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Abstract

This Thesis presents advanced signal processing solutions for Automatic

Target Recognition (ATR) operations and for spectrum sharing in dis-

tributed radar systems.

Two Synthetic Aperture Radar (SAR) ATR algorithms are described for

full- and single-polarimetric images, and tested on the GOTCHA and the

MSTAR datasets. The first one exploits the Krogager polarimetric decom-

position in order to enhance peculiar scattering mechanisms from man-

made targets, used in combination with the pseudo-Zernike image mo-

ments. The second algorithm employs the Krawtchouk image moments,

that, being discrete defined, provide better representations of targets’ de-

tails. The proposed image moments based framework can be extended to

the availability of several images from multiple sensors through the imple-

mentation of a simple fusion rule.

A model-based micro-Doppler algorithm is developed for the identifica-

tion of helicopters. The approach relies on the proposed sparse represen-

tation of the signal scattered from the helicopter’s rotor and received by

the radar. Such a sparse representation is obtained through the applica-

tion of a greedy sparse recovery framework, with the goal of estimating

the number, the length and the rotation speed of the blades, parameters

that are peculiar for each helicopter’s model. The algorithm is extended to

deal with the identification of multiple helicopters flying in formation that

cannot be resolved in another domain. Moreover, a fusion rule is presented

to integrate the results of the identification performed from several sensors

in a distributed radar system. Tests performed both on simulated signals

and on real signals acquired from a scale model of a helicopter, confirm

the validity of the algorithm.



Finally, a waveform design framework for joint radar-communication sys-

tems is presented. The waveform is composed by quasi-orthogonal chirp

sub-carriers generated through the Fractional Fourier Transform (FrFT),

with the aim of preserving the radar performance of a typical Linear Fre-

quency Modulated (LFM) pulse while embedding data to be sent to a

cooperative system. Techniques aimed at optimise the design parame-

ters and mitigate the Inter-Carrier Interference (ICI) caused by the quasi-

orthogonality of the chirp sub-carriers are also described. The FrFT based

waveform is extensively tested and compared with Orthogonal Frequency

Division Multiplexing (OFDM) and LFM waveforms, in order to assess

both its radar and communication performance.
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Chapter 1

Introduction

1.1 Preface

The authorship of the RAdio Detection And Ranging (RADAR) system is often at-

tributed to Christian Hülsmeyer in 1904 [1], although its Telemobiloskop was not able

to measure the range from a metallic object, but only to detect it [2]. Since then, the

concept of radar has evolved, and it is today considered a complex system capable of

several operations, such as detecting, ranging, tracking, identifying, imaging, and clas-

sifying targets, for both military and civilian applications [3].

Of particular interest is the capability of creating high resolution images from radar

returns, exploiting the Doppler history, that is the variation of the Doppler shift over

time, of stationary targets. This technology was introduced in the radar community

with the name of Synthetic Aperture Radar (SAR) by an employee of the Goodyear

Aircraft Corporation in 1951, Carl Wiley [4]. At that time, the acquired signal was

recorded on a black and white film, and processed real-time with optical lenses and

diffraction gratings to obtain a focussed image [5]. Optical SAR processors produced

well-focused images, but needed high quality lenses, precise alignment and the su-

pervision of an operator. The advent of digital processors allowed researchers and

engineers to develop automatic algorithms for SAR image focussing; furthermore, the

flexibility introduced by digital signal processing techniques, promoted the emergence

of a variety of SAR operation modes and applications. One of the first application,

direct consequence of the high-resolution nature of SAR images, was their use for Au-
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tomatic Target Recognition (ATR). The complex SAR phenomenology and the several

degrees of freedom that a SAR system offers in terms of operation mode, wavelength,

aspect angle, polarisation, continue to encourage the research in this field, with the

objective of improving the accuracy and the reliability of the ATR algorithms.

ATR is not only limited to radar imagery. Recently, micro-Doppler based tech-

niques aimed at target recognition have attracted lots of interest [6]. First described to

the radar community by Victor Chen [7], the micro-Doppler effect identifies the time-

varying modulation of the main Doppler of the received radar echo due to secondary

motions that a target exhibits in addition to its bulk motion. These secondary motions,

such as swinging limbs of a human walking or rotating blades of a helicopter’s main

and tail rotors, are characteristic of the observed object itself, and can be exploited for

recognition purposes.

ATR techniques may also benefit from the spatial diversity offered by the observa-

tion of the target of interest from multiple perspective [8], since it is intuitively clear

that these may provide additional information about the target. Multiple viewpoints of

an observed object can be obtained with an aircraft flying past the scene of interest,

or with a network of cooperative radars [9]. The use of a network of sensors in a dis-

tributed radar system clearly enhances the recognition capability but, on the other hand,

increases the complexity of the entire system. For example, nodes in a distributed radar

system with functions of detection and classification of targets also need the additional

capability of communicating each other or, at least, with a fusion centre, in order to

share information about, for example, the location and the nature of potential targets.

This can be achieved by providing each node with a secondary communication chan-

nel, at cost of allocating dedicated bandwidth, power and hardware resources to this

task. In this context, a joint radar-communication technology enabling the different

sensors to sense the environment while sending data to cooperative systems represents

an ideal solution for sharing the resources between the two tasks. NASA first intro-

duced this concept in 1978 with its Space Shuttle Orbiter [10], giving a new inspiration

to the radar community.
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1.2 Motivation

The research presented in this Thesis is motivated by recent advances in SAR and

micro-Doppler signal processing, with particular reference to ATR operations. More-

over, with the increased potential of modern radar systems from the employment of

a network of distributed sensors, the scope of this Thesis is twofold: propose novel

advanced signal processing solutions to improve the recognition of both civilian and

military vehicles in SAR systems and enhance the micro-Doppler based identification

of helicopters; propose an efficient spectrum sharing enabling technology that allows

nodes in a distributed radar system to communicate.

Objectives of the research presented in this Thesis are: improvement of a SAR

ATR algorithm through the exploitation of polarimetric information and the use of

novel image moments; development of a model-based micro-Doppler algorithm for

the identification of helicopters; development of a waveform design framework for a

joint radar-communication system.

1.3 Contribution

The research detailed in this Thesis includes original contributions to the fields of SAR

ATR, micro-Doppler based ATR and spectrum sharing for joint radar-communication

systems. These contributions are as follows:

1. Enhancement of the SAR ATR algorithm presented in [11, 12] by further exploit-

ing the information provided by the full-polarimentric SAR image of the target

of interest. Krogager polarimetric components are introduced in the framework,

in order to emphasise the scattering from single bounce, double bounce and vol-

umetric scattering, becoming particularly suitable for man-made target recogni-

tion. Moreover, the property of roll invariance of Krogager components makes

the algorithm robust with respect to the acquisition elevation angle.

2. Development of an image moments based SAR ATR algorithm that uses the

Krawtchouk polynomials. Being discrete defined, the Krawtchouk moments bet-
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ter represent the details of a target, providing higher capabilities in discriminat-

ing vehicles in different configurations.

3. Development of a model-based micro-Doppler algorithm for identification of

helicopters. The algorithm is independent of both the orientation of the air-

craft with respect to the radar Line of Sight (LoS), and the initial position of

the blades. Moreover, an information fusion approach is developed, that merges

the identification outputs coming from multiple sensors with the objective of

enhancing performance.

4. Extension of the capability of the model-based micro-Doppler algorithm to the

identification of multiple helicopters in the radar cell of interest. The algorithm

is able to both estimate the number of helicopters and identify their model.

5. Development of a waveform design framework for joint radar-communication

systems based on the Fractional Fourier Transform (FrFT). The proposed tech-

nique allows a radar system to use the same waveform to both sense the environ-

ment and send data to other cooperative systems, saving bandwidth, power and

hardware resources.

1.4 Thesis Organisation

The remainder of this Thesis is divided into six chapters, whose organisation is ex-

plained as follows: Chapter 2 provides an overview of the most recent advances in

SAR ATR and micro-Doppler based ATR. In the first part, the basics of SAR technol-

ogy, such as geometry, image formation and polarimetry, are presented, followed by a

review of recently developed SAR ATR algorithms. In the second part, preceded by

an introduction on micro-Doppler theory and analysis, an overview of recent micro-

Doppler based ATR techniques is provided, with a particular focus on the challenging

problem of helicopters identification.

Chapter 3 focuses on the problem of spectrum congestion, arisen for the ever

greater demand on bandwidth for different kind of Radio Frequency (RF) applications,

and provides a review of recent spectrum sharing solutions for radar and communica-
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tion systems. In particular, the discussion is first focussed on solutions that allow the

coexistence of radar and legacy communication systems, then enabling technologies

for joint radar-communication systems are presented. The FrFT is also introduced as

tool for waveform design.

In Chapter 4, the two SAR ATR algorithms that enhance the framework previously

introduced in [11, 12] are presented. The first one includes additional features, rep-

resented by the components of the Krogager polarimetric decomposition, in order to

increase the information content providing a more accurate description of the targets.

The second algorithm, instead, exploits the high capability of the Krawtchouk mo-

ments in characterising targets within the same framework. Performance assessment

for the two algorithms is performed on real SAR images, from the GOTCHA and the

MSTAR datasets, respectively.

In Chapter 5 the model-based micro-Doppler algorithm for helicopters identifi-

cation is presented. It is based on the estimation of the helicopter’s micro-Doppler

parameters achieved by finding the solution of a sparse recovery problem, obtained

through a modified version of the Pruned Orthogonal Matching Pursuit (POMP) [13],

a previously developed greedy sparse recovery framework. The proposed algorithm

is able to identify either single or multiple targets in the radar cell of interest, and its

performance is evaluated on both simulated and real data.

Chapter 6 presents the FrFT based joint radar-communication system. Waveform

design and optimisation are explained in details, followed by the description of the

system implementation on a Software Defined Radio (SDR) device. Performance of

the proposed waveform design framework, and comparison results with Orthogonal

Frequency Division Multiplexing (OFDM) waveforms for joint radar-communication

system, are finally provided.

Chapter 7 includes a summary and conclusions of this Thesis, along with a dis-

cussion of its limitations and suggestion of potential areas for further future work.

Appendix A provides the mathematical derivation of the nonlinear relationship be-

tween order and rotation angle of the FrFT used in Chapter 6. A list of the author’s

publications is also provided.
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Chapter 2

Automatic Target Recognition

2.1 Introduction

Automatic Target Recognition (ATR) represents the capability of a system to reliably

distinguish different targets. Radar systems are particularly suitable for this function,

being used in any weather condition and in day or night, effective for long range oper-

ations and capable of almost instantaneous response to threats [1]. ATR technologies

find use in several civilian scenarios, although the military sector represents the driver

for recent and future development. Several systems are currently used for recogni-

tion of cooperative targets, such as the Identification Friend or Foe (IFF) system, also

called Secondary Surveillance Radar (SSR), used by military and civilian authorities

for the identification of aircraft. However, the ability to automatically distinguish be-

tween friend, hostile and neutral targets in a non cooperative environment is a much

more valuable feature for any radar, as well as challenging. Particularly in a battlefield

scenario, if a target can be accurately classified, an appropriate countermeasure can be

deployed in order to successfully neutralise the threat. Reliability of the decision is

also key, to avoid potential casualties caused by friendly fire.

The ATR capability of radars comes from the interactions between the target and

the electromagnetic wave generated and sent by the systems. The reflected signal from

the target contains information that can be extracted through signal processing tech-

niques, and exploited to perform the classification. The nature of this information is

various, and also depends on the actual radar systems that is employed [1]. For exam-
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ple, radar imagery systems, such as Synthetic Aperture Radars (SARs), provide images

of potential targets from which discriminative features, such as shape, size and reflec-

tivity, can be extracted. Advanced methods also combine multiple images acquired,

for example, with polarimetric or multi-frequency sensors, or during a wide temporal

window. Geometric characteristics of a target of interest can also be retrieved from

the High Resolution Range Profile (HRRP), a one dimensional range representation

of the time domain signal reflected from the object. Besides spatial attributes, a tar-

get can also be identified by evaluating the characteristics of its moving parts. Indeed,

these generate a peculiar frequency modulation of the received signal, known as micro-

Doppler (mD), that can be analysed by means of time-frequency techniques and used

for classification purposes.

In this Chapter, ATR in radar is discussed with particular focus on SAR systems

and mD based techniques. The terminology used throughout this Chapter, as well as

the whole Thesis, is first clarified in Section 2.2. In Section 2.3, the basics of SAR

technology, such as geometry, image formation and polarimetry, are presented; then,

recent advances in SAR ATR are reviewed. Finally, mD theory is introduced in Sec-

tion 2.4, followed by an overview of the mD based ATR techniques that represent the

current state of the art.

2.2 Terminology

The terminology used in the field of ATR may be sometimes ambiguous. Several

terms, such as classification, recognition, identification and characterisation, are often

used interchangeably, but sometimes they are also meant to indicate different levels of

discrimination. Throughout this Thesis, the used terminology is in accordance with

the NATO AAP-6 Glossary Terms and Definitions:

• with recognition, is meant the ability to give a type/category to a target, e.g. car

or truck, tank or personnel carrier, fighter aircraft or helicopter;

• identification regards the capability to assign the target to a subclass, e.g. com-

pact car or SUV, Eurofighter Typhoon or F-16 Fighting Falcon;
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• characterisation takes into account the class variants or target configurations,

e.g. Porsche 911 Carrera coupé or Porsche 911 Carrera cabriolet.

The term classification, instead, is used in this work to describe the general process of

assigning objects to categories, whatever the detail level.

2.3 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is a type of imagery radar that exploits the movement

of the platform on which it is placed (spaceborne, airborne, etc.) to create an image of

the illuminated area. The word synthetic comes from this movement, that synthesises

a longer antenna than the physical one, which, in turn, provides finer resolution with

respect to a Real Aperture Radar (RAR). In this Section, the basic principles of SAR

are provided, followed by a review of the recent advances in SAR ATR. The review

provides an insight of two classes of ATR techniques: model-based and feature-based

[14, 15]. Algorithms that fall in the first category, use bright points, corners, line seg-

ments that correspond to identifiable parts of a target as features, and the classification

depends on matching these parts with a reference. Algorithms from the second cat-

egory, instead, use features that result from the application of transforms to the SAR

image of the target.

2.3.1 SAR Geometry and Image Formation

The typical geometry of a SAR system is shown in Figure 2.1. The illustration depicts

a SAR platform that flies along a straight line path1 while sensing the scene, composed,

in this simple case, by a single point scatterer. The radar transmits a pulse, generally a

Linear Frequency Modulated (LFM) signal or chirp, with a cadence equal to the Pulse

Repetition Interval (PRI), and receives the echoes reflected by the scatterer on the

ground. The received signal is sampled, discretised and stored in a two-dimensional

domain, namely the range-azimuth domain2. As the platform moves, the point scatterer

1Other paths can be considered, such as circular.
2The range-azimuth domain is also called slow time-fast time domain, since the range dimension is

driven by the light speed, while the azimuth dimension is controlled by the platform speed.
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Scatterer on
the Ground

Platform
Height

Radar to
Target

SAR
Platform

Figure 2.1: Synthetic Aperture Radar (SAR) geometry.

first approaches and then goes away from the radar: this causes the range migration of

the point scatterer response in the range-azimuth domain, as highlighted in Figure 2.1

by the red dashed line.

Any SAR focussing algorithm needs to deal with this distortion in order to produce

the final image. One of the most common and used approach is the Range Doppler

Algorithm (RDA) [5], consisting of 3 main steps. Figure 2.2 shows (a) the unfocussed

SAR image, and (b)-(d) the output of each of the three steps in the range-azimuth

domain. The first stage is the range compression, that consists in matched filtering the

received echo signal, that is the range signal. This operation despreads the acquired

signal, providing the image with a fine range resolution3. Then, the range migration

distortion is compensated, assuming that the point scatterer is in the middle of the

illuminated scene when it is closest to the radar, that is when its Doppler shift is zero4:

this phase is called Range Cell Migration Correction (RCMC). The last step is the

azimuth compression, obtained by matched filtering portions of the signal along the

azimuth domain with a reference function. Indeed, the motion of the platform ensures

that the azimuth signal is a chirp-like signal, which, once matched filtered, provides

3Hence, the range resolution of a SAR system depends on the bandwidth on the transmitted chirp.
4This is true only if the SAR is side-looking, with no squint angle forward or backward.
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a fine resolution. These two last steps are efficiently implemented in the frequency

domain; for this reason, a Fast Fourier Transform (FFT) is computed before the RCMC,

and reversed after the azimuth compression.

Range

A
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m
u
th

(a) Unfocussed SAR image.

Range

A
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m
u
th

(b) Range compression.

Range

A
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m
u
th

(c) RCMC.

Range

A
zi
m
u
th

(d) Azimuth compression.

Figure 2.2: Range-Doppler Algorithm (RDA), (a) input and (b)-(d) outputs of each of
the three steps.

2.3.2 PolSAR and Polarimetric Decompositions

The first SAR systems were designed to provide images in single polarisation, that is

the electromagnetic wave was transmitted on one polarisation, either horizontal (H) or

vertical (V), and received on the same polarisation. Recently developed SAR systems,

instead, can provide images either in single, or dual, or full polarisation. An exam-

ple is given by the TerraSAR-X, a German spaceborne SAR launched in 2007 [16].

The dual polarisation mode is achieved by transmitting the signal on either the H or V

polarisation, and electronically dividing the antenna in reception in order to get both
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of them. The quad polarisation, or full-polarimetric mode, instead, is possible with

an additional modification, consisting in alternating the transmission of pulses on the

horizontal and vertical polarisation.

The additional information provided by the polarisation can be exploited for clas-

sification purposes, since objects interact differently based on the polarisation on the

incident wave. A full-polarimetric SAR image is completely characterised by the scat-

tering matrix S, defined as follows [3]:

S(H,V ) =

 SHH SHV

SV H SV V

 ∈ C2×2 (2.1)

where C is the set of complex numbers, SHH and SV V are the linear co-polarised

terms, and SHV and SV H the linear cross-polarised terms5. Accordingly, in the case of

circular polarised waves, the scattering matrix can be expressed as:

S(R,L) =

 SRR SRL

SLR SLL

 =
1

2

 1 j

1 −j

 SHH SHV

SV H SV V

 1 1

j −j

 ∈ C2×2

(2.2)

where j =
√
−1 is the imaginary unit, (·)T indicates the transpose of a matrix, SRR and

SLL are the circular co-polarised terms, and SRL and SLR the circular cross-polarised

terms, respectively.

The interpretation of a full-polarimetric SAR image can often be extremely diffi-

cult, for this reason decomposition techniques are employed in order to obtain a differ-

ent representation of the data that has a direct physical interpretation. These polarimet-

ric decomposition techniques can be divided in two main classes. Incoherent Target

Decomposition (ICTD) methods are used to represent distributed targets through a

second order characterisation of the scattering matrix (i.e. coherency matrix or co-

variance matrix). Distributed targets, in fact, are highly affected by speckle noise6,

and their characterisation cannot merely relies on intensity values picked from the

full-polarimetric SAR image. However, ICTD techniques suffer from the estimation

5Note that, in the monostatic case, the cross-polarised terms are equal due to the reciprocity theorem.
6Speckle noise is the pixel-to-pixel variation in intensity caused by the phase fluctuations of the

waves reflected by the large number of scatterers that are contained in a resolution cell [17].
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of either the coherency matrix or the covariance matrix through S, and for the same

reason they cannot maintain the full resolution of the SAR image [18, 19]7. On the

other hand, Coherent Target Decomposition (CTD) methods are suitable for the rep-

resentation of point targets, also called pure targets. Their objective is to express the

scattering matrix as a combination of canonical objects which present an easier phys-

ical interpretation. Furthermore, since the CTDs are directly computed from S, they

maintain the full resolution of the SAR image. ICTD techniques are generally used to

characterise natural targets, such as forests, agriculture areas, water, etc., while CTD

methods are suitable for the extraction of features from man-made targets [20, 21];

dealing with the classification of man-made targets, hereafter the focus is on this last

class of polarimetric decompositions.

2.3.2.1 Coherent Target Decompositions

As mentioned before, a CTD can be expressed as [17]:

S =

NS−1∑
n=0

cnSn (2.3)

where Sn is the response of the n-th canonical object, cn indicates the weight of Sn in

the combination leading to S andNS is the number of components. The most common

polarimetric decomposition, which also represents the basis for the coherency matrix

formulation, is the Pauli decomposition, defined as [17]:

S(H,V ) =
c

(P )
0√
2
S

(P )
0 +

c
(P )
1√
2
S

(P )
1 +

c
(P )
2√
2
S

(P )
2 +

c
(P )
3√
2
S

(P )
3 =

=
c

(P )
0√
2

 1 0

0 1

+
c

(P )
1√
2

 1 0

0 −1

+
c

(P )
2√
2

 0 1

1 0

+
c

(P )
3√
2

 0 −j

j 0


(2.4)

7Generally, the degradation of the resolution is traded with the accuracy of the estimation of the
second order characterisation.
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where

c
(P )
0 =

SHH + SV V√
2

, c
(P )
1 =

SHH − SV V√
2

c
(P )
2 =

SHV + SV H√
2

, c
(P )
3 = j

SHV − SV H√
2

(2.5)

The four components represent the scattering mechanism from four canonical objects.

