370 research outputs found

    Maritime Moving Target Detection, Tracking and Geocoding Using Range-Compressed Airborne Radar Data

    Get PDF
    Eine regelmäßige und großflächige überwachung des Schiffsverkehrs gewinnt zunehmend an Bedeutung, vor allem auch um maritime Gefahrenlagen und illegale Aktivitäten rechtzeitig zu erkennen. Heutzutage werden dafür überwiegend das automatische Identifikationssystem (AIS) und stationäre Radarstationen an den Küsten eingesetzt. Luft- und weltraumgestützte Radarsensoren, die unabhängig vom Wetter und Tageslicht Daten liefern, können die vorgenannten Systeme sehr gut ergänzen. So können sie beispielsweise Schiffe detektieren, die nicht mit AIS-Transpondern ausgestattet sind oder die sich außerhalb der Reichweite der stationären AIS- und Radarstationen befinden. Luftgestützte Radarsensoren ermöglichen eine quasi-kontinuierliche Beobachtung von räumlich begrenzten Gebieten. Im Gegensatz dazu bieten weltraumgestützte Radare eine große räumliche Abdeckung, haben aber den Nachteil einer geringeren temporalen Abdeckung. In dieser Dissertation wird ein umfassendes Konzept für die Verarbeitung von Radardaten für die Schiffsverkehr-überwachung mit luftgestützten Radarsensoren vorgestellt. Die Hauptkomponenten dieses Konzepts sind die Detektion, das Tracking, die Geokodierung, die Bildgebung und die Fusion mit AIS-Daten. Im Rahmen der Dissertation wurden neuartige Algorithmen für die ersten drei Komponenten entwickelt. Die Algorithmen sind so aufgebaut, dass sie sich prinzipiell für zukünftige Echtzeitanwendungen eignen, die eine Verarbeitung an Bord der Radarplattform erfordern. Darüber hinaus eignen sich die Algorithmen auch für beliebige, nicht-lineare Flugpfade der Radarplattform. Sie sind auch robust gegenüber Lagewinkeländerungen, die während der Datenerfassung aufgrund von Luftturbulenzen jederzeit auftreten können. Die für die Untersuchungen verwendeten Daten sind ausschließlich entfernungskomprimierte Radardaten. Da das Signal-Rausch-Verhältnis von Flugzeugradar-Daten im Allgemeinen sehr hoch ist, benötigen die neuentwickelten Algorithmen keine vollständig fokussierten Radarbilder. Dies reduziert die Gesamtverarbeitungszeit erheblich und ebnet den Weg für zukünftige Echtzeitanwendungen. Der entwickelte neuartige Schiffsdetektor arbeitet direkt im Entfernungs-Doppler-Bereich mit sehr kurzen kohärenten Verarbeitungsintervallen (CPIs) der entfernungskomprimierten Radardaten. Aufgrund der sehr kurzen CPIs werden die detektierten Ziele im Dopplerbereich fokussiert abgebildet. Wenn sich die Schiffe zusätzlich mit einer bestimmten Radialgeschwindigkeit bewegen, werden ihre Signale aus dem Clutter-Bereich hinausgeschoben. Dies erhöht das Verhältnis von Signal- zu Clutter-Energie und verbessert somit die Detektierbarkeit. Die Genauigkeit der Detektion hängt stark von der Qualität der von der Meeresoberfläche rückgestreuten Radardaten ab, die für die Schätzung der Clutter-Statistik verwendet werden. Diese wird benötigt, um einen Detektions-Schwellenwert für eine konstante Fehlalarmrate (CFAR) abzuleiten und die Anzahl der Fehlalarme niedrig zu halten. Daher umfasst der vorgeschlagene Detektor auch eine neuartige Methode zur automatischen Extraktion von Trainingsdaten für die Statistikschätzung sowie geeignete Ozean-Clutter-Modelle. Da es sich bei Schiffen um ausgedehnte Ziele handelt, die in hochauflösenden Radardaten mehr als eine Auflösungszelle belegen, werden nach der Detektion mehrere von einem Ziel stammende Pixel zu einem physischen Objekten zusammengefasst, das dann in aufeinanderfolgenden CPIs mit Hilfe eines Bewegungsmodells und eines neuen Mehrzielverfolgungs-Algorithmus (Multi-Target Tracking) getrackt wird. Während des Trackings werden falsche Zielspuren und Geisterzielspuren automatisch erkannt und durch ein leistungsfähiges datenbankbasiertes Track-Management-System terminiert. Die Zielspuren im Entfernungs-Doppler-Bereich werden geokodiert bzw. auf den Boden projiziert, nachdem die Einfallswinkel (DOA) aller Track-Punkte geschätzt wurden. Es werden verschiedene Methoden zur Schätzung der DOA-Winkel für ausgedehnte Ziele vorgeschlagen und anhand von echten Radardaten, die Signale von echten Schiffen beinhalten, bewertet

