300 research outputs found

    The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review

    Get PDF
    The role of digital technologies (DTs) in humanitarian supply chains (HSC) has become an increasingly researched topic in the operations literature. While numerous publications have dealt with this convergence, most studies have focused on examining the implementation of individual DTs within the HSC context, leaving relevant literature, to date, dispersed and fragmented. This study, through a systematic literature review of 110 articles on HSC published between 2015 and 2020, provides a unified overview of the current state-of-the-art DTs adopted in HSC operations. The literature review findings substantiate the growing significance of DTs within HSC, identifying their main objectives and application domains, as well as their deployment with respect to the different HSC phases (i.e., Mitigation, Preparedness, Response, and Recovery). Furthermore, the findings also offer insight into how participant organizations might configure a technological portfolio aimed at overcoming operational difficulties in HSC endeavours. This work is novel as it differs from the existing traditional perspective on the role of individual technologies on HSC research by reviewing multiple DTs within the HSC domain

    Classifying and Mapping Aquatic Vegetation in Heterogeneous Stream Ecosystems Using Visible and Multispectral UAV Imagery

    Get PDF
    The need for assessment and management of aquatic vegetation in stream ecosystems is recognized given the importance in impacting water quality, hydrodynamics, and aquatic biota. However, existing approaches to monitor are laborious and its currently not feasible to track spatial and temporal differences at broad scales. The objective of this study was therefore to map and classify aquatic vegetation of a shallow stream with heterogenous mixtures of emergent and submerged aquatic vegetation. Data was collected in the Camden Creek watershed within the Inner Bluegrass Region of central Kentucky. The use of unmanned aerial vehicles (UAVs) was employed and both visible (RGB) and multispectral imagery were collected. Machine learning techniques were applied in an off-the-shelf software (QGIS environment) to develop visible and multispectral classification land-cover maps following an effective object-based image analysis workflow. Visible images were additionally coupled with high frequency water quality data to examine the spatial and temporal behavior of the aquatic vegetation. Results showed high overall classification accuracies (OA=83.5% for the training dataset and OA=83.73% for the validation dataset) for the visible imagery, with excellent user’s and producer’s accuracies for duckweed, both for training and validation. Surprisingly, multispectral overall accuracies were substantial (OA=77.8% for the training dataset and OA=70.2% for the validation dataset) but were inferior to the visible classification results. User’s and producer’s accuracies were lower for almost all classes. However, this approach was unsuccessful in detecting, segmenting and classifying submerged aquatic vegetation (algae) for both datasets. Finally, a change detection algorithm was applied to the visible classified maps and the changes in duckweed areal coverage were successfully estimated

    Novel Methodologies for Providing In Situ Data to HAB Early Warning Systems in the European Atlantic Area: The PRIMROSE Experience

    Get PDF
    Harmful algal blooms (HABs) cause harm to human health or hinder sustainable use of the marine environment in Blue Economy sectors. HABs are temporally and spatially variable and hence their mitigation is closely linked to effective early warning. The European Union (EU) Interreg Atlantic Area project “PRIMROSE”, Predicting Risk and Impact of Harmful Events on the Aquaculture Sector, was focused on the joint development of HAB early warning systems in different regions along the European Atlantic Area. Advancement of the existing HAB forecasting systems requires development of forecasting tools, improvements in data flow and processing, but also additional data inputs to assess the distribution of HAB species, especially in areas away from national monitoring stations, usually located near aquaculture sites. In this contribution, we review different novel technologies for acquiring HAB data and report on the experience gained in several novel local data collection exercises performed during the project. Demonstrations include the deployment of autonomous imaging flow cytometry (IFC) sensors near two aquaculture areas: a mooring in the Daoulas estuary in the Bay of Brest and pumping from a bay in the Shetland Islands to an inland IFC; and several drone deployments, both of Unmanned Aerial Vehicles (UAV) and of Autonomous Surface vehicles (ASVs). Additionally, we have reviewed sampling approaches potentially relevant for HAB early warning including protocols for opportunistic water sampling by coastguard agencies. Experiences in the determination of marine biotoxins in non-traditional vectors and how they could complement standard routine HAB monitoring are also considered.En prens

    UAVs in disaster management: application of integrated aerial Imagery and convolutional neural network for flood detection