The first one is interpreted as sphere, plate or trihedral, since it takes into account single

or odd bounce scattering. The second and the third components are seen as un-rotated

and 45◦-rotated dihedrals, respectively, representing double or even bounce scattering.

The last one includes all the antisymmetric components of the scattering matrix S,

representing a non reciprocal target. A basis proportional to the Pauli matrices is also

the starting point for the definition of the Cameron decomposition, defined as [22]:

S(H,V ) = c
(C)
0 Smax

sym + c
(C)
1 Smin

sym + c
(C)
2 Snon−rec (2.6)

where

c
(C)
0 =

∥∥S(H,V )

∥∥ cos θrec cos τsym

c
(C)
1 =

∥∥S(H,V )

∥∥ cos θrec sin τsym

c
(C)
2 =

∥∥S(H,V )

∥∥ sin θrec

(2.7)

The Cameron decomposition is based on the two concepts of reciprocity and symme-

try [17]: a scatterer is reciprocal if it obeys to the reciprocity principle such that its

scattering matrix is symmetric, while it is symmetric if it has an axis of symmetry in

the plane orthogonal to the radar Line of Sight (LoS). The angle θrec separates the re-

ciprocal (θrec ≤ π/4) and non reciprocal (θrec > π/4) components of the scattering

matrix, while τsym further divides the former one in a symmetric (τsym ≤ π/8) and an

asymmetric (τsym > π/8) component.

When the reciprocity principle is satisfied, the Krogager decomposition may also

be applied. It is another example of CTD and it is defined by means of the circular
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polarization scattering matrix S(R,L), introduced in equation (2.2), as [23]:

S(R,L) = ejθ0

ksejθs
 0 j

j 0

+ kd

 ej2η0 0

0 −e−j2η0

+ kh

 ej2η0 0

0 0


(2.8)

where ks, kd and kh are real-valued quantities which can be interpreted as scattering

coefficients from a sphere, a diplane and a helix, respectively8. Moreover, θ0 is the

absolute phase term which depends on the distance between the target and the sensor,

θs represents the displacement of the sphere with respect to the diplane and the helix

components, and η0 is their orientation angle. The scattering coefficients ks, kd and kh

may be computed as follows [18]:

ks = |SRL|

kd = min (|SRR| , |SLL|)

kh = ||SRR| − |SLL||

(2.9)

where |·| represents the magnitude of a complex number. An important property of this

decomposition is the roll invariance of the components ks, kd and kh, demonstrated in

[24]. Consequently they do not depend on the orientation of the target in roll (mean-

ing invariance with respect to observations from platforms with different incidence

angles).

The capability of the polarimetric decompositions of representing the scattering

mechanism of the illuminated objects, makes them highly effective in target recogni-

tion from radar imagery. Comparisons between different methods, both coherent and

incoherent, were carried out in [18, 19]. In the first work, Pauli, Cameron and Kro-

gager decompositions were tested on the classification of several urban and non urban

areas (water, houses, roads, trees, grass, crops) from real full-polarimetric SAR im-

ages acquired with the German E-SAR system, and compared with ICTD techniques.

Results showed that the Krogager and Cameron decompositions outperformed all the

other techniques, with an overall accuracy of 87 % and 76 %, respectively. On the

other hand, the Pauli decomposition did not result in better performance than using the

8This decomposition is also known as Sphere, Diplane and Helix (SDH) decomposition.
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original elements of the scattering matrix S. In the later work, classification perfor-

mance of the Krogager decomposition was evaluated on Radarsat-2 full-polarimetric

images and compared with ICTD techniques. The dataset consisted of images of crops

acquired in different days of the year; once again, the Krogager decomposition gave

the best results, with an overall accuracy of 78 %. The authors of both the compari-

son studies ascribed the better performance of the Krogager decomposition over the

ICTD techniques to the fact that, being a coherent decomposition, it maintains the full

resolution during the feature extraction process. Recent advances in wide-band full-

polarimetric SAR system have further revived the employment of coherent decompo-

sition techniques for target recognition, with particular focus on the classification of

civilian vehicles [25].

2.3.3 Model-Based ATR Techniques

As mentioned before, model-based ATR algorithms exploit identifiable parts of the tar-

get, such as bright points or line segments, as features to be used into the classification

step. The first attempt in this direction is represented by [26]. Novak et al. proposed an

algorithm consisting of three stages, namely detection, or prescreening, discrimination

and classification. In the first step, single pixels belonging to potential targets were dis-

cerned from clutter by means of a two-parameter Constant False Alarm Rate (CFAR)

detector. The discrimination stage dealt with the estimation of both the position and

orientation of the target, and extracted textural, size, contrast and polarimetric features

from the 2D image, then combined into a single discrimination statistic. The final

classification was performed through a Mean-Squared Error (MSE) pattern-matching

classifier.

Length, height and width were used in [27] for reliable classification of ships. The

SAR ship silhouette was modelled as ellipsoid-ellipse, from which the 3D geometrical

features were extracted assuming that the elevation angle of the target was known.

Park and Kim in [28] proposed a Modified Polar Mapping Classifier (M-PMC),

which, in its original version, was used for classification of Inverse SAR (ISAR) im-

ages [29]. The algorithm projected the SAR image from Cartesian coordinates onto

polar coordinates, namely radius and angle, removing the need of pose estimation.
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This representation was both compressed undergoing a Principal Component Anal-

ysis (PCA), and further projected onto the radius obtaining a 1D image. The polar

projection was preceded by a translation operation, aimed to find and compensate the

centre of the target. Indeed, a random selection of the origin of the polar coordinates

could bias the final classification, performed with a k-Nearest Neighbour (k-NN) clas-

sifier. The algorithm was tested on the MSTAR dataset [30, 31], achieving very high

accuracy, in particular in terms of characterisation. However, the interpolation stage

needed for the polar projection, as well as the translation operation, could introduce

errors leading to misclassification.

Locations of dominant scatterers, such as edges or corners, have been extensively

used in SAR ATR [32, 33] as discriminative features, but their direct use shows high

variability and may negatively affect classification performance. To overcome this

problem, Doo et al. [34, 35] proposed a grid cell structure in order to group dominant

scatterers, with the immediate advantages of reducing the variability and lowering the

complexity, since the number of groups was much smaller than the number of domi-

nant scatterers. However, the variability of the dominant scatterers was not completely

neglected, it was rather extracted through the process described in Figure 2.3 and used

as feature. The SAR image taken into consideration belonged to the MSTAR dataset,

Figure 2.3: From [34], angular stability extraction process.
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a collection of circular SAR images focussed over a 3◦ azimuth angle. The angular

stability image, containing information about the variability of the dominant scatter-

ers, was obtained by defocussing the image of the target along the azimuth domain and

generating two different images with 1.5◦ integration angle. These images were then

subtracted to highlight the variations in the aspect angle of the dominant scatterers.

This approach is very effective, but suffers from potential shifts of the target on the

scene, as well as rotation of its pose. Hence, a pose and translation estimation step is

still needed [36].

2.3.4 Feature-Based ATR Techniques

Feature-based ATR algorithms rely on the effectiveness of the features extracted from

the SAR image in well representing the target itself. The features are not directly

related to physical or statistical characteristics of the object, they are rather obtained

through the application of a transform or a projection onto a selected basis.

The algorithm developed by Srinivas et al. [37] belongs to this category since the

features of the target were extracted by means of the Wavelet transform9. It decom-

posed the image in four sub-images, containing low and high frequency components

of the SAR image in both the horizontal and vertical direction. Then, a probabilistic

graphical model, able to represent conditional dependences between the features, was

used for redundancy reduction and for the actual classification.

Leveraging on recent advances in machine learning, Chen et al. [38] and Wagner

[39] proposed two approaches for automatically learning hierarchies of features from

large quantity of data. This means that the type of feature was not selected a priori, and

this task was assigned to the algorithm itself. Chen et al. used a Convolutional Neural

Network (CNN), with sparsely connected layers to avoid the overfitting due to limited

training images, that could be directly applied to SAR images. Wagner, instead, pro-

posed the combination of a CNN for the automatic generation of the features, and a

Support Vector Machine (SVM) for decision making.

9However, authors stated that their proposed framework readily generalised to any other suitable
choice of feature sets that offered complementary benefits.
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2.3.4.1 Image Moments

A class of feature-based ATR algorithms for SAR images employs image moments

as tool for the extraction of targets’ characteristics. As in mathematics and statistics,

image moments are scalar quantities defined as weighted averages of the image pixels’

intensities.

The first example of use of image moments for target recognition from SAR is

given in [40]. Yan et al. used seven Hu moments [41] in combination with a SVM

for the classification of planes and tanks. The authors exploited the rotational, trans-

lational and scaling invariance of Hu moments [42], achieving an overall recognition

accuracy of 96 % on noise-free simulated images. Hu moments were also used in [43]

in combination with intensity, texture and scattering features. The feature extraction

phase was followed by a feature selection stage, aimed to remove those with low sta-

bility, low discriminability and low correlation, and a k-NN classifier. The approach

was tested on real SAR images of three types of ships from TerraSAR-X, obtaining an

overall accuracy of 91.54 %.

Amoon et al. proposed in [44] the use of the Zernike moments, obtained as pro-

jection of the SAR image on Zernike polynomials with different orders. Zernike poly-

nomials are orthogonal on the unit circle, and this orthogonality makes the moments

independent, decreasing the intrinsic redundancy of the features. Moreover, Zernike

moments are rotational invariant, but not translational and scale invariant. This means

that a variation in the pose or dimension of the target can negatively affect the clas-

sification, therefore position and size normalisation were needed in [44]. After these

pre-processing steps, moments were extracted from both the shape (binary image) and

the intensity image of the target and used with a SVM. The algorithm was tested on

the MSTAR dataset, reaching an average accuracy of 96.48 %.

Clemente et al. presented in [11, 12] a novel algorithm for classification of civilian

vehicles from SAR based on the use of pseudo-Zernike (pZ) moments [45]. The pZ

moments inherit the orthogonality of the Zernike moments [46], and similarly to the

Hu moments, they own valuable geometric properties, such as invariance to scale [47],

rotation and translation [48, 49]. Moreover, they are less sensitive to noise [46, 50]
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compared to the Zernike moments10, and this makes them reliable features in recogni-

tion systems for different kind of applications, both in image processing [51, 52, 53, 54]

and radar processing [55].

The complex-valued pZ moment wn,l of an image f (x, y) ∈ R, with f (x, y) ≥ 0

and (x, y) indices of the pixels, is defined as its projection on the pZ polynomial

Wn,l (r, ϑ) of degree n ≥ |l|, n ∈ N0, l ∈ N0 with N0 the set of natural numbers,

0 included:

wn,l =
n+ 1

π

∫ 2π

0

∫ 1

0

W ∗
n,l (r, ϑ) f (r cosϑ, r sinϑ) rdrdϑ (2.10)

where (·)∗ indicates the complex conjugate operator, r =
√
x2 + y2, ϑ = tan−1 (y/x)

and

Wn,l (r, ϑ) =

n−|l|∑
m=0

rn−m (−1)m (2n+ 1−m)!

m! (n+ |l|+ 1−m)! (n− |l| −m)!
ejlϑ (2.11)

The orthogonality condition of the pZ polynomials is reported below, and applies on

the unit disc, that is for r ≤ 1:

∫ 2π

0

∫ 1

0

W ∗
n,l (r, ϑ)Wm,k (r, ϑ) rdrdϑ =

π

n+ 1
δn,mδl,k, (2.12)

where

δn,m =

1 n = m

0 n 6= m
(2.13)

is the Kronecker delta. Therefore, since the number of orthogonal polynomials is

(n+ 1)2 (once n is given), this is also the number of independent pZ moments, where

with independence is meant low information redundancy among the moments [56].

The block diagram of the algorithm presented in [11, 12] is reported in Figure 2.4.

The SAR image to process, of dimensionsRim×Cim that contained a detected target11,

was assumed to be full-polarimetric with complex-valued components IHH (x, y),

10With sensitivity to noise it is meant the variance of the moments when noise is added to an image.
Therefore, low sensitivity means that moments computed on a noise-free and a noisy version of the
same image, are similar in a defined metric.

11The dimensions Rim and Cim are chosen according to the resolutions of the SAR image and to the
physical dimensions of the expected target.
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Figure 2.4: Block diagram of the pseudo-Zernike (pZ) based SAR ATR algorithm
proposed in [11, 12].

IHV (x, y), IV H (x, y) and IV V (x, y). The pre-processing block consisted of two

steps. First, Ω̃ ∈ RRim×Cim was obtained as scaled sum of the magnitude of the four

polarimetric components:

Ω̃ (x, y) = log10 (|IHH (x, y)|+ |IHV (x, y)|+ |IV H (x, y)|+ |IV V (x, y)|) (2.14)

where the logarithm was performed to reduce the dynamic range of the final image.

Then, Ω̃ was normalised such that its intensity was restricted in the range [0, 1], in

order to obtain features that were independent of different intensity levels:

Ω (x, y) =
Ω̃ (x, y)−min(x,y) Ω̃ (x, y)

max(x,y)

[
Ω̃ (x, y)−min(x,y) Ω̃ (x, y)

] (2.15)

The feature extraction consisted in projecting the image Ω (x, y) ∈ R, with Ω (x, y) ≥

0, onto the pZ polynomials as in equation (2.10), which could be precomputed, stored

and used when necessary since they only depended on the size of the image to process,

that is Rim×Cim
12. The feature vector F ∈ R(Nord+1)2

finally contained the magnitude

of the pZ moments up to the order Nord, that is:

F = [|w0,0| , . . . , |wNord,−Nord
|]T (2.16)

Note that, in order to avoid information loss due to the fact that the pZ polynomials in

equation (2.11) are defined on the unit circle, the support of Ω (x, y) was scaled before

computing the pZ moments. This scaling consisted in inscribing the rectangular image

12Without loss of generality, this framework can also be applied to single polarisation SAR images.
In fact, the feature extraction is applied on just one real-valued image, which may be the magnitude of
a single polarisation image.
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in the unit circle, while setting to zero the pixels between the image edges and the unit

circumference. The feature vector was then normalised to zero-mean and unit variance,

in order not to affect the classification with polarised features [57]:

F̃ =
F − µF
σF

(2.17)

where µF and σF are mean and standard deviation of F , respectively. The final step

was the classification, performed with a k-NN classifier, that returned a score vector

s = [s1, . . . , sL] ∈ RL whose elements were the occurrences (normalised to k) of

each class among the k nearest neighbours to F̃ , and L was the number of possible

classes. Clemente et al. [11, 12] also proposed a fusion rule when more than one SAR

image of the target under test was available, as in a multi-sensor system. Let si be

the score vector obtained by testing the features extracted from the i-th image, with

i = 0, . . . , T − 1. The proposed fusion rule simply consisted of adding up the score

vectors and deciding for the class that presented the largest overall score, that is:

v =


arg max
v∈{1,...,L}

T−1∑
i=0

si if ∃! max
v∈{1,...,L}

(
T−1∑
i=0

si

)
> δfus

unknown otherwise

(2.18)

where δfus was a fixed threshold. Whether more than one class presented the same

largest score, the decision was not taken and an unknown was declared. The algorithm

was tested on the GOTCHA dataset, a collection of real full-polarimetric circular SAR

images acquired by an airborne X-band sensor, and compared with the `2-norm-based

algorithm reported in [58]. The results are shown in Figure 2.5 and Figure 2.6, with

the blue lines that refer to the pZ moments based approach and the black lines that

refer to the `2-norm-based algorithm. In the first case, the classifiers were trained

with observations of the targets chosen from 30 different equally spaced aspect angles,

while in the second case 10 aspect angles were selected. Moreover, dashed lines refer

to the single sensor case (i.e. only one SAR image of the target was available), while

dotted lines and solid lines refer to the 2 and 3 sensors cases, respectively. Given

the number of sensors, the pZ moments based algorithm outperformed the `2-norm-
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Figure 2.5: From [12], performance comparison between (blue) the pseudo-Zernike
(pZ) based SAR ATR algorithm on varying the moments order and (black) the `2-
norm-based algorithm. Images from 30 aspect angles were selected for the training of
the classifiers.

Figure 2.6: From [12], performance comparison between (blue) the pseudo-Zernike
(pZ) based SAR ATR algorithm on varying the moments order and (black) the `2-
norm-based algorithm. Images from 10 aspect angles were selected for the training of
the classifiers.

based algorithm when fewer training images were used, both in terms of accuracy and

unknowns. When the training was performed with images selected from 30 aspect

angles, comparable results were obtained with moments order equal or greater than

10; however, as highlighted by the authors, the dimension of the feature vector was 20

times smaller.

2.4 Micro-Doppler Effect in Radar

The frequency shift present in the radar signal reflected back by a moving target is

known as Doppler frequency and is proportional to the variation of the radar-target
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range, that is13:

fD (t) = −2

λ

∂

∂t
R (t) (2.19)

where λ is the wavelength and R (t) is the time-varying radar-target range. Hence,

whether the range decreases, namely the target gets closer to the radar, the Doppler

frequency is positive, otherwise it is negative. Moreover, if the target is moving towards

the radar with constant velocity v tg, such thatR (t) = R0−v tg t, the Doppler frequency

shift is constant and equal to:

fD = 2
v tg

λ
(2.20)

where R0 is the initial radar-target distance at t = 0. Instead, if the target is still

moving with constant velocity v tg, but with an angle θ tg (t) with respect to the radar,

the frequency shift is:

fD (t) = 2
v tg

λ
cos (θ tg (t)) (2.21)

However, in the general case the target would present a nonlinear movement that would

exhibit secondary motions, also known in literature as micro-motions. Micro-Doppler

(mD) effect identifies the time-varying characteristic of the Doppler frequency shift

due to these micro-motions of the observed target. This concept was first introduced

in coherent Light (or Laser) Detection and Ranging (LiDAR) systems, as reported in

[59], and then also studied and analysed in radar systems [7]. The mD may be due

to swinging arms and legs of a human being while walking or running, or to moving

legs or flapping wings of animals. Source of micro-motions can also be a rotating

propeller of a fixed-wing aircraft, or rotating rotor blades of a helicopter. All these

micro-motions are peculiar of each target, and generate different mD signatures that

may be used for classification purposes.

Until the joint time-frequency analysis was introduced in radar signal processing,

not much attention was given to the time-varying characteristic of the Doppler fre-

quency shift [60]. In the following Sections, the main time-frequency tools for mD

analysis, as well as mD based ATR techniques exploiting such tools, are presented.

Then, a recent technique based on a parametric sparse representation of the mD signal

and its recovery aimed at estimating the mD parameters, will be introduced. Finally

13This definition is valid for a mono-static radar.
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the discussion will focus on the challenge of helicopters identification.

2.4.1 Time-Frequency Analysis and ATR Techniques

Time-frequency analysis comprises a set of techniques that provide a two-dimensional

representation of a non-stationary time-domain signal. They represent a useful tool for

the characterisation of a signal in the time and in the frequency domain simultaneously.

The most common and intuitive time-frequency transform is the Short Time Fourier

Transform (STFT). The STFT of a generic continuous signal, x (t), is defined as the

Fourier Transform (FT) of x (t) multiplied by a sliding window, w (t), such as [61]:

XSTFT (t, f) =

∫ ∞
−∞

x (t′)w (t′ − t) e−j2πft′dt′ (2.22)

This transform can be seen as a time-varying FT, since it provides details of the fre-

quency content of a signal as the time proceeds. The choice of the window and its

length are crucial to determine both the time and the frequency resolution. The type

of window affects the frequency resolution and the side lobe levels, in the same way

it does for the usual FT. Regarding its length, the larger the window, the finer the fre-

quency resolution while the poorer the time resolution. However, the selection of the

length of the window also depends on the observed phenomenon. Indeed, in order

for slow phenomenon to be appreciable, larger windows are necessary. The spectro-

gram of the signal x (t), defined as the squared magnitude of its STFT, is often used

in mD based ATR algorithms, as in [62]. Fioranelli et al. exploited the diversity that

the mD exhibits on varying the aspect angle in order to enhance the classification ac-

curacy of different human gaits. To achieve that, some features were extracted from

the spectrograms computed from signals acquired by several sensors in a multi-static

configuration. Such features were the bandwidth of the mD, the mean period, the main

Doppler offset and the Radar Cross Section (RCS) ratio of limbs and body. Figure

2.7(a) and Figure 2.7(b) show the spectrograms of a signal reflected back by a human,

walking towards two different directions, respectively, identified by the aspect angle

θtg. In Figure 2.7(a) the mD spread is wider than in Figure 2.7(b), in agreement with

equation (2.21). The spectrogram was also used in [63], where the authors proposed a
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(a) Aspect angle θtg = 0. (b) Aspect angle θtg = 2π/3.