    Ground moving target indication with synthetic aperture radars for maritime surveillance

    Get PDF
    The explosive growth of shipping traffic all over the World, with around three quarters of the total trade goods and crude oil transported by sea, has raised newly emerging concerns (economical, ecological, social and geopolitical). Geo-information (location and speed) of ocean-going vessels is crucial in the maritime framework, playing a key role in the related environmental monitoring, fisheries management and maritime/coastal security. In this scenario space-based synthetic aperture radar (SAR) remote sensing is a potential tool for globally monitoring the oceans and seas, providing two-dimensional high-resolution imaging capabilities in all-day and all-weather conditions. The combination of ground moving target indication (GMTI) modes with multichannel spaceborne SAR systems represents a powerful apparatus for surveillance of maritime activities. The level of readiness of such a technology for road traffic monitoring is still low, and for the marine scenario is even less mature. Some of the current space-based SAR missions include an experimental GMTI mode with reduced detection capabilities, especially for small and slow moving targets. In this framework, this doctoral dissertation focuses on the study and analysis of the GMTI limitations of current state-of-the-art SAR missions when operating over maritime scenarios and the proposal of novel and optimal multichannel SAR-GMTI architectures, providing subclutter visibility of small (reduced reflectivity) slow moving vessels. This doctoral activity carries out a transversal analysis embracing system-architecture proposal and optimization, processing strategies assessment, performance evaluation, sea/ocean clutter characterization and adequate calibration methodologies suggestion. Firstly, the scarce availability of multichannel SAR-GMTI raw data and the related restrictions to access it have raised the need to implement flexible simulation tools for SAR-GMTI performance evaluation and mission. These simulation tools allow the comparative study and evaluation of the SAR-GMTI mode operated with current SAR missions, showing the reduced ability of these missions to detect small and slow boats in subclutter visibility. Improved performance is achieved with the new multichannel architecture based on non-uniformly distributed receivers (with external deployable antennas), setting the ground for future SAR-GMTI mission development. Some experimental multichannel SAR-GMTI data sets over the sea and acquired with two instruments, airborne F-SAR and spaceborne TerraSAR-X (TSX) platforms, have been processed to evaluate their detection capabilities as well as the adequate processing strategies (including channel balancing). This doctoral activity presents also a preliminary characterization of the sea clutter returns imaged by the spaceborne TSX instrument in a three-level basis, i.e., radiometric, statistical and polarimetric descriptions using experimental polarimetric data. This study has shown that the system-dependent limitations, such as thermal noise and temporal decorrelation, play a key role in the appropriate interpretation of the data and so should be properly included in the physical backscattering models of the sea. Current and most of the upcoming SAR missions are based on active phase array antennas (APAA) technology for the operation of multiple modes of acquisitions. The related calibration is a complex procedure due to the high number of different beams to be operated. Alternative internal calibration methodologies have been proposed and analyzed in the frame of this doctoral thesis. These approaches improved the radiometric calibration performance compared to the