effective even in the case where the target and clutter are not widely 

separated in the beam-Doppler domain. BDIFR is proved to be capable of successfully 
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detecting target in clutter when the target’s velocity is low or Doppler ambiguity appears. 

The detection probability and false alarm rate of BDIFR in the denoising and MDB-RG 

processing are investigated in the performance evaluation section. It is shown that the 

performance of BDIFR is better than that of conventional STAP in inhomogeneous 

clutter environments. 

3. GROUND MOVING TARGET DETECTION FOR AIRBORNE RADAR USING 

CLUTTER DOPPLER COMPENSATION AND DIGITAL BEAMFORMING 

MTI and moving target detection (MTD) have been widely used to detect moving 

targets in clutter for long-range surface-based surveillance radars [52-55]. However, 

conventional MTI and MTD processing are not applicable for airborne surveillance 

radars due to the moving platform effects on the Doppler spectrum [56]. Worse still, 

airborne radar normally incurs very strong ground clutters: even sidelobe ground clutter 

that enters radar receiver through antenna sidelobes could be much stronger than the 

mainlobe target signals, and could lead to a large false alarm rate in target detection if not 

properly addressed [57]. Moreover, since the Doppler frequency of ground clutters 

generated from a clutter patch in a range ring is directly proportional to the sinusoidal 

function of the clutter patch angle measured from the normal direction of the antenna 

array, the Doppler frequencies of airborne radar clutters are extended to a large frequency 

range, which makes clutter suppression even more technically challenging [58].  

In this chapter, a new approach is introduced to remove ground clutter and to 

detect ground moving targets by compensating for the non-zero Doppler frequencies of 
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ground clutter due to the moving platform. The detailed procedures of the proposed 

ground moving target detection approach are as following.  

(a) Transform the radar data from space-time domain to beam-time domain using 

temporal DFT. 

(b) Compensate for the Doppler shift induced in each beam by the moving 

platform separately based on the real-time known velocity of the aerial platform.  

(c) Apply a simple multi-pulse binomial MTI filter to the Doppler-compensated 

radar data in the beam-time domain. 

(d) Transform the radar data from beam-time domain to beam-Doppler domain 

using temporal DFT and carry out MTD. 

Target ?

Target Doppler 

frequency 

restoration

End

Y

N

Transform data 

from beam-time 

domain to beam-

Doppler domain

Direct clutter 

cancellation 

processing in 

time domain
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on the Doppler spectrum 

using the Doppler 

compensation matrix

Transform data from 

space-time domain to 

beam-time domain

Collect radar echo data 

in space-time domain 

from N antenna 

elements 

Transmit  M 

coherent pulses 

 

Figure 3.1 Doppler-compensated moving target detection algorithm for airborne radar 

The flowchart of the proposed airborne MTI algorithm is shown in Figure 3.1. 

The advantage of the new airborne radar clutter elimination approach is that since the 

radar platform velocity is the only information needed for Doppler compensation to 
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convert airborne clutters to stationary clutters, clutter covariance matrix estimation based 

on the secondary training data becomes unnecessary.  

The rest of this chapter is organized as follows: Doppler compensation in beam-

time domain is presented in Section 3.1; clutter cancellation using MTI filter is detailed 

in Section 3.2; the performance of the proposed approach is evaluated in Section 3.3; the 

simulation results are provided in Section 3.4; A brief summary of the chapter is given in 

Section 3.5. 

3.1. Doppler Compensation 

When the velocity of the platform is zero, the representation of clutter signal in 

beam-time domain is obtained, by applying 1-D Fourier Transform to the rows of XC, as  
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Recall that in the case where the platform is moving, the representation of clutter signal 

in beam-time domain,  CF X , is given by (2.38). Therefore, the compensation matrix is 

given by 

 

 C

C

F

F

X

X
T

0| 



.    (3.2) 

The (m, n)-th element of T is given by 
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Assume that 5.00 d  and the elevation angle r = 0°, (3.3) could be simplified as 
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When the clutter is homogeneous, the compensation matrix in (3.4) could be 

approximated as 
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where Gk is expressed as 
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and kg is expressed as 
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where eb is the backlobe level. By using the Doppler compensation matrix in (3.5), the 

moving platform effects on the Doppler spectrum would be compensated, so that the 

traditional MTI processing techniques that are commonly used in surface-based radar 

could be used subsequently to suppress clutter signals. 

3.2. Clutter Cancellation Filtering 

With the moving platform effects on the Doppler spectrum successfully 

compensated, the clutters become near-stationary and are then cancelled via conventional 

digital MTI radar filter processing. As is mentioned briefly in Section 2.2, higher-order 

MTI filters have better amplitude responses than lower-order MTI filters. However, as a 

trade-off, the detection of slow-moving target becomes difficult when higher-order MTI 

filters are used. Assume that the antenna array transmits a coherent burst of pulses given 

by 
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where 0f  is the radar operating frequency, T is the pulse repetition interval (PRI), and pu

is the complex envelope of a single pulse defined as 
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For a target at initial range of 0R and radial velocity v, the time delay is 
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where c is the speed of light. The reflected sinusoid is then  
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The two pulse canceller amplitude output due to the target is 
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Since the carrier frequency and PRF are harmonically related, Tf0 is an integer, and the 

power of the two pulse canceller circuit is 
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Similarly, the power of the three pulse canceller circuit is 
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When
rtd ff 1.0,  , the target gain is -7 dB and -16 dB for two pulse and three 

pulse canceller, respectively. At the same time, compared with two pulse canceller, fewer 

pules are available for coherent integration for three pulse canceller. Despite of these 

disadvantages, in next section, the performance of the proposed method will be evaluated 

based on the assumption that a double delay line canceller is implemented. 
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3.3. Performance Evaluation 

In this section, the performance of the proposed airborne MTI algorithm is 

evaluated based on the MTI improvement factor (IF), the minimum detectable velocity 

(MDV), and the usable Doppler space fraction (UDSF). 

3.3.1. The MTI IF of the proposed algorithm 

According to [59], The MTI IF is defined as the signal to clutter power ratio at the 

output of the clutter filter divided by the signal-to-clutter power ratio at the input to the 

clutter filter, averaged uniformly over all target radial velocities of interest. The overall 

improvement factor totalI  of the proposed airborne MTI algorithm is expressed as 

210

1111

IIII total

                                                     (3.15) 

where I0 is the ideal MTI IF, I1 is the reduced MTI IF due to imperfect motion 

compensation, and I2 is the reduced MTI IF due to clutter’s frequency offset. The process 

of obtaining I0, I1, and I2 is detailed in the following. 

            (a) Ideal MTI IF 

The three pulse canceller impulse response is given by 

)2()(2)()( TtTttth                                        (3.16) 

where (.) is the delta function. It follows that the Fourier Transform of h(t) is expressed 

as 

fTjfTj eefH  4221)(   .                                        (3.17) 

The clutter power at the output of an MTI is given by 
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where W( f ) is the Gaussian-shaped clutter power spectrum. According to [53], W( f ) 

could be further expressed as 
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cP  and r  in (3.19) are the clutter power and the clutter root mean square (rms) 

frequency, respectively. In this chapter, since the primary focus is on the moving 

platform effects on the Doppler spectrum, it is assumed that 

22
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where 2

pm  is the variance due to the platform motion. By assuming rff  , which is 

valid since the clutter power is more significant for small f, and plugging (3.17) and 

(3.19) in to (3.18), it follows that 
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The ideal MTI improvement factor using three pulse canceller is then 
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            (b) Reduced MTI IF due to Imperfect Motion Compensation 

The mean frequency of the ground clutter patch spectrum due to platform motion 

is 
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The motion compensation matrix in (3.5) is not perfect since the adjustment frequency

f  (i.e. the frequency error) depends on the azimuth and depression angle. When

0, kr , the spectral width due to the antenna’s azimuth beamwidth, B , is given by 
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Since B is small, (3.24) could be approximated as 
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And the spread at 0, kr is 
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The two cases for
0, kr and

0, kr are then combined as 
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Since only the mean frequency of the ground clutter patch spectrum due to platform 

motion in (3.23) is taken into consideration in the Doppler compensation process and the 

adjustment frequency in (3.27) is ignored, the imperfect motion compensation matrix in 



64 

(3.5) couldn’t compensate for the moving platform effects on the Doppler spectrum 

perfectly, and the MTI IF is limited by 
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 (c) Reduced IF due to Clutter’s Frequency Offset 

The MTI IF is also limited by the clutter’s frequency offset
offf after motion 

compensation. Taking into consideration of the clutter’s frequency offset, the input 

clutter power is given by 
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where A and B are given by: 
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The output power from the MTI canceler is given by: 
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The improvement factor due to
offf is then: 
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The improvement factor as a function of the velocity offset
offf for three pulse canceller 

is shown in Figure 3.2.  
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Figure 3.2 Reduced MTI IF due to clutter’s frequency offset 

3.3.2. The MDV of the proposed algorithm 

One of the practical performance metrics for radar systems that are designed to 

remove clutter is the minimum target velocity that can be detected after clutter 

cancellation. In fact, targets are subject to removal by the clutter rejection process when 

their velocity approaches that of the clutter. Thus, the velocity relative to clutter below 

which the target would be attenuated by the clutter rejection process to an extent that can 

no longer be detected is called the MDV [60]. In the proposed algorithm, since the output 

of the three pulse canceller is transformed from beam-time domain into beam-Doppler 

domain using temporal DFT to carry out MDT, the minimum detectable target Doppler is 

determined by the resolution of the beam-Doppler image: if the target is placed one pixel 

off the horizontal rotated clutter ridge in the beam-Doppler plot, it can be detected; 

otherwise, the target would be eliminated together with the clutter signals. Recall that the 

target Doppler frequency, df , and the target relative velocity to radar, rv , are related by 
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It follows that the MDV is given by: 
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where minf  is the minimum detectable target Doppler frequency. 

3.3.3. The USDF of the proposed algorithm 

The percentage of Doppler space that is practically used in terms of targets being 

detectable is called UDSF. In fact, this fraction depends on the level of tolerable signal to 

interference plus noise (SINR) loss [60]. Thus, UDSF is defined as: 

)(1)( LSINRPLUDSF Lossr                                     (3.35) 

where )( LSINRP Lossr  is the probability that LSINRLoss   and L is commonly assumed 

to be -5 dB. The usable Doppler frequency in the proposed approach depends not only on 

the platform velocity, which induces clutter spread, but also on the MTI filter used to 

remove clutter. Moreover, it is well known that by increasing the number of antenna 

elements and the number of coherent pulses used in processing, the resolution of the 

beam-Doppler image would be improved and the performance degradation due to clutter 

leakage into neighboring Beam Doppler cells would be minimized. Specifically, the 

UDSF of the proposed algorithm is expressed as 
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3.4. Simulation Results 

To validate the proposed airborne MTI algorithm, simulation is carried out by 

assuming an airborne radar with uniform linear transmit antenna array performing 

moving target detection using the proposed clutter compensation approach. The 
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parameters of the airborne radar used in the simulation are listed in Table 3.1. Two 

different ground moving targets (Targets A and B) are included in two sets of simulated 

radar echo data, respectively, to assess the detection performance of the proposed 

algorithm in two examples. The properties of these targets are provided in Table 3.2. In 

Example, 1, Target A is injected into the scene in a way that it could easily be detected 

from clutter because of its high Doppler frequency compared to the clutter. In Example 2, 

the proposed airborne MTI algorithm is used to detect the slow-moving target B. 

Table 3.1 Airborne radar system and clutter parameters 

Symbol Name Value 

f0 Carrier Frequency 450 MHz 

va Platform velocity 50 m/s 

H Platform height 9000 m 

rf  Pulse repetition frequency 300 Hz 

Tp Pulse width 200 μs 

Pt Peak transmit power 200 kW 

M Number of pulses in a CPI 16/32 (Example 1/2) 

N Number of antenna elements 16/32 (Example 1/2) 

d Elements spacing λ/2 

Gt Transmit gain 22 dB 

Rr Clutter range 130000 m 

CNR Clutter-to-noise ratio 40 dB 

N0 Noise figure 3 dB 

Ls System loss 4 dB 

Table 3.2 Targets properties 

 Target A Target B 

Target azimuth angle (ϕ0) 0˚ 0˚ 

Target elevation angle (θ0) 0˚ 0˚ 

Target Doppler frequency (fd) -75 Hz 20 Hz 

SNR (per element per pulse) 0 dB 0 dB 

3.4.1. Example 1: fast-moving target 

The beam-Doppler plot (N = 16, M = 16) for the radar echo data containing 

clutter, noise and Target A is shown in Figure 3.3, where θ is the azimuth angle. It is 

obtained by applying 2-D DFT directly to the radar data in space-time domain, with no 
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clutter suppression or denoising processing applied. The clutter removal result using 3-

pulse MTI canceller without Doppler compensation is shown in Figure 3.4. It could be 

seen clearly that the clutter ridge with slope 1 spans the whole Doppler space, and the 

target is invisible. Therefore, it is demonstrated that conventional MTI processing 

techniques are ineffective in dealing with the ground clutter for airborne radar due to the 

effects of moving platform on the Doppler spectrum. 

  

Figure 3.3 Radar echo data in beam-Doppler 

domain (Example 1) 

Figure 3.4 Clutter removal result using MTI filter 

without Doppler compensation (Example 1). 

  

(a) (b) 

Figure 3.5 Doppler compensation result for Example 1. 

 (a) Doppler compenstaion matrix in (3.5) is used; (b) perfect Doppler compensation is assumed. 