Figure 2.7: From [62], spectrograms of a signal reflected back by a human, walking in
direction (a) θtg = 0 and (b) θtg = 2π/3.

CNN for the classification of hand-gestures. The CNN, fed by the spectrogram of the

received signal, had three layers, each composed by a convolutional filter, an activation

function and a pooling operation.

The Cadence Velocity Diagram (CVD) is another two-dimensional representation

of a time-domain signal. It is defined as the FT of the spectrogram along each fre-

quency bin, and results in a frequency-frequency representation. Hence, despite not

presenting a time reference, it is widely used in mD analysis, since it provides a mea-

sure of how often the different frequencies repeat. Figure 2.8 from [64] shows the pair

spectrogram-CVD of a signal received from a running human being, where (a) the mD

modulation and (b) the main cadences are clearly visible. In the same way as described

in Section 2.3.4.1 for SAR images, the method proposed by Clemente et al. [64] used

(a) Spectrogram. (b) Cadence Velocity Diagram (CVD).

Figure 2.8: From [64], (a) spectrogram and (b) Cadence Velocity Diagram (CVD) of a
signal reflected from a running person.
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the pZ moments on the CVD for the classification of several types of target, such as

helicopters, and different human’s and animal’s gaits. Same approach, but with differ-

ent image moments, was also used in [65] for Ballistic Missile (BM) recognition.

The Wigner-Ville (WV) distribution is an example of quadratic time-frequency

transform, defined as [61]:

XWV (t, f) =

∫ ∞
−∞

x

(
t+

t′

2

)
x∗
(
t− t′

2

)
e−j2πft

′
dt′ (2.23)

and related to the STFT from the following expression [66]14:

XWV (t, f) =

∫ ∞
−∞

XSTFT

(
t, f +

f ′

2

)
X∗STFT

(
t, f − f ′

2

)
ej2πf

′tdf ′ (2.24)

It provides a high resolution time-frequency representation but, being nonlinear, it ex-

hibits artefacts, called interference or cross terms, that may hamper its interpretation.

The S-Method is another quadratic time-frequency transform tightly related to the WV

distribution, that keeps its high-resolution while mitigating the cross terms. It is de-

fined as follows [66]:

XS (t, f) =

∫ ∞
−∞

Q (f ′)XSTFT

(
t, f +

f ′

2

)
X∗STFT

(
t, f − f ′

2

)
ej2πf

′tdf ′ (2.25)

where Q (f ′) is a narrow frequency domain window. In [67] this time-frequency rep-

resentation was used for the classification of human motions. Features were first ex-

tracted with log-Gabor filters with different scales and orientations, and then reduced

with either a two-directional 2D PCA or a two-directional 2D Linear Discriminant

Analysis (LDA).

Harmanny et al. [68] also proposed the use of the cepstrogram for the classifica-

tion of Unmanned Aerial Vehicles (UAVs), defined as the inverse FT of the natural

logarithm of the STFT along the frequency domain, that is:

Xcep (t, tQ) =
1

2π

∫ ∞
−∞

ln |XSTFT (t, f)|2 ej2πftQdf (2.26)

14This definition differs from the one given in [66] by the exponential and the constant factors. This
is due to the different expression of the STFT.
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The cepstrogram is particularly valuable when long integration intervals are used with

respect to the velocity of the observing phenomenon, as it could be the rotation of rotor

blades of an UAV, as shown in Figure 2.9. Indeed, Figure 2.9(a) shows the spectro-

(a) Spectrogram. (b) Cepstrogram.

Figure 2.9: From [68], (a) spectrogram and (b) cepstrogram of a steady Unmanned
Aerial Vehicle (UAV) whose 6 two-bladed rotors are spinning with different rates.

gram of a simulated signal reflected from a UAV with 6 rotors and 2 blades for each

rotor, which are rotating with different speeds. The mD signature is not clearly visi-

ble, because the phenomenon, which is the rotation of the blades in this case, happens

too quickly. However, by means of the cepstrogram, shown in Figure 2.9(b), it is still

possible to recognise the presence of the 6 rotors.

2.4.2 Parametric Sparse Representation and POMP

Recent developments in signal sparse representation, especially driven by Compressed

Sensing (CS), have led to the application of such techniques for the estimation of mD

parameters.

Li and Varshney [13] presented a parametric sparse representation aimed at mod-

elling a mD signal from a rigid body, and an algorithm called Pruned Orthogonal

Matching Pursuit (POMP) used to find the solution of such a sparse representation.

From the parametric sparse representation of the mD signal, based on the geometric

model of the target of interest, a dictionary was built and used by the POMP to es-

timate the mD parameters, supposed unknown, of a generic signal reflected from a

target of the same kind. The authors considered a coning target, whose radar echo can
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be expressed as [59]:

ycon (n) =
Ksc−1∑
l=0

ale
j 4π
λ
dl sin(ωnTs+θl) (2.27)

with n = 0, . . . , N − 1, where N is the number of time samples, Ts is the sampling

period, Ksc is the number of dominant scatterers and al their complex reflectivity. The

mD parameters to estimate were dl and θl, that identify the spatial position of each

scatterer, and ω, that refers to the angular velocity of the target, supposed equal for

all the scatterers. The parametric representation of ycon (n) was obtained by discretis-

ing the domains that dl, θl and ω belong to, that is dl ∈ {d0, . . . , dm, . . . , dMd−1},

θl ∈ {θ0, . . . , θm′ , . . . , θMθ−1} and ω ∈ {ω0, . . . , ωm′′ , . . . , ωMω−1}. In this way, the

expression in (2.27) could be rewritten as:

ycon = Ψx (2.28)

where ycon = [ycon (0) , . . . , ycon (N − 1)]T ∈ CN×1, Ψ ∈ CN×(MdMθMω) is called

dictionary and x ∈ C(MdMθMω)×1 is a sparse vector. Each column of the dictionary,

called atom, was equal to:

ψ (dm, θm′ , ωm′′ ;n) = ej
4π
λ
dm sin(ωm′′nTs+θm′ ) (2.29)

such that if dm = dl, θm′ = θl and ωm′′ = ω, the corresponding element of the sparse

vector x was non-zero and equal to al. Therefore, from another point of view, the

recovering of the sparse signal x allowed to retrieve the mD parameters dl, θl and ω.

The sparse signal recovery problem was stated as follows:

x = arg min
x

‖x‖0 s.t. ‖r‖2
2 ≤ ε (2.30)

where ‖·‖0 and ‖·‖2 represent the `0- and the `2-norm, respectively, r , ycon −Ψx

and ε is the error threshold on the residual r. The `0 minimisation problem in (2.30) is

highly non-convex, however it has been demonstrated [69, 70, 71] that, under certain

conditions, the `0-norm can be replaced by the `1-norm, therefore the problem can
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be solved through traditional convex optimisation techniques. Solutions can also be

obtained iteratively. This class of approaches is referred to as greedy algorithms, such

as the Orthogonal Matching Pursuit (OMP) [72], which iteratively selects the atoms

that present the largest correlation coefficients with the residual and update the sparse

solution, until the energy of the residual is smaller than the error threshold. The Pruned

OMP developed by Li and Varshney, and proposed in [13], exploits the fact that all

the scatterers have the same angular velocity ω. It combines the traditional iterative

approach of the OMP, which is applied on smaller portions of the dictionary, with a

pruning process, that progressively reduces the dimension of the dictionary Ψ avoiding

unnecessary computations corresponding to wrong atoms.

2.4.3 Helicopters Identification

In this Section, the discussion focuses on the challenging problem of mD based heli-

copters identification. The capability to identify the model of a helicopter by analysing

its mD signature was first investigated in [73], after that in [74] was demonstrated that

the theoretical return signal from propeller blades depends on the number, η, the length,

ρ, and the rotation speed, ω, of the blades themselves. Moreover, since the RCS from

the tail blades is smaller than the RCS from the main rotor blades [1], the majority of

the methods only relies on the mD information extracted from the main rotor blades.

According to [60], the return signal from a rotor blades can be modelled as15:

yrotor (n) = ρ e−j
4π
λ
R0×

×
η−1∑
l=0

sinc

(
2

λ
ρ cos βL cos

(
ωnTs +

2π

η
l + φ0

))
×

× e−j
2π
λ
ρ cosβL cos(ωnTs+ 2π

η
l+φ0)

(2.31)

with n = 0, . . . , N − 1, where R0 is the range of the helicopter, φ0 is the initial

position of the blades and βL is the elevation angle. Note that, the maximum Doppler

15It is assumed that the segment identifying the LoS, and the rotor rotation axis, lie on the same plane.
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shift depends on the length of the blades, ρ, and their rotation speed, ω, as follows:

fDmax = 2
ωρ

λ
(2.32)

Figure 2.10(a) shows an example of a simulated time signal received from the rotor of

a Mil Mi-2 Hoplite with a Signal-to-Noise Ratio (SNR) of 20 dB. It has η = 3 blades

of length ρ = 7.30 meters rotating at nominal speed of ω = 25.76 rad/s. The spectro-

gram in Figure 2.10(b) is in normalised frequency, and clearly shows the characteristic

mD signature of the helicopter. The flashes that appear in the time signal are due to

(a) Time signal. (b) Spectrogram.

Figure 2.10: Example of a simulated radar signal received from the rotor of a Mil Mi-2
Hoplite: (a) time-domain signal and (b) its spectrogram.

the blades when they, approaching or receding from the radar, get perpendicular to the

LoS [73]. Simultaneously, the velocity vector becomes parallel to the LoS, generating

the maximum, positive or negative, Doppler shift. The time distance, µ, between two

flashes, that is the periodicity of the flashes, can be computed as:

µ =


2π

ωη
if η is even

π

ωη
if η is odd

(2.33)

The first algorithm aimed to identify helicopters was developed in [75]: it was based on

the computation of the ρ/η-quotient, that is characteristic of each helicopter, obtained

from the relations (2.32) and (2.33) as:

ρ

η
=


µfDmax

4π
λ if η is even

µfDmax

2π
λ if η is odd

(2.34)
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where µ and fDmax could be estimated from the time-domain received signal and its

spectrum, respectively. Note that, the ambiguity about which expression to be used

for the computation of quotient in (2.34), was solved by inspecting the spectrum of

the received signal. Indeed, it is symmetric if η is even, asymmetric otherwise. The

main drawback of this technique is that two different models of helicopter that share

the same ρ/η-quotient cannot be distinguished. Moreover, in low SNR conditions the

estimate of fDmax could be very difficult.

Further improvements to this algorithm can be obtained by exploiting one of the

time-frequency representations presented in Section 2.4.1. Specifically, in [76] the

STFT was used to better estimate fDmax in low SNR conditions and to easily distin-

guish between an even or an odd number of blades. Furthermore, in [77] after the

estimation of the periodicity of the flashes and of the maximum Doppler shift, a mask

was generated and used to distinguish between helicopters that presented the same ρ/η-

quotient. An example is given in Figure 2.11, where the spectrograms of the signals

reflected from two helicopters with same ρ/η-quotient, but with (a) 2 and (b) 4 blades,

are shown. It is evident that the region between two consecutive flashes is different,

(a) Spectrogram the two-bladed helicopter. (b) Spectrogram the four-bladed helicopter.

Figure 2.11: From [77], spectrograms of signals reflected from two helicopters with
same ρ/η-quotient, but with (a) 2 and (b) 4 blades.

and is exploited as discriminative characteristic. In a similar way, in [78] the authors

proposed either a coherent or an incoherent mask to be applied on the slow time-fast

time matrix obtained from a High Resolution Linear Frequency Modulated Continuous

Wave (LFMCW) radar.
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Zhang et al. [79] proposed a helicopters identification method based on the estima-

tion of the periodicity of the flashes, µ, and the number of blades, η. The periodicity

was determined by measuring the time distance between two consecutive peaks in the

autocorrelation function of the received signal. The estimation of the number of blades

was performed in two steps, in order to remove the ambiguity on the parity. First a

time-domain correlation coefficient between the received signal and a synthetic signal

generated with either an odd or an even number of blades was calculated. Then, a

time-frequency correlation coefficient was computed to obtain the actual value of η.

A different approach, based on a joint time-frequency and tomographic technique,

is presented in [80]. The time-varying Doppler frequency shift due to a single blade,

neglecting any initial offset, can be written as:

fD (n) = −2
ωρ

λ
sin (ωnTs) (2.35)

Therefore the authors recognised that, besides the factor 2ω/λ, the Doppler shift could

be seen as a projection of the cross-range coordinate of the blade tip of an angle ωnTs.

Since series of such projections form the spectrogram of the signal reflected from the

rotor blades, the application to the spectrogram of the Inverse Radon Transform (IRT),

with a proper selection of the angle for each projection16, led to the formation of an

image from which number and length of the blades could be estimated. Note that, the

correct angular rate was estimated through a linear search method and using the IRT

image focus as fitness criteria. Figure 2.12 shows an example of application of the IRT

to the spectrogram. Figure 2.12(a) shows the spectrogram of a signal acquired from

an AS-350B Squirrel. This helicopter has 3 blades rotating at 390 rpm. The IRT was

applied to the spectrogram with different angular rates, each associated to different

rotation speeds selected within a range. The linear search, based on the image focus as

fitness criteria, led to an estimate of the rotation speed of 390 rpm. The IRT applied to

the spectrogram with this angular rate is shown in Figure 2.12(b), from which 3 bright

points (in black) are clearly visible, identifying the tips of the 3 blades.

16The angle of each projection is estimated as a linear function versus time with unknown slope, due
to the unknown rotation speed ω.
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(a) Spectrogram. (b) Inverse Radon Transform (IRT).

Figure 2.12: From [80], (a) spectrogram of a signal acquired from an AS-350B Squir-
rel, whose nominal rotation speed is 390 rpm, and (b) tomographic result, that is the
Inverse Radon Transform (IRT), obtained selecting a rotation speed of 392 rpm.

2.5 Conclusion

In this Chapter, recent Automatic Target Recognition (ATR) techniques were discussed

with particular focus on Synthetic Aperture Radars (SARs) and micro-Doppler (mD)

processing.

SAR ATR algorithms were presented as divided into two categories, with the first

ones, model-based presented in Section 2.3.3, that use identifiable parts of the target

as discriminative features to be used during the classification process. Such features,

being based on the direct observation of the SAR images, depend on and are sensitive

to the location and the orientation of the target on the scene. Therefore, they need a

prior step aimed at estimating the position and the pose of the object, that could in-

troduce errors leading to misclassification. Feature-based ATR algorithms described

in Section 2.3.4, instead, either project the SAR image in a domain different from the

spatial one, which may also be rotational and/or translational invariant, or leave the

computation and selection of the features to the algorithm itself. In this context, image

moments based SAR ATR techniques have been demonstrated to be very effective. In

Chapter 4 two novel SAR ATR algorithms based on the pseudo-Zernike (pZ) moments

framework presented in Section 2.3.4.1 are introduced.

The second part of the Chapter was focussed on the mD effect in radar and on mD

based ATR techniques, designed at classifying target by exploiting peculiar micro-
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motions that they exhibit. This is particularly effective for helicopters identification, as

reported in Section 2.4.3. Most of the techniques developed with this objective, how-

ever, use time-frequency analysis tools that are computationally expensive and need

some parameters to be properly set, according to the dynamic of the motion. More-

over, they do not take into consideration the variation of a helicopter’s mD signature

due to its orientation with respect to the radar. In Chapter 5 a novel automatic model-

based algorithm for helicopters identification is presented, which is independent of the

orientation of the target and of the initial position of the blades. Moreover, it can be

implemented in a distributed radar system to further enhance the identification pro-

cess, and it is also able to identify multiple helicopters flying in formation that cannot

be distinguished in any other common radar domain, i.e. range, angle, Doppler, etc.
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Chapter 3

Waveform Design for Radar-Comms

Systems

3.1 Introduction

In several applications there is the dual need for a system to perform radar operations

while sending data to another cooperative system. Examples are vehicles in an Intelli-

gent Transportation System (ITS) that need to share information in a rapidly changing

environment [81]; Synthetic Aperture Radar (SAR) systems that need to share sensed

data with ground stations [82]; nodes in a Multiple-Input Multiple-Output (MIMO)

radar system with purposes of surveillance or navigation aid [83]. These dual-function

systems are known in literature as joint radar-communication, or Communicating-

Radar (CoRadar), systems.

In this Chapter the focus is on the problem of spectrum congestion, which is in-

creasingly becoming a significant issue, due to the ever greater demand on bandwidth

for different kind of Radio Frequency (RF) applications. In this context, CoRadar

technology provides a clever solution for the sharing of bandwidth resources, as well

as power and hardware resources, between the radar and the communication task. The

problem is introduced in Section 3.2, while a review about current solutions provid-

ing spectrum sharing are presented in Section 3.3. Specifically, the discussion is first

focussed on solutions that allow the coexistence of radar and legacy communication

systems, then enabling technologies for joint radar-communication systems are pre-
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sented. Finally, the Fractional Fourier Transform (FrFT), used in the following of the

Thesis as a waveform design tool, is presented in Section 3.4.

3.2 Spectrum Congestion

The radio spectrum is a finite resource, and as such there is ever greater competition

for accessing it as the demand continues to grow [84]. The increasing demand comes

from both the continuous introduction of new wireless technology, and the fact that

almost any remote service needs access to wider bandwidth. In the specific case of

radar systems, higher bandwidth means finer range resolution, that is superior sens-

ing capability, while for communication systems it translates into higher data rates.

To better exploit the available bandwidth, many users are forced to coexist in the same

band. Indeed, allocated frequency bands are often interleaved or, in some cases, shared

between different services. This means that a radar may represent an interference for

other systems, or even for other radars, and, on the other hand, it may be affected

by other interfering systems. In [85], the performance degradation of an S-band long

range weather radar system due to interference caused by Orthogonal Frequency Di-

vision Multiplexing (OFDM) communication signals, used in systems as WiMAX and

LTE, was examined. The study showed that under an interfering OFDM signal with

bandwidth of 5MHz, after the application of a notch filter for its mitigation and the

coherent integration of 64 radar pulses, the increase in SNR to achieve a detection

probability of 0.5 (with a fixed probability of false alarm of 10−4) was of about 60 dB

with respect to the no interference case. Kodituwakku et al. [86] evaluated the degra-

dation in detection performance for a radar, either in L- or S-band, in presence of LTE

communication signals, reporting an average loss of 1.3 − 1.4 dB at detection proba-

bility of 0.5, with an interference level of −6 dB below the noise floor. In the worst

case, the detection loss increased up to 4.7 dB17.

The effect of interfering radar signals on communication systems was analysed in

[87] and [88]. Pasya et al. [87] studied the interference of Ultra-Wide Band (UWB)

radar signals on OFDM communication system. This was based on the IEEE802.16
17The difference in the outcomes between studies [85] and [86] is most likely due to the different

interference-to-noise level analysed, which, in the first article, is not clearly reported.
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standards, while the radar signal was designed to have a bandwidth of 5 GHz. Re-

sults showed an increase of the Bit Error Ratio (BER) as effect of the interfering radar

signal. Specifically, by fixing the energy per bit to noise power spectral density ratio

at 10 dB, the BER, which was equal to 2 · 10−6 without interference, increased up to

3 · 10−4 with a Signal-to-Interference Ratio (SIR) of 15 dB. The authors in [88], in-

stead, evaluated the throughput loss in a LTE systems when transmitting either HTTP

or FTP packets and in presence of an interfering radar signal. As reported in the study,

the throughput loss was as high as 50 % and 75 % when FTP packets were transmitted

for the uplink and downlink, respectively, and for SIR = 47 dB.

All the above mentioned results show how the spectrum congestion problem in the

context of coexistence of radar and communication systems is severe, and motivate the

recent research in this area.

3.3 Spectrum Sharing

The Defense Advanced Research Projects Agency (DARPA) has recently launched

the Shared Spectrum Access for Radar and Communications (SSPARC) program [89],

with the scope of development of enabling technologies for joint spectrum access for

both radar and communications systems. Two of the main task areas of the SSPARC

program are coexistence and codesign [90]. Coexistence regards the development of

techniques that allow the sharing of the spectrum between radar and legacy commu-

nication systems, while codesign refers to the concept of jointly designing the sys-

tems, radar and communications, such that they incorporate spectrum sharing opera-

tions from inception. Following this categorisation, an overview of the most recent

solutions in both these areas is presented in the next Sections.