conventional ones. The presented formulation of the system errors as well as the proposed alternative strategies set the path to extrapolate the analysis for multichannel SAR systems.L'increment continu del tràfic marítim arreu del món, amb gairebé tres quartes parts del total de mercaderies i cru transportats per mar, porta associats uns impactes canviants a nivell econòmic, ambiental, social i geopolític. La geo-informació (localització i velocitat) dels vaixells té un paper fonamental en el monitoratge ambiental, la gestió de la pesca i la seguretat marítima/costanera. Els radars d'obertura sintètica (SAR, sigles en anglès) embarcats en satèl·lits són una eina molt potent per al monitoratge global dels oceans i dels mars, gràcies a la seva capacitat de generar imatges d'alta resolució amb independència de les condicions meteorològiques i de la llum solar. La detecció de blancs mòbils terrestres (GMTI, sigles en anglès) combinada amb sistemes multicanal SAR és fonamental per a la vigilància de les activitats marítimes. El nivell de maduresa d'aquesta tecnologia per monitorar tràfic rodat és baix, però per al cas marítim encara ho és més. Algunes missions SAR orbitals inclouen el mode GMTI, però amb unes capacitats de detecció reduïdes, especialment per a blancs petits i lents. En aquest marc, la tesi doctoral es centra en l'estudi i anàlisi de les limitacions GMTI dels actuals sistemes SAR operant en entorns marítims, proposant noves configuracions SAR-GMTI multicanal optimitzades per a la detecció de vaixells petits (emmascarats pels retrons radar del mar) i que es mouen lentament. La present dissertació doctoral du a terme un estudi transversal que abasta des de la proposta i optimització de sistemes/configuracions, passant per l'avaluació de les tècniques de processat, fins a l'estudi del rendiment de la missió, caracterització del mar i la valoració de noves metodologies de calibratge. En primer terme, diverses eines de simulació flexibles s'han implementat per poder avaluar les capacitats GMTI de diferents missions tenint en compte la poca disponibilitat de dades multicanal SAR-GMTI. Aquests simuladors permeten l'estudi comparatiu de les capacitats GMTI de les missions SAR orbitals actuals, demostrant les seves reduïdes opcions per identificar vaixells emmascarats pels retorns del mar. En el marc de l'activitat de recerca s'han processat dades experimentals SAR-GMTI multicanal de sistemes aeris (F-SAR) i orbitals (TerraSAR-X), per tal d'avaluar les seves capacitats de detecció de blancs mòbils sobre entorns marítims, proposant les estratègies de processat i calibratge més adients. Com a part de l'activitat de recerca doctoral, s'ha portat a terme una caracterització preliminar dels retorns radar del mar adquirits amb el sensor orbital TerraSAR-X, amb tres nivells d'anàlisi (radiomètric, estadístic i polarimètric). Aquest estudi demostra que aspectes com el soroll tèrmic i la decorrelació temporal, dependents del propi sensor i de l'entorn dinàmic del mar, poden limitar la correcta interpretació de les dades, i per tant, s'han d'incloure en els models físics dels mecanismes de dispersió del mar. Les missions SAR tant actuals com futures es basen en l'explotació de la tecnologia de les agrupacions d'antenes de fase activa (APAA) per operar diferents modes d'adquisició. El procés de calibratge associat és molt complex atès el gran nombre de feixos que es poden utilitzar. En el marc de la tesi doctoral s'han proposat i avaluat metodologies alternatives de calibratge intern per aquests sistemes, amb un millor rendiment en comparació amb les tècniques convencionals. Aquestes estratègies de calibratge, juntament amb la corresponent formulació dels errors de sistema, estableixen les bases per a l'estudi i avaluació en sistemes multicanal SA