The Doppler compensation result by using Doppler compensation matrix in (3.5) 

is plotted in Figure 3.5 (a). For comparison reason, the ideal Doppler compensation result 
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is plotted in Figure 3.5 (b) by assuming zero platform velocity. It could be seen that 

although the Doppler compensation matrix given in (3.5) couldn’t compensate for the 

motion effects on the Doppler spectrum in the mainlobe direction perfectly, the Doppler 

frequencies of the ground clutter in sidelobe directions are shifted to be zero. 

  

(a) (b) 

Figure 3.6 Clutter removal result for Example 1 when the moving platform effects are compensated using 
the Doppler compensation matrix in (3.5). 

(a) Before denoisng processing; (b) after denoising processing.  

  

(a) (b) 

Figure 3.7 Clutter removal result for Example 1 when moving platform effects are compensated perfectly. 

 (a) Before denoisng processing; (b) after denoising processing. 

The clutter removal results using 3-pulse MTI canceller when the effects of 

moving platform effects on the Doppler spectrum are partially compensated using the 

Doppler compensation matrix in (3.5) are plotted in Figure 3.6. It could be seen in Figure 

3.6 (b) that after denoising processing, although there are clutter residues remaining in 
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the mainlobe direction, the target signal becomes clearly visible. The ideal clutter 

removal results using 3-pulse MTI canceller when the effects of moving platform effects 

are compensated perfectly are plotted in Figure 3.7. Comparing Figure 3.7 (b) and Figure 

3.6 (b), it could be seen although the proposed compensation matrix in (3.5) is not 

perfect, target azimuth angle and Doppler frequency are indicated correctly by using the 

proposed airborne MTI algorithm. 

  
(a) (b) 

Figure 3.8 The output signal of the 3-pulse MTI canceller in the mainlobe direction (Example 1). 

(a) Doppler compenstaion matrix given in (3.5) is used; (b) ideal Doppler compensation is assumed. 

The output signal of the 3-pulse MTI canceller in the mainlobe direction is potted 

in Figure 3.8. Figure 3.8 (a) is obtained by using the Doppler compensation matrix given 

in (3.5), and Figure 3.8 is obtained by assuming ideal Doppler compensation. The target 

Doppler is estimated from the pulse number PN as 
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Since the maximum value is obtained at the 5th pulse, the target Doppler frequency is 

estimated as fd,t[-75 Hz, -54 Hz]. It could be seen that the resolution of the Doppler 

estimation in this example is relatively low due to the small M. In next example, it will be 



71 

demonstrated that the accuracy of the Doppler estimation will be greatly improved by 

increasing M. 

3.4.2. Example 2: slow-moving target 

 

 

Figure 3.9 Radar echo data in beam-Doppler 

domain (Example 2). 
Figure 3.10 Clutter removal result using MTI filter 

without Doppler compensation (Example 2). 
  

To further validate the proposed ground moving target detection and clutter 

removal approach, in this example, the proposed airborne MTI algorithm is used to detect 

a slow-moving target, Target B. Since the Doppler frequency of Target B is much lower 

than A, M is increased to 32 to improve the performance. The 2-D DFT result of the radar 

echo data containing clutter, noise and Target B is shown in Figure 3.9. The clutter 

removal result using 3-pulse MTI canceller without Doppler compensation is shown in 

Figure 3.10. It could be seen clearly that although the clutter ridge becomes thinner 

compared to Figure 3.4 due to the higher image resolution of the beam-Doppler induced 

by larger M, the target is still invisible. 

The Doppler compensation results by suing the Doppler compensation matrix 

given in (3.5) and by assuming perfect Doppler compensation are plotted in Figure 3.11 

(a) and (b), respectively. Comparing Figure 3.11 (a) with Figure 3.11 (b), it could be seen 

that due to the imperfectness of the compensation matrix given in (3.5), the target signal 
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is “buried” in the Doppler-shifted clutter signals in the mainlobe direction prior to the 

MTI filter processing.  

  
(a) (b) 

Figure 3.11 Doppler compensation result for Example 2.  

(a) Doppler compensation matrix in (3.5) is used; (b) perfect Doppler compensation is assumed. 

The clutter removal results using 3-pulse MTI canceller when the effects of 

moving platform effects on the Doppler spectrum are compensated using the Doppler 

compensation matrix in (3.5) with/without denoising processing are plotted in Figure 

3.12 (a) and (b), respectively, and the target signal is clearly visible in Figure 3.12 (b).  

The clutter removal result using 3-pulse MTI canceller under the assumption of perfect 

motion compensation with/without denoising processing are plotted in Figure 3.13 (a) 

and (b), respectively. Comparing Figure 3.12 and Figure 3.13, it could be seen that a 

near-perfect sidelobe clutter elimination performance is achieved using the proposed 

airborne MTI algorithm, although the mainlobe clutter elimination performance is limited 

by the imperfectness of the compensation matrix given in (3.5). 
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(a) (b) 

  

Figure 3.12 Clutter removal result for Example 2 when the moving platform effects are compensated using 

the Doppler compensation matrix in (3.5). 

(a) Before denoisng processing; (b) after denoising processing. 

  
(a) (b) 

  

Figure 3.13 Clutter removal result for Example 2 when moving platform effects are compensated perfectly. 

(a) Before denoisng processing; (b) after denoising processing. 

Finally, the output signal of the 3-pulse MTI canceller in the mainlobe direction is 

potted in Figure 3.14 by using the Doppler compensation matrix given in (3.5) and by 

assuming ideal Doppler compensation, respectively. Since the maximum value is 

obtained at the 18th pulse, the target Doppler is estimated as fd,t[15 Hz, 25 Hz]. 

Comparing this result with that of Example 1, it could be seen that the target Doppler 

estimation accuracy has been greatly improved by increasing M. 
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(a) (b) 

 

Figure 3.14 The output signal of the 3-pulse MTI canceller in the mainlobe direction (Example 2). 

(a) Doppler compenstaion matrix given in (3.5) is used; (b) ideal Doppler compensation is assumed. 

3.5. Summary of Chapter 3 

An innovative approach to suppressing ground clutter and detecting moving target 

for airborne radar is presented in this chapter. The essence of the approach is to estimate 

the fixed clutter Doppler frequency in each beam of the airborne radar and then 

compensate for it in the beam-time domain using digital beamforming. After Doppler 

compensation, the ground clutters for airborne radar become near-stationary and can be 

removed using multi-pulse canceling filters similar to the regular MTI or MTD 

processing used in ground-based MTI radar systems. This new ground target detection 

method allows airborne radar to effectively detect ground moving targets in clutter 

without clutter estimation, as required in conventional STAP. The airborne radar target 

detection approach can be conveniently implemented with digital beamforming and 

signal processing at the receiver and the only extra information needed for the clutter 

compensation is the velocity measurement of the radar platform in real time. 
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4. SPACE-TIME ADAPTIVE PROCESSING FOR AIRBORNE RADAR TARGET 

DETECTION IN INHOMOGENEOUS CLUTTER 

STAP has been widely used in long-range surveillance airborne radar for moving 

target detection in ground clutter and other interferences [60]. STAP was first proposed in 

[21] for phased-array radar. But in recent years, many studies on STAP have been 

extended to multiple-input multiple-output (MIMO) radar [61-66]. MIMO radar systems 

are basically classified into two categories: distributed (statistical) MIMO radar with 

widely separated antennas, and coherent (collocated) MIMO radar with closely spaced 

antennas. By far, the research on ground clutter suppression with airborne MIMO radar is 

mainly about distributed MIMO radar, while fewer studies are focused on the coherent 

MIMO radar [67]. Hence in this chapter, STAP for coherent MIMO radar is considered. 

Compared to traditional phased-array radar, coherent MIMO radar has a great 

number of advantages, such as improved parameter identifiability and enhanced 

flexibility for transmit beampattern design [68-71]. However, to successfully apply STAP 

in a MIMO radar system, two problems have to be solved first: 

1) The weight vector for a fully adaptive space-time processor is of size MNTNR, 

where NT, NR and M are the number of transmit, receive antenna elements and 

pulses per CPI, respectively. Therefore, when NT, NR and M are relatively large, 

the computational load would be too high for real-time radar operation. For 

example, when there are 16 transmit/receive antenna elements and 16 pulses per 

CPI (i.e. M = 16, NT = 16 and NR = 16), the interference covariance matrix is

40964096  , which makes fully-adaptive space-time processing (FA-STAP) 

impractical. 
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2) It is well known that the successful implementation of STAP requires accurate 

clutter estimation. Theoretically, in homogenous interference, under the 

assumption that the clutters in the primary and secondary bins are IID statistically, 

the clutter could be estimated accurately from the training data collected from 

secondary range bins that are adjacent to the primary range bin, i.e. target 

detection bin [60]. However, in inhomogeneous clutter, STAP could become 

ineffective and even technically infeasible due to the lack of necessary amount of 

IID secondary training data. 

To reduce the computational complexity, a reduced-dimension clutter suppression 

method is proposed in [63] for airborne MIMO radar based on STAP. The main idea of 

[63] is great; however, it should be noted that since the clutter model is not clearly 

defined in [63], it is difficult to tell the relationship between the severity of the clutter 

heterogeneity and the performance of the proposed method. Therefore, a time-effective 

reduced-dimension clutter suppression method, RSTAP, is proposed in this chapter for 

moving ground target detection in heterogeneous clutter with airborne MIMO radar.  

If only one space-time snapshot is available, D-STAP introduced in [35] could be 

employed. Unlike S-STAP relying on the secondary training data, D-STAP operates on a 

snapshot-by-snapshot basis to determine the adaptive weights and can be readily 

implemented in real time [35]. Therefore, D-STAP is expected to outperform S-STAP in 

inhomogeneous clutter given that the expected (nominal) DOA matches the actual target 

DOA perfectly. However, when a mismatch between the nominal and the actual target 

DOA exists, the performance of the classic deterministic STAP approach would be 

compromised.  
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The rest of the chapter is organized as following. In Section 4.1, the target and 

interference models are presented for the airborne MIMO radar system under the 

assumption of inhomogeneous clutter. In Section 4.2, the performance limitation of 

conventional FA-STAP is explained. In Section 4.3, the reduced-dimension STAP 

method termed as RSTAP is proposed for coherent MIMO radar to reduce computational 

complexity. In Section 4.4, an innovative D-STAP approach termed as R-D-STAP is 

presented for coherent MIMO radar, which is robust when there is a mismatch between 

the assumed target DOA and the true target DOA. In Section 4.5, a brief summary of the 

chapter is given. 

4.1. Signal Models for Airborne MIMO Radar in Inhomogeneous Clutter 
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Figure 4.1 MIMO radar matched filtering of received signals. 

A coherent MIMO radar with uniform linear transmit antenna array of NT 

elements and uniform linear receive antenna array of NR elements is considered for clutter 

mitigation beamforming. Without loss of generality, uniform linear arrays (ULA) with 

the antenna element spacing of dT and dR are assumed for transmit and receive antennas, 

respectively. Since the transmit and receive arrays are assumed to be close to each other 
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in space, it is assumed that they share the same azimuth angle θ. The MIMO radar receive 

array is depicted in Figure 4.1. 

The orthogonal phase-coded waveform )(tu  transmitted from antenna element ν 

(ν = 1, 2, …, NT) for coherent MIMO radar signal processing is defined as [71]     
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where Γ is the waveform phase-coding length in time domain,  is the sub-pulse duration, 

and i

 is the phase value of the i-th sub-pulse for element ν. Thus the space-time 

orthogonal waveforms transmitted from the MIMO transmit antenna array are expressed 

as 
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where  represents the Hadamard product operator, and  is the initial phase of element 

ν (1 ≤ ν ≤ NT) . The transmit steering vector aT and receive steering vector aR in the 

azimuth broadside direction of  and elevation direction of  are, respectively, 
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where  is the radar wavelength. The temporal steering vector is given by 
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ddd eeef

)1(242
1)(


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where fd is the Doppler frequency of target, T is the PRI and M is the number of pulses in 

a CPI. The combined steering vector is thus given by 
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where 0 and 0 are the elevation angle and the azimuth angle of the target, respectively.  

The matched filter output of the received radar echo signal rx may contain target, 

clutter and noise under hypothesis H1, or clutter and noise only under hypothesis H0. 

Hence, it follows that 
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where rn,x represents the noise vector, rc,x is the space-time clutter snapshot, and rt ,x is 

the target vector given by 

 00, ,,  drt fax             (4.8) 

where α is the unknown complex amplitude of the target signal due to scattering and 

propagation losses. The covariance matrix of the radar echo vector is given by 
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rR can be further represented as 
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where rtrnrc ,,, and  , R RR are the covariance matrices of rtrnrc ,,, and, xxx , respectively. The 

autocorrelation matrix of the target vector can be configured as: 
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where 
RT NNR is an RTRT NNNN  matrix given by 
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where the TT NN  sub-matrix 
TNR in

RT NNR is given by 
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The autocorrelation matrix of the target vector can be rewritten as 

   Hddrt ffE 0000

2

, ,,,,}{  aaR   .                                 (4.14) 

Under the assumption that the clutters and the noise are mutually independent, the 

covariance matrix of the total interference for the r-th clutter ring is then given by 

rnrcrI ,,, RRR                                                     (4.15) 

Assume that the noise is white Gaussian noise with variance 2 ,
rn,R  in (4.15) could be 

further written as 

  MNN

H

rnrnrn RT
E IxxR

2

,,,                                           (4.16) 

where MNN RT
I is an MNNMNN RTRT   identity matrix. In the following, the clutter 

covariance matrix rc,R in (4.15) is derived.  
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To simplify the problem, it is further assumed that dT = dR = d0 and the velocity of 

the airborne radar platform is aligned with y-axis, i.e. va = [0 va 0]T. The Doppler 

frequency of the k-th clutter patch on the r-th clutter ring are represented as
kr , , which is 

given by 

rkrkr

d



 cossin ,

0
,  .                                               (4.17) 

The steering vector for the k-th clutter patch is then expressed as 
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Hence the clutter covariance matrix could be expressed as 
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where   represents the Hadamard product, ),( ,

2

, rkrkr  and )(, krcA are the observed 

signal power and the voltage fluctuation between pulses for the k-th clutter patch on the 

r-th clutter ring, respectively.  rkrkrts  ,, ,,R  in (4.19) is an MNNMNN RTRT  matrix 

given by 

     Hrkrkrrkrkrrkrkrts  ,,,,,, ,,,,,, aaR  .          (4.20) 

 rkrkrts  ,, ,,R  in (4.20) could be further decomposed as 

   rkrkrts  ,,2,1 RRR 
        (4.21) 

where )( ,1 krR and ),( ,2 rkr R are the temporal phase lags and spatial phase lags, 

respectively. It follows that 

   HrkrkrDrkrkrD  ,,,, ,,,,1 aaR           (4.22) 
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In the following, the clutter covariance matrix
rc,R in (4.19) is derived under the 

assumption of two types of clutter heterogeneity: spectral heterogeneity and amplitude 

heterogeneity. 