3.3.1 Radar and Legacy Comms Systems: Coexistence

Researchers have extensively worked to present solutions for the coexistence of radar

and communication systems, by proposing techniques for the design of radar wave-

forms that present spectral constraints and do not interfere with legacy communication

systems. Aubry et al. [91] proposed a waveform design technique formalised as an
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optimisation problem aimed at forcing spectral constraints in agreement with a priori

information provided by a Radio Environmental Map (REM). The optimisation prob-

lem, whose objective was the maximisation of the Signal-to-Interference plus Noise

Ratio (SINR), consisted in finding the code of a coherent burst of slow-time coded

pulse such that both a similarity constraint with a reference signal, and spectral con-

straints in order for the radar waveform not to interfere with pre-existing emitters, were

met. The spectral compatibility was enhanced in [92] enabling different interference

levels in different spectral bands, so-called local design. Figure 3.1 illustrates an ex-

ample scenario: the frequency bands occupied by the legacy communication systems

are highlighted in grey, while the unoccupied spectral bands, available to the radar

system, are shown in white. Moreover, the Energy Spectral Densities (ESDs) of the

reference signal and the constrained waveforms obtained with either a global or a local

design are depicted in green, red and blue, respectively. The energy of the waveform

Figure 3.1: From [92], Energy Spectral Density (ESD) versus normalized frequency
of the reference signal, in green, and the constrained waveforms, globally (red) and
locally (blue) designed, respectively.

obtained as solution of the global optimisation problem is concentrated in the white

areas, while it is more than 10 dB lower in the grey areas, in order not to interfere with

the operations of the communication systems. Moreover, when the local design is con-

sidered, different interference levels are obtained depending on the transmission power

of each communication system. The optimisation framework was further extended in

[93] to account for the Doppler filter bank, thus jointly optimising both the code of the

transmitted waveform and the weights of the filters. Huang et al. [94] used a different

approach, maximising the the mutual information between the target impulse response,
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that is the channel between the radar and the target, and the radar signal returns [95],

while constraining the spectrum of the radar waveform in order to ensure a minimum

level of service to the communication systems.

Cognitive solutions are also suitable in this context, with radar waveforms that can

dynamically adapt to the presence of communication systems. La Manna et al. [96]

proposed a cognitive radar for operation in spectrally dense environments. The prob-

lem to address was the design of a wide-band radar waveform in presence of narrow-

band communication signals. The main idea was to provide the radar signal with a set

of notches located where the communication systems operate. The proposed radar sys-

tem was able to first sense the environment, estimating the occupied frequency bands

and the power transmitted by the communication systems [97], and then to design the

radar waveform accordingly. At the receiver side, a specifically designed processing

chain was developed to compensate the high range sidelobes introduced by the discon-

tinuities in the signal spectrum.

3.3.2 Joint Radar-Comms (CoRadar) Systems

The joint design of radar and communication systems represents another approach for

tackling the spectrum sharing problem. Unlike the techniques presented in Section

3.3.1, rather than designing the radar waveform such that it does not interfere with

legacy communication systems, both the radar and the communication signals are de-

signed from inception in order not to collide. Codesign techniques can be used - but

they are not limited - to enable a communication channel within a radar system that

needs to share information with one or multiple cooperative systems. The concept of

attaching information in the radar signal is becoming ever more interesting and ap-

pealing to the radar community, and it is now seen as a potential feature in future radar

systems [98].

In the following, the discussion is split into dynamic spectrum allocation and in-

formation embedding techniques. In the first case, radar and communication signals

are generated independently and then merged, while, in the second case, the bits to be

transmitted are directly embedded in the radar waveform.
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3.3.2.1 Dynamic Spectrum Allocation

Turlapaty and Jin [99] proposed the joint optimised allocation of the power spectral

density for a wide-band radar waveform and an OFDM communication signal whose

spectra partially overlap. This was done by maximising the total mutual information,

which, in turn, translated into the maximisation of the data rate for the communication

channel and of the SNR for the radar system, while reducing the mutual interference.

A technique for enabling a communication channel between several nodes in a

network of UWB noise radars18 is described in [100]. Authors exploited the noise-like

spectrum of an OFDM signal, which can be included in a frequency portion of the radar

waveform (noise-like by construction) without affecting its spectral characteristics.

3.3.2.2 Information Embedding Techniques

Besides the above mentioned spectrum sharing approaches, design techniques that di-

rectly embed data into the transmitted radar waveform have been reported [101]. A

time-domain duplex technique was proposed in [102]. The transmitted signal consisted

of a radar cycle, based on a Trapezoidal Frequency Modulated Continuous Waveform

(TFMCW), followed by a single frequency carrier modulated by information data us-

ing common modulation techniques, such as Phase Shift Keying (PSK). The system,

developed for automotive application, was able of sending data at 75Mb/s, with a

BER of 10−6, while detecting target at a maximum unambiguous range of 100m, with

probability of detection and false alarm of 0.9 and 10−6, respectively. Xu et al., in-

stead, proposed a technique based on the Direct Sequence Code Division Multiple

Access (DS-CDMA) [103] to avoid mutual interference between radar and communi-

cation signals: the two signals were mixed in time and frequency, but made orthogonal

by means of Pseudo Noise (PN) codes. Performance analysis showed that the BER

was not affected by the interfering radar waveform but, on the other hand, the authors

did not provide any results on how the system behaved on a radar perspective. The or-

thogonality between radar and communication signals was achieved in [104] by using

an up- and a down-chirp. Specifically, the radar waveform was associated to a down-

18A noise radar transmits a noise, or noise-like, waveform and, as consequence, meets the require-
ments for Low Probability of Interception (LPI) and Low Probability of Detection (LPD) systems.
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chirp, while a sequence of up-chirp signals (with the first one that overlaps with the

radar waveform) were modulated by π/4-Differential Quadrature Phase Shift Keying

(π/4-DQPSK) data symbols, as explained in [105]. The implementation of the system

was later reported in [106]: it operated with a bandwidth of 500MHz and a Pulse

Repetition Frequency (PRF) of 150 kHz, capable of transmitting 1Mb/s (BER less

than 10−5) and detecting targets with probability 0.99 and false alarm 0.07.

Alternative methods are based on the modulation of a LFM carrier. Chen et al.

[107] analysed the Ambiguity Function (AF) of a Minimum Shift Keying (MSK)

modulated LFM carrier, without, however, providing information in terms of com-

munication performance. Zhao and Jiang [108], instead, proposed a Binary Phase

Shift Keying (BPSK) modulated LFM where constraints on the number of symbols

per waveform were set to ensure that the amplitude of transmitted signal was continu-

ous. These resulted in the number of transmitted bits, Nb, to be bounded by the square

root of the time-bandwidth product, that is Nb ≤
√
τ ·Bw, where τ is the pulse width

and Bw its bandwidth. BPSK was also used in [109] to modulate a Stepped Frequency

Continuous Waveform (SFCW) acting as carrier.

The use of multi-carrier signals [110], widely investigated in radar literature for

their high time-bandwidth product and flexibility, also represents a natural solution for

the implementation of an integrated radar-communication system. The idea was first

introduced in [111], where Donnet and Longstaff combined a co-located MIMO radar

with OFDM communications by employing a step-frequency technique [112], such

that one or multiple OFDM sub-carriers were transmitted from one antenna at time.

The authors proposed a candidate system using an overall bandwidth of 40MHz, di-

vided into 512 sub-carriers, and arranged such that the maximum unambiguous range

was 74.88 km and the data rate was 384.6 kb/s. An OFDM system concept for joint

radar and communications operations was also proposed in [113]. The authors ex-

ploited a previously described OFDM radar signal processing technique performed in

the modulation symbol domain, which consisted in: 1) comparing the transmitted and

the received OFDM symbols before channel equalisation in order to obtain the channel

frequency response; and 2) computing the radar range profile as Inverse Fast Fourier

Transform (IFFT) of the channel frequency response. This processing aimed at remov-
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ing the dependency from the transmitted data and circumventing the high side-lobes

problem that arises when performing usual radar processing. However, as consequence

of sampling the spectrum, the resulting radar range profile was periodic in time. In [81]

the authors extended this concept to the radar Doppler processing, and presented a real

system able of transmitting 20Mb/s with a maximum unambiguous range of 1650m.

Approaches based on the joint use of waveform diversity and side lobe control

have been recently reported. In [114] a dual-function radar-communication system

based on Time Modulated Array (TMA)19 was proposed, which implemented the radar

function in the main lobe while enabling a communication channel in a side lobe di-

rection by exploiting the variations of the beam patterns. In order to allow the radar

operations, each beam pattern, synthesised by means of a beamforming weight vec-

tor, needed to satisfy several requirements, such as constant directivity and beamwidth

of the main beam. This, in turn, limited the number of bits transmitted per pulse,

since Nb = log2 (Kpattern), where Kpattern is the number of available beamforming

vectors satisfying the radar requirements. Hassanien et al. [116] proposed a different

approach, augmenting the capability of the system of sending the sequence of bits in

several side lobe directions yet needing only two different beam patterns, jointly used

with a set of orthogonal waveforms that were sent simultaneously in each radar pulse.

Two strategies were reported: in the first one, each of the Nb orthogonal waveforms

embedded a single bit, whose actual value (0 or 1) depended on the radiation beam

pattern with which the waveform was transmitted. In the second one, a pair of or-

thogonal waveforms, each transmitted through either the beam patterns, was appointed

to the delivery of a single bit. The value of the latter depended on the combination

waveform-beam pattern. In both the cases, the data rate was limited by the availabil-

ity of orthogonal waveforms and, depending on the PRF used, it was in the range of

kb/s. Finally, in [117] the information was embedded in the differential phase between

two beamforming weight vectors, which did not affect the radar operation in the main

beam.
19The concept of TMA, introduced in [115], consists in changing the set, as well as the number, of

antennas switched on over time, producing intermediary radiation patterns.
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3.4 Radar Waveform Design Tool: Fractional Fourier

Transform

The FT of a time signal provides a representation of the signal itself in the frequency

domain, decomposing it as a summation of weighted harmonics. In the time-frequency

domain it can be thought as a rotation of the signal by a π/2 angle. The Fractional

Fourier Transform (FrFT), firstly introduced in [118], generalises this concept, pro-

viding a representation of a time signal along an intermediate axis between time and

frequency, identified by the angle φ that it forms with the time domain axis. Letting

x (t) be an arbitrary time signal, its α-th order FrFT is defined as [119]:

Fα {x (t)} (u) =

∫ ∞
−∞

Kα (u, t)x (t) dt (3.1)

where

α =
2

π
× φ (3.2)

and Kα (u, t) is the FrFT kernel, defined as:

Kα (u, t) =


A0e

jπ(u2+t2) cotφe−jπ2ut cscφ if φ 6= mπ

δ (u− t) if φ = 2mπ

δ (u+ t) if φ = 2mπ + π

(3.3)

where A0 = ej
φ
2√

j sinφ
, δ (·) is the Dirac delta function and m ∈ Z is an integer. The

FrFT is an invertible linear transform continuous in the angle φ, which satisfies the

basic conditions for it to be meaningful in the time-frequency plane [120]. Moreover,

the FrFT is periodic in α with period 4, and it is straightforward to demonstrate that:

Fα+2 (u) = Fα (−u) (3.4)
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Figure 3.2 shows the example of application of the FrFT to a chirp signal sampled with

a sampling frequency fs = 2MHz, whose expression is:

x (t) = ejπ
Bw
τ
t2 (3.5)

Bw = 1MHz is its bandwidth and τ = 100µs its duration, respectively. The illus-

tration at the centre of the figure shows the spectrogram of the signal, while bottom

and left graphs show the time signal (real part and imaginary part) and its spectrum,

respectively. The graph on the right, instead, represents the FrFT magnitude of the

ϕ 

Figure 3.2: Example of application of the Fractional Fourier Transform (FrFT) to a
chirp signal. Middle graph shows the spectrogram of the signal; bottom and left dia-
grams are the time signal and its spectrum, respectively; right graph is the FrFT with
order −0.70.

chirp signal computed selecting the optimum order defined as [121]:

αopt = − 2

π
tan

(
f 2
s /N

Bwτ

)
∼ −0.70 (3.6)

where N is the number of samples that composes the discrete signal, from which,

through equation (3.2), φ ∼ −63◦.
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The FrFT’s capability of well identifying the chirp rate of a LFM signal, as shown

in Figure 3.2, as well as its capacity to compress or spread a signal, either in time

or frequency, simply through a rotation in the time-frequency domain, has opened to

a variety of applications to which the FrFT can potentially be used. The capability

of reliably detecting a chirp was exploited in [122], where the FrFT was proposed to

identify a signal in a complex time-space-frequency-dependent underwater acoustic

channel. Similarly, Sha et al. [123] described a FrFT based multiple-access technol-

ogy. In transmission, an LFM carrier with a unique chirp rate was assigned to each

user of the network, practically emulating a spread spectrum technique; at the receiver,

the FrFT was employed to effectively despread the signal and retrieve the data. The

radar community, which extensively deals with processing of LFM signals, has pro-

posed the FrFT for several purposes, such as enhanced matched filtering [124] and

SAR resolution [125], detection of slow-moving target [126] and micro-Doppler based

classification [127].

Beside being a tool for signal analysis and processing, the FrFT has also been

used to synthesise waveforms. Specifically, frequency-varying basis functions derived

from the FrFT were proposed in [128] to generate a multi-carrier signal more suitable

for rapidly time-varying channels. Clemente et al. [129], instead, described a novel

method of generating a library of phase-coded radar waveforms applying the FrFT

with different orders to a seed waveform, such as a Barker code. By selecting the ap-

propriate order spacing, a good level of orthogonality could be achieved, enabling the

use of the FrFT waveforms in MIMO radar systems [130, 131].

3.5 Conclusion

This Chapter offered an overview on the problem of spectrum congestion, in Section

3.2, and on several technologies that have been recently proposed for enabling the

Spectrum Sharing between radar and communication systems, in Section 3.3. Atten-

tion was particularly focussed on techniques for implementing a communication chan-

nel exploiting, where possible, bandwidth, power and hardware already allocated for

the primary radar system, allowing the latter to transmit data to other cooperative sys-
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tems. Concepts were proposed based on the embedding of data into Frequency Modu-

lated Continuous Waveforms (FMCWs) or Stepped Frequency Continuous Waveforms

(SFCWs), or on the use of multi-carrier signals. These approaches were generally lim-

ited by either short unambiguous range or low data rate. Other techniques were based

on the joint use of waveform diversity and beam pattern side lobe control. In Chap-

ter 6 a novel waveform design framework based on the Fractional Fourier Transform

(FrFT), described in Section 3.4, is presented, able of transmitting data with a bit rate

in the range of Mb/s not limiting the unambiguous range and not needing antenna

arrays.
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Chapter 4

Image Moments Based SAR ATR

4.1 Introduction

In this Chapter, two image moments based Automatic Target Recognition (ATR) al-

gorithms for Synthetic Aperture Radar (SAR) images are presented. The first one

improves the approach presented in [11, 12] and recalled in Section 2.3.4.1 by includ-

ing additional target features in order to increase the information content which leads

to the final classification. Specifically, the Krogager decomposition, introduced in Sec-

tion 2.3.2, is embedded in the framework to get these additional target features. The

second proposed algorithm uses the same framework introduced in Section 2.3.4.1,

while substituting the pseudo-Zernike (pZ) moments with the Krawtchouk moments.

4.2 Enhanced Pseudo-Zernike Based Algorithm

The algorithm presented in this Section is based on the use of both the full-polarimetric

image of the target and its Krogager components, which emphasise the single bounce,

the double bounce and the volumetric scattering. A block diagram of the proposed

approach is illustrated in Figure 4.1. It is possible to recognise two branches of the

pZ algorithm presented in Section 2.3.4.1, one applied on the polarimetric components

of the SAR image, and another one applied on its Krogager components, ks (x, y),
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Figure 4.1: Block diagram of the Krogager pseudo-Zernike (Kr/pZ) based SAR ATR
algorithm.

kd (x, y) and kh (x, y), which, according to equation (2.9), are computed as follows:

ks (x, y) = |IRL (x, y)|

kd (x, y) = min (|IRR (x, y)| , |ILL (x, y)|)

kh (x, y) = ||IRR (x, y)| − |ILL (x, y)||

(4.1)

with IRR (x, y), ILL (x, y) and IRL (x, y) being the circular polarimetric components

of the SAR image of the target, obtained from the linear polarimetric components

IHH (x, y), IV V (x, y) and IHV (x, y) in accordance to equation (2.2):

IRR (x, y) =
IHH (x, y)− IV V (x, y)

2
+ jIHV (x, y)

ILL (x, y) =
IHH (x, y)− IV V (x, y)

2
− jIHV (x, y)

IRL (x, y) =
IHH (x, y) + IV V (x, y)

2

(4.2)

The feature extraction blocks always compute the pZ moments of the input images

Ω′ ∈ RRim×Cim and Ω′′ ∈ RRim×Cim . The first one is obtained as in (2.14) and (2.15),

while similarly Ω′′ is:

Ω′′ (x, y) =
Ω̃
′′

(x, y)−min(x,y) Ω̃
′′

(x, y)

max(x,y)

[
Ω̃
′′

(x, y)−min(x,y) Ω̃
′′

(x, y)
] (4.3)
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where

Ω̃
′′

(x, y) = log10 (ks (x, y) + kd (x, y) + kh (x, y)) (4.4)

The feature vectors, F ′ ∈ R(Nord+1)2

and F ′′ ∈ R(Nord+1)2

, are then normalised as in

(2.17) and used to classify the target with two different k-NN classifiers. The fusion

rule used for the overall classification is the one already presented in (2.18) and adapted

to the proposed approach, that is:

v =


arg max
v∈{1,...,L}

(s′ + s′′) if ∃! max
v∈{1,...,L}

(s′ + s′′) > δfus

unknown otherwise
(4.5)

where s′ = [s′1, . . . , s
′
L] ∈ RL and s′′ = [s′′1, . . . , s

′′
L] ∈ RL are the score vectors

obtained from the two branches of the framework. Note that, as for the pZ moments

based algorithm, this framework can be easily extended to the availability of several

images from multiple sensors by simply modifying the fusion rule to accommodate for

score vectors coming from multiple branches.

4.2.1 Performance Evaluation

The proposed integrated Krogager pseudo-Zernike (Kr/pZ) algorithm is tested and

compared with the original one [11, 12], based on the extraction of the features from

only the polarimetric components of the SAR images. The analysis is performed by

using the images of the GOTCHA dataset. Furthermore, several noise conditions are

considered in order to demonstrate the robustness of the approach.

4.2.1.1 GOTCHA Dataset

The algorithm is tested using the GOTCHA dataset [132], which is a collection of real

full-polarimetric circular SAR images acquired by an airborne X-band sensor (carrier

frequency 9.6GHz) with a 640MHz bandwidth at 8 different elevation angles; the

set consists of 2880 full-polarimetric images, 360 for each pass, of several civilian

vehicles and calibration targets. In particular, the 9 different civil vehicles used in

this evaluation and shown in Figure 4.2, can be divided for recognition, identification
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Table 4.1: GOTCHA Dataset.

Target Description Recognition Identification Characterisation

Nissan Sentra Compact Car

R1

I1
C1

Chevy Prizm Compact Car C2
Chevy Malibu Mid-Size Car

I2
C3

Toyota Camry Mid-Size Car C4
Ford Taurus Full-Size Car

I3
C5

Nissan Maxima Full-Size Car C6
Hyundai Santa Fe SUV I4 C7

Case Tractor Industrial Truck
R2 I5

C8
Fork Lift Industrial Truck C9

(a) Vehicles. (b) SAR image.

Figure 4.2: GOTCHA Dataset: (a) images of the vehicles used as targets; (b) full-
azimuth and full-polarimetric magnitude SAR image of the area of interest containing
the 9 vehicles.

and characterisation purposes, respectively, as shown in Table 4.1 The full synthetic

aperture (360◦) is split into 90 sub-apertures of 4◦ in azimuth each, in order to have

approximately equal range-azimuth resolution cells of 23 cm; thus, the set used is made

up of 720 full-polarimetric images for each of the 9 commercial vehicles considered as

target. Moreover, equal-sized sub-images, with Rim = 51 and Cim = 46, containing

each vehicle are selected.

Four different analyses are presented, as combination of two configurations for

the training set and two configurations for the test set. The training set is formed by

images coming from the lowest altitude pass; either 10 or 30 images for each vehicles

are used to train the classifiers, selected each 36◦ or 12◦ in azimuth, respectively. The

test set is formed by all but the images used for the training. Two configurations are

considered: in the first scenario, shown in Figure 4.3(a), one image is used in order to
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classify the target, which is equivalent to having T = 1; in the other scenario, depicted

in Figure 4.3(b), two images are used (T = 2) to show the benefits of the multi-sensor

framework.