    Efficient SAR MTI simulator of marine scenes

    Get PDF
    Tècniques de detecció de moviment amb radars d'apertura sintètica multicanals sobre escenaris marítims.[ANGLÈS] Multichannel spaceborne and airborne synthetic aperture radars (SAR) offer the opportunity to monitor maritime traffic through specially designed instruments and applying a suitable signal processing in order to reject sea surface clutter. These processing techniques are known as Moving Target Indication techniques (MTI) and the choice of the most adequate method depends on the radar system and operating environment. In maritime scenes the seas presents a complicated clutter whose temporal/spatial coherence models and background reflectivity depends on a large number of factors and are still subject of research. Moreover the targets kinematics are influenced by the sea conditions, producing in some situations high alterations in the imaged target. These aspects make difficult the detectability analysis of vessels in maritime scenarios, requiring both theoretical models and numerical simulations. This thesis looks into the few available MTI techniques and deals experimentally with them in a developed simulator for maritime SAR images. The results are also presented in a image format, giving the sequence for one trial simulation and the asymptotic probability of detection for the simulated conditions.[CASTELLÀ] Los radares de apertura sintética (SAR) multicanal a bordo de satélites o plataformas aerotransportadas ofrecen la oportunidad de monitorizar el tráfico marítimo a través de instrumentos especialmente diseñados y procesando los datos recibidos de forma adecuada para rechazar la señal provocada por la reflexión del mar. A estas técnicas se las conoce como Moving Target Indication techniques (MTI) y la elección de la más adecuada depende del sistema y del entorno de aplicación. En escenarios marinos, el mar presenta un clutter complicado de modelar, cuya coherencia espacio-temporal y reflectividad radar dependen de un gran número de factores que hoy en día todavía siguen siendo investigados. Por otra parte los parámetros dinámicos del target estan influenciados por las condiciones del mar, produciendo en algunas situaciones graves alteraciones en la formación de la imagen. Estos aspectos dificultan el análisis de la detección de las embarcaciones, requiriendo modelos teóricos y simulaciones numéricas. Este Proyecto Final de Carrera investiga las técnicas MTI disponibles, aplicándolas sobre las imágenes marítimas generadas por un simulador SAR. Los resultados son la generación de los productos MTI en formato imagen y el cálculo de la probabilidad de detección para cada target.[CATALÀ] Els radars d'obertura sintètica (SAR) multicanal embarcats en satèl·lits o plataformes aerotransportades ofereixen l'oportunitat de monitoritzar el tràfic marítim a través d'instruments especialment dissenyats i processant les dades rebudes de forma adequada per rebutjar la senyal provocada per la reflexió del mar. A aquestes tècniques se les coneix com Moving Target indication techniques (MTI) i l'elecció de la més adequada depèn del sistema i de l'entorn d'aplicació. En escenaris marins, el mar presenta un clutter complicat de modelar, la coherència espai-temporal i reflectivitat radar depenen d'un gran nombre de factors que avui dia encara segueixen sent investigats. D'altra banda els paràmetres dinàmics del target estan influenciats per les condicions de la mar, produint en algunes situacions greus alteracions en la formació de la imatge. Aquests aspectes dificulten l'anàlisi de la detecció de les embarcacions, requerint models teòrics i simulacions numèriques. Aquest Projecte Final de Carrera investiga les tècniques MTI disponibles, aplicant-les sobre les imatges marítimes generades per un simulador SAR. Els resultats són la generació dels productes MTI en format imatge i el càlcul de la probabilitat asimptòtica de detecció per a cada target

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Advanced signal processing solutions for ATR and spectrum sharing in distributed radar systems

    Get PDF
    Previously held under moratorium from 11 September 2017 until 16 February 2022This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targets’ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopter’s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopter’s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance.This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targets’ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopter’s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopter’s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Automatic near real-time flood detection in high resolution X-band synthetic aperture radar satellite data using context-based classification on irregular graphs