4.1.1. Spectral heterogeneity 

Spectral heterogeneity of clutter is caused by intrinsic clutter motion (ICM) due to 

soft scatterers such as trees, ocean waves and weather effects [24]. Since the null width 

for clutter suppression is set to fit the mean spectral spread, when ICM exists the null 

width would be too narrow for some range cells and too wide for others, which may lead 

to either residue clutter that degrades SINR and increases false alarm rate, or target signal 

cancellation (i.e. over-nulling).  

When ICM is taken into consideration, according to [60], the temporal fluctuation 

could be modeled as a wide-sense stationary (WSS) random process. Assume that the 

Doppler spectrum is Gaussian-distributed, the temporal autocorrelation of the fluctuation 

between pulse i and pulse j, which is also Gaussian-distributed, is expressed as 

2
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        (4.24) 

where k is the clutter-to-noise ratio (CNR) and v is the velocity standard deviation. 

According to [60], when the spatial sampling is uniform, the pulse-to-pulse correlation 

matrix could be expressed as a symmetric Toeplitz matrix: 
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Since rc,R is an MNNMNN RTRT  matrix, and the decorrelation doesn’t affect the 

spectral covariance matrix, )(, krcA in (4.19) is expressed as 

 
TRNNrcrc kk


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1,, 111)(
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)( AA    (4.26) 

4.1.2. Amplitude heterogeneity 

Amplitude heterogeneity is the most common type of clutter heterogeneity [24]. 

The possible causes of amplitude heterogeneity include shadowing and obscuration, 

range-dependent change in clutter reflectivity, and strong stationary discretes [24]. A 

brief analysis of the impact of amplitude heterogeneous clutter on improvement factor 

when adaptive Doppler filters are employed is given in [72]. 

When clutter reflectivity varies in over range and angle, ),( ,

2

, rkrkr  in (4.19) has 

to be changed to MmNNs RTmskr  ,1,,,1,2

,/,  to reflect the dependency. The single 

channel, single pulse CNR measured at the (s, m)-th spatial-time pair at the r-th range 

ring is expressed as 
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where 1  is a constant, ),( , rmstG  and ),( , rmsrg  are the transmit antenna gain and the 

receive antenna gain for the azimuth-elevation pair ),( , rms  , respectively, kg / is the 

grazing angle, rs is the slant range, and mskr ,/;, represents the reflectivity measured at the 
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(s, m)-th spatial-time pair at the r-th range ring. For simplicity, mskr ,/;,  is written as c  in 

the following. Assume that clutter power follows the Gamma probability distribution, it 

follows that [60]: 
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where~ and 
~

are shape parameter and scale parameter, respectively. It could be seen in 

(4.28) and (4.29) that when  cE   is large compare to  cvar , the clutter is more 

homogeneous. Hence it is expected that the SINR loss will be less for larger~ when 
~

is 

fixed.   

4.2. Performance Limitation of Conventional STAP in Heterogeneous Clutter 

When fully-adaptive S-STAP is used, the MIMO radar beamforming filter for 

target detection is obtained as 
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where â is an arbitrary constant. When the weight vector is applied to the space-time 

snapshot, the output is given by 
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And the output SINR is the given by 
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The optimal MIMO radar beamforming weight vector is found by maximizing the 

output SINR in (4.32). Taking into consideration of (4.14), (4.32) is rewritten as 
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The optimal weight vector can be obtained by maximizing (4.33), or equivalently, 

maintaining distortionless response to the desired signal and minimizing the output 

interference (i.e. clutter-plus-noise) power. And the optimization problem is expressed as 

 






1,,s.t.

min

00

,

d

H

r

rrI

H

r

f

r

aw

wRw
w                                                (4.34) 

, which is commonly called the minimum variance distortionless response (MVDR) 

beamformer [38]. And it is well-known that the solution to (4.34) is given by: 

 00

1

, ,,ˆ  drIr faRw
     (4.35)  

where 

   00

1

,00 ,,,,

1
ˆ




drI

H

d ff aRa


 .       (4.36) 

Theoretically, the maximum output SINR could be achieved with the weighting 

vector in (4.35). However, it should be noted that
rI ,R in (4.35) is not precisely known in 

practice and has to be estimated in real time. Several different approaches are available 

for the estimation of
rI ,R , and among them the maximum likelihood estimate (MLE) is 

the most popular [22], where the covariance matrix is estimated as 
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where U is the number of interference samples and xI,i is the i-th interference sample 

vector. Substituting rI ,R̂ for
rI ,R in (4.35) is called sample matrix inverse (SMI) in 

literatures [73]. The validity of the SMI approach depends on the assumption that

  rIrIE ,,
ˆ RR  . However, in heterogeneous clutter where   rIhIrE ,,

ˆ RRR  , and the 

weight vector of the MIMO radar beamforming filter is given by 
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Hence the covariance matrix estimation error is 

1
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,

  hIrIe RRR .            (4.39) 

According to [24], the output SINR in (4.32) could also expressed as 

1,0, 2121  LLLLSNRSINR               (4.40) 

where SNR is the input signal-to-noise ratio, and L1 and L2 represent the SINR loss due to 

colored noise and the SINR loss due to the error between optimal weight vector and 

adaptive weight vector, respectively. Assume that 2

s is the single channel, single pulse 

target signal power, L1 is expressed as 
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L2 is expressed as 
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where rŵ is the adaptive weight vector and optw is the optimal weight vector. According 

to (4.42), the SINR loss due to the covariance matrix estimation error is expressed as 
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By plugging (4.39) into (4.43), Ls could be expressed in terms of eR as 
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It should be noted that a different form of the SINR loss is obtained in [24] (Equation 

(10.32) on pp. 317) as 
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However, since erI RR 1

, , sL is approximately equal to 2sL . 

According to the RMB rule described in [23], in order to achieve an adaptive 

SINR loss of -3 dB, the number of IID samples has to be approximately twice the product 

of the number antenna elements and the number of pulses per CPI, i.e. 32  MNU for 

MIMO radar and 32  RT NMNU for phased-array radar. The expected SINR loss for 

SMI with different number of samples is plotted in Figure 4.2. It is assumed that N = NT = 

NR = 8, M =16. It could be seen that for phased-array radar, the number of samples has to 
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be at least 32 MN = 253 for a SINR loss of 3 dB. And when 128 samples are used to 

estimate the interference covariance matrix, the SINR loss is approximately -22 dB. As 

for MIMO radar, the number of samples required for an accurate estimation of the 

interference matrix is even higher. Worse still, in inhomogeneous clutter, it is often 

difficult to obtain the necessary amount of IID secondary data. 

  
(a) (b) 

Figure 4.2 Expected SINR loss for SMI with different number of samples. 

 (a) Phased-array radar (b) MIMO radar 

  
(a) (b) 

Figure 4.3 Eigenspectra for different spectral spread values.  

(a) Phased-array radar (b) MIMO radar 

The eigenspectra for different spectral spread values for phased-array radar and 

MIMO radar are plotted in Figure 4.3 (a) and (b), respectively. It is assumed that the 

integrated CNR is 50 dB, M = 16, NT = NR = 8. The noise floor is arbitrarily set to zero 

decibel. Five cases of spectral heterogeneity are considered: m/s05.0v , m/s1.0v , 
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m/s4.0v , m/s8.0v  and m/s2.1v , along with the no ICM case, i.e. 

m/s0v . It could be seen in Figure 4.3 that with the increasing of the spectral spread, 

the largest eigenvalues remain unchanged, but the rank of the interference matrix 

increases. Meanwhile, comparing Figure 4.3 (a) and (b), it could also be seen that the 

rank of the interference matrix is higher when MIMO radar is used than the case where 

phased-array radar is used. 

  
(a) (b) 

Figure 4.4 SINR loss for different spectral spread values.  

(a) Phased-array radar (b) MIMO radar 

The SINR losses for different spectral spread values for phased-array radar and 

MIMO radar are plotted in Figure 4.4 (a) and (b), respectively. Three cases are 

considered: m/s0v , m/s4.0v  and m/s2.1v . It could be seen in Figure 4.4 that 

the SINR losses increase with the spectral heterogeneity. It could also be seen that the 

SINR losses for MIMO radar are greater than those for phased-array radar in spectral 

heterogeneous clutter due to higher DOFs. 

To further investigate the performance degradation for these target Doppler 

frequencies, 2D angle-Doppler responses of S-STAP  in spectrally heterogeneous clutter 

for phased-array radar and MIMO radar are plotted in Figure 4.5 and Figure 4.6, 

respectivley, under the assumption M = 16, NT = NR = 16. Three cases are considered: 
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m/s0v , m/s4.0v  and m/s2.1v . It could be seen in both Figure 4.5 and Figure 

4.6 that with the increase of the clutter spectral heterogeneity, the null that spans the 

clutter ridge becomes wider. Compare Figure 4.6 with Figure 4.5, it could be seen that 

deeper nulls are formed for clutter suppression with MIMO radar due to the increased 

DOF. 

  
(a) (b) 

 
(c) 

Figure 4.5 2D angle-Doppler responses for different spectral spread values when conventional STAP 

filter is used (phased-array radar). 

(a) σv = 0 m/s. (b) σv = 0.4 m/s. (c) σv = 1.2 m/s. 

The principle cuts of the angle-Doppler response at target azimuth and Doppler 

for different spectral spread values when S-STAP filter is used for phased-array radar and 

MIMO radar are plotted in Figure 4.7 (a) and (b), respectively. It could be seen that the 

maximum gain of the azimuth pattern at the expected target Doppler (above) and the 

Doppler resonse at the target azimuth (below) deviate more and more from the expected 
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target and Doppler with the increase of v . Compare Figure 4.7 (b) with Figure 4.7 (a), it 

could be seen that deeper nulls are formed for clutter suppression with MIMO radar due 

to the increased DOF. However, similar “pattern deviation” phenomena are observed 

with the increase of v . It means that for both phased-array radar and MIMO radar, the 

maximum antenna gain is not achieved at the expected target and Doppler in 

heterogeneous clutter, hence the detection probability of would suffer. 

  
(a) (b) 

 
(c) 

Figure 4.6 2D angle-Doppler responses for different spectral spread values when conventional STAP 

filter is used (MIMO radar). 

(a) σv = 0 m/s. (b) σv = 0.4 m/s. (c) σv = 1.2 m/s. 

 



92 

  
(a) (b) 

Figure 4.7 Principle cuts of angle-Doppler responses when conventional STAP filter is used. 

(a) Phased-array radar (b) MIMO radar 

4.3. Reduced-dimensional STAP 

In order to obtain an acceptable performance (i.e. -3 dB SINR loss according to 

the RMB rule [23]), the number of IID samples needed to estimate
rI ,R should be

32  MNU for phased-array radar and 32  RT NMNU  for MIMO radar, which is 

often not available in inhomogeneous clutter. Meanwhile, since the inversion of 
rI ,R

involves a computational complexity of )( 333

RT NNMO , instead of using (4.38) directly, a 

time-effective clutter suppression method termed as reduced-dimension space-time 

adaptive processing (RSTAP) is proposed in the following to reduce the computational 

complexity and lower the training samples requirement. The performance of the proposed 

method is evaluated in inhomogeneous clutter. 

First, the received signal corresponding to the m-th pulse, n-th receive element 

and ν-th transmit element is defined as mnx ,, . The received signal vector corresponding 

to the m-th pulse is then expressed as 

 TmNNmNmnmNm TRRT
xxxxxm ,,,1,,,,,1,1,1)(  x .                    (4.46) 
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And the received data matrix for M pulses during a CPI is 

 )()2()1( MxxxX  .          (4.47) 

By stacking the column vector of X, the following expression is obtained 

)(vec Xx  .               (4.48) 

Next, x is defined as  

 TT )(vec Xx  .                (4.49) 

It is easy to find a row vector rw that satisfies 

H

r

H

r wxxw  .               (4.50) 

Hence the optimization problem in (4.35) could be rewritten as 

 






1,,s.t.

min

00

,

H

rd

rrI

H

r

f wa

wRw
w


                                        (4.51) 

where   

       TdD

T

T

T

Rd ff 00000000 ,,,,,,  aaaa                  (4.52) 

 rI ,R in (4.51) is the covariance matrix of rnrc ,, xx  , which is expressed as 
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               (4.53) 

where 

       TrkrkrD

T

rkrT

T

rkrRrkrkr  ,,,,,, ,,,,,, aaaa  .                (4.54) 

In the following, the weight vector will be decomposed twice to lower the 

dimension. The first decomposition is termed as first-order reduced-dimension STAP 
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(1st-RSTAP), and the second decomposition is termed as second-order reduced-

dimension STAP (2nd-RSTAP). 