(a) One sensor case. (b) Two sensors case.

Figure 4.3: Test configurations: (a) one and (b) two sensors cases.

4.2.1.2 Noise Conditions

The images of the GOTCHA dataset are real SAR images affected by noise. However,

in order to demonstrate the robustness of the approach, additional noise is also con-

sidered, both additive and multiplicative. In the first case, the noise is modelled as a

compound-Gaussian random variable [133, 134], which can be written in the form:

ξc =
√

Γ ξ (4.6)

where ξ is a complex symmetric zero-mean Gaussian variable and Γ is a Gamma vari-

able, whose distribution is:

fΓ (x) =
1

Γ (νs)

1

µνss
xνs−1e−x/µs , x > 0 (4.7)

where Γ (·) is the Gamma function, and µs and νs are the scale and shape parameters,

respectively, set to νs = 1/µs in order to have a Gamma distribution with unit mean;

specifically, νs is chosen equal to 0.5. Equations (4.6) and (4.7) ensure that the am-

plitude probability density function of ξc is K-distributed. In the multiplicative noise

case, instead, each pixel is multiplied with a square root of a Gamma random variable.
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4.2.1.3 Results

The assessment of the performance is carried out by means of a Monte-Carlo simula-

tions with 100 tests. The results are presented in terms of Characterisation and Identi-

fication accuracies20, defined as the number of targets correctly classified normalized

to the total number of targets under test and expressed as percentage. Moreover, the

percentage of unknowns is also shown, defined as the ratio of the number of targets

declared unknown following the rule in (4.5) to the total number of tests (the chosen

thresholds δfus are summarised in Table 4.2). For the case of one sensor, all the avail-

Table 4.2: Fusion rule threshold δfus.

1 Sensor 2 Sensors

pZ 1/3 2/3

Kr/pZ 2/3 4/3

able images are used for the testing, that is 710 images for each target if the training

is performed with 10 images, 690 images for the 30 training images case. For the case

of 2 sensors, 71000 or 69000 couples are chosen randomly, depending on the training

configurations. Moreover, the analysis is performed for different values of the degree

of the pZ polynomial, different SNRs and using a 3-NN classifier; this value of k re-

sulted to be the most effective in [12].

Figure 4.4 shows the results in the noise-free case on varying the moments order.

Cross markers refer to the characterisation accuracy, circles represent the identification

accuracy, while straight lines are used to identify the percentage of unknowns. Figure

4.4(a) and Figure 4.4(b) compare the performance of the Kr/pZ algorithm (red solid

lines) with the original approach (dashed blue lines), in the case of classification with

one sensor and the use of either 10 or 30 training images, respectively. No differ-

ences can be appreciated between characterisation and identification, while improve-

ments are seen between the two approaches, pZ and Kr/pZ, both when the training is

performed with 10 images per target, and when it is carried out with 30 images. Fo-

cussing on the moments orders equal or above 8 and up to 23, these improvements can

20Recognition accuracy is not taken into consideration, since it involves only two classes: car and
industrial truck.
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(a) One sensor, 10 training images. (b) One sensor, 30 training images.

(c) Two sensors, 10 training images. (d) Two sensors, 30 training images.

Figure 4.4: Comparative analysis between Krogager pseudo-Zernike (Kr/pZ) and
pseudo-Zernike (pZ) only approaches, noise-free case. Results in terms of characteri-
sation (Ch.) and identification (Id.) accuracy, and percentage of unknowns (Unk.), on
varying the number of training images (left-right), the number of sensors (top-bottom)
and the moments order.

be quantified in terms of characterisation accuracy in 7.26 % and 4.51 %, when 10 and

30 images are used for the training, respectively, and in 10 % and 5.22 % in terms of

percentage of unknowns. The maximum achieved accuracy is 60 % in the first case,

and 87 % in the second case for the integrated Kr/pZ method, compared to 53.5 % and

82.3 % for the pZ algorithm.

Overall better performance is obtained when the classification is performed by us-

ing images acquired from two sensors, as shown in Figure 4.4(c) and Figure 4.4(d).

Improvements due to the integrated Kr/pZ approach over the original algorithm are

also visible in this case: the improvement is of approximately 5.43 % in terms of char-

acterisation accuracy and 5.73 % in terms of percentage of unknowns, when 10 images

are used for the training, and of 2.90 % and 2.40 % for accuracy and unknowns, re-

spectively, when the classifiers are trained with 30 images per target. In this scenario,
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the maximum accuracy is 73.5 % and 68 % for Kr/pZ and pZ, respectively, when the

training is performed with 10 images, while it is 95.2 % and 92.6 %, respectively, when

30 images are used.

Interesting is that for moments orders larger than 23, both the pZ and the Kr/pZ

algorithms fail in correctly classifying the targets, with the percentage of accuracy that

drops below 20 % independently of both the number of sensors and the number of train-

ing images. This is caused by the numerical instability at the edge of the unit circle

and the numerical approximation that is applied when computing the pZ polynomials,

effects that are more evident as the order increases. Figure 4.5 shows the magnitude

of some pZ polynomials computed on either a grid of 688 × 688 pixels, top row, or a

grid of 69 × 69 pixels, bottom row, also used during the tests. All the high resolution

(a) High res., W20,0 (ρ, θ). (b) High res., W23,0 (ρ, θ). (c) High res., W25,0 (ρ, θ).

(d) Low res., W20,0 (ρ, θ). (e) Low res., W23,0 (ρ, θ). (f) Low res., W25,0 (ρ, θ).

Figure 4.5: Magnitude of the pseudo-Zernike polynomials (left) W20,0 (ρ, θ), (middle)
W23,0 (ρ, θ) and (right) W25,0 (ρ, θ), on a grid of either (top) 688 × 688 or (bottom)
69× 69 pixels.

polynomials W20,0 (ρ, θ), W23,0 (ρ, θ) and W25,0 (ρ, θ) depicted in Figure 4.5(a), Fig-

ure 4.5(b) and Figure 4.5(c), respectively, present a particular pattern with concentric

circles, which increase in the number as the degree raises. Moreover, especially for

the polynomial of degree 25, undesired edge effects also appear. Comparing the high

resolution polynomials with the low resolution ones, the pattern of concentric circles
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can be still distinguished for W20,0 (ρ, θ) and W23,0 (ρ, θ), in Figure 4.5(d) and Figure

4.5(e), while it does disappear for W25,0 (ρ, θ) in Figure 4.5(f). This behaviour makes

the high degrees polynomials unable to extract distinctive features from the different

targets, which are then misclassified. For this reason, in the following only polynomi-

als up to the degree 20 are considered.

Results similar to the noise-free case are obtained when compound-Gaussian noise

is added to the images, as observed from Figure 4.6, where characterisation accu-

racy, identification accuracy and percentage of unknowns are shown on varying the

SNR, namely the variance of the complex Gaussian variable in (4.6), and fixing the

moments order to 10. The accuracy increases as the SNR increases, while the percent-

age of unknown decreases. As expected, better performance is obtained when using

(a) One sensor, 10 training images. (b) One sensor, 30 training images.

(c) Two sensors, 10 training images. (d) One sensor, 30 training images.

Figure 4.6: Comparative analysis between Krogager pseudo-Zernike (Kr/pZ) and
pseudo-Zernike (pZ) only approaches, additive compound-Gaussian noise case. Re-
sults in terms of characterisation (Ch.) and identification (Id.) accuracy, and percent-
age of unknowns (Unk.), on varying the number of training images (left-right), the
number of sensors (top-bottom) and the SNR while fixing the moments order to 10.
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more images for training the classifiers, as shown in Figure 4.6(b) and Figure 4.6(d),

however larger improvements of the integrated Kr/pZ algorithm over the pZ moments

based approach are visible when the training is performed with 10 images, as depicted

in Figure 4.6(a) and Figure 4.6(c), confirming the effectiveness of the proposed algo-

rithm especially when fewer images are available for training, as already demonstrated

in the noise-free scenario. In the most likely scenario, that is when 10 images per target

are available for training and the classification is performed with only one sensor, for

SNR above 0 dB the average improvement is of about 5.63 % in terms of accuracy and

8.48 % in terms of percentage of unknowns.

The last analysis evaluates the effect of multiplicative noise. Performance on vary-

ing the moments order is shown in Figure 4.7. In agreement with the results obtained in

(a) One sensor, 10 training images. (b) One sensor, 30 training images.

(c) Two sensors, 10 training images. (d) Two sensors, 30 training images.

Figure 4.7: Comparative analysis between Krogager pseudo-Zernike (Kr/pZ) and
pseudo-Zernike (pZ) only approaches, multiplicative noise case. Results in terms of
characterisation (Ch.) and identification (Id.) accuracy, and percentage of unknowns
(Unk.), on varying the number of training images (left-right), the number of sensors
(top-bottom) and the moments order.
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the previous analyses, higher accuracy and lower percentage of unknowns are achieved

when 30 images are used for the training and the classification is performed by using

images acquired by two sensors. However, in all the analysed cases, the proposed

combined Kr/pZ approach outperforms the original algorithm. Finally, it is worth

highlighting that both the approaches are very sensitive to the multiplicative noise in

particular when the moments order is high. It is clear that the optimum value of the

order for this scenario is between 7 and 10.

Hence, the proposed approach presents better performance for all the configura-

tions in which it has been tested. In particular the best improvements are achieved in

the case in which 10 images for the training are used; this means that in order to reach

the same performance, the Kr/pZ approach requires less a priori information compared

to the pZ algorithm, which implies less cost, since the acquisition of a targets database

is often expensive and time consuming. In addition to the general increase of accuracy,

the decrease of the percentage of unknowns makes the Kr/pZ approach even more re-

liable than the pZ method. Moreover, the pZ moments properties of translation and

rotation independence, combined with the roll invariant characteristic of the Krogager

decomposition, makes the algorithm robust with respect to both the target orientation

in the image plane and the acquisition elevation angle. Note that these improvements

are obtained only at cost of a small computational increase, since no additional infor-

mation is required as input of the algorithm with respect to the pZ only approach.

4.3 Krawtchouk Moments Based Algorithm

The second feature-based ATR technique presented in this Chapter, uses the same

framework presented in Section 2.3.4.1 and reported in Figure 4.8, where the feature

extraction is achieved by means of the Krawtchouk polynomials. First the analytical

Image
Pre-Processing

Feature
Extraction

Normalisation ClassificationI

Ω F F̃

v

Figure 4.8: Block diagram of the Krawtchouk based SAR ATR algorithm.
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formulation of the Krawtchouk polynomials is provided, then performance is evaluated

and compared with the pZ based approach.

4.3.1 Krawtchouk Moments

The Krawtchouk polynomials are a set of polynomials associated with the binomial

distribution first introduced in [135]. The classical Krawtchouk polynomial of degree

n ∈ N0, n ≤ I , is defined as [136]:

Kn (x; p, I) = 2F1

(
−n,−x;−I;

1

p

)
(4.8)

where x ∈ N0, x ≤ I , I ∈ N is its support, N the set of natural numbers, p ∈ (0, 1),

and 2F1 the Gauss hypergeometric function, defined as:

2F1 (a, b; c; z) =
∞∑
k=0

(a)k (b)k
(c)k

zk

k!
(4.9)

where (·)k is the Pochhammer symbol given by:

(a)k = a (a+ 1) . . . (a+ k − 1) =
Γ (a+ k)

Γ (a)
(4.10)

The classical formulation of Krawtchouk polynomials suffers from numerical insta-

bility, since the range of values of the polynomials expands rapidly as the degree in-

creases. In order to overcome this problem, weighted Krawtchouk polynomials were

introduced in [136], defined as:

K̃n (x; p, I) = Kn (x; p, I)

√
w′ (x; p, I)

w′′ (n; p, I)
(4.11)

where

w′ (x; p, I) =

(
I

x

)
px (1− p)I−x (4.12)

w′′ (n; p, I) = (−1)n
(

1− p
p

)n
n!

(−I)n
(4.13)
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The polynomials defined in (4.11) are orthogonal, since:

N∑
x=0

K̃n (x; p, I) K̃m (x; p, I) = δn,m, ∀p, I (4.14)

Furthermore, the parameter p represents a shift parameter. Indeed, as p deviates from

the value 0.50 by ∆p, the weighted Krawtchouk polynomials are approximately shifted

by I∆p [136]. Figure 4.9 is an illustration of the weighted Krawtchouk polynomials

of degree (a) n = 0 and (b) n = 2 for I = 100, which also shows the effect of the shift

parameter p, equal to 0.25 and 0.75.

(a) Degree n = 0. (b) Degree n = 2.

Figure 4.9: Illustration of the weighted Krawtchouk polynomials of degree (a) n = 0
and (b) n = 2, for I = 100 and p = 0.25, 0.75, in blue and red, respectively.

The Krawtchouk moments are defined as any other image moments as weighted

averages of the image pixels’ intensity. Therefore, let f (x, y) ∈ R, f (x, y) ≥ 0, be an

image with Rim × Cim pixels; the Krawtchouk moment of order (n,m) is defined as:

kn,m =

Rim−1∑
x=0

Cim−1∑
y=0

K̃n (y; p1, Rim − 1) K̃m (x; p2, Cim − 1) f (x, y) (4.15)

The moments in (4.15) provide a powerful tool for representing 2D functions with a

limited set of values and have been previously used for image compression [46]. Fur-

thermore, thanks to the orthogonality of the polynomials and to the capability to focus

on a specific area within an image by means of the parameter p, Krawtchouk mo-
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ments are also widely used in image processing for pattern recognition [137, 138, 139].

Therefore, the proposed ATR algorithm is based on the computation of the Krawtchouk

moments on the intensity SAR image of the target. The moments form the feature vec-

tor F ∈ R(Nord+1)×(Mord+1), where Nord and Mord are the maximum degree of the two

Krawtchouk polynomials in (4.15); this feature vector, after normalisation, is used to

perform the classification.

4.3.2 Performance Evaluation

The proposed algorithm is tested on the MSTAR dataset, a collection of SAR images

of military targets. In the next Sections, first the dataset is described, then performance

is evaluated in different noise conditions.

4.3.2.1 MSTAR Dataset

The MSTAR dataset is a collection of circular SAR images of 14 different military

targets [30, 31], some of which are the same target in different configurations, such as

the BMP2 and the T72. The images, with a resolution of 30 cm×30 cm, were acquired

with an X-band SAR system with two different depression angles, 15◦ and 17◦, and

they were supposed to cover the full 360◦ azimuth angle. However, due to missing

images in the dataset, the total number of observations does not always cover each

aspect angle. In addition, different targets have different number of images. Table 4.3

summarises the number of available images for each target and each depression angle,

together with the division in groups based of the definition of recognition, identification

and characterisation given in Section 2.2.

4.3.2.2 Results

In the performance analysis 191 samples are used as the minimal number of images

available for all the targets. The training images are selected randomly from the ones

acquired with 15◦ of depression angle. Furthermore, in order to investigate the robust-

ness of the algorithm for different training sets, the selection of the images used for

testing and those used for training is randomized in each run. Specifically, a total of
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Table 4.3: MSTAR Dataset.

Target Type # of Images 15◦ − 17◦ Rec. Ident. Charac.

BMP2 9563 Tank 195 - 233

R1

I1
C1

BMP2 9566 Tank 196 - 232 C2
BMP2 C21 Tank 196 - 233 C3

T72 132 Tank 196 - 232
I2

C4
T72 812 Tank 195 - 231 C5
T72 S7 Tank 191 - 228 C6

2S1 Tank 276 - 299 I3 C7
T62 Tank 273 - 299 I4 C8
ZSU Tank 274 - 299 I5 C9

BTR70 C71
Personnel

Carrier
196 - 233

R2
I6 C10

BTR60
Personnel

Carrier
195 - 256 I7 C11

ZIL131 Truck 274 - 299 R3 I8 C12

BRDM
Reconn.
Vehicle

274 - 298 R4 I9 C13

D7 Bulldozer 274 - 299 R5 I10 C14

100 Monte-Carlo runs are performed for each analysis in order to be able to randomly

draw a wider set of training and test images for the targets with more than 191 images

available. The results of the Krawtchouk moments based algorithm (blue solid lines)

are compared to those obtained using the pZ moments [11, 12] presented in Section

2.3.4.1 (red dashed lines). In the experiments a 3-NN classifier and p1 = p2 = 0.5 for

the computation of the Krawtchouk polynomials have been used.

Figure 4.10 shows the results of the noise-free analysis. Performance in terms of

characterisation, identification and recognition accuracy, as well as percentage of un-

knowns, are shown on varying the moments order. The Krawtchouk moments based al-

gorithm achieves the best performance for the highest order, that isNord = Mord = 20.

Specifically, the accuracy is 81.1 %, 88 % and 90 % for characterisation, identification

and recognition, respectively. The improvement over the pZ moments based approach

is of approximately 6 %, 5.40 % and 4.45 % for the three levels of classification; more-

over, the maximum accuracy for the pZ moments algorithm does not occur always for

the same order, which highlights a higher sensitivity to the choice of the moments or-
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(a) Characterisation. (b) Identification.

(c) Recognition. (d) Unknowns.

Figure 4.10: Comparative analysis between Krawtchouk (Kraw) and pseudo-Zernike
(pZ) moments based approaches, noise-free case. Results in terms of (a) characterisa-
tion, (b) identification and (c) recognition accuracy, and (d) percentage of unknowns,
on varying the moments order.

der. The Krawtchouk moments approach outperforms the pZ moments algorithm also

in terms of unknowns, with a reduction in the percentage of about 3.5 %.

Stress analyses are also conducted under different noise conditions. In the first one,

additive compound-Gaussian noise, already introduced in Section 4.2.1.2, is generated

and added to the intensity SAR images. The results are reported in Figure 4.11, in terms

of accuracies and percentage of unknowns, on varying the SNR, the parameter νs of

the Gamma distributed random variable in (4.7), and fixing the moments order to 10.

No appreciable difference can be observed when changing the parameters νs from 0.5

(impulsive noise) to 10. The Krawtchouk moments based algorithm outperforms the

pZ approach with respect to all the figures of merit considered. For example, at 0 dB

the accuracies are 73.8 %, 82 % and 84.8 % in terms of characterisation, identification

and recognition, while the percentage of unknowns is 11.8 %, with improvements of

approximately 17.5 %, 17.4 %, 15 % and 10.3 %, respectively, with respect to the pZ
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(a) Characterisation. (b) Identification.

(c) Recognition. (d) Unknowns.