    Get PDF
    This thesis is an outcome of the project “Flood and damage assessment using very high resolution SAR data” (SAR-HQ), which is embedded in the interdisciplinary oriented RIMAX (Risk Management of Extreme Flood Events) programme, funded by the Federal Ministry of Education and Research (BMBF). It comprises the results of three scientific papers on automatic near real-time flood detection in high resolution X-band synthetic aperture radar (SAR) satellite data for operational rapid mapping activities in terms of disaster and crisis-management support. Flood situations seem to become more frequent and destructive in many regions of the world. A rising awareness of the availability of satellite based cartographic information has led to an increase in requests to corresponding mapping services to support civil-protection and relief organizations with disaster-related mapping and analysis activities. Due to the rising number of satellite systems with high revisit frequencies, a strengthened pool of SAR data is available during operational flood mapping activities. This offers the possibility to observe the whole extent of even large-scale flood events and their spatio-temporal evolution, but also calls for computationally efficient and automatic flood detection methods, which should drastically reduce the user input required by an active image interpreter. This thesis provides solutions for the near real-time derivation of detailed flood parameters such as flood extent, flood-related backscatter changes as well as flood classification probabilities from the new generation of high resolution X-band SAR satellite imagery in a completely unsupervised way. These data are, in comparison to images from conventional medium-resolution SAR sensors, characterized by an increased intra-class and decreased inter-class variability due to the reduced mixed pixel phenomenon. This problem is addressed by utilizing multi-contextual models on irregular hierarchical graphs, which consider that semantic image information is less represented in single pixels but in homogeneous image objects and their mutual relation. A hybrid Markov random field (MRF) model is developed, which integrates scale-dependent as well as spatio-temporal contextual information into the classification process by combining hierarchical causal Markov image modeling on automatically generated irregular hierarchical graphs with noncausal Markov modeling related to planar MRFs. This model is initialized in an unsupervised manner by an automatic tile-based thresholding approach, which solves the flood detection problem in large-size SAR data with small a priori class probabilities by statistical parameterization of local bi-modal class-conditional density functions in a time efficient manner. Experiments performed on TerraSAR-X StripMap data of Southwest England and ScanSAR data of north-eastern Namibia during large-scale flooding show the effectiveness of the proposed methods in terms of classification accuracy, computational performance, and transferability. It is further demonstrated that hierarchical causal Markov models such as hierarchical maximum a posteriori (HMAP) and hierarchical marginal posterior mode (HMPM) estimation can be effectively used for modeling the inter-spatial context of X-band SAR data in terms of flood and change detection purposes. Although the HMPM estimator is computationally more demanding than the HMAP estimator, it is found to be more suitable in terms of classification accuracy. Further, it offers the possibility to compute marginal posterior entropy-based confidence maps, which are used for the generation of flood possibility maps that express that the uncertainty in labeling of each image element. The supplementary integration of intra-spatial and, optionally, temporal contextual information into the Markov model results in a reduction of classification errors. It is observed that the application of the hybrid multi-contextual Markov model on irregular graphs is able to enhance classification results in comparison to modeling on regular structures of quadtrees, which is the hierarchical representation of images usually used in MRF-based image analysis. X-band SAR systems are generally not suited for detecting flooding under dense vegetation canopies such as forests due to the low capability of the X-band signal to penetrate into media. Within this thesis a method is proposed for the automatic derivation of flood areas beneath shrubs and grasses from TerraSAR-X data. Furthermore, an approach is developed, which combines high resolution topographic information with multi-scale image segmentation to enhance the mapping accuracy in areas consisting of flooded vegetation and anthropogenic objects as well as to remove non-water look-alike areas