4.3.1. 1st-RSTAP 

In this part, the 1st-RSTAP is carried out. Firstly, the weight vector wr and the 

corresponding vector rw in (4.50) are decomposed, respectively, as 

uvw  

r       (4.55) 

 Tr

 vuw      (4.56) 

where T

NN

T

M RT
uuuvvv ],,,[and],,,[ 2121   uv . If 

rI ,R is partitioned into M 2 

submatrices of dimension RTRT NNNN  and nI ,R is partitioned into 22

RT NN  matrices of 

submatrices of dimension MM  , it follows that 

uRuwRw 
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M M
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and 
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RT RTNN NN
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where 
),(

,



rIR is the (β, γ)-th submatrix of 
rI ,R , and  

),(

,



rIR is the (ε, η)-th submatrix of 

rI ,R . To simplify the expressions in (4.57) and (4.58), two new matrices are defined as  


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
M M

rIv vv
1 1
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Figure 4.8 The relationship between the interference matrix and the sub-matrices in 1st-RSTAP. 

The relationship between
rI ,R , rI ,R , vR and uR is shown in Figure 4.8. It should be noted 

that vR is an RTRT NNNN  matrix, while uR is an MM  matrix. Therefore, (4.34) could 

be rewritten as 








1s.t.

min

Avu

uRu
u

H

v

H

.                        (4.61) 

And (4.51) could be rewritten as 








1s.t.

min

uAv

vRv
v

HH

u

H

                     (4.62) 
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where the MNN RT  matrix A is expressed as 

       TdDTR f 000000 ,,,,  aaaA  .        (4.63) 

The solutions to (4.61) and (4.62) are, respectively, 

AvRu
1 vu       (4.64) 

uARv
H

uv

1       (4.65) 

where u and v are constants given by 

  )(

1
1

AvRAv



v

Hu      (4.66) 

  )(

1

1
uARuA

H

u

HHv 
 .         (4.67) 

The weight vector calculation process with 1st-RSTAP is shown in Figure 4.9. It 

could be seen that for iteration step i = 0, the M × 1 column vector v is randomly 

initialized. Then the NTNR × 1 column vector u is obtained according to (4.64), and v is 

updated according to (4.65). It should be noted that the output SINR in (4.32) is 

maximized when αu = 1 and αv = 1. After three iterations (i.e. i = 0, 1, 2), u and v are 

stabilized, which are then used to calculate wr.  

By far, the matrices to be calculated become the NTNR × NTNR matrix Rv and the 

M × M matrix Ru, instead of the MNTNR × MNTNR matrix RI, r. However, the 

computational complexity is still high. For example, in a simple case where M = NT = NR 

= 16, Rv will be a 256256   matrix. Meanwhile, it should also be noted that 2 × max 

(NTNR, M) - 3 = 509 IID samples are needed to estimate Rv and Ru. Therefore, in the 

following, 2nd-RSTAP is carried out to further reduce the computational complexity. 
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i = 0, v = rand(M,1) 

i < 3?

Yes

No

End AvRu
1 v

uARv
H

u

1

i = i + 1

uvw  

r

 
Figure 4.9 Flowchart of the weight vector calculation process (1st-RSTAP). 

4.3.2. 2nd-RSTAP 

1 In this part, the ranks of the covariance matrices to be estimated are further 

reduced through 2nd-RSTAP. The vector u in (4.55) is decomposed as 

pqu  *      (4.68) 

where q is an 1RN  column vector expressed as  TNR
qqq ,,, 21 q , and p is an 1TN

column vector expressed as  TNT
ppp ,,, 21 p . Hence (4.55) could be rewritten as 

pqvw   *

r .         (4.69) 

If vR  is partitioned into 
2

RN  submatrices of dimension TT NN  , the optimization 

problem in (4.61) could be expressed as 
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    (4.70) 

where ),( 
vR is the (κ, λ)-th submatrix of vR . Next, vR is defined as 

     
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It means that if the RTRT NNNN  matrix vR is expressed as  
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where the submatrix ),( 
vR is an TT NN  matrix given by 
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, then
vR is expressed as 
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where ),( 
vR is an TT NN  matrix given by 
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Therefore, the optimization problem in (4.61) could be expressed as 
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where ),( 
vR is the (μ, ρ)-th submatrix of 

vR . To simplify the expressions in (4.70) and 

(4.76), two new matrices are defined as 
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Figure 4.10 The relationship between submatrices. 

The relationship between vR ,
vR , 

qR and pR is depicted in Figure 4.10. The constraint of 

the optimization problem in (4.61) could be rewritten as 
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Hence the optimization problem in (4.61) could be decomposed as 

 
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The solutions to (4.80) and (4.81) are, respectively, 

 00

1 , Tqp aRp
      (4.82) 

  *00

1 , Rpq aRq
      (4.83)  

where constants αp and αq are given by 

     vaaq
T

dDR

Tp
f 0000 ,,,

1


       (4.84) 

     vaap
T

dDT

Hq
f 0000 ,,,

1


  .               (4.85) 

Taking into consideration of (4.62), the weight vector is calculated iteratively as 

shown in Figure 4.11. Both αp and αq are set to be one to maximize the output SINR in 

(4.32). It could be seen that for iteration step i = 0, both the NT × 1 column vector p and 

the NR × 1 column vector q are randomly initialized. Then the M × 1 column vector v is 

obtained according to (4.65) and (4.68), p is updated according to (4.82), and q is 
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updated according to (4.83). After three iterations (i.e. i = 0, 1, 2), v, p and q become 

stabilized, which are then used to calculate wr. Since Ru, Rp and Rq are M × M, NT × NT 

and NR × NR matrices, respectively, the computational complexity is greatly reduced than 

using the MNTNR × MNTNR matrix RI,r directly to calculate the weight vector wr.  

i = 0, p = rand(NT,1), q = rand(NR,1)

i < 3?

Yes

No

End

i = i + 1

pqvw   *

r

 *00

1 ,Rp aRq


 00

1 ,Tq aRp


 pqARv   *1 H

u

 

Figure 4.11 Flowchart of the weight vector calculation process (2nd-RSTAP). 

  
(a) (b) 

Figure 4.12 Expected SINR loss for SMI with different number of samples.  
(a) 1st-RSTAP; (b) 2nd-RSTAP 

The expected SINR loss for SMI with different number of samples is plotted for 

phased-array radar with MIMO radar with 1st-RSTAP filter and 2nd-RSTAP filter in 

Figure 4.12 (a) and (b), respectively. It could be seen that a -3 dB loss could be achieved 
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with 2 × max (NTNR, M) IID samples if 1st-RSTAP filter is used, and that number is 

reduced to 2 × max (NT, NR, M) if 2nd-RSTAP filter is used. 

4.3.3. Simulation results 

Table 4.1 Parameters for the airborne radar system and the ground clutter 

Symbol Quantity Value 

f0 Carrier frequency 450 MHz 

d Inter-element spacing λ/2 

fr Pulse repetition frequency 300 Hz 
H Platform height 9000 m 

va Platform speed 50 m/s 

SNR Signal-to-noise ratio 0 dB 

CNR Clutter-to-noise ratio 50 dB 

Rcp Clutter Range 130 km 

 

In this section, simulations are carried out to demonstrate (i) the performance of 

RSTAP in homogeneous clutter; and (ii) the time-effectiveness of RSTAP in 

inhomogeneous clutter. The parameters for the airborne radar system and the ground 

clutter used in simulations are summarized in Table 4.1. 

  
(a) (b) 
Figure 4.13 Angle-Doppler response of the MIMO radar. 

(a) Principle cut at target Doppler frequency. (b) Principle cut at target azimuth angle. 

 

The principle cuts of the angle-Doppler responses at the target azimuth angle 

(
00  ) and the target Doppler frequency (fd = 100 Hz) for coherent MIMO radar 

employing FA-STAP, 1st-RSTAP and 2nd-RSTAP are plotted in Figure 4.13. It is 
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assumed that M = NT = NR = 16, and the ground clutter is homogeneous. It is shown in 

Figure 4.13 (a) and (b) that the gains of the patterns generated by all three STAP methods 

are maximized at the expected target angle and Doppler frequency, while the clutter 

signals received from other directions with other Doppler frequencies are suppressed. It 

means that all three STAP methods have excellent clutter suppression performance in 

homogeneous clutter when coherent MIMO radar is used. It is shown in Figure 4.13 (a) 

that the sidelobes of the beampattern generated with 2nd-RSTAP are much lower than 

those of the beampattern generated with the FA-STAP and 1st-RSTAP. It could also be 

seen in Figure 4.13 that deeper nulls are generated at zero Doppler with 1st-RSTAP and 

2nd-RSTAP than with FA-STAP.   

Table 4.2 Matlab execution time to calculate the weight vector with FA-STAP, 1st-RSTAP, and 2nd-

RSTAP 

Parameters Matlab Execution Time 

NT NR M FA-STAP 1st-RSTAP 2nd-RSTAP 

8 8 8 0.087465 seconds 0.160202 seconds 0.144287 seconds 

12 12 12 1.931237 seconds 1.146657 seconds 0.711487 seconds 

12 12 16 4.151648 seconds 1.961224 seconds 0.933550 seconds 

16 16 16 23.073601 seconds 4.035649 seconds 3.164785 seconds 

 

 
Figure 4.14 Matlab execution time to calculate the weight vector with FA-STAP, 1st-RSTAP and 2nd-

RSTAP. 

For MIMO radar, when M, NT and NR are relatively large, the computational 

complexity would be dramatically high (i.e. )( 333

RT NNMO ) if FA-STAP is used. The time 
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performances of the FA-STAP, 1st-RSTAP and 2nd-RSTAP for different M, NT and NR are 

summarized in Table 4.2. It is obviously that 1st-RSTAP and 2nd-RSTAP are much more 

time-efficient than FA-STAP. In order to get a deeper insight into the relationship 

between the Matlab execution time and the values of M, NT and NR, the Matlab execution 

time of FA-STAP, 1st-RSTAP and 2nd-RSTAP is plotted with respect to 333

RT NNM  in 

Figure 4.14. It could be seen that the execution time of the FA-STAP is proportional to

333

RT NNM , and both 1st-RSTAP and 2nd-RSTAP are much more time-efficient than FA-

STAP. 

The SINR performances of different clutter suppression methods for different 

clutter spectral spread values are plotted in Figure 4.15. It could be seen in Figure 4.15 in 

(a) and (b) that the output SINR decreases with the spectral heterogeneity when FA-

STAP filter is used. It could also be seen that the output SINR for MIMO radar are 

greater than that for phased-array radar in spectral heterogeneous clutter due to higher 

DOFs. Comparing Figure 4.15 (c) (d) with (a) (b), it could be seen that although both 1st-

RSTAP and 2nd-RSTAP underperform MIMO radar employing FA-STAP, they 

outperform phased-array radar employing FA-STAP method for most target Doppler 

frequencies (50 Hz-250 Hz for 1st-RSTAP and 75 Hz-225 Hz for 2nd-RSTAP) when

m/s2.1v . It could also be seen in Figure 4.15 (c) and (d) that the SINR performance 

of 1st-RSTAP is better than that of 2nd-RSTAP, and both of them are quite robust in 

inhomogeneous clutter. 
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(a) (b) 

  
(c) (d) 

Figure 4.15 SINR performances for different spectral spread values.  

(a) Phased-array radar with FA-STAP; (b) MIMO radar with FA-STAP; (c) MIMO radar with 1st-RSTAP 

(d) MIMO radar with 2nd-RSTAP 

It should be noted that three iterations are assumed for both 1st-RSTAP and 2nd-

RSTAP in simulations. The reasons are as following. If fewer numbers of iterations are 

used, the clutter suppression performance would suffer. Meanwhile, using more than 

three iterations would not further improve the output SINR performance of the proposed 

RSTAP method. It could be seen from Figure 4.16 that the performance of the RSTAP 

method with five iterations is no better than that with three iterations. In addition, if more 

iterations are used, the time efficiency will suffer since the Matlab execution time is 

proportional to the number of iterations. 



106 

  
(a) (b) 

Figure 4.16 SINR performances for different number of iterations.  

(a) MIMO radar with 1st-RSTAP (b) MIMO radar with 2nd-RSTAP. 

4.4. Deterministic STAP 

This section presents an innovative deterministic STAP (D-STAP) approach for 

coherent MIMO radar. Unlike stochastic STAP (S-STAP) relying on the auxiliary 

training data to estimate the statistics of the interference and place nulls for interference 

suppression, D-STAP operates on a snapshot-by-snapshot basis to determine the adaptive 

weights. However, in order for traditional D-STAP (T-D-STAP) to achieve a satisfactory 

performance, the assumed target DOA has to match the real one perfectly. Therefore, a 

robust D-STAP approach termed as R-D-STAP is proposed in the following, which 

provides near-optimum target detection and clutter suppression performance when there 

is a mismatch between the assumed target DOA and the true target DOA. 