    Get PDF
    Floods have been a major cause of destruction, instigating fatalities and massive damageto the infrastructure and overall economy of the affected country. Flood-related devastation resultsin the loss of homes, buildings, and critical infrastructure, leaving no means of communicationor travel for the people stuck in such disasters. Thus, it is essential to develop systems that candetect floods in a region to provide timely aid and relief to stranded people, save their livelihoods,homes, and buildings, and protect key city infrastructure. Flood prediction and warning systemshave been implemented in developed countries, but the manufacturing cost of such systems istoo high for developing countries. Remote sensing, satellite imagery, global positioning system,and geographical information systems are currently used for flood detection to assess the flood-related damages. These techniques use neural networks, machine learning, or deep learning methods.However, unmanned aerial vehicles (UAVs) coupled with convolution neural networks have not beenexplored in these contexts to instigate a swift disaster management response to minimize damage toinfrastructure. Accordingly, this paper uses UAV-based aerial imagery as a flood detection methodbased on Convolutional Neural Network (CNN) to extract flood-related features from the imagesof the disaster zone. This method is effective in assessing the damage to local infrastructures in thedisaster zones. The study area is based on a flood-prone region of the Indus River in Pakistan, whereboth pre-and post-disaster images are collected through UAVs. For the training phase,2150 imagepatches are created by resizing and cropping the source images. These patches in the training datasettrain the CNN model to detect and extract the regions where a flood-related change has occurred.The model is tested against both pre-and post-disaster images to validate it, which has positive flooddetection results with an accuracy of 91%. Disaster management organizations can use this modelto assess the damages to critical city infrastructure and other assets worldwide to instigate properdisaster responses and minimize the damages. This can help with the smart governance of the citieswhere all emergent disasters are addressed promptl

    Feature Papers of Drones - Volume II

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 24–41 are focused on drone applications, but emphasize two types: firstly, those related to agriculture and forestry (articles 24–35) where the number of applications of drones dominates all other possible applications. These articles review the latest research and future directions for precision agriculture, vegetation monitoring, change monitoring, forestry management, and forest fires. Secondly, articles 36–41 addresses the water and marine application of drones for ecological and conservation-related applications with emphasis on the monitoring of water resources and habitat monitoring. Finally, articles 42–54 looks at just a few of the huge variety of potential applications of civil drones from different points of view, including the following: the social acceptance of drone operations in urban areas or their influential factors; 3D reconstruction applications; sensor technologies to either improve the performance of existing applications or to open up new working areas; and machine and deep learning development

    Robotic autonomous systems for earthmoving equipment operating in volatile conditions and teaming capacity: a survey

    Full text link
    Abstract There has been an increasing interest in the application of robotic autonomous systems (RASs) for construction and mining, particularly the use of RAS technologies to respond to the emergent issues for earthmoving equipment operating in volatile environments and for the need of multiplatform cooperation. Researchers and practitioners are in need of techniques and developments to deal with these challenges. To address this topic for earthmoving automation, this paper presents a comprehensive survey of significant contributions and recent advances, as reported in the literature, databases of professional societies, and technical documentation from the Original Equipment Manufacturers (OEM). In dealing with volatile environments, advances in sensing, communication and software, data analytics, as well as self-driving technologies can be made to work reliably and have drastically increased safety. It is envisaged that an automated earthmoving site within this decade will manifest the collaboration of bulldozers, graders, and excavators to undertake ground-based tasks without operators behind the cabin controls; in some cases, the machines will be without cabins. It is worth for relevant small- and medium-sized enterprises developing their products to meet the market demands in this area. The study also discusses on future directions for research and development to provide green solutions to earthmoving.</jats:p

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacità autonomiche è un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione e partendo dall'attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici

    Remote Sensing in Applications of Geoinformation

    Get PDF
    Remote sensing, especially from satellites, is a source of invaluable data which can be used to generate synoptic information for virtually all parts of the Earth, including the atmosphere, land, and ocean. In the last few decades, such data have evolved as a basis for accurate information about the Earth, leading to a wealth of geoscientific analysis focusing on diverse applications. Geoinformation systems based on remote sensing are increasingly becoming an integral part of the current information and communication society. The integration of remote sensing and geoinformation essentially involves combining data provided from both, in a consistent and sensible manner. This process has been accelerated by technologically advanced tools and methods for remote sensing data access and integration, paving the way for scientific advances in a broadening range of remote sensing exploitations in applications of geoinformation. This volume hosts original research focusing on the exploitation of remote sensing in applications of geoinformation. The emphasis is on a wide range of applications, such as the mapping of soil nutrients, detection of plastic litter in oceans, urban microclimate, seafloor morphology, urban forest ecosystems, real estate appraisal, inundation mapping, and solar potential analysis

    Vision Language Models in Autonomous Driving and Intelligent Transportation Systems

    Full text link
    The applications of Vision-Language Models (VLMs) in the fields of Autonomous Driving (AD) and Intelligent Transportation Systems (ITS) have attracted widespread attention due to their outstanding performance and the ability to leverage Large Language Models (LLMs). By integrating language data, the vehicles, and transportation systems are able to deeply understand real-world environments, improving driving safety and efficiency. In this work, we present a comprehensive survey of the advances in language models in this domain, encompassing current models and datasets. Additionally, we explore the potential applications and emerging research directions. Finally, we thoroughly discuss the challenges and research gap. The paper aims to provide researchers with the current work and future trends of VLMs in AD and ITS
    • …
    corecore