    Monitoring von Hangbewegungen mit InSAR Techniken im Gebiet Ciloto, Indonesien

    Get PDF
    In this doctoral thesis, the InSAR techniques are applied to detect the ground movement phenomenon and to assess the InSAR result geometrically in the Ciloto area, Indonesia. Mainly, one of those techniques, the SB-SDFP algorithm, overcomes the limitations of conventional InSAR in monitoring rural and agricultural areas and can observe extremely slow landslides. The InSAR strategy is positively known as a promising option to detect and quantify the kinematics of active landslides on a large areal scale. To minimize the bias of the InSAR displacement result, the correction of the tropospheric phase delay was carried out in a first step. This procedure is demonstrated in experiments both in the small study area in Ciloto and in a larger area. The latter is an area located in Northern Baja California, Mexico and is dominated by tectonic activity as well as groundwater-induced subsidence. A detailed investigation of the slope movement's behavior in the Ciloto district was conducted utilizing multi-temporal and multi-band SAR data from ERS1/2 (1996-1999), ALOS PALSAR (2007-2009) and Sentinel-1 (2014-2018) satellites. The region was successfully identified as a permanent active landslide prone area, especially in the vicinity of the Puncak Pass and Puncak Highway. The full 3D velocity field and the displacement time series were estimated using the inversion model. The velocity rate was classified from extremely slow to slow movement. To comprehend the landslide's behavior, a further examination of the relationship between InSAR results and physical characteristics of the area was carried out. For the long period of a slow-moving landslide, the relationship between precipitation and displacement trend shows a weak correlation. It is concluded that the extremely slow to slow deformation is not directly influenced by the rainfall intensity, yet it effectuates the subsurface and the groundwater flow. The run-off process with rainfall exceeding a soil's infiltration capacity was suspected as the main driver of the slow ground movement phenomenon. However, when analyzing rapid and extremely rapid landslide events at Puncak Pass, a significant increase in the correlation coefficient between precipitation and displacement rate could be observed.In dieser Doktorarbeit wird die Anwendung von erweiterten Verarbeitungsstrategien von InSAR Daten zur Erkennung und geometrischen Bewertung der Bodenbewegungen im Ciloto - Indonesien dargestellt. Dieser Ansatz überwindet die Beschränkungen konventioneller SAR-Interferometrie und ermöglicht sowohl ein kontinuierliches Monitoring dieses landwirtschaftich geprägten Gebietes als auch die Erfassung extrem langsamer Hangrutschungen. Um eine Verzerrung der InSAR Deformationsergebnisse zu minimieren, wurde zunächst eine Korrektur der troposphärischen Phase durchgeführt. Diese neuartige Strategie wird sowohl im Forschungsgebiet Ciloto als auch an einem größeren Gebiet demonstriert. Bei letzterem handelt es sich um einen Küstenstreifen im nördlichen Niederkalifornien, Mexiko, welcher durch hohe tektonische Aktivität und grundwasserinduzierte Landsetzungen charakterisiert ist. Die detaillierte Untersuchung des Verhaltens von Hangrutschungen im Ciloto erfolgte durch die Verarbeitung multi-temporaler SAR-Daten unter Nutzung verschiedener Frequenzbänder, darunter ESR1/2 (1996-1999), ALOS PALSAR (2007-2009) und Sentinel-1 (2014-2018) Daten. Die Region konnte erfolgreich als permanent aktives Hangrutschungsgebiet identifiziert werden, wobei der Puncak Pass und der Puncak Highway ein erhöhtes Gefahrenpotential aufweisen. Ein 3D- Geschwindig-keitsfeld der Deformation und die zugehörigen Zeitreihen wurden mit dem Inversionsmodell berechnet. Die Geschwindigkeitsrate wurde als langsam bis extrem langsam klassifiziert. Um das dynamische Verhalten der Hangrutschung zu verstehen wurde, in einer weiteren Untersuchung die Beziehung zwischen dem InSAR-Ergebnis und den physikalischen Begebenheiten im Forschungsgebiet analysiert. Es wird der Schluss gezogen, dass die langsame bis extrem langsame Verformung nicht direkt von der Niederschlagsintensität beeinflusst wird, diese sich aber auf den Untergrund und die Grundwasserströmung auswirkt. Es wird vermutet, dass der Oberflächenablauf, welcher die Infiltrationskapazität des Bodens übersteigt, ausschlaggebend für das Phänomen der langsamen Bodenbewegung ist. Für die schnellen und extrem schnellen Hangrutschungen jedoch konnte eine signifikante Erhöhung des Korrelationskoeffizienten zwischen Niederschlag und Verschiebungsrate bei Untersuchungen der Hangrutschung am Puncak-Pass nachgewiesen werden