4.4.1. R-D-STAP for MIMO radar 

Assume that the signal received at the n-th antenna element transmitted from the ν 

-th antenna element during the m-th pulse is expressed as mnx ,, . The offsets for different 

pulses, transmit waveforms and receive antennas are expressed, respectively, as 

Tfj

M
dez

2
       (4.86) 
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


 0sin

2 Td
j

T ez          (4.87) 




 0sin

2 Rd
j

R ez   .     (4.88) 

Assume that   MNN KKK
RT

and are the number of degrees of freedoms (DOFs) in 

spatial domain and temporal domain, respectively. By defining the deterministic data 

cube, 
MTNRN KKKx , as the received radar signal of the first 

RNK antennas transmitted from 

the first 
TNK antennas during the first KM pulses, seven row vectors (y1, y2, y3, y4, y5, y6 

and y7) of dimension MNN KKK
RT

which contain only interference signals could be 

formulated as: 

  1,,

1

,,1 )1()1( 

 mnMmnNNN xzxKnKKm
TRT y             (4.89) 

  mnTmnNNN xzxKnKKm
TRT ,1,

1

,,2 )1()1( 

 y           (4.90) 

  mnRmnNNN xzxKnKKm
TRT ,,1

1

,,3 )1()1(  

y            (4.91) 

  1,1,

11

,,4 )1()1( 

 mnMTmnNNN xzzxKnKKm
TRT y       (4.92) 

  1,,1

11

,,5 )1()1( 

 mnMRmnNNN xzzxKnKKm
TRT y     (4.93) 

  mnTRmnNNN xzzxKnKKm
TRT ,1,1

11

,,6 )1()1( 

 y      (4.94) 

  1,1,1

111

,,7 )1()1( 

 mnMTRmnNNN xzzzxKnKKm
TRT y .      (4.95) 

where 
MNN KmKKn

TR
,,2,1;,,2,1;,,2,1    . These interference vectors can be 

arranged as rows in a 7× MNN KKK
RT

linear system matrix F2, which is expressed as 

 TTTT

7212 yyyF  .     (4.96) 
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In the following, a MNN KKK
RT

weighting vector of dimension is designed to null 

the interference vectors. In order to prevent the self-nulling (cancellation of the target 

signal), one extra row is added to the matrix F2, to play the role of the main beam look 

direction constraint vector. This row vector y0 is expressed as 

     111

0 111


 TNRNM
K

TT

K

RR

K

MM zzzzzz y .           (4.97) 

And the MNN KKK
RT

8  matrix F is obtained as 

 TTT

810 yyyF  .               (4.98) 

The weight vector of the deterministic STAP for MIMO radar could be obtained by 

solving the following linear system 

 Td qqq 821  qFw               (4.99) 

where wd is the weight vector and q1 stands for the main beam look direction constraint. 

In order to null the interferences while preserving the target signal, q1 has to be as close 

to 1 as possible, and q2, q3 … q8 have to be approximately zero. In conventional 

deterministic STAP, it is assumed that the nominal target parameters perfectly match the 

real ones, and (4.99) is simplified as 

 Td 00000001Fw .       (4.100) 

However, when there is a mismatch between the assumed target DOA and the real 

one, the interference vectors could contain contribution from the target, and target “self-

nulling” could occur. Assume that e and fe are the errors in the prior knowledge of target 

DOA and target Doppler, respectively. The error vector e is defined as 

     TK

TeTe

TK

ReRe

TK

MeMe
TNRNM zzzzzz

1

,,

1

,,

1

,, 111


 e       (4.101) 
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where TeReMe zzz ,,,  and,,  are, respectively, expressed as 

Mfj

Me
eez

2

,                  (4.102) 


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 eRd

j

Re ez

sin
2

,       (4.103) 




 eTd

j

Te ez

sin
2

,  .    (4.104) 

The main beam look direction constraint row vector is modified as 

        11

,

11

,

11

,,0 111
  TNRNM

K

TTTe

K

RRRe

K

MMMeN zzzzzzzzz y .     (4.105) 

And the convex optimization problem is formulated as 








 1s.t.

min

,0

*

2

T

N

H

d

d

yw

wF
w .              (4.106) 

where  represents the norm and * represents the conjugate. The convex optimization 

problem in (4.106) could be solved easily with the Matlab CVX toolbox provided in [74]. 

Finally, the target signal complex amplitude, α, is estimated as 

RNTNM KKK

H

d xw̂      (4.107) 

With deterministic STAP, the number of DOFs for interference suppression is

1
RT NNM KKK , while in stochastic STAP, the number of DOFs for interference 

suppression is MNTNR. It is easy to obtain that 

RTNNM NMNKKK
RT

1          (4.108) 

It could be seen that although deterministic STAP filter outperforms stochastic STAP 

filter in inhomogeneous clutter by operating on a snapshot-by-snapshot basis, the number 

of available DOFs is reduced as a trade-off. 
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4.4.2. R-D-STAP for phased-array radar 

It should be noted that a robust deterministic STAP filter could also be derived for 

phased-array radar in a very similar way. Assume that the numbers of antenna elements 

and pulses per CPI are N and M, respectively, the number of DOFs in spatial and 

temporal domain is KN and KM, respectively, and the signal received at the n-th antenna 

element during the m-th pulse is expressed as mnx , . In this case, three NM KK1 row 

vectors containing only the interference could be obtained: 

  1,

1

,1, )1( 

 mnMmnNp xzxnKmy           (4.109) 

  mnNmnNp xzxnKm ,1

1

,2, )1( 

y                    (4.110)
 

  1,1

11

,3, )1( 

 mnNMmnNp xzzxnKmy          (4.111)
 

where MPz , and NPz ,  are the offsets for different pulses and antennas, respectively, and

MN KmKn  , ,1;,,2 ,1   . Hence the interference matrix F2 only has three rows for 

phased-array radar while it has seven rows for MIMO radar. And a 1MN KK weighting 

vector could be designed to null these interference vectors by solving the optimization 

problem in (4.106) after modifying the constraint vector accordingly. 

4.4.3. Simulation results 

In this section, simulations are carried out to demonstrate the performance of the 

proposed R-D-STAP filter in inhomogeneous clutter. Specifically, two different types of 

clutter heterogeneity are considered: spectral heterogeneity and amplitude heterogeneity. 

The performance of the R-D-STAP filter is compared with the S-STAP filter (Capon 

filter) and the T-D-STAP filter based on the output SINR and the angle-Doppler 
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responses. For all three types of filters, both phased-array radar and coherent MIMO 

radar are considered. The parameters for the airborne radar system and the ground clutter 

are the same as the ones shown in Table 4.1. 

  
(a) (b) 

 
(c) 

Figure 4.17 2D angle-Doppler responses of the space-time snapshot of radar data in homogeneous 

clutter. 

(a) T-D-STAP (b) R-D-STAP (c) S-STAP 

The 2D angle-Doppler responses of the space-time snapshot of radar data in 

homogeneous clutter when the S-STAP filter, the R-D-STAP filter and the S-STAP filter 

are applied to the receiver of phased-array radar are plotted in Figure 4.17 (a), (b) and (c), 

respectively. It could be seen in Figure 4.17 (a) that when T-D-STAP filter is used, deep 

nulls are formed at the clutter ridges to suppress clutter signals in both plots. However, 

these patterns are not suitable for noise processing since the noise signals at most angles 

and Doppler frequencies (except for the ones located at the clutter ridge) are strengthened 
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together with the target signal. Hence the performance of the T-D-STAP filter is unstable 

and highly dependent on the random noise signal. 

When R-D-STAP filter is used, it could be seen in Figure 4.17 (b) that the gains 

of both patterns are maximized at the expected target angle and Doppler frequency. 

Meanwhile, the interferences in other angles and at other Doppler frequencies are 

suppressed. Comparing Figure 4.17 (b) and Figure 4.17 (c), it could be seen that the 

performance of the S-STAP filter is better than the R-D-STAP filter in homogeneous 

clutter. It is consistent with the fact that in this case more DOFs are available in S-STAP 

filter than in D-STAP filter. However, it should be noted that D-STAP operates on a 

snapshot-by-snapshot basis and it doesn’t need covariance matrix estimation. Hence the 

R-D-STAP filter outperforms the S-STAP filter when the ground clutter is highly 

inhomogeneous. 

The 2D angle-Doppler responses of the space-time snapshot of radar data in 

homogeneous clutter when the S-STAP filter, the R-D-STAP filter and the S-STAP filter 

are applied to the receiver of MIMO radar are plotted in are shown in Figure 4.18 (a), (b) 

and (c), respectively. 16 transmit/receive antenna elements and 16 pulses per CPI are 

assumed. It could be seen in Figure 4.18 (b) and Figure 4.18 (c) that when the R-D-STAP 

filter and the S-STAP filter are used in MIMO radar, deeper nulls are generated than the 

case when they are used in phased-array radar (refer to Figure 4.18 (b) and (c)). This is 

due to the fact that the MIMO radar has higher DOFs than phased-array radar. However, 

comparing Figure 4.18 (a) and Figure 4.17 (a), it could be seen that the performance of 

the T-D-STAP filter doesn’t improve with the increased DOFs. This is another 

demonstration that the R-D-STAP filter outperforms the T-D-STAP filter. 
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(a) (b) 

 
(c) 

Figure 4.18 2D angle-Doppler responses of the space-time snapshot of radar data in homogeneous clutter 

when STAP filters are applied to the receiver of MIMO radar. 

(a) T-D-STAP (b) R-D-STAP (c) S-STAP 

  
(a) (b) 

Figure 4.19 Angle-Doppler responses when S-STAP is used.  

(a) phased-array radar; (b) MIMO radar  

The principle cuts of the angle-Doppler response at target azimuth and Doppler 

for different spectral spread values when S-STAP filter is used for phased-array radar and 
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MIMO radar are plotted in Figure 4.19 (a) and (b), respectively, under the assumption of 

a target Doppler of 20 Hz and a target azimuth of 20°. It could be seen that the maximum 

gain of the azimuth pattern at the expected target Doppler (above) and the Doppler 

resonse at the target azimuth (below) deviate more and more from the expected target and 

Doppler with the increase of v . Compare Figure 4.19 (b) with Figure 4.19 (a), it could 

be seen that deeper nulls are formed for clutter suppression with MIMO radar due to the 

increased DOF. However, similar “pattern deviation” phenomena are observed with the 

increase of v . It means that for both phased-array radar and MIMO radar, the maximum 

antenna gain is not achieved at the expected target and Doppler in highly inhomogeneous 

clutter, hence the detection probability would suffer. 

  
(a) (b) 

 
(c) 

Figure 4.20 2D angle-Doppler responses of the space-time snapshot of radar data in spectrally 

heterogeneous clutter when R-D-STAP is applied to the receiver of phased-array radar. 

(a) σv = 0 m/s. (b) σv = 0.4 m/s. (c) σv = 1.2 m/s. 
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(a) (b) 

 
(c) 

Figure 4.21 2D angle-Doppler responses of the space-time snapshot of radar data in spectrally 

heterogeneous clutter when R-D-STAP is applied to the receiver of MIMO radar. 

 (a) σv = 0 m/s. (b) σv = 0.4 m/s. (c) σv = 1.2 m/s. 

The 2D angle-Doppler responses of the space-time snapshot of radar data in 

spectrally heterogeneous clutter when R-D-STAP is applied to the receiver of phased-

array radar are plotted for m/s0v , m/s4.0v and m/s2.1v  in Figure 4.20 (a), (b) 

and (c), respectively, under the assumption of a target Doppler of 20 Hz and a target 

azimuth of 20°. It is shown in Figure 4.20 that neither the azimuth patterns nor the 

Doppler frequency change with spectral heterogeneity and the maximum gain is always 

achieved at the expected target azimuth and Doppler. For the purpose of comparison, the 

2D angle-Doppler responses of radar data when R-D-STAP is applied to the receiver of 

MIMO radar are plotted in Figure 4.21. Comparing Figure 4.21 and Figure 4.20, it could 

be seen that MIMO radar has better clutter suppression and target detection performance.  
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The principle cuts of angle-Doppler responses of the space-time snapshot of radar 

data in spectrally heterogeneous clutter when R-D-STAP is applied are plotted in Figure 

4.22. It is assumed that the expected target azimuth and Doppler are 20° and 20 Hz, 

respectively. It could be seen in Figure 4.22 that neither the azimuth patterns nor the 

Doppler frequency change with spectral heterogeneity and the maximum gain is always 

achieved at the expected target azimuth and Doppler. Compare Figure 4.22 (b) and 

Figure 4.22 (a), it could be seen that the sidelobes are lower when MIMO radar is used 

due to the higher DOF. 

  
(a) (b) 

Figure 4.22 Principle cuts of angle-Doppler responses when R-D-STAP is applied.  

(a) Phased-array radar (b) MIMO radar 

Assume that SINR loss due to limited IID sample support is -3dB, the SINR 

losses due to varying degrees of clutter amplitude heterogeneity are summarized in Table 

4.3. It is assumed that Hz20,200  df
 . The results are obtained with the following 

steps: 
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a. Randomly select the clutter reflectivity for each clutter patch from the gamma 

distribution with given parameters~ and 
~

. Compute and store the interference 

covariance matrix rR . 

b.  Set M = NT = NR = 8. For phased-array radar, compute 2MNTNR =1024 

realizations by selecting the clutter reflectivity for each clutter patch from the 

same gamma distribution. For phased-array radar, compute 2MN =128 

realizations. Estimate the interference covariance matrix rR̂ using the MLE. 

c. Compute two adaptive weight vectors rw and rŵ using rR and rR̂ , respectively. 

d. Compute the SINR loss. 

e. Carry out 50 Monte Carlo trials and calculate the average SINR loss. 

It could be seen in Table 4.3 that since the expected target is far from the clutter 

ridge, the SINR losses are very small for both phased-array radar and MIMO radar and 

could be ignored.  