Figure 4.11: Comparative analysis between Krawtchouk (Kraw) and pseudo-Zernike
(pZ) moments based approaches, additive compound-Gaussian noise case. Results in
terms of (a) characterisation, (b) identification and (c) recognition accuracy, and (d)
percentage of unknowns, on varying the SNR and for two values of νs, while fixing the
moments order to 10.

algorithm. Another figure of merit for the overall performance of ATR algorithms in-

troduced in [1] and referred as Υ ∈ [0,∞) throughout this Thesis, considers the ratio

of the sum of the values along the diagonal of the confusion matrix, to the sum of the

off-diagonal values. With reference to Table 4.4 and Table 4.5, that report the confu-

sion matrices for the Krawtchouk and the pZ moments based approach, respectively,

in terms of characterisation accuracy when SNR = 0 dB and νs = 0.5, the figure of

merit Υ is equal to ΥKraw = 4.70 and ΥpZ = 2.52, confirming the superiority of the

Krawtchouk moments based algorithm. The 3 × 3 sub-matrices highlighted in grey,

refer to the variants of the targets BMP2 and T72 as listed in Table 4.3, with values

reported in red and blue, respectively. Both these sub-matrices exhibit a more diagonal

behaviour in the Krawtchouk case than in the pZ one, and this is confirmed by Υ that,

computed for the Krawtchouk moments based approach is equal to ΥBMP2
Kraw = 1.71 and
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Table 4.4: Confusion matrix showing the characterisation accuracy (%) using the
Krawtchouk moments based approach. Additive compound-Gaussian noise case,
SNR = 0 dB, νs = 0.5.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

C1 59.8 9.3 15.8 0.1 0.6 0.2 0.9 0.1 0.0 0.1 0.0 0.0 0.1 0.9

C2 19.7 53.7 8.4 0.1 0.6 0.6 0.2 0.2 0.4 1.2 0.2 0.0 0.1 0.0

C3 25.9 11.9 41.7 0.5 0.5 0.1 0.5 0.1 0.1 0.4 0.0 0.1 0.1 0.0

C4 0.3 0.2 0.7 80.3 3.0 4.0 0.0 0.2 1.3 0.0 0.0 0.4 0.0 0.0

C5 0.2 0.3 0.6 2.6 71.2 11.1 0.0 0.6 1.1 0.1 0.0 0.1 0.0 0.0

C6 0.1 0.9 0.5 6.9 11.1 64.5 0.0 0.2 0.7 0.1 0.1 0.7 0.0 0.0

C7 0.6 1.5 1.2 0.1 0.3 0.1 81.1 0.1 0.1 2.8 0.4 0.5 0.3 0.4

C8 1.2 0.7 1.5 1.9 1.3 1.4 1.9 67.8 1.6 0.4 0.2 0.4 0.6 0.2

C9 0.2 0.3 0.4 1.1 0.0 0.1 0.3 1.8 85.7 0.4 0.1 0.0 0.1 1.0

C10 0.1 0.2 0.4 0.0 0.3 0.0 0.3 0.0 0.0 90.5 2.1 0.5 0.7 0.0

C11 0.3 0.2 0.7 0.1 0.0 1.0 0.1 0.2 0.9 2.8 84.7 0.3 0.9 0.2

C12 1.5 0.5 0.7 0.5 0.3 0.9 4.3 0.4 0.2 1.8 0.2 73.7 2.5 0.1

C13 0.8 1.1 0.8 0.5 0.4 0.8 2.2 1.0 1.9 2.6 0.7 0.6 72.4 0.7

C14 0.2 0.3 0.4 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.3 0.0 0.5 95.6

Table 4.5: Confusion matrix showing the characterisation accuracy (%) using the pZ
moments based approach. Additive compound-Gaussian noise case, SNR = 0 dB,
νs = 0.5.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

C1 40.2 10.0 16.7 0.8 0.3 0.9 1.3 0.3 0.1 1.5 0.2 0.7 0.8 0.2

C2 17.6 33.0 12.5 0.9 0.7 1.5 0.8 0.2 0.1 1.8 0.3 0.4 0.5 0.0

C3 21.1 12.1 29.9 0.4 0.3 1.3 1.1 0.4 0.1 1.2 0.3 0.3 0.7 0.2

C4 1.3 1.2 1.4 57.4 3.4 6.9 0.2 1.3 0.7 0.2 0.6 1.1 0.3 0.4

C5 1.2 1.1 0.8 4.2 46.4 14.7 0.5 1.0 0.8 0.4 0.6 0.7 0.1 0.4

C6 0.7 1.6 1.0 6.2 6.6 51.8 0.2 0.5 0.7 0.8 0.4 1.3 0.2 0.8

C7 0.9 3.9 1.6 0.3 0.7 0.9 53.5 0.7 2.2 8.3 0.1 3.3 0.2 0.8

C8 2.6 1.7 4.7 2.4 1.2 2.1 2.6 38.7 1.5 1.5 1.0 0.8 1.2 1.4

C9 0.3 0.2 0.5 0.8 0.1 0.4 0.4 4.9 72.1 0.0 0.2 0.1 0.4 5.7

C10 1.4 1.2 1.3 0.1 0.0 0.0 0.9 0.2 0.0 81.5 0.7 0.5 1.4 0.0

C11 0.6 1.0 1.0 0.6 0.1 0.9 0.4 0.6 0.5 6.9 70.0 0.5 1.4 0.4

C12 0.7 1.1 1.6 1.5 0.9 0.7 4.4 1.5 0.1 5.1 2.2 56.0 0.9 0.4

C13 0.8 1.5 0.5 0.4 0.2 0.5 2.1 1.1 0.7 3.3 2.3 0.6 68.2 1.4

C14 0.8 0.1 0.8 0.4 0.1 1.4 0.6 1.2 3.9 0.0 0.1 0.1 0.3 76.3

ΥT72
Kraw = 5.59, while for pZ results in ΥBMP2

pZ = 1.15 and ΥT72
pZ = 3.71.

In the last analysis, multiplicative noise is considered, modelled as a square root

Gamma random variable. Figure 4.12 shows the effect on the performance of the

multiplicative noise with two values of the parameters νs, on varying the moments

order and in terms of accuracies and percentage of unknowns. Unlike the additive

compound-Gaussian noise, in this case the parameters νs highly affects the results,

with the impulsive noise, νs = 0.5, that degrades more the accuracy and the percent-

age of unknowns than νs = 10. However, as already observed in the previous analyses,

64



Chapter 4 Image Moments Based SAR ATR

(a) Characterisation. (b) Identification.

(c) Recognition. (d) Unknowns.

Figure 4.12: Comparative analysis between Krawtchouk (Kraw) and pseudo-Zernike
(pZ) moments based approaches, multiplicative noise case. Results in terms of (a)
characterisation, (b) identification and (c) recognition accuracy, and (d) percentage of
unknowns, on varying the moments order and for two values of νs.

the Krawtchouk moments based algorithm always outperforms the pZ approach. In the

worst case, that is for νs = 0.5, the maximum accuracy for the Krawtchouk method

is reached for moments order equal to 20, and it is equal to 67 %, 74.5 % and 78 %,

for characterisation, identification and recognition, respectively. Assuming the same

noise condition, the pZ algorithm achieves the best performance for moments order

8, and it is equal to 60.5 %, 69.2 % and 73.9 %, with improvements of 6.5 %, 5.3 %

and 4.1 %, respectively. When the noise is less severe, that is for νs = 10, the pZ

moments based algorithm achieves its best performance for moments order 12. Com-

paring the two methods while fixing this moments order, the Krawtchouk moments

approach outperforms the pZ one of approximately 5.1 %, 4.7 % and 3.8 %, for char-

acterisation, identification and recognition, respectively. The reduction in performance

of the pZ algorithm when the moments order is above 12, compared to the continuous

increment of the accuracies for the Krawtchouk approach, shows the higher robustness
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Table 4.6: Confusion matrix showing the characterisation accuracy (%) using the
Krawtchouk moments based approach. Multiplicative noise case, order 8, νs = 0.5.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

C1 46.8 10.0 15.3 0.6 0.8 0.4 0.8 0.3 0.3 0.1 0.3 0.1 0.3 0.8

C2 15.6 46.4 10.7 0.5 0.4 1.1 0.5 0.3 0.6 0.4 0.1 0.1 0.2 0.1

C3 20.0 13.0 34.7 0.5 0.4 0.2 0.9 0.8 0.3 0.3 0.1 0.3 0.4 0.5

C4 0.4 0.6 0.8 66.9 3.6 5.3 0.1 0.7 2.3 0.0 0.2 0.9 0.0 0.1

C5 0.3 0.6 0.8 3.1 60.9 12.5 0.1 0.9 1.8 0.1 0.1 0.4 0.0 0.0

C6 0.4 1.2 0.5 6.7 10.5 54.4 0.1 0.3 1.5 0.3 0.1 1.1 0.2 0.1

C7 0.8 1.5 1.3 0.1 0.3 0.3 73.9 0.6 0.3 3.1 0.3 0.9 0.2 0.8

C8 1.0 0.8 1.5 2.0 1.9 1.7 2.0 56.3 4.1 0.2 0.6 0.8 0.8 0.9

C9 0.3 0.3 0.5 0.7 0.0 0.2 0.4 1.8 82.9 0.1 0.2 0.0 0.2 2.1

C10 0.6 0.3 0.3 0.1 0.6 0.1 1.8 0.2 0.1 81.2 2.4 0.6 1.0 0.0

C11 0.5 0.4 0.4 0.3 0.1 0.7 0.4 0.7 1.1 3.1 76.8 0.5 0.7 1.0

C12 1.0 0.7 0.8 0.7 0.6 1.0 5.2 1.0 0.3 1.5 0.5 65.1 1.3 0.7

C13 1.5 1.1 0.9 0.3 0.1 0.9 3.0 1.2 2.8 2.0 1.5 0.4 61.7 0.7

C14 0.2 0.1 0.5 0.1 0.0 0.1 0.1 0.1 0.9 0.0 0.1 0.1 0.3 93.9

Table 4.7: Confusion matrix showing the characterisation accuracy (%) using the pZ
moments based approach. Multiplicative noise case, order 8, νs = 0.5.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

C1 38.0 11.6 16.9 1.1 0.2 1.0 1.3 0.5 0.1 1.4 0.4 0.4 0.9 0.7

C2 15.0 36.7 14.3 0.8 0.9 2.1 0.6 0.4 0.3 1.5 0.4 0.4 0.3 0.0

C3 18.9 13.2 31.9 0.8 0.3 1.3 1.1 0.2 0.1 0.8 0.6 0.5 0.4 0.7

C4 1.0 0.6 1.1 58.6 4.1 8.5 0.2 1.2 0.7 0.1 0.5 0.9 0.1 0.5

C5 0.3 0.6 0.6 5.5 46.7 15.5 1.0 2.1 0.7 0.1 0.2 1.0 0.0 0.5

C6 0.6 1.2 0.7 7.0 6.8 49.1 0.6 1.3 1.0 0.4 0.3 2.8 0.0 1.1

C7 0.6 2.2 2.0 0.2 0.9 1.3 60.7 0.9 0.5 5.3 0.3 3.0 0.2 0.4

C8 0.7 0.3 1.3 2.6 1.3 2.8 4.1 54.9 2.2 0.2 0.8 1.4 0.1 1.3

C9 0.0 0.1 0.0 0.3 0.0 0.3 0.1 4.8 78.8 0.0 0.1 0.4 0.1 7.2

C10 1.6 1.8 1.2 0.1 0.0 0.1 1.6 0.3 0.0 79.5 1.5 0.2 1.6 0.0

C11 1.0 0.7 1.2 0.5 0.3 1.1 0.6 1.1 0.7 5.3 70.6 0.3 0.8 0.4

C12 0.2 0.5 0.8 0.6 0.6 1.3 4.5 2.2 0.3 1.3 1.2 68.3 0.5 0.7

C13 1.3 1.0 0.6 0.6 0.4 0.6 1.7 1.0 0.6 3.9 0.6 0.4 74.0 1.2

C14 0.2 0.0 0.3 0.2 0.0 0.6 0.3 0.8 5.9 0.0 0.0 0.5 0.1 82.7

of the latter with respect to the selection of the number of features to be extracted from

the SAR image, as already observed during the noise-free analysis. For completeness,

confusion matrices are reported when the moments order is 8 and νs = 0.5 in Table

4.6 and Table 4.7, for the Krawtchouk and the pZ algorithm, respectively. The fig-

ure of merit Υ for the overall confusion matrices is ΥKraw = 3.69 and ΥpZ = 2.81,

while, for the specific cases of the targets BMP2 and T72, it is equal to ΥBMP2
Kraw = 1.51,

ΥT72
Kraw = 4.38, ΥBMP2

pZ = 1.19 and ΥT72
pZ = 3.26.

Results shown in this Section demonstrate superior performance and robustness of

the Krawtchouk based algorithm over the approach using pZ moments. The Krawtchouk
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moments, being defined in discrete, do not present any discretisation errors, which

translates in higher capabilities in discriminating between different configurations of

the same vehicle (like BMP2 and T72) and in noisy environments. Unlike the pZ mo-

ments, however, they are not rotational and translational invariant, although the shift

parameter p may be used for this last purpose. Therefore a priori step of pose estima-

tion is required.

4.4 Conclusion

In this Chapter two Synthetic Aperture Radar (SAR) Automatic Target Recognition

(ATR) algorithms based on the pseudo-Zernike (pZ) framework, presented in Section

2.3.4.1, were introduced. The first one, reported in Section 4.2, attempted to further

exploit the polarimetric information provided by a full-polarimetric SAR image. It

consisted in extracting the pZ moments from both the full-polarimetric SAR image

of the target, and its Krogager components, described in Section 2.3.2. The proper-

ties of rotation and translation invariance of the pZ moments, combined with the roll

invariance property of the Krogager components, made the algorithm robust with re-

spect to the orientation of the target and to the acquisition elevation angle, with no

need of either position or pose estimation. Moreover, the framework could be easily

extended whether images from multiple sensors were available. In such a case, the

information that the nodes have to share within the network or with a fusion centre,

only regards the score vectors, operation that would require low complexity and band-

width. The algorithm was tested on the real full-polarimetric circular SAR images of

the GOTCHA dataset. Results showed that the integrated Krogager pseudo-Zernike

(Kr/pZ) framework outperformed the original one in all the analysed case, namely

noise-free, additive compound-Gaussian noise and multiplicative noise. In particular,

larger improvements were appreciable when fewer images were used for training the

classifiers, which means that, in order to reach the same performance, the Kr/pZ ap-

proach would need less a priori information compared to the pZ only algorithm. This

comes at cost of just a slight increase in the computational complexity, since no addi-

tional information is required as input of the algorithm.
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The second algorithm, presented in Section 4.3, was still based on the pZ frame-

work, but made use of the Krawtchouk polynomials instead. Unlike the pZ polyno-

mials, these are discrete defined, which removes the discretisation error that builds up

as the order increases, limiting the accuracy of the moments. The performance of the

proposed algorithm was assessed using the real MSTAR dataset, that contains differ-

ent vehicles in various configurations. The experimental results demonstrated superior

performance and robustness of the Krawtchouk moments based algorithm over the pZ

only approach, in particular on the characterisation of targets and in noisy environ-

ment. However, this was achieved while renouncing to the rotational and translational

invariance of the pZ moments.
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Chapter 5

Micro-Doppler Model Based

Identification of Helicopters

5.1 Introduction

As described in Section 2.4.3, micro-Doppler (mD) signature is a peculiar charac-

teristic of any helicopter model, since its modulation depends on the number, η, the

length, ρ and the rotation speed, ω, of the helicopter’s rotor blades, therefore it can

be exploited for identification purposes. The mD model based identification algorithm

described in this Chapter, relies on a sparse representation of the discrete-time radar

signal received from a helicopter’s rotor, and its recovery through the resolution of a

sparse signal recovery problem, aimed at estimating the mD parameters of the target.

The algorithm is independent of the orientation of the target with respect to the radar

Line of Sight (LoS) and of the initial position of the blades. Moreover, it does not

use any time-frequency analysis tool, reviewed in Section 2.4.1, which may be com-

putationally expensive and needs some parameters to be properly set depending of the

dynamic of the micro-motions.

In the following of this Chapter, the general model of the signal received from a

helicopter’s rotor, and its parametric sparse representation are derived and reported

in Section 5.2. Then, a modified version of the Pruned Orthogonal Matching Pursuit

(POMP), previously described in Section 2.4.2 for the estimation of mD parameters of

a coning target, is introduced in Section 5.3, while in Section 5.4 the algorithm for the
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identification of single-targets present in the radar cell of interest is finally described.

In Section 5.5 the framework is further developed for the identification of multiple-

targets that cannot be separated in any other domain, i.e. range, angle, Doppler, etc.

Furthermore, an information fusion technique is presented (for both the single-target

and the multi-target scenario) when several sensors are operating simultaneously, in

order to enhance the identification capability on the entire system. Performance as-

sessment of the algorithms is reported in Section 5.6 and Section 5.7, with analyses

performed on simulated and real data, respectively.

5.2 Radar Return from Rotor Blades

In this Section the model of the signal returned from a helicopter’s rotor is derived

in the general case, that is, unlike (2.31), no assumption is made on the position and

orientation of the target. First the distance from the radar to a point scatterer on a

generic blade is geometrically calculated as the blade rotates, and then the radar signal

received from the helicopter’s rotor is modelled as superimposition of the returns from

each blade.

5.2.1 Geometry of Rotating Blades

Let us consider the Cartesian coordinate system shown in Figure 5.1. The system

(X, Y, Z) is centred in the radar, while (X ′, Y ′, Z ′) is centred in the main rotor hub of

the helicopter. The position vector r0, in red, is:

r0 = R0 (cos βL cosαL x̂+ cos βL sinαL ŷ + sin βL ẑ) (5.1)

where R0 is the distance radar-helicopter, αL and βL are the azimuth and elevation

angles, respectively, identifying the LoS of the radar, and x̂, ŷ and ẑ are the versors

of the coordinate system, respectively. Moreover, let us consider the coordinate sys-

tem (K,U, V ) centred in O′ and rotated of −βH and αH about the Y ′ and Z ′ axes,

respectively, using the right-hand rule. Specifically, the overall rotation matrix can be
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Figure 5.1: Geometry of rotating blades: reference system.

expressed as:

R (αH , βH) = RZ′ (αH)RY ′ (−βH) =

=


cosαH − sinαH 0

sinαH cosαH 0

0 0 1




cos βH 0 − sin βH

0 1 0

sin βH 0 cos βH

 =

=


cosαH cos βH − sinαH − cosαH sin βH

sinαH cos βH cosαH − sinαH sin βH

sin βH 0 cos βH


(5.2)

The versors of the rotated reference system (K,U, V ) are also reported:

k̂ = cosαH cos βH x̂
′ + sinαH cos βH ŷ

′ + sin βH ẑ
′ (5.3)

û = − sinαH x̂
′ + cosαH ŷ

′ (5.4)

v̂ = − cosαH sin βH x̂
′ − sinαH sin βH ŷ

′ + cos βH ẑ
′ (5.5)

where x̂′ ≡ x̂, ŷ′ ≡ ŷ and ẑ′ ≡ ẑ.
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The axis identified by the versor k̂ is assumed to be the rotation axis of the rotor

blades21, while û and v̂ identify the plane on which the blades lie. Let b be the position

vector in (K,U, V ) of a point scatterer, B, at distance b from the hub on a generic

blade:

b = b cosφ0 û+ b sinφ0 v̂ (5.6)

where φ0 is the initial offset of the blade with respect to û. Moreover, let bθ be the

position vector of the point Bθ, which is the point scatterer B rotated of an angle θ

about the axis k̂, as shown in Figure 5.2. By means of the Rodrigues’ rotation formula,

U

V

O’ φ0

b

B

Bθ

θ 

bθ

Figure 5.2: Representation of the point scatterer Bθ.

bθ can be written as:

bθ = b cos θ +
(
k̂ × b

)
sin θ + k̂

(
k̂ · b

)
(1− cos θ) (5.7)

Since the rotation axis, k̂, and the vector identifying the generic blade, b, are orthogo-

nal, their inner product is zero, while the result of their cross product is a vector, named

b′, orthogonal to both:

b′ = k̂ × b = −b sinφ0 û+ b cosφ0 v̂ (5.8)

Hence, the vector bθ in (5.7) can be expressed as:

bθ = b cos θ + b′ sin θ = b cos (θ + φ0) û+ b sin (θ + φ0) v̂ (5.9)

The squared distance between the radar, located in O, and the scatterer point Bθ can

21This implies that π/2 − βH can be interpreted as the helicopter’s pitch angle, while αH identifies
its forward direction.
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now be derived as:

R (θ) = OBθ = ‖bθ + r0‖ =

√
‖r0‖2 + ‖bθ‖2 + 2bθ · r0 =

=
√
R2

0 + b2 + 2R0b (cos (θ + φ0) r̂0 · û+ sin (θ + φ0) r̂0 · v̂)
(5.10)

where r̂0 = r0/ ‖r0‖. Defining the angles γu and γv such that:

cos γu , r̂0 · û = cos βL sin (αL − αH) (5.11)

cos γv , r̂0 · v̂ = − cos βL sin βH cos (αL − αH) + sin βL cos βH (5.12)

the distance R (θ) in (5.10) can be rewritten as:

R (θ) =
√
R2

0 + b2 + 2R0b∆ cos (θ + φ0 − ζ) (5.13)

where

∆ =
√

cos2 γu + cos2 γv (5.14)

tan ζ = cos γv/ cos γu (5.15)

Assuming the helicopter to be in the far field, such as (b/R0)2 → 0, the range from the

radar to the point scatter Bθ can be approximated as:

R (θ) ≈ R0 + b∆ cos (θ + φ0 − ζ) (5.16)

Note that, when αL = αH and βH = π/2:

∆ =
√

cos2 γu + cos2 γv = cos βL (5.17)

therefore the expression of R (θ) in (5.16) falls in the two-dimensional model22 de-

scribed in [60].
22For two-dimensional model it is meant that the vector identifying the LoS, r0, and the rotor rotation

axis versor, k̂, lie on the same plane
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5.2.2 Signal Model

Let ω be the rotation speed, in radian per second (rad/s), of the rotor, such that the

rotation angle over time of the point scattererBθ is θ = ωnTs, where Ts is the sampling

rate and n = 0, . . . , N − 1 is the index of the time sample. Then, from equation (5.16)

the discrete-time baseband radar signal received from this point scatterer is derived as:

yB (n) = e−j
4π
λ
R(n) = e−j

4π
λ

[R0+b∆ cos(ωnTs+φ0−ζ)] (5.18)

By integrating (5.18) over the length, ρ, of the blade, the signal becomes [60]:

yρ (n) =

∫ ρ

0

e−j
4π
λ

[R0+b∆ cos(ωnTs+φ0−ζ)]db =

= ρ e−j
4π
λ
R0 sinc

(
2

λ
ρ∆ cos (ωnTs + φ0 − ζ)

)
×

× e−j
2π
λ
ρ∆ cos(ωnTs+φ0−ζ)

(5.19)

where sinc (x) = sin (πx) /πx. Finally, assuming that the helicopter’s rotor has η

equally spaced blades, the discrete-time baseband radar signal received from the over-

all helicopter’s rotor can be modelled through equation (5.19) by superimposing the

returns from each blade:

yη (n) = ρ e−j
4π
λ
R0×

×
η−1∑
l=0

sinc

(
2

λ
ρ∆ cos

(
ωnTs +

2π

η
l + φ0 − ζ

))
×

× e−j
2π
λ
ρ∆ cos(ωnTs+ 2π

η
l+φ0−ζ)

(5.20)

where the term 2π
η
l takes into account the initial rotation angle of each blade. The phase

history of the signal represents a characteristic mD signature of the type of helicopter,

and can be exploited to identify the helicopter itself.

