5,956 research outputs found

    Precautionary Measures for Credit Risk Management in Jump Models

    Full text link
    Sustaining efficiency and stability by properly controlling the equity to asset ratio is one of the most important and difficult challenges in bank management. Due to unexpected and abrupt decline of asset values, a bank must closely monitor its net worth as well as market conditions, and one of its important concerns is when to raise more capital so as not to violate capital adequacy requirements. In this paper, we model the tradeoff between avoiding costs of delay and premature capital raising, and solve the corresponding optimal stopping problem. In order to model defaults in a bank's loan/credit business portfolios, we represent its net worth by Levy processes, and solve explicitly for the double exponential jump diffusion process and for a general spectrally negative Levy process.Comment: 31 pages, 4 figure

    Active Galactic Nuclei in Void Regions

    Full text link
    We present a comprehensive study of accretion activity in the most underdense environments in the universe, the voids, based on the SDSS DR2 data. Based on investigations of multiple void regions, we show that AGN's occurrence rate and properties differ from those in walls. AGN are more common in voids than in walls, but only among moderately luminous and massive galaxies (M_r < -20, log M_*/M_sun < 10.5), and this enhancement is more pronounced for the weakly accreting systems (i.e., L_[O III] < 10^39 erg/s). Void AGN hosted by moderately massive and luminous galaxies are accreting at equal or lower rates than their wall counterparts, show less obscuration than in walls, and similarly aged stellar populations. The very few void AGN in massive bright hosts accrete more strongly, are more obscured, and are associated with younger stellar emission than wall AGN. Thus, accretion strength is probably connected to the availability of fuel supply, and accretion and star-formation co-evolve and rely on the same source of fuel. Nearest neighbor statistics indicate that the weak accretion activity (LINER-like) is not influenced by the local environment. However, H IIs, Seyferts, and Transition objects prefer more grouped small scale structures, indicating that the rate at which galaxies interact with each other affects their activity. These trends support a potential H II -> Seyfert/Transition Object -> LINER evolutionary sequence that we show is apparent in many properties of actively line-emitting galaxies, in both voids and walls. The subtle differences between void and wall AGN might be explained by a longer, less disturbed duty cycle of these systems in voids.Comment: 19 pages, 7 figures (1 color); to appear in ApJ, submitted on May 11, 200

    Discrimination of rock classes and alteration products in southwestern Saudi Arabia with computer-enhanced LANDSAT data

    Get PDF
    Digital LANDSAT MSS data for an area in the southwestern Arabian Shield were computer-enhanced to improve discrimination of rock classes, and recognition of gossans associated with massive sulphide deposits. The test area is underlain by metamorphic rocks that are locally intruded by granites; these are partly overlain by sandstones. The test area further includes the Wadi Wassat and Wadi Qatan massive sulphide deposits, which are commonly capped by gossans of ferric oxides, silica, and carbonates. Color patterns and boundaries on contrast-stretched ratio color composite imagery, and on complementary images constructed using principal component and canonical analyses transformations, correspond exceptionally well to 1:100,000 scale field maps. A qualitative visual comparison of information content showed that the ratio enhancement provided the best overall image for identification of rock type and alteration products

    Spectral LADAR: Active Range-Resolved Imaging Spectroscopy

    Get PDF
    Imaging spectroscopy using ambient or thermally generated optical sources is a well developed technique for capturing two dimensional images with high per-pixel spectral resolution. The per-pixel spectral data is often a sufficient sampling of a material's backscatter spectrum to infer chemical properties of the constituent material to aid in substance identification. Separately, conventional LADAR sensors use quasi-monochromatic laser radiation to create three dimensional images of objects at high angular resolution, compared to RADAR. Advances in dispersion engineered photonic crystal fibers in recent years have made high spectral radiance optical supercontinuum sources practical, enabling this study of Spectral LADAR, a continuous polychromatic spectrum augmentation of conventional LADAR. This imaging concept, which combines multi-spectral and 3D sensing at a physical level, is demonstrated with 25 independent and parallel LADAR channels and generates point cloud images with three spatial dimensions and one spectral dimension. The independence of spectral bands is a key characteristic of Spectral LADAR. Each spectral band maintains a separate time waveform record, from which target parameters are estimated. Accordingly, the spectrum computed for each backscatter reflection is independently and unambiguously range unmixed from multiple target reflections that may arise from transmission of a single panchromatic pulse. This dissertation presents the theoretical background of Spectral LADAR, a shortwave infrared laboratory demonstrator system constructed as a proof-of-concept prototype, and the experimental results obtained by the prototype when imaging scenes at stand off ranges of 45 meters. The resultant point cloud voxels are spectrally classified into a number of material categories which enhances object and feature recognition. Experimental results demonstrate the physical level combination of active backscatter spectroscopy and range resolved sensing to produce images with a level of complexity, detail, and accuracy that is not obtainable with data-level registration and fusion of conventional imaging spectroscopy and LADAR. The capabilities of Spectral LADAR are expected to be useful in a range of applications, such as biomedical imaging and agriculture, but particularly when applied as a sensor in unmanned ground vehicle navigation. Applications to autonomous mobile robotics are the principal motivators of this study, and are specifically addressed