Table 4.3 SINR loss due to range-angle variation of clutter reflectivity when S-STAP filter is used.  

(M = NT = NR = 8, 
~

 = 10) 

 ~  0.005 0.01 0.03 0.5 0.1 0.5 

SINR Loss (dB) 
Phased-array Radar -4.42 -3.76 -3.16 -3.00 -3.00 -3.00 

MIMO Radar -3.62 -3.33 -3.02 -3.00 -3.00 -3.00 

The SINR loss due to varying degrees of clutter amplitude heterogeneity with 

phased-array radar and MIMO radar is summarized in Table 4.4. It is assumed that the 

expected target azimuth and Doppler are 20° and 20 Hz, respectively. The average SINR 

losses in Table 4.4 are calculated based on 50 Monte Carlo trials. It could be seen that the 
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SINR losses are less than -3 dB for all cases of clutter amplitude heterogeneity when the 

nominal target DOA perfectly matches the actual target DOA.  

Table 4.4 SINR loss due to range-angle variation of the clutter reflectivity when R-D-STAP filter is used  
 

 ~  0.005 0.01 0.03 0.5 0.1 0.5 

SINR loss (dB) 
Phased-array radar -1.40 -2.04 -1.00 -0.97 -1.93 -2.36 

MIMO radar -1.96 -2.89 -1.42 -1.88 -1.73 -1.95 

In the following, the relationship between the SINR and the SCR will be analyzed 

and non-homogeneous clutter is assumed. The simulation result in [75] shown that the 

phased-MIMO radar outperforms MIMO radar in SINR-CNR plot, it is not convincing 

since there are problems with the definition of SINR. In [75], the SINR is defined as 





ˆ
log20


SINR       (4.112) 

where ̂ is the estimated target amplitude. Unfortunately, this expression doesn’t have a 

proper upper bound, i.e. the maximum SINR is infinity. And it is well known that the 

maximum SINR improvement of phased-array radar and MIMO radar that could be 

achieved are 10×log10(MN) and 10×log10(MNTNR), respectively. To encounter this 

problem, in this section, the SINR for S-STAP is calculated as: 
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The SINR for D-STAP is in similar form except for using the 
RT NNM KKK truncated 

version of  00 ,,, dr faw  and nx  (recall that the deterministic data cube, 
RNTNM KKKx , is 

defined as the received radar signal of the first 
RNK antennas transmitted from the first 
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TNK antennas during the first KM pulses). Since 1
2

n

H

r xw , even if the clutter signals are 

nulled perfectly, i.e.   0,,
1

2

,, 


cN

k

rkrkr

H

rk  aw , the SINR is still well bounded instead 

of approaching infinity. 

The relationship between the SINR and the SCR is plotted in Figure 4.23. Four 

cases are considered: (i) phased-array radar (M = N = 8); (ii) phased-array radar (M = N = 

16); (iii) MIMO radar (M = NT =NR = 8); (iv) MIMO radar (M = NT =NR = 16).  All the 

SINR values are obtained by Monte-Carlo simulation with 100 trials and the average of 

the trials are recorded. It could be seen from Table 4.4 and Figure 4.23 that the output 

SINR performance of MIMO radar (M = NT =NR = 8) is basically the same as that of the 

phased-array radar (M = N = 16). It means that MIMO radar is capable of achieving much 

higher output SINR than phased-array radar with much smaller number of antenna 

elements and pulses per CPI. 

 
Figure 4.23 The relationship between the SINR and the SCR. 

The following analysis is devoted to the relationship between the output SINR 

and the difference between the nominal and the true target DOA. Both phased-array radar 
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and MIMO radar are considered, and highly inhomogeneous clutter is assumed. The 

output SINR values for different mismatch angles between the nominal and the true 

target DOA when robust deterministic STAP filter is plotted in Figure 4.24. Four cases 

are considered: (i) phased-array radar with M = N = 8; (ii) phased-array radar with M = N 

= 16; (iii) MIMO radar with M = NT =NR = 8; (iv) MIMO radar with M = NT =NR = 16. It 

could be seen that for both phased-array radar and MIMO radar, when the target DOA 

mismatch is large, the output SINR is higher when smaller number of antenna elements 

and pulses per CPI are assumed. However, when the target DOA mismatch is relatively 

small, the radar system with more antenna elements and pulses per CPI has higher output 

SINR. It could be seen that although the phased-array radar is more robust to target DOA 

mismatches, the output SINR performance of MIMO radar is much better than that of the 

phased array radar when the mismatch angle is relatively small. 

 
Figure 4.24 The SINR loss due to the difference between the nominal and true target DOA. 

4.5. Summary of Chapter 4 

In this chapter, two innovative ground clutter suppression approaches termed as 

RSTAP and R-D-STAP are proposed for airborne MIMO radar ground moving target 

detection in inhomogeneous clutter. In RSTAP, the high dimensional weight vector is 
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calculated iteratively with lower dimensional weight vectors, hence the computational 

complexity is reduced dramatically. In contrast, R-D-STAP operates on a snapshot-by-

snapshot basis to determine the adaptive weights and can be readily implemented in real 

time. The performances of RSTAP and R-D-STAP in inhomogeneous clutter are 

compared with those of FA-STAP by plotting the angle-Doppler responses and output 

SINR. The following conclusions are drawn by observing the simulation results.  

1) Even though FA-STAP has a slightly better output SINR performance, the 

proposed RSTAP method has an outstanding advantage in the processing time when the 

number of antenna elements and the number of pulses per CPI are relatively large. For 

example, when M = NT = NR = 16, it takes 23s to calculate the adaptive weight vector if 

FA-STAP used, while it takes only 4s if 1st RSTAP is used and 3s if 2nd RSTAP is used. 

2) The performance of FA-STAP degrades dramatically with the increase of the 

clutter spectral heterogeneity, while the performance of RSTAP is quite robust. 

3) R-D-STAP filter outperforms the FA-STAP when spectral clutter heterogeneity 

is present since it operates on snapshot-to-snapshot basis and the estimation of the clutter 

covariance matrix is unnecessary.  

4) When amplitude heterogeneity due to range-angle variation of clutter 

reflectivity is the dominant problem, both the FA-STAP filter and the R-D-STAP filter 

have good performances given that the target is not on the clutter ridge.  

5) When the R-D-STAP is applied to both types of radar systems, the 

performance of MIMO radar is much better than that of the phased array radar when the 

mismatch angle is relatively small. 
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5. MIMO RADAR ADAPTIVE BEAMFORMING FOR INTERFERENCE 

MITIGATION 

Traditionally, certain licensed spectrum is intended to be used only by radars. 

Specifically, in USA, S-band (2 GHz – 4 GHz) radars have primary spectrum allocation 

status throughout 2310-2385 MHz, 2700-3100 MHz and 3100-3650 MHz [76]. Since 

typical radar operations only use these exclusively licensed spectrum occasionally, large 

portions of these frequency bands are underutilized for most of the time [77]. However, it 

is essential for radars to maintain access to these spectrum, and even gain secondary 

access to more spectrum currently licensed to other radio systems, in order to achieve 

mission success in the face of competition for spectrum access from adversaries [78]. On 

the other hand, wireless industry’s demand for spectrum keeps increasing in pursuit of 

providing higher data rates to higher densities of users beyond the capability of current 

networks in the upcoming 5G communication era. Therefore, both radar and 

communication systems will benefit if they could operate in the same spectrum band 

simultaneously without compromising the performances of each other.  

In order to achieve this goal, the Department of Defense and the Department of 

Commerce are partnering in a collaborative framework to make spectrum sharing 

possible through the Shared Spectrum Access for Radar and Communications (SSPARC) 

program of Defense Advanced Research Projects Agency (DARPA) [79]. However, 

making the spectrum sharing between radar and wireless commercial/military 

communications systems technically feasible without compromising both systems’ 

performances is no easy task.  
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The first line of research has been focused on designing a joint radar-

communication (JRC) system, which has both the radar sensing and the communication 

abilities. Joint orthogonal frequency division multiplexing (OFDM) radar-communication 

systems are proposed in [80-87], where the OFDM signals are used for both radar sensing 

and wireless communication. Amplitude Modulation (AM) based dual-function radar 

communications (DFRC) systems are proposed in [88-91], where multiple orthogonal 

waveforms are used to embed the information to be transmitted, and the power levels of 

the radar sidelobes towards the communication directions are used to embed 

communication symbols. Phase Modulation (PM) and Phase-Shift Keying (PSK) based 

DFRC system are proposed in [91-94], where communication symbols are embedded in 

the phase difference between orthogonal transmit waveform pairs. 

Another line of research has been concentrating on interference mitigation for 

either radar or wireless communication system under the assumption of a spectrum 

sharing scenario. In [95-98], the radar waveforms are projected onto the null space of the 

interference channel between the MIMO radar and the communication system, 

constraining radar interference to the communication system while assuring minimum 

degradation in the radar detection performance. In [99] and [100], the spectrum sharing 

problem is formulated as a constrained optimization problem---the radar transmit 

waveform is designed to maximize the output SINR of radar system, while at the same 

time constraining the interfering energy on wireless systems from radar. In [101], a 

wireless communication network capable of mitigating interference form radar is 

proposed. 
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Coherent MIMO Radar 

Constrain Interferences from Radar 

to Communication systems

Phase-coding in the space domain at the 

initial time to form a defocused beam in 

one or more directions. 

Phase-coding in the time domain to 

ensure the orthogonality.

Waveform Design

Apply the space-domain digital filter at 

the matched filter outputs 

Adaptive Beamforming

 Extract and identify all transmitted 

waveforms with the multiple parallel 

matched filters at the receiver. 

Eliminate Interferences from 

Communication Systems to Radar
 

Figure 5.1 Flowchart of coherent MIMO radar waveform design and adaptive beamforming to enable 

spectrum sharing between radar and wireless communication systems. 

In this chapter, the interference from radar to wireless systems is constrained via 

mutual information (MI) based cognitive radar transmit waveform design, and the 

interference from wireless systems to radar is mitigated via adaptive beamforming at 

radar receiver side. Coherent MIMO radar structure is assumed, and the process is 

depicted in Figure 5.1. Unlike traditional phased-array radar, MIMO radar doesn’t need 

to transmit at the maximum power at the expect target direction since a virtual target 

detection beam could be formed at the receiver side. Therefore, the transmit beam could 

be designed with nulls in the directions of base stations (BSs) within the radar detection 

range to constrain interference from radar to BSs without affecting radar’s performance. 

Due to the orthogonality of the transmitted waveforms, waveform transmitted by each 

antenna element could be identified and extracted from the received echo signal, and then 

used to eliminate interference received at both radar antenna mainlobe and sidelobes from 

BSs via adaptive beamforming processing. 
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The remainder of the chapter is organized as following. The process of MI-based 

cognitive radar waveform design is detailed in Section 5.1. The interference mitigation 

processing method based on MIMO radar beamforming is presented in Section 5.2. The 

required interference mitigation for radar and wireless system to operate normally in the 

presence of each other is derived in Section 5.3. Simulations are carried out by assuming 

a general spectrum sharing scenario between S-band MIMO radar and wireless systems, 

and the simulation results are given in Section 5.4. A brief summary of the chapter is 

provided in Section 5.5. 

5.1. Cognitive Radar Transmit Waveform Design 

Since radar could acquire information about BSs within radar detection range 

beforehand by using the Radio Environmental Map (REM) and the Electronic Support 

Measurement (ESM) system [102], a defocused transmit beam with nulls in the directions 

of BSs could be formed, so that BSs will not be affected by radar system. The radar 

system model and the waveform design process are detailed as following. 

A coherent MIMO radar with uniform linear transmit antenna array of NT 

elements and uniform linear receive antenna array of NR elements operating in monostatic 

mode is assumed in this section. The orthogonal phase-coded vector designed for 

transmit antenna element ν (ν = 1, 2, …, NT) is expressed as 

Tjjjj
eeee
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]    [
21 

  

 u             (5.1) 

where   is the number of waveform sub-pulses in the time domain and 
i

  is the coding 

phase of sub-pulse i (1 i  ) of the waveform transmitted at antenna element ν. 
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Therefore, the phase coded waveform transmitted at the ν-th antenna element at time t is 

expressed as 


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where )(iu  is the i-th element of u and  is the waveform sub-pulse duration. The 

TN  phase matrix of the space-time coding for NT antenna elements is defined as 
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where the column vector T

T N,,2 ,1 ,]    [ 21      , is the phase coded sequence 

for  sub-pulse periods in the time domain for waveform )(iu  transmitted from element 

ν, and row vector ]    [ 21

i

N

ii

i T
 φ ,  ,,2 ,1 i , is the phase coded sequence for NT 

elements in the space domain during the period of sub-pulse i.  

5.1.1. Waveform design in space domain 

In order to design the desired space-time waveform, to start with, the phases for 

the first subpulse, i.e. 1φ , are designed to form a defocused transmit beam pattern with 

the deepest possible nulls in the directions of LTE BSs ),,,( 21

BS

P

BSBS    and the 

strongest possible peaks in the nominal target directions ) , ,( 21

NT

Q

NTNT   . Specifically, 

1φ will be determined by carrying out the following optimization 
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Choose random values for waveform phases and compute the costs.

 Initialize the number of waveform components allowed to be perturbed as NP=1.

“Perturb” the waveform by randomly switching 

NP components of current coding waveform.

Evaluate the cost value. If ΔC<0, the new waveform is accepted. 

When none of NT consecutive perturbations is accepted, NP←NP+1 

Do the costs of the accepted 

perturbations reach equilibrium?