Taking into account the term ∆, which depends on the aspect angle and on the

orientation of the helicopter, the maximum Doppler shift over time can be computed

as follows:

fDmax = 2
ωρ

λ
∆ (5.21)
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Since ∆ ∈ [0, 1], the expected maximum Doppler shift is obtained for ∆ = 1. There-

fore, the sampling frequency, fs, used to discretise the signal in (5.20) must satisfy the

following Nyquist sampling condition:

fs = 1/Ts > 2fDmax

∣∣∣
∆=1

(5.22)

5.2.3 Parametric Sparse Signal Model

In this Section a parametric sparse representation of the discrete-time radar signal re-

ceived from the helicopter’s rotor, reported in equation (5.20), is obtained. The sparse

domain is defined by the characteristic helicopter’s parameters ω, ρ and η.

Let D be the set of L couples (ω̃k, η̃k) that identify as many helicopter models of

interest:

D =
{
d̃k = (ω̃k, η̃k) , k = 0, . . . , L− 1

}
(5.23)

where η̃k is the number of blades and ω̃k is the nominal rotation speed of the k-th type

of target. Note that a helicopter generally flies with constant rotor’s rotation speed

[140], however in some cases and for some manoeuvres throughout the flight, this can

vary within the range 95− 102 % of its nominal value23. For this reason, for each type

of helicopter let us consider an extended set Dk
e , k = 0, . . . , L−1, defined as follows:

Dk
e = {di = (ωi, ηi) , i = 0, . . . ,Mk − 1 | ηi = η̃k, 0.95 ω̃k ≤ ωi ≤ 1.02 ω̃k} (5.24)

and an overall extended set that results from the union of the sets Dk
e , that is:

De = {di = (ωi, ηi) , i = 0, . . . ,M − 1} =
L−1⋃
k=0

Dk
e (5.25)

The cardinality of the sets Dk
e , namely Mk, varies on varying k and it is not known a

priori. It depends on the step size used to discretise the range [0.95 ω̃k, 1.02 ω̃k], which

step size is assumed to be equal for all the sets Dk
e . Furthermore, since the sets Dk

e may

23Note that the range 95− 102 % may also vary among the different types of helicopter, however this
is kept fixed throughout the discussion without loss of generality.
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be not disjoint, the following relation holds:

M ≤
L−1∑
k=0

Mk (5.26)

Moreover, let us also define the set of possible lengths of the blades:

R = {ρk, k = 0, . . . , P − 1 | ρmin ≤ ρk ≤ ρmax, ρk−1 < ρk} (5.27)

where ρmin and ρmax are the smallest and the largest expected lengths, respectively,

based on the helicopter models of interest. As for the sets Dk
e , the range [ρmin, ρmax] is

uniformly discretise, and the step size affects the cardinality of the set P .

The sparse representation of the discrete-time radar signal received from the heli-

copter’s rotor in (5.20) is obtained as:

yη = Ψx (5.28)

where yη = [yη (0) , . . . , yη (N − 1)]T ∈ CN contains the time samples, x ∈ CP ·M is

a sparse vector and Ψ ∈ CN×(P ·M) is a matrix, called dictionary, whose columns are

populated based on the sets De and R. Specifically, Ψ is a block matrix organised as

follows:

Ψ =
[
ΨR

0 , . . . ,Ψ
R
i , . . . ,Ψ

R
M−1

]
(5.29)

where each matrix ΨR
i ∈ CN×P is:

ΨR
i = [ψi,0 (n) , . . . , ψi,k (n) , . . . , ψi,P−1 (n)] (5.30)

The function ψi,k (n) is called atom of the dictionary, and it is an instance of the

discrete-time signal (5.20) for two specific elements of the sets De and R, respectively.
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In particular it can be defined as follows:

ψi,k (n) = ρk e
−j 4π

λ
R0×

×
ηi−1∑
l=0

sinc

(
2

λ
ρk∆ cos

(
ωinTs +

2π

ηi
l + φ0 − ζ

))
×

× e−j
2π
λ
ρk∆ cos

(
ωinTs+

2π
ηi
l+φ0−ζ

)

with di = (ωi, ηi) ∈ De, ρk ∈ R

(5.31)

Given the block structure of the matrix Ψ, the sparse vector x is organised accordingly

as follows:

x =
[(
xR

0

)T
, . . . ,

(
xR
i

)T
, . . . ,

(
xR
M−1

)T]T
(5.32)

where xR
i ∈ CP is:

xR
i = [xi,0, . . . , xi,k, . . . , xi,P−1]T (5.33)

Under the assumption that position and orientation of the helicopter, and initial offset

of the blades are known24, if the couple di = (ωi, ηi) and the length ρk characterise the

observed target then xi,k = 1, otherwise xi,k = 0.

5.3 Pruned Orthogonal Matching Pursuit

Objective of the algorithm proposed in this Chapter is to first estimate the characteristic

parameters of a previously detected helicopter, and then infer the model of helicopter

based on the result of the estimate. The estimation process mainly consists of finding

the atom, defined in equation (5.31), that best matches the received signal, and this is

achieved by solving a sparse signal recovery problem.

Let y (n), n = 0, . . . , N − 1 be the discrete-time received radar signal, i.e. a slow-

time signal acquired by a pulsed radar with PRI of Ts seconds, or a Continuous Wave

(CW) radar signal sampled with sampling rate of Ts seconds. The first sample of the

signal, that is for n = 0, is assumed to coincide with one flash25, and the main Doppler,

due to the bulk motion of the helicopter, is supposed to be already compensated. More-

24Parameters in equation (5.31) affected by the position and the orientation of the helicopter are R0,
∆ and ζ, while φ0 is the initial offset.

25This synchronisation is achieved in the first step of the algorithm.
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over, the signal is normalised as follows:

ỹ (n) =
y (n)− 1

N

∑N−1
n=0 y (n)

maxn

∣∣∣y (n)− 1
N

∑N−1
n=0 y (n)

∣∣∣ (5.34)

such that |ỹ (n)| ∈ [0, 1], in order to remove the strong return from the fuselage of

the helicopter and to make the estimation independent of the RCS of the target itself.

This signal can now be represented in the sparse domain defined by the matrix Ψ in

equation (5.29) as follows:

ỹ = Ψx+ ξ (5.35)

where ỹ = [ỹ (0) , . . . , ỹ (N − 1)]T ∈ CN contains the time samples of the normalised

received radar signal, x ∈ CP ·M is the sparse vector defined in equation (5.32) and

ξ ∈ CN is a noise vector. As mentioned at the end of Section 5.2.3, by definition if

the observed target has ηi blades of length ρk meters rotating at ωi radians per second,

then xi,k is non-zero. Therefore, recovering the sparse signal x gives information on

the type of helicopter.

The algorithm proposed in this Thesis is a modified version of the POMP [13]

reported in Section 2.4.2 and used for the estimation of the mD parameters of a con-

ing target. The POMP combines the traditional iterative approach of the OMP with a

pruning process, that progressively reduces the dimension of the dictionary Ψ avoiding

unnecessary computations corresponding to wrong atoms. The algorithm was initially

developed for the estimation of the position and the initial phase of the dominant scat-

terers (whose number is unknown) that compose the coning target, and their common

rotation speed. Here it is adapted to the identification of the mD parameters of he-

licopters, independently of the initial position of the blades and of the orientation of

the target itself. Furthermore, the algorithm is extended to the estimation of the mD

parameters of multiple targets when they are not resolvable in other domains, and a

data fusion approach is introduced when multiple sensors are deployed for enhanced

identification.
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5.3.1 Remarks on the Design of the Dictionary

Following the high-level description of the algorithm, some clarifications are required

about the actual design of the dictionary Ψ, hence of the atoms defined in equation

(5.31), prior the estimation process.

Firstly, as mentioned above, the signal ỹ, input of the estimation process, is nor-

malised as shown in (5.34). For this reason, the atoms must be normalised accordingly.

Moreover, the assumption made in Section 5.2.3 of complete knowledge about posi-

tion and orientation of the observed target, as well as the initial offset of its blades, is

not reasonable. This means that when designing the dictionary Ψ, the quantities R0,

∆, φ0 and ζ need to be properly selected.

The angles φ0 and ζ are chosen such that their difference φ0 − ζ = π/2. This

ensures that the first time sample of each atom coincides with a flash.

The range R0 is selected as R0 = λ
16

+ mλ
8
, where m ∈ Z. The choice of this

value is driven by the following considerations. Firstly, it only appears in the factor

e−j
4π
λ
R0 which is periodic with period λ/2 in R0. Secondly, it is easy to verify that,

when the number of blades is even, the real and imaginary parts of (5.31) are zero for

R0 = λ
8

+mλ
4

and R0 = mλ
4
, respectively. This could bias and degrade the match be-

tween the atoms and the discrete-time received signal, whileR0 = λ
16

+mλ
8

guarantees

that real and imaginary parts of the atom have the same weight during the estimation.

Together with the range information, the position of the helicopter is uniquely de-

fined by the azimuth and the elevation angles, αL and βL, respectively, of the LoS.

These angles, together with αH and βH that describe the orientation of the helicopter,

are not known and affect the quantity ∆ ∈ [0, 1], defined in equation (5.14). Note that,

∆ always appears multiplied by the length of the blade ρk in (5.31). For this reason,

the following quantity is considered:

ρ∆,k = ρk∆ ∈ [0, ρmax] (5.36)

that implies a redefinition of the set R made in equation (5.27):

R∆ = {ρ∆,k, k = 0, . . . , P∆ − 1 | 0 < ρ∆,k ≤ ρmax, ρ∆,k−1 < ρ∆,k} (5.37)
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A further look at the expression of the atom in (5.31) also suggests the introduction

of another degree of freedom. In fact, negative values for ρ∆,k, despite being physi-

cally impossible, allows us to solve an ambiguity when dealing with an odd number of

blades. Figure 5.3(a) and Figure 5.3(b) show the same simulated time signal received

from the rotor of a three-bladed Mil Mi-2 Hoplite, and synchronised on two consecu-

tive flashes. Apparently, the two signals look very similar, however by inspecting their

(a) Time signal, synchronised on the 1st flash. (b) Time signal, synchronised on the 2nd flash.

(c) Spectrogram, synchronised on the 1st flash. (d) Spectrogram, synchronised on the 2nd flash.

Figure 5.3: Representation of a simulated time-domain signal, and its spectrogram,
received from the rotor of a three-bladed Mil Mi-2 Hoplite (SNR = 20 dB) and syn-
chronised on two consecutive flashes: (a) and (c) first flash, (b) and (d) second flash.

spectrograms, in Figure 5.3(c) and Figure 5.3(d), respectively, they seem to be flipped

along the frequency axis. This flipping occurs because, in the first case, the flash rep-

resents a receding blade, while, in the second case, it is due to an approaching blade26.

Analytically, the two signals are conjugates, but, equivalently, they can be thought to

have opposite lengths of the blades. Hence, the set R can be eventually defined as:

R′∆ = {ρ∆,k, k = 0, . . . , P ′∆ − 1 | |ρ∆,k| ≤ ρmax, ρ∆,k−1 < ρ∆,k} (5.38)

26Note that this effect is not visible when the helicopter has an even number of blades, since ap-
proaching blade and receding blade are always coupled.
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It is worth mentioning that, given the uniform discretisation of the range [−ρmax, ρmax]

and the order relation ρ∆,k−1 < ρ∆,k, the following holds:

ρ∆,k = −ρ∆,P ′∆−1−k (5.39)

Finally, following the remarks discussed in this Section, the atoms that populate the

dictionary Ψ ∈ CN×(P ′∆·M) are redefined as follows27:

ψ̃i,k (n) = e−j
π
4

∑ηi−1
l=0 sinc

(
2
λ
ρ∆,k sin

(
ωinTs + 2π

ηi
l
))

e
j 2π
λ
ρ∆,k sin

(
ωinTs+

2π
ηi
l
)

maxn

∣∣∣∣∑ηi−1
l=0 sinc

(
2
λ
ρ∆,k sin

(
ωinTs + 2π

ηi
l
))

e
j 2π
λ
ρ∆,k sin

(
ωinTs+

2π
ηi
l
)∣∣∣∣

with di = (ωi, ηi) ∈ De, ρ∆,k ∈ R′∆

(5.40)

Note that, following equation (5.39), the conditions below hold:

ψ̃i,k (n) = ψ̃i,P ′∆−1−k (n) if ηi is even

ψ̃i,k (n) = ψ̃∗i,P ′∆−1−k (n) if ηi is odd
(5.41)

5.4 Single-Target Identification

In this section the mD model based algorithm for helicopters’ identification is pre-

sented when one target is present in the region of interest. Firstly, each phase of the

algorithm is described in detail. Then, an approach of data fusion is proposed when

more than one sensor is used to perform the identification.

5.4.1 Algorithm Description

The proposed algorithm consists of three phases, shown in Figure 5.4: synchronisa-

tion, estimation process and identification. The synchronisation is performed to make

the algorithm independent of the initial position of the blades. In fact, the initial phase

offset of the received signal, given by φ0 − ζ in equation (5.20), depends on both the

position and the orientation of the helicopter, but also on the instant in which the ac-

27Given the redefinition of R into R′
∆, the dimension P is replaced by P ′

∆ everywhere.
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Figure 5.4: Block diagram of the helicopters identification algorithm for the single
target scenario.

quisition is triggered, and need to be compensated. The estimation process, composed

by 5 steps, is an iterative procedure, based on the POMP, aiming at finding the mD

parameters of the observed target through the recovery of the sparse vector x. These

estimated mD parameters are then used in the last phase for the final identification.

The three phases are explained in details in the following three Sections.

5.4.1.1 Synchronisation

Let z (n), n = 0, . . . , J−1, be the discrete-time acquired radar signal, before synchro-

nisation and normalisation. The sample index n? where the flash is located, is obtained

as position of the first local maximum of |z (n)| over a threshold υ. This, in turn, de-

pends on length and maximum value of the acquired signal, z (n), and the statistical

characteristics of the Additive White Gaussian Noise (AWGN), ξ (n). Specifically, it
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is computed as:

υ =
|maxn |z (n)| − υ′|

4
+ υ′ (5.42)

with:

υ′ =
√
σ2
ξ ln (10J) (5.43)

where σ2
ξ is the noise power. Equation (5.43) is equivalent to:

Pr (|ξ (n)| > υ′) = (10J)−1 (5.44)

with Pr (·) indicating the probability. Note that, if no local maximum higher than

the threshold υ is found, circumstance that may occur when the SNR is too low, an

unknown target is declared. Then, the signal, y (n), input of the estimation process

presented in Section 5.3 is defined as:

y (n) = z (n+ n?) (5.45)

Note that J has to be sufficiently larger than N , in order to guarantee J ≥ N + n?.

5.4.1.2 Estimation Process

As mentioned before, the estimation process is based on the iteratively estimation of

the sparse vector x. For each couple di ∈ De, the vector xR
i is estimated and an error

is computed, equal to the power of the residual. Then, the columns of the dictionary

Ψ that present the largest residual error are removed, until only one couple di is left.

For clarity, the counter l is introduced, while I(l) is the set of indices i that identify

candidate couples di that are still active at iteration l; starting from the full dictio-

nary, I(0) = {0, . . . ,M − 1},
∣∣I(0)

∣∣ = M . Other quantities used in the following are:

r
(l)
i ∈ CN and xR

i ∈ CP
′
∆ , the recovery residual and the estimate of the vector xR

i ,

respectively; ΦΛi ∈ CN×P
′
∆ the matrix whose columns, specified by the indices in

the set Λ
(l)
i , are equal to the corresponding columns ΨR

i , 0 elsewhere. The estimation

procedure is detailed step-by-step in the following.
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( 0 ) Initialisation:

• l = 1;

• I(0) = {0, . . . ,M − 1}

• r(0)
i = ỹ;

• Λ
(0)
i = ∅

( 1 ) Update of the sparse solution: for each index i ∈ I(l−1)

( 1.1 ) The inner product between the residual at the previous step, r(l−1)
i , and the

block ΨR
i is carried out and stored in q:

q =
∣∣∣(ΨR

i

)†
r

(l−1)
i

∣∣∣ ∈ CP ′∆ (5.46)

where (·)† is the conjugate transpose.

( 1.2 ) The index of the largest value in q is added to the set Λ
(l)
i :

Λ
(l)
i = Λ

(l−1)
i

⋃
arg max
0≤k≤P ′∆−1

q (5.47)

This is equivalent to select the index of the value ρ∆,k that best matches the

received signal given the couple di.

( 1.3 ) The matrix ΦΛi is updated accordingly to Λ
(l)
i .

( 1.4 ) The estimate of the vector xR
i is obtained as follows:

xR
i = Φ+

Λi
ỹ (5.48)

where (·)+ identifies the Moore-Penrose pseudoinverse.

( 1.5 ) The residual r(l)
i is then updated as:

r
(l)
i = ỹ −ΦΛix

R
i (5.49)

( 2 ) Pruning of the dictionary: remove E indices i from I(l−1) that corresponds to the
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largest residual errors
∥∥∥r(l)

i

∥∥∥2

2
obtaining I(l), where:

E =
⌊∣∣I(l−1)

∣∣ (1− ν)
⌋

(5.50)

where b·c gives the largest integer not greater than the argument and ν ∈ (0, 0.5].

That is:

I(l) = I(l−1) − EE (5.51)

where the set, Ex, of x indices to remove is defined as:


E0 = ∅

Ex =
{
i ∈ I(l−1) − Ex−1 |

∥∥∥r(l)
i

∥∥∥2

2
≥
∥∥∥r(l)

i′

∥∥∥2

2
,

∀i′ ∈ I(l−1) − Ex−1, i
′ 6= i

}⋃
Ex−1

(5.52)

( 3 ) Termination condition of the loop: if
∣∣I(l)
∣∣ > 1, then increment the counter and

return to step ( 1 ), otherwise go to step ( 4 ).

( 4 ) The remaining index in I(l), say ı, identifies the wanted couple:

d = (ω, η) , (ω ı, η ı) = dı ∈ De (5.53)

Finally, the index:

k = arg max
0≤k≤P ′∆−1

∣∣xR
ı

∣∣ (5.54)

identifies the wanted length:

ρ∆ , ρ∆,k ∈ R′∆ (5.55)

The estimated number of blades, η, and rotation speed, ω, are used to perform the

identification of the observed target. The quantity ρ∆, instead, is not suitable for the

identification phase, being an estimate of the length of blades weighted by a factor, ∆,

that depends on the aspect angle. However, it will be shown later, in Section 5.4.2, that,

when using more than one sensor, and through the knowledge of the angle of arrival
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of the target, the orientation of the helicopter can be inferred, allowing the estimate of

the length to be extracted and exploited for identification.

5.4.1.3 Identification

The last phase of the algorithm is the identification. By definition, the estimated couple

d = (ω, η) belongs to the set De, which, as reported in equation (5.25), is the union

of the sets Dk
e , k = 0, . . . , L − 1, each of them representing a particular model of

helicopter. Objective of the identification phase, then, is to find the set Dk
e which d

belongs to. However, since the sets Dk
e may be not disjoint, the solution to this problem

could be not unique, and d could belong to different sets, namely the received signal

could be associated to different types of target. This ambiguity cannot be solved, which

leads to declare the target unknown, unless another discriminative feature is taken into

consideration, as the length of the blades. As mentioned before, however, this can only

be done if more than one sensor is used, assuming that the angle of arrival of the target

is known.

5.4.2 Multi-Sensors: Data Fusion

The exploitation of more than one radar sensor, that see the target with different aspect

angles, and the capability of each sensor to infer the angle of arrival, enables the esti-

mation of the orientation of the helicopter, that is the estimation of ∆.

Let us suppose to have a network of T radar sensors. Referring to the reference

system presented in Figure 5.1, each sensor locates the target in a specific azimuth-

elevation cell identified by the angles αLt and βLt , respectively, with t = 0, . . . , T − 1.