    Earth Resources, A Continuing Bibliography with Indexes

    Get PDF
    This bibliography lists 460 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1984. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Improvement of detection and tracking techniques in multistatic passive radar systems. (Mejora de técnicas de detección y seguimiento en sistemas radar pasivos multiestáticos)

    Get PDF
    Esta tesis doctoral es el resultado de una intensa actividad investigadora centrada en los sensores radar pasivos para la mejora de las capacidades de detección y seguimiento en escenarios complejos con blancos terrestres y pequeños drones. El trabajo de investigación se ha llevado a cabo en el grupo de investigación coordinado por la Dra. María Pilar Jarabo Amores, dentro del marco diferentes proyectos: IDEPAR (“Improved DEtection techniques for PAssive Radars”), MASTERSAT (“MultichAnnel paSsive radar receiver exploiting TERrestrial and SATellite Illuminators”) y KRIPTON (“A Knowledge based appRoach to passIve radar detection using wideband sPace adapTive prOcessiNg”) financiados por el Ministerio de Economía y Competitividad de España; MAPIS (Multichannel passive ISAR imaging for military applications) y JAMPAR (“JAMmer-based PAssive Radar”), financiados por la Agencia Europea de Defensa (EDA) . El objetivo principal es la mejora de las técnicas de detección y seguimiento en radares pasivos con configuraciones biestáticas y multiestaticas. En el documento se desarrollan algoritmos para el aprovechamiento de señales procedentes de distintos iluminadores de oportunidad (transmisores DVB-T, satélites DVB-S y señales GPS). Las soluciones propuestas han sido integradas en el demostrador tecnológico IDEPAR, desarrollado y actualizado bajo los proyectos mencionados, y validadas en escenarios reales declarados de interés por potenciales usuarios finales (Direccion general de armamento y material, instituto nacional de tecnología aeroespacial y la armada española). Para el desarrollo y evaluación de cadenas de las cadenas de procesado, se plantean dos casos de estudio: blancos terrestres en escenarios semiurbanos edificios y pequeños blancos aéreos en escenarios rurales y costeros. Las principales contribuciones se pueden resumir en los siguientes puntos: • Diseño de técnicas de seguimiento 2D en el espacio de trabajo rango biestático-frecuencia Doppler: se desarrollan técnicas de seguimiento para los dos casos de estudio, localización de blancos terrestres y pequeños drones. Para es último se implementan técnicas capaces de seguir tanto el movimiento del dron como su firma Doppler, lo que permite implementar técnicas de clasificación de blancos. • Diseño de técnicas de seguimiento de blancos capaces de integrar información en el espacio 3D (rango, Doppler y acimut): se diseñan técnicas basadas en procesado en dos etapas, una primera con seguimiento en 2D para el filtrado de falsas alarmas y la segunda para el seguimiento en 3D y la conversión de coordenadas a un plano local cartesiano. Se comparan soluciones basadas en filtros de Kalman para sistemas tanto lineales como no lineales. • Diseño de cadenas de procesado para sistemas multiestáticos: la información estimada del blanco sobre múltiples geometrías biestáticas es utilizada para incremento de las capacidades de localización del blanco en el plano cartesiano local. Se presentan soluciones basadas en filtros de Kalman para sistemas no lineales explotando diferentes medidas biestáticas en el proceso de transformación de coordenadas, analizando las mejoras de precisión en la localización del blanco. • Diseño de etapas de procesado para radares pasivos basados en señales satelitales de las constelaciones GPS DVB-S. Se estudian las características de las señales satelitales identificando sus inconvenientes y proponiendo cadenas de procesado que permitan su utilización para la detección y seguimiento de blancos terrestres. • Estudio del uso de señales DVB-T multicanal con gaps de transmisión entre los diferentes canales en sistemas radares pasivos. Con ello se incrementa la resolución del sistema, y las capacidades de detección, seguimiento y localización. Se estudia el modelo de señal multicanal, sus efectos sobre el procesado coherente y se proponen cadenas de procesado para paliar los efectos adversos de este tipo de señales
    corecore