Reduce the temperature based on the cooling schedule and stop if the temperature is 

1) close to zero or 

2) the cost is not reduced for three consecutive temperature deductions.

Yes

No

Set initial temperature as T0=Kσ0.

σ0 is the standard deviation of initial costs. 

 

Figure 5.2 Flowchart of phase-coding waveform design in space domain using the Enhanced Simulated 

Annealing (ESA) algorithm. 
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where the vectors d and e denote the relative radiation intensities in the null 

),,,( 21

BS

P

BSBS    and in the peak ) , ,( 21

NT

Q

NTNT    directions, due to the waveform, 

respectively; Q and P are the diagonal matrices containing the real positive weight 

coefficients of the relative radiation intensities in the null and peak directions, 

respectively. Since the cost function in (5.4) is a non-linear function, the Enhanced 

Simulated Annealing (ESA) algorithm shown in Figure 5.2 is used to locate a good 

approximation to the global optimum [103]. 
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5.1.2. Waveform design in time domain 

After 1φ is determined, )1...,,2,1(1  iiφ will be derived iteratively from iφ . In 

the following, the process is demonstrated in by forming a defocused transmit beam with 

a null in the direction of the p-th BS, i.e. BS

p . In order to ensure that the transmit beam is 

formed with a null in BS

p throughout all waveform sub-pulse periods and the column 

vectors l  and k  are orthogonal for kl  , a random permutation of (1, 2, 3, …, NT) is 

generated as ) , ,,( 21 TNIII  , and then apply the permutation to iφ  to generate a new 

phase sequence: } ,,,{
21

i
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  . Hence the waveform phases { 1
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i , 1
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NT
 } for 

the next row in the space-time phase matrix is:  
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It is easy to prove that the waveform thus generated has the same pattern shaping 

feature (i.e. a null in BS

p ) throughout all waveform sub-pulse periods since the transmit 

beam pattern generated from } { 21 TN   , which is expressed as, 
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is identical to the transmit beam generated from the waveform with coding phases in 

(5.5), which is given by 
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The designed waveform also meets the orthogonality constraint for the following 

reason. Assume that  is randomly selected from one of the phases in } { 21 TN  , 

which is uniformly distributed in [0, 2), and Iν is randomly selected from } ,,2 ,1{ TN . 

Due to the phase folding effect, the distribution of the phases in the phase sequence of 

}/sin2{ 0  

BS

pdI is the circular-convolution of two uniform distributions and 

hence, is still uniformly distributed in [0, 2). Therefore, }{
)/sin2( 0  

BS
pdIj

e


 is a complex 

pseudo-noise signal with its component phases uniformly and independently distributed. 

Furthermore, the autocorrelation of the sequence is a quasi-Dirac function and any two 

such sequences obtained similarly are quasi-orthogonal [103]. 

The transmit beam of MIMO radar doesn’t have to transmit at the maximum 

power at the expect target direction since a virtual target detection beam could be formed 

at the receiver side. Therefore, the impact of MIMO radar on wireless systems is 

minimized even when the wireless systems are covered by radar mainlobe. In the extreme 

case where the BS is in the same direction with the target signal, a defocused transmit 

beam could be designed with a null in that direction to constrain the interference from 

radar to BS, and a virtual target detection beam with a peak in the expected target 

direction could be formed by refocusing the transmit-receive beam at radar receiver side 

via digital beamforming [103]. 
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5.2. MIMO Radar Transmit-Receive Adaptive Beamforming 

 Since the waveform transmitted from each antenna element is designed to be 

orthogonal to each other, a coherent wave transmitted by an antenna element could be 

identified and extracted from the received echo signal through a matched filter correlated 

only to that waveform. After that, by applying a space-domain digital filter at the 

matched filter outputs, interference signals received at both antenna mainlobe and 

sidelobes from wireless systems would be canceled while target signals would be 

enhanced. The detailed process is as following. 

The transmit steering vector aT in the broadside direction of T and receive 

steering vector aR in the broadside direction of R are, respectively, 
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Taking into consideration of the initial transmit waveform coding, the transmit steering 

vector is modified as [104] 

)()( 0 TTTTm  asa  .                          (5.10) 

The ideal received target signal vector with unit amplitude is then expressed as 

)()( TmRRr  vvs                                               (5.11) 

where   denotes the Kronecker product. Since collocated MIMO radar structure is 

assumed, in the following it is assumed that   RT  and the target is located at 0 . 

Using the radar transmit waveform  Mssss ,,, 21  designed according to (5.2), the 
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target signal vector tχ received at the receive array is 

)()](),([ 00  RTDtt ft aasχ                              (5.12) 

where is the unknown complex amplitude of the target signal due to scattering and 

propagation losses, t  is the time delay, and Df is the Doppler shift of the transmitted 

waveform s(t) caused by target scattering.  

In the following, a case where K wireless interference source exist is considered. 

Assume that the η-th (η = 1, 2, …, K) wireless interference source is located at angle  J  

and it is Gaussian distributed with variance 2

 J . The interference receive steering vector 

is given by 
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The received signals by NR antenna elements due to the inference are expressed as 

)()(]  [ 21  JJ

T

N tyyyy
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v   y   .         (5.14) 

And the NTNR matched-filtered outputs are given by 

 TNNNNNNJ TRRRTT
yyyyyyyyy ~~~~~~~~~

212222111211 χ   (5.15) 

where ny~ is the matched-filtered outputs of the n-th antenna element matched to the 

waveform transmitted by the ν-th antenna element. Here it is assumed that the 

interference signal time sequence out of antenna n to be )(tyn , then )(~ tyn  is expressed as 
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Figure 5.3 The interference-rejection receive beamforming for an interference signal. 

The matched filtering processing of the η-th interference is shown in Figure 5.3. 

The covariance matrix of the interference vector is given by [105] 
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where H)( denotes Hermitian transpose. The TT NN  sub-matrix pqR (p, q = 1, 2, …, NT) 

in ),( 2

  JJJR  is given as 
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where )(  Jpv  is the p-th component of )(  JJv , and 2~
 J is given by 

22~
  JJ  .                                                      (5.19) 

Assume that the K independent interfering sources are mutually independent, the 

covariance matrix of interference signals is given by 
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With the Generalized Likelihood Ratio Test (GLRT) algorithm applied, the optimal 

beamforming filter is obtained as [38] 

  rNNKJ RT
a sIRw

-12ˆ                                               (5.21)     

where 2 is the noise variance,
RT NNI is an RTRT NNNN   identity matrix, and sr is the 

ideal received target signal vector with unit amplitude. The output of the adaptive 

beamforming filter is  

                                    wnwχwχ
HH

J

H

tz                                                 (5.22)  

where tχ , Jχ , and n are the target signal, interference and noise vectors at the output of 

the matched filters, respectively. To further analyze the interference mitigation results, 

two beamforming concepts for coherent MIMO radar are defined in the following.  

Definition 1: Virtual antenna beam (VAB) is defined as the output of the 

optimized MIMO radar filter with the two-way target signal as the input [105]. With the 
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optimal filter defined in this chapter, the normalized VAB pattern formed in the expected 

target direction is given by 

ws
H

r

RT NN
V

1
)(†  .                                             (5.23)  

Definition 2: Actual receive beam (ARB) is defined as the output of the MIMO 

radar matched filter with the wireless interference signal as the input. The normalized 

ARB pattern is given by 
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1
)(†  .                                                    (5.24) 

Assume that the target is located at azimuth angle θ0 and there are K wireless 

interferences affecting the radar receiver, the theoretical normalized VAB pattern is 

expressed as 
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, and the theoretical normalized ARB pattern is expressed as 
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According to Woodbury’s identity, 
1

R in (5.25) and (5.26) could be further expressed as 
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Since VAB and ARB of the phase-coded MIMO radar are statistically 

independent, the space signal processing algorithm proposed in this chapter allows the 

VAB to be maximized in the target direction, while ARB is minimized in the interference 

direction at the same time. Therefore, through the proposed algorithm, the interference 

signals received by radar from wireless systems can be eliminated effectively even in the 

case where they are illuminated by the antenna mainlobe [105]. 

5.3. Interference Mitigation Required for Radar and Wireless System to Coexist 

In the following, the interference mitigation required for radar and wireless 

system to operate normally in the presence of each other is derived. Either radar or 

wireless system could be the interferer or the victim depending on who is currently 

transmitting. The power of the interfering signals arriving at the victim receiver on a 

decibel scale is 

    ),,,(feeder RIspRRIIIRI hhfDLLGGPP                        (5.28) 

where IP is the transmit power of the interferer,  IIG  is the antenna gain of the 

interferer,  RRG   is the antenna gain of the victim receiver, feederL is the feeder loss, and 

),,,( RIp hhfDL is the total signal propagation path loss from the interferer to the victim 

receiver, respectively. The path loss is the function of the distance (D) between the 

interferer and the victim, the operating frequency ( sf ), the height of the transmitting 

antenna of the interferer ( Ih ), and the height of the receiving antenna of the victim ( Rh ).  

In this chapter, ITU-R Recommendation P.452 is employed when dealing with 

path loss between radar station and BS [106, 107]. Based on the distance between the 
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interferer and the victim, line-of-sight propagation model and trans-horizon propagation 

model are used accordingly. The test for the trans-horizon path condition is [107] 
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where max is the maximum elevation angle seen by the interfering antenna, td is the 

elevation angle subtended by the victim receiver antenna, and  
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where ih is the height of the i-th terrain point, id is the distance from interferer to the i-th 

terrain element, and ea is the median effective Earth’s radius. The trans-horizon path of 

wireless-radar signal propagation is depicted in Figure 5.4. For trans-horizon path, the 

path loss is given by 

  h

LLL

RIsp AhhfDL babdbs 
 2.02.02.0

101010 log5),,,(                 (5.32) 

where bsL , bdL and baL are the basic transmission loss due to tropospheric scatter, 

diffraction loss, and transmission loss due to anomalous propagation, respectively, and 

hA is the losses due to height-gain effects in local clutter. For the line-of-sight 

propagation, the path loss is ),,,( RIsp hhfDL is represented as 

hgdsssRIsp AALEDfhhfDL  log20log205.92),,,(             (5.33) 
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where gA is the total gaseous absorption, sE is the correction factor for multipath and 

focusing effects, and dsL is the excess diffraction loss. 
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Figure 5.4 Trans-horizon signal propagation model. 

Since the height of handset antenna in this chapter is assumed to be about 1.5m 

above the ground, the extended Hata model designed for mobile radio applications in 

non-LOS/cluttered environment is used for path loss analysis between radar and handset 

[108]. It is assumed that the probability of a handset is outdoor is equal to the probability 

that it is indoor. For propagation between radar and outdoor handset, the median path loss 

is given by 

  ))(log()log(55.69.44              
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And the variation in path loss, outdoor , is achieved by applying the log-normal distribution 

(slow fading). For propagation between radar and indoor handset, the median path loss is 

given by 

 walloutdoorindoor LLL                                               (5.35) 

where wallL  is the attenuation due to external walls. The variation in path loss is given by 
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22

addoutdoorindoor                                            (5.36) 

where add  is the increased standard deviation caused by the uncertainty on materials and 

relative location in the building. 

For the victim receiver not to be affected by the interferer operating at the same 

frequency, the interference power must be less than the thermal noise floor of the vict im 

receiver by a certain interference margin, i.e. 

MarginPPP NFI               (5.37) 

where NFP  is the receiver thermal noise floor of the victim receiver, and MarginP  is the 

interference margin.  Thermal noise floor is defined as 

BTPNF 0                      (5.38) 

where κ is Boltzmann’s constant, 0T  is the temperature in Kelvins, and B is the 

bandwidth of the victim receiver. If radar and wireless systems are physically close, the 

path loss in (5.28) is not large enough to satisfy the requirement in (5.37), additional 

mitigation is required for radar and  wireless operate normally in the presence of each 

other, which is given by 

BkTPPP IMITI 0Margin  .                                          (5.39)  

The required additional mitigation in (5.39) could be achieved by using radar transmit 

waveform design in tandem with the adaptive beamforming processing method. 

5.4. Simulation Results 

In the simulation part, general spectrum sharing scenario is assumed, where BSs 

and handsets share the same frequency band with a coherent MIMO radar at operating at 
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2700 MHz. The radar antenna array consists of 16 half-wavelength spaced 

transmit/receive antenna elements, with each of them radiating in isotropic pattern. 

Sixteen orthogonal phase-coded transmitting waveforms with a coding length of 128 are 

employed by the radar. The radar antenna height is assumed to be 12 m.  

5.4.1. Interference mitigation between radar and BSs 

  
(a) (b) 

Figure 5.5 The interference mitigations required for radar and BS. 

(a) Mitigations required for radar to eliminate the interference from BS; (b) mitigations required for BS 

to eliminate interference from radar. 

The BSs are assumed to use time division duplexing (TDD). The height of 

antennas of the BSs is assumed to be 45 meters, the maximum transmitter power of BSs 

is assumed to be 46 dBm, the antenna gain of BSs is assumed to be 18 dBi, and the feeder 

loss of BS is assumed to be 3 dB. The mitigations required for MIMO radar and BS to 

eliminate interferences from each other at various distances calculated according to (5.39) 

are plotted in Figure 5.5. It is shown in Figure 5.5 that due to path loss alone, the impact 

of BSs on radar could be ignored when they are more than 40 km away from each other, 

and the impact of radar on BSs could be ignored when they are more than 80 km away 

from each other. And when radar and BSs are close to each other 40-50 dB additional 

interference mitigation is required for the two systems to coexist in the same spectrum 

without affecting the performances of each other. 
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1) Constrain the interference from radar to BSs 

 

Figure 5.6 Defocused transmit beam pattern during the first three sub-pulses. 