    Foliar spectra accurately distinguish the invasive common reed from co-occurring plant species throughout a growing season

    Full text link
    Les espèces végétales envahissantes sont l'un des principaux facteurs de changement de la biodiversité dans les écosystèmes terrestres. Une détection précise et précoce des espèces exotiques est donc cruciale pour surveiller les invasions en cours et pour prévenir leur propagation. Présentement, les méthodes de surveillance des invasions biologiques permettent de suivre la propagation des envahisseurs à travers les aires de répartition géographique, mais une attention moindre a été accordée à la surveillance des espèces envahissantes à travers le temps. Les plates-formes de télédétection, capables de fournir des informations détaillées sur les variations des traits foliaires dans le temps et l'espace, sont particulièrement bien placées pour surveiller les plantes envahissantes en temps réel. Les changements temporels des traits fonctionnels sont exprimés dans la signature spectrale des espèces par des caractéristiques d'absorption spécifiques de la lumière associés aux pigments photosynthétiques et aux constituants chimiques tous deux liés à la phénologie. Ainsi, les variations temporelles dans la réponse spectrale des plantes peuvent être utilisées afin de mieux identifier des espèces individuelles. L'un des envahisseurs les plus problématiques au Canada est le roseau commun, Phragmites australis (Cav.) Trin. ex Steudel sous-espèce australis, dont la propagation menace la biodiversité des écosystèmes de zones humides en Amérique du Nord. Déterminer la période de l'année où cet envahisseur se distingue d’avantage, du point de vue spectral et fonctionnel, des autres plantes de la communauté serait centrale dans une meilleure gestion du roseau commun. Pour ce faire, nous avons utilisé des traits fonctionnels et une série temporelle de données spectrales foliaires à haute résolution au cours d'une saison de croissance à Boucherville, Québec, Canada, afin de déterminer la séparabilité spectrale de l'envahisseur par rapport aux espèces co-occurrentes et comment cette dernière varie à travers le temps. Nos résultats ont révélé que la spectroscopie foliaire a permis de distinguer le phragmite des espèces co-occurrentes avec une précision de plus de 95% tout au long de la saison de croissance – un résultat prometteur pour le futur de la télédétection des espèces végétales envahissantes.Invasive plant species are one of the main drivers of biodiversity change in terrestrial ecosystems. Accurate detection of exotic species is critical to monitor on-going invasions and early detection of incipient invasions is necessary to prevent further spread. At present, surveillance methods of biological invasions allow to track the spread of invaders across geographic ranges, but less attention has been given to invasive species monitoring across time. Remote sensing platforms, capable of providing detailed information on foliar trait variations across time and space, are uniquely positioned for monitoring invasive plants in real time. Temporal changes in foliar traits are expressed in a species spectral profile through specific absorption features related to variation in photosynthetic pigments and chemical constituents driven by phenology. Thus, variations in a plant’s spectral response can be used to improve the identification of individual species. One of Canada’s most problematic invaders is the common reed, Phragmites australis (Cav.) Trin. ex Steudel subspecies australis, whose spread threatens biodiversity in wetland ecosystems in North America. Determining the time of year when the invader is spectrally and functionally more distinct from other plants in the community would be central to better management of common reed. To do so, we collected a time-series of foliar traits and high-resolution leaf spectral data over the course of a growing season at Boucherville, Quebec, Canada, to determine the spectral separability of the invader from co-occurring species and how its detection varies over time. Our results revealed that leaf-level spectroscopy distinguished Phragmites and co-occurring species with > 95% accuracy throughout the growing season – a promising result for the future remote detection of invasive plant species
    corecore