To start with, an extreme case where a BS is located in the same direction with 

the target at an azimuth angle of 40° is considered. The defocused transmit beam pattern 

during the first three sub-pulses is shown in Figure 5.6. The 1st sub-pulse is generated 

with ESA algorithm, and the other two sub-pulses are iteratively derived from the 1st sub-

pulse. It could be seen that a null at 40° is formed throughout all three sub-pulse periods. 

Since the coding length is 128, a total number of 128 sub-pulses with null at 40° are 

generated. 

Since the phase-coded waveforms transmitted from different antenna element are 

near-orthogonal in time domain, each transmit waveform could be identified and 

extracted from the received echo signal through a matched filter correlated only to that 

waveform, and then the transmit-receive beam could be refocused for optimal target 

detection via virtual beamforming. The transmit-receive beam pattern formed by using 

the designed phase-coded phases and the ideal refocused transmit-receive beam pattern 

formed by using ideal orthogonal waveforms are depicted in Figure 5.7, with the 

mainlobe of both beams pointing at 40°. It could be seen in Figure 5.7 that although the 
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designed coded waveforms are not perfectly orthogonal in time-domain, the performance 

of the actually formed transmit-receive beam at the radar receiver is very close to the 

ideal beamforming output. 

 
Figure 5.7 Refocused transmit-receive beam pattern with mainlobe pointing in 40°. 

Since the radar transmit beam could form a virtual beam for target detection at the 

radar receiver instead of maximizing the transmit power in the expected target direction, 

the impact on BSs from radar is minimized. However, in the case where a large number 

of BSs located near radar system, the mitigation requirement has to be met by using Inter-

Cell Interference Coordination (ICIC) techniques on the BSs’ side. In current 4G LTE 

communication systems, ICIC allows neighboring BSs to coordinate their use of air-

interface resources, which means BSs could use the resource towards the upper edge of 

the channel bandwidth, while its neighbor uses towards the lower edge of the channel 

bandwidth [109]. LTE ICIC options include interference cancellation (regenerate and 

subtract interfering signal from desired signal), opportunistic spectrum access (resources 

are assigned to sub-channels with low power spectral density) and organized 

beamforming (beams are pseudo-randomly hopped in quasi-orthogonal manner) [110]. 

2) Eliminate the interference from BSs to radar 
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Figure 5.8 Output SINR in various mainbeam directions with the interference at 0°. 

To begin with, the case where the wireless interference signal is in the same 

direction with the target signal is considered. Assume that the input interference-to-noise 

ratio (INR) is 64 dB and the signal-to-noise ratio (SNR) is 0 dB, the output SINR in 

various mainbeam directions with the interference at θJ = 0° is shown in Figure 5.8. It 

could be seen that if the initial transmit waveform is not coded by random phases, the 

target signal is canceled together with the wireless interference signal if they are in the 

same direction, i.e. SINR = 0 dB when θ0 = θJ = 0°. However, if the initial transmit 

waveform is coded with random phases, the target signal is preserved while the 

interference signal is eliminated when θ0 = θJ = 0°. 

In order to further demonstrate the performance of the proposed beamforming 

technique in eliminating the interference from a large number of BSs to radar, a more 

complicated scenario is assumed, where twenty-two BSs (marked as A-V) are covered by 

the mainlobe and sidelobes of a radar located at Miami International Airport, which is 

depicted in Figure 5.9. The location of the radar is set to be the origin of the Cartesian 

coordinate, with West/East direction as the x-axis, and North/South direction as the y-

axis. The azimuth angle of each BS in degrees is calculated according to their location in 

the Cartesian coordinate. The locations of the BSs are summarized in Table 5.1, and it 
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could be seen that the interefrences received by radar from BSs are from 14 directions, 

i.e. ),,,( 1421 JJJ   = (-78°, -70°, -29°, -21°, 2°, 9°, 16°, 32°, 37°, 42°, 45°, 51°, 64° 

and 68°).  The target signal is expected in the broadside direction of 00  .  
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Figure 5.9 Base stations covered in radar mainlobe and sidelobes 

Table 5.1 Base station locations 

Base 
station 

Location (x, y) 
Radar (0,0) 

Azimuth angle 
(degrees) 

Base 
station 

Location (x, y) 
Radar (0,0) 

Azimuth angle 
(degrees) 

A (1.7,8.0) -78 L (3.4,-2.6) 
37 

B (2.8,7.8) -70 M (6.6,-4.9) 

C (2.2,1.2) -29 N (5.8,-5.3) 42 
D (5.2,2.0) -21 O (5.6,-5.5) 

45 
E (15.4,-0.42) 

2 
P (6.0,-6.0) 

F (15.7,-0.43) Q (0.71,-0.83) 
51 G (3.9,-0.62) 

9 
R (3.4, -4.2) 

H (7.4,-1.2) S (5.3,-6.6) 

I (2.8,-0.80) 
16 

T (3.5, -7.2) 64 

J (3.3,-0.95) U (0.61,-1.5) 
68 

K (5.2,-3.2) 32 V (2.4,-5.8) 

The VAB pattern for target detection with initial transmit waveform coding is 

plotted in Figure 5.10 (a). It could be seen that the interferences, which are marked as red 
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dash-dotted lines in the figure, do not affect the VAB patterns. The ARB pattern for 

interference mitigation is depicted in Figure 5.10 (b). In the ARB pattern, fourteen nulls 

can be seen formed in the exact directions of the BS to remove the interference signals in 

the radar output. Since through space processing the power of the interference signal is 

reduced more than -100 dB, according to Figure 5.5 (a) it is sufficient to eliminate the 

interferences from BS. 

  
(a) (b) 

Figure 5.10 MIMO radar beamforming output.  
(a) virtual antenna beam (VAB) pattern for target detection; (b) actual receiving beam (ARB) pattern for 

interference mitigation (the red dash-dotted lines are the 14 directions of interferences) 

5.4.2. Interference mitigation between radar and handsets 

  
(a) (b) 

Figure 5.11 Interference mitigations required for radar and handset.  

(a) The mitigations required for radar to eliminate the interference from handset; (b) the mitigations 

required for handset to eliminate the interference MIMO radar. 
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Figure 5.12 Antenna elevation pattern.  

The maximum transmitter power, antenna gain and antenna height of the handsets 

are assumed to be 23 dBm, 0 dBi and 1.5 m, respectively. The number of simultaneously 

transmitting users per cell with maximum power is assumed to be one. The mitigation 

required for radar and handsets to eliminate the interferences from each other is plotted in 

Figure 5.11. It is shown in Figure 5.11 that due to path loss alone, the impact on radar 

from handsets located more than 3 km away could be ignored, and the impact on handsets 

from radar located more than 10 km away could be ignored. Meanwhile, since the 

antenna elevation pattern is assumed to be cosecant-squared pattern, which is plotted in 

Figure 5.12, the radar antenna gain is reduced for small elevation angles (i. e. when 

handset is near to radar). 

For any other random directions in which the handsets may be located, the ARB 

pattern shows that there are at least 30 dB of mitigation, which is adequate to eliminate 

any possible interferences from handsets to radar system. The additional mitigation 

required for handset to operate normally in presence of radar could be obtained with ICIC 

techniques for heterogeneous macro-cellular networks proposed in 3GPP release 10 

[111]. In a particular heterogeneous macro-cellular network, the transmit power of 

Macrocell BS and Pico BS are 20-60 W and 0.25 W, respectively, thus Pico UE (handset) 
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has to mitigate inference from Macro BS when it receives signals from Pico BS, which is 

similar to the scenario where the handset has to mitigate the interference from radar 

[112]. 

5.5. Summary of Chapter 5 

In this chapter, an effective radar waveform design and beamforming approach is 

proposed for possible spectrum sharing between coherent MIMO radar and wireless 

communication systems. Specifically, MI based cognitive radar waveform design is used 

to constrain radar’s impact on wireless systems by forming a defocused transmit 

waveform with nulls at the directions of BS. Meanwhile, virtual beamforming on the 

receiver side is used to eliminate interferences from BSs while preserving optimum target 

detection performance. Simulations are carried out by assuming a general spectrum 

sharing scenario where BS and handset share the same frequency band with a coherent 

MIMO radar operating at 2700 MHz. The simulation results indicate that with the radar 

transmit beam designed to minimize the impact on the wireless system, BS and handset 

could meet the additional interference mitigation requirements with existing 4G LTE 

ICIC techniques. At the same time, with the proposed radar beamforming approach, the 

MIMO radar can eliminate interferences received at both radar antenna mainlobe and 

sidelobes and operate normally during the radar-wireless spectrum sharing process. 

6. CONCLUSIONS AND FUTURE RESEARCH 

6.1. Conclusions 

In this dissertation, innovative interference suppression techniques are proposed 

for phased-array radar and MIMO radar, and the performances of the proposed 
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approaches are compared with those of the existing widely used interference mitigation 

approaches. Two types of interferences are considered, ground clutter and jamming. It is 

demonstrated both analytically and empirically that the proposed interference mitigation 

methods are advantageous over the existing signal processing techniques in suppressing 

inhomogeneous ground clutter and jamming signal entering radar receiver through the 

antenna mainlobe. The interference mitigation approaches proposed in this dissertation 

are summarized in the following. 

In Chapter 2, the image-feature based target-interference recognition approach 

termed as BDIFR is developed as an alternative approach to STAP to detect ground 

moving target in highly inhomogeneous clutter. The received radar echo data in space-

time domain are transformed from the space-time domain to the beam-Doppler domain 

via 2D-DFT or MV method depending on the number of space-time snapshots available. 

An innovative MDB-RG algorithm is used to generate feature blocks from the denoised 

beam-Doppler image. And target recognition is carried out by comparing the size of each 

feature block to a predetermined threshold. Through various simulations, it is 

demonstrated that BDIFR is effective even when the target’s velocity is low or clutter 

Doppler ambiguity is present.  

In Chapter 3, a new approach to suppressing ground clutter and detecting moving 

target is proposed for airborne radar. The essence of the approach is to estimate the 

nonzero clutter Doppler frequency in each beam due to moving platform and then 

compensate for it in the beam-time domain through digital beamforming. After Doppler 

compensation, conventional MTI filter designed for ground-based radar is used for clutter 

suppression and target detection. This new ground target detection method allows 



148 

airborne radar to effectively detect ground moving targets in clutter without second-order 

statistic information of clutter.  

In Chapter 4, two innovative ground clutter suppression approaches termed as 

RSTAP and R-D-STAP are proposed for airborne MIMO radar ground moving target 

detection in heterogeneous clutter. In RSTAP, the high dimensional weight vector is 

calculated iteratively with lower dimensional weight vectors, hence the computational 

complexity is reduced dramatically. In contrast, R-D-STAP operates on a snapshot-by-

snapshot basis to determine the adaptive weights and can be readily implemented in real 

time.  

In Chapter 5, an effective radar waveform design and beamforming approach is 

proposed for possible spectrum sharing between coherent MIMO radar and wireless 

communication systems. Specifically, MI based cognitive radar waveform design is used 

to constrain radar’s impact on wireless systems by forming a defocused transmit 

waveform with nulls at the directions of BSs. Meanwhile, virtual beamforming on the 

receiver side is used to eliminate interferences from BSs while preserving optimum target 

detection performance. 

Although several effective interference suppression approaches are proposed in 

this dissertation, the limitations of the research can’t be ignored. First of all, clutter could 

be from many sources, which include land, sea, weather, birds, insects, etc., while only 

ground clutter is considered in this research. Moreover, the presence of various kinds of 

radar errors in realistic scenarios, which include errors in the receiving instrument and 

perturbations of the flight speed/path due to atmospheric turbulence, is not considered in 

this dissertation. 
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6.2. Future Research 

During my doctoral studies, I became interested in spectrum sharing between 

radar and communication systems. In future research, I’d like to design a joint radar-

communication (JRC) systems having both wireless communication and radar sensing 

abilities to alleviate the “spectrum crunch” problem for wireless communication while 

increasing radar coverage at low cost.  

6.2.1. Embed communication data into radar transmit waveforms 

To realize this goal, one possible research plan is to embed communication data 

into radar transmit waveforms by radar waveform design. Amplitude Modulation (AM) 

and Phase-Shift Keying (PSK) based dual-function radar communications (DFRC) 

systems have been proposed in [91] and [93], respectively, where multiple orthogonal 

transmit waveforms are used to embed the information to be transmitted. However, the 

data transmission rate of DFRC systems in [91] and [93] is relatively low. Therefore, new 

waveform design and information embedding strategies will be proposed in future 

research to improve the data transmission rate of the joint radar-communication system. 

6.2.2. LTE-based multistatic passive radar 

Another possible research plan is to use broadcast communication systems as the 

illuminators for multistatic passive radar. Among the potential candidates for passive 

radar applications, the mobile phones base-station transmitters are the most promising 

candidate due to the massive deployments of base stations. Using LTE eNodeBs as 

illuminators for passive radar has been considered in [113-115]. It is demonstrated in 

these works that using partial matched filters with deterministic features of LTE signal is 
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more cost-effective than using the LTE full downlink signal. Since the existing LTE 

downlink signal features are more suitable for communication data transmission than 

target positioning, a new LTE feature will be designed exclusively for passive radar 

application in future research. The relationship between the placement of 

eNodeBs/receivers and the estimation accuracy of target position and Doppler will be 

investigated. To improve the target localization accuracy, weighting matrices will be 

derived to compensate for the bistatic measurement errors due to interferences.  
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