Moreover, each sensor runs the identification algorithm described in Section 5.4.1 lo-

cally, leading to different estimates dt = (ωt, ηt) and ρ∆,t. In this scenario, the first

advantage is that the decision can be made on a majority vote basis with low require-

ments in terms of communication capabilities between the nodes; more important is

the capability to solve the ambiguity that occurs when the estimated couple dt belongs

to different sets Dk
e . The exploitation of multiple sensors for the estimation of the ori-

entation of the helicopter, thus of the length of the blades, was first proposed in [141],
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where the analytical relationship (5.21) was used. The proposed method follows a

similar approach, but it does not use the information on the maximum Doppler shift,

because not available.

For the sake of simplicity, let us suppose that all the estimates dt, t = 0, . . . , T − 1,

are ambiguous and similar. Here similarity means that:

ηt = ηt′

|ωt − ωt′| ≤ δω

t, t′ ∈ {0, . . . , T − 1} , t 6= t′ (5.56)

where the value δω is the step size used to discretise the range [0.95 ω̃k, 1.02 ω̃k] in

(5.24). The estimate, from each sensor, of the weighted length of the blade, ρ∆,t, can

be written as:

ρ2
∆,t = ρ2 ∆2

t = ρ2
(
cos2 γu,t + cos2 γv,t

)
(5.57)

where

cos γu,t = cos βLt sin (αLt − αH) (5.58)

cos γv,t = − cos βLt sin βH cos (αLt − αH) + sin βLt cos βH (5.59)

In order to remove the true unknown value of the length of the blades from (5.57), the

following ratio is considered:

ρ2
∆,t∑T−1

t′=0 ρ
2
∆,t′

=
cos2 γu,t + cos2 γv,t∑T−1

t′=0 (cos2 γu,t′ + cos2 γv,t′)
, t = 0, . . . , T − 1 (5.60)

where the summation is necessary to avoid zero term at the denominator. The un-

knowns in (5.60) are the helicopter’s orientation angles, βH and αH , while the number

of independent equations is T − 1: for this reason, in order to be able to solve the

system of equations, the number of sensors must satisfy T ≥ 3. The solution to (5.60)
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can be found as:

(
βH , αH

)
= arg min

(βH ,αH)

T−1∑
t=0

{
ρ2

∆,t∑T−1
t′=0 ρ

2
∆,t′

− cos2 γu,t + cos2 γv,t∑T−1
t′=0 (cos2 γu,t′ + cos2 γv,t′)

}2

subject to

βH,min ≤ βH ≤ βH,max

αH,min ≤ αH ≤ αH,max

(5.61)

by means of a full search algorithm. From the estimates βH and αH , it follows:

ρ =
1

T

T−1∑
t=0

√
ρ2

∆,t

cos2 γu,t + cos2 γv,t
(5.62)

where

cos γu,t = cos βLt sin (αLt − αH) (5.63)

cos γv,t = − cos βLt sin βH cos (αLt − αH) + sin βLt cos βH (5.64)

When not all the estimates dt, for t = 0, . . . , T − 1, are ambiguous, this procedure can

be still applied on a subset of sensors, provided that this subset is composed by at least

3 sensors.

5.5 Multi-Target Identification

In this section the mD model based algorithm for helicopters’ identification is ex-

tended to the estimation and identification of multiple targets. The assumption is that

the targets cannot be distinguished in range, Doppler or angle, scenario that is likely to

happen when the helicopters fly in formation.

The single target algorithm presented in Section 5.4 highly relies on the synchro-

nisation phase, that deals with the problem of the initial position of the blades. In fact,

since the dictionary is built assuming that the first sample of each atom coincides with

a flash, also the first sample of the received signal, once pre-processed, must coincide

with a flash. This also means that if no flash is picked during the synchronisation
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phase, the algorithm fails. Moreover, in case of multiple targets present in the scene,

even if a flash is selected, only the target which such a flash belongs to is likely to be

identified, since the atoms are only synchronised with it.

In order to take this aspect into account, the sparse signal model of the received

signal defined in equation (5.35) is modified as follows:

Ỹ = ΨX + Ξ (5.65)

The matrix Ψ is the dictionary eventually defined in Section 5.3.1, Ξ ∈ CN×H is

a noise matrix while X ∈ C(P ′∆·M)×H is a matrix composed by H sparse column

vectors. Specifically, it is a block matrix defined as:

X =
[(
XR

0

)T
, . . . ,

(
XR

i

)T
, . . .

(
XR

M−1

)T]T
(5.66)

where

XR
i =

[
xR
i,0, . . . ,x

R
i,h, . . . ,x

R
i,H−1

]
∈ CP ′∆×H (5.67)

and xR
i,h ∈ CP

′
∆ . Each column vector of the matrix Ỹ =

[
ỹ0, . . . , ỹh, . . . , ỹH−1

]
∈

CN×H , is a discrete-time signal normalised as follows:

ỹh (n) =
yh (n)− 1

N

∑N−1
n=0 yh (n)

maxn

∣∣∣yh (n)− 1
N

∑N−1
n=0 yh (n)

∣∣∣ (5.68)

where yh (n) , n = 0, . . . , N −1 is the chunk of the received signal synchronised to the

h-th flash. Figure 5.5 shows a graphic example of how the matrix Ỹ is constructed.

Middle graph is the time-domain received signal, z (n), in which the first two flashes

are marked; the top and bottom graphs represent y0 (n) and y1 (n), respectively, that

are the chunks synchronised to the first and the second flash. These signals are then

normalised through (5.68) and used to populate the first and the second column of Ỹ .

Similarly to the single-target identification algorithm, the sparse recovery problem

can be stated as follows:

xh = arg min
xh

‖xh‖0 s.t. ‖rh‖2
2 ≤ ε (5.69)
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for h = 0 . . . , H − 1, with the additional objective of estimating the number of targets,

where rh , ỹh−Ψxh and xh =
[(
xR

0,h

)T
, . . . ,

(
xR
i,h

)T
, . . . ,

(
xR
M−1,h

)T]T is the h-th

column ofX .

5.5.1 Algorithm Description

Objective of the multi-target identification algorithm is both the estimation of the num-

ber of targets, S, present in the radar cell of interest, and the estimation of their mD

parameters, ωs, ηs and ρ∆,s, s = 0, . . . , S − 1. Like the single-target algorithm, it

consists of three phases, as shown in Figure 5.6. The synchronisation phase aims to

extract the chunks from the received signal and build the matrix Ỹ . The estimation

process presents an additional step that deals with the pruning of the matrix Ỹ , with

the objective of estimating the correct number of targets. Finally, the identification is

performed as for the single-target scenario for the several estimates at the output of the

estimation process.

y0(n)

y1(n)

z(n)

Figure 5.5: Example of construction of matrix Ỹ . Middle graph represents the received
signal, while top and bottom graphs are the chunks synchronised to the first and second
flash, respectively.
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Figure 5.6: Block diagram of the helicopters identification algorithm for the multi
target scenario.

5.5.1.1 Synchronisation

The synchronisation is performed as for the single-target algorithm. However, rather

than selecting only the location of the first local maximum of |z (n)|, the locations of at

most the first H local maxima are selected. Assuming that these locations are named

as n?h, h = 0, . . . , H − 1, the signals yh (n) that, once normalised, populate the matrix

Ỹ , are defined as:

yh (n) = z (n+ n?h) (5.70)

As for the single-target algorithm, if no local maxima higher than the threshold υ are

found, one unknown target is declared independently of the actual number of targets

in the scene.
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5.5.1.2 Estimation Process

The multi-target estimation process is similar to the single-target one. However, the

pruning process does not involve only the dictionary, but also the matrix Ỹ . Indeed,

each signal ỹh (n) that composes the matrix Ỹ is supposed to be uncorrelated with

any other, namely it is a portion of the return from a specific helicopter. More likely,

however, several chunks are portions of the same return, that is they actually represent

the same helicopter. The pruning process applied to Ỹ aims to remove this redundancy

and to estimate the correct number of uncorrelated returns, that is the correct number

of targets. Meanwhile, couples di ∈ De that characterise the mD signature of the

different uncorrelated returns are obtained through the pruning process applied to the

dictionary Ψ.

As before l is the counter, I(l) is the set of indices i, associated to the couples

di ∈ De, that are still active candidates at iteration l, and H(l) is the set of indices h that

identify the potential uncorrelated chunks at iteration l. Starting with the full dictionary

and all the chunks extracted from the received signal, I(0) = {0, . . . ,M − 1},
∣∣I(0)

∣∣ =

M and H(0) = {0, . . . , H − 1},
∣∣H(0)

∣∣ = H . Moreover, R(l)
i =

[
r

(l)
i,0, . . . , r

(l)
i,H−1

]
∈

CN×H is the matrix of residuals for each chunk, whileX
R

i ∈ CP
′
∆×H is the estimate of

the matrixXR
i . The estimation process is detailed step-by-step in the following.

( 0 ) Initialisation:

• l = 1;

• I(0) = {0, . . . ,M − 1}

• H(0) = {0, . . . , H − 1}

• R(0)
i = Ỹ ;

• Λ
(0)
i = ∅

( 1 ) Update of the sparse solution: for each index i ∈ I(l−1)

( 1.1 ) The inner product between the matrix of residuals at the previous step,

R
(l−1)
i , and the block ΨR

i is carried out and stored inQ =
[
q0, . . . , qH−1

]
∈

RP ′∆×H :

Q =
∣∣∣(ΨR

i

)†
R

(l−1)
i

∣∣∣ (5.71)
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where the operator |·| is defined for matrices as the magnitude of each com-

plex element of the argument.

( 1.2 ) The index of the largest value in qh, ∀h ∈ H(l−1), is added to the set Λ
(l)
i ,

that is:

Λ
(l)
i = Λ

(l−1)
i

⋃{
mh | h ∈ H(l−1)

}
(5.72)

where

mh = arg max
0≤k≤P ′∆−1

qh (5.73)

This is equivalent to select the indices of the values ρ∆,k that best match

each uncorrelated chunk ỹh (n) given the couple di.

( 1.3 ) The matrix ΦΛi is updated accordingly to Λ
(l)
i .

( 1.4 ) The estimate of the vectorXR
i is obtained as follows:

X
R

i = Φ+
Λi
Ỹ (5.74)

( 1.5 ) The residualR(l)
i is then updated as:

R
(l)
i = Ỹ −ΦΛiX

R

i (5.75)

( 2 ) Pruning of the matrix Ỹ : let V = [v0, . . . ,vH−1] ∈ RM×H be the matrix that

contains the residual errors for each couple di, i ∈ I(0), and each chunk ỹh (n),

h ∈ H(0), that is:

vi,h , V (i, h) =

‖ri,h‖
2
2 if i ∈ I(l−1) and h ∈ H(l−1)

0 otherwise
(5.76)

where ri,h is the h-th column of R(l)
i . Moreover, let Ṽ = [ṽ0, . . . , ṽH−1] ∈

RM×H and Ṽ
′

=
[
ṽ′0, . . . , ṽ

′
H−1

]
∈ RM×H be two normalised versions of the

matrix V , such that:

ṽh = vh −
1

|I(l−1)|
∑

i∈I(l−1)

vi,h (5.77)
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has zero-mean, and

ṽ′h = ṽh

 ∑
i∈I(l−1)

ṽ2
i,h

− 1
2

(5.78)

has unit variance.

( 2.1 ) Each vector vh (and its normalised versions ṽh and ṽ′h) can be seen as a

signature of the h-th chunk ỹh (n) in the domain De. These signatures are

exploited to group the chunks as belonging or not to the same return. For

doing this, the correlation matrix ΣH ∈ RH×H is defined as follows:

ΣH =
(
Ṽ
′)T

Ṽ
′

(5.79)

By definition the value of each element of ΣH is in the range [−1, 1] and

indicates how correlated two chunks are in the De domain. Note that, in

order for ΣH to be a reliable measure of the correlation between the chunks,

the number of active couples di must be greater, or at least equal, than the

number of chunks and, in general, higher than a threshold set to 10, that is:

∣∣I(l−1)
∣∣ ≥ max

(∣∣H(l−1)
∣∣ , 10

)
(5.80)

Steps ( 2.2 ) and ( 2.3 ) are only performed if this condition is met.

( 2.2 ) Based on the correlation matrix ΣH , F subsets Hf of the set H(l−1) are

created, according to the following rules:

a ∈ Hf ⊆ H(l−1), b ∈ Hf ⊆ H(l−1) ⇐⇒ ∃ΣH (a, b) ≥ ι

Hf = {a} ⊆ H(l−1) ⇐⇒ @b : ΣH (a, b) ≥ ι
(5.81)

for f = 0, . . . , F −1. The first rule states that two indices a and b, identify-

ing two chunks ỹa (n) and ỹb (n), belong to the same group Hf if and only

if their cross-correlation coefficient ΣH (a, b) is higher than a threshold ι.

The second rule, on the other hand, asserts that Hf is a singleton composed

by the index a, if and only if it does not exist another chunk with a similar

signature.
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( 2.3 ) Following the previous step, two chunks, say ỹa (n) and ỹb (n), that be-

long to the same group Hf present a similar signature in the De domain.

However, they could be still portions of different returns, circumstance that

occurs when helicopters of the same type are flying in formation. In this

scenario, the characteristic that can be used to discriminate them is the ini-

tial offset of the blades, that is the positions n?a and n?b . Firstly, based on

their common signature, the periodicity of the flashes is estimated; then, if

the distance between the two local maxima, |n?a − n?b | is not a multiple of

the estimated periodicity, then the chunks are assumed to belong to the two

different returns.

( 2.3.1 ) Find the couple di? = (ωi? , ηi?) that characterises the group Hf as:

i? = arg min
i∈I(l−1)

∑
h∈Hf

ṽh (5.82)

Thus, following equation (2.33) the periodicity of the flashes, in sec-

onds, can be estimated as:

µ =
2π

ωi?ηi?

(
1− mod (ηi? , 2)

2

)
(5.83)

where the operator mod (·, ·) is the remainder of the division between

the first and the second argument, respectively. The periodicity in sam-

ples becomes:

µs =

⌊
µ

Ts

⌉
(5.84)

where the operator b·e indicates the nearest integer to the argument.

( 2.3.2 ) Based on the estimated periodicity of the flashes, µs, and on the loca-

tions of the local maxima of the received signal, n?h, for h ∈ Hf , Gf
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subsets Hg
f of the set Hf are created based on the following rules:


a ∈ H

g
f ⊆ Hf , b ∈ H

g
f ⊆ Hf ⇐⇒

∣∣∣∣n?a − n?bµs
−
⌊
n?a − n?b
µs

⌉∣∣∣∣ ≤ ε

H
g
f = {a} ⊆ Hf ⇐⇒ @b :

∣∣∣∣n?a − n?bµs
−
⌊
n?a − n?b
µs

⌉∣∣∣∣ ≤ ε

(5.85)

for g = 0, . . . , Gf−1. The first rule states that two indices, namely two

chunks, belong to the same group H
g
f if their distance in the received

signal z (n) is a multiple of the estimated periodicity of the flashes.

H
g
f is a singleton, instead, if there is not another chunk such that this

condition is satisfied. Note that, by construction, the following expres-

sions hold:

⋂
g=0,...,Gf−1

H
g
f = ∅, ∀f

⋂
f=0,...,F−1

Hf = ∅
(5.86)

and

Hf =
⋃

g=0,...,Gf−1

H
g
f , ∀f

H(l−1) =
⋃

f=0,...,F−1

Hf

(5.87)

( 2.4 ) Each set Hg
f is then a collection of correlated chunks28, since they po-

tentially belong to the same return. Therefore, in order to mitigate this

redundancy, Eg
f indices h that correspond to the largest residual errors∑

i∈I(l−1) ṽi,h are removed from H
g
f , obtaining the updated set H̃g

f , where

Eg
f =

⌊∣∣Hg
f

∣∣ (1− κ)
⌋

(5.88)

28Whether the condition (5.80) is not met, and steps ( 2.2 ) and ( 2.3 ) are not performed, the sets Hg
f

and Hf refer to the previous iteration of the estimation process.
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and κ ∈ (0, 0.5]. That is:

H̃
g
f = H

g
f − EEgf (5.89)

where the set, Ex, of x indices to remove is defined as:

E0 = ∅

Ex =
{
h ∈ H

g
f − Ex−1 |

∑
i∈I(l−1)

ṽi,h ≥
∑

i∈I(l−1)

ṽi,h′ ,

∀h′ ∈ H
g
f − Ex−1, h

′ 6= h
}⋃

Ex−1

(5.90)

Moreover, following (5.87), the updated sets H̃f and H(l) are obtained:

H̃f =
⋃

g=0,...,Gf−1

H̃
g
f , ∀f

H(l) =
⋃

f=0,...,F−1

H̃f

(5.91)

Figure 5.7 shows an example of nesting of the sets H, Hf and H
g
f . The

overall set H(l−1), before the pruning procedure, contains 6 indices, divided

in two subsets H0 = {0, 1, 2} and H1 = {3, 4, 5}. This means that the al-

gorithm has recognised two distinctive signatures in the De domain, one

shared between chunks ỹ0 (n), ỹ1 (n), ỹ2 (n) and the other between chunks

ỹ3 (n), ỹ4 (n), ỹ5 (n). Moving further, while H1 coincides with H0
1, mean-

0

1

2
3

4
5

1

0
0

1

0

0 0

1

Figure 5.7: Example of nesting of the sets H, Hf and H
g
f .

ing that ỹ3 (n), ỹ4 (n) and ỹ5 (n) are actually portions of the same return,
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namely they are redundant, H0 is the union of H0
0 = {0, 1} and H1

0 = {2}.

Therefore, two helicopters with the same signature in the De domain have

been recognised (that is, they have same number of blades and similar ro-

tation speed): ỹ0 (n) and ỹ1 (n) are portions of the return from the first

one, while ỹ2 (n) is a portion of the return from the second one. After

the pruning process, assuming κ = 0.25, the updated sets are H̃0
0 = {0},

H̃1
0 = {2} and H̃0

1 = {3}, which lead to H̃0 = {0, 2}, H̃1 = {3} and

H(l) = {0, 2, 3}29.

( 3 ) Pruning of the dictionary: let us consider the mean residual errors for each cou-

ple di, i ∈ I(l−1), and for each subset H̃f , f = 0, . . . , F − 1, that are the vectors:

ṽavg
f =

[
ṽavg
f,0 , . . . , ṽ

avg
f,i , . . . , ṽ

avg
f,M−1

]T
=

∑
h∈H̃f ṽh∣∣∣H̃f

∣∣∣ ∈ RM (5.92)

Then, select E =
⌊∣∣I(l−1)

∣∣ (1− ν)
⌋

indices i that correspond to the largest resid-

ual errors ṽavg
f,i and populate the set EfE , that is:


E
f
0 = ∅

Efx =
{
i ∈ I(l−1) − E

f
x−1 | ṽ

avg
f,i ≥ ṽavg

f,i′ ,

∀i′ ∈ I(l−1) − E
f
x−1, i

′ 6= i
}⋃

E
f
x−1

(5.93)

where ν ∈ (0, 0.5]. The remaining indices will then populate the set Uf =

I(l−1) − E
f
E . Therefore, the set EfE contains the indices to remove from I(l−1)

with respect to the subset Hf , while the indices in Uf are those to keep for the

next iteration. The overall pruning is achieved as follows:

I(l) = I(l−1) −

(
F−1⋃
f=0

E
f
E −

F−1⋃
f=0

Uf

)
(5.94)

Note that, if
⋃F−1
f=0 E

f
E −

⋃F−1
f=0 Uf = ∅, the quantity ν is decreased to avoid the

estimation process to be stuck in this state.

29Assuming that
∑

i∈I(l−1) ṽi,0 ≥
∑

i∈I(l−1) ṽi,1 and
∑

i∈I(l−1) ṽi,3 ≥
∑

i∈I(l−1) ṽi,4 ≥∑
i∈I(l−1) ṽi,5
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( 4 ) Termination condition of the loop: if
∣∣I(l)
∣∣ = F and the sets H̃g

f are all singleton,

then go to step ( 5 ), otherwise return to step ( 1 ). This ensures that all the

remaining chunks are uncorrelated and that the search of the mD parameters for

each group Hf is complete.

( 5 ) Let us define with h0, . . . , hs, . . . , hS−1 the remaining indices in H(l), where

S =
∣∣H(l)

∣∣ =
F−1∑
f=0

Gf (5.95)

is the estimated number of targets. At each index hs, i.e. at each chunk ỹhs (n),

is associated a couple ds ∈ De as:

ds = (ωs, ηs) , (ω ıs , η ıs) = d ıs ∈ De (5.96)

where the index ıs is:

ıs = arg max
i∈I(l)

ṽ hs (5.97)

Finally, the index:

ks = arg max
0≤k≤P ′∆−1

∣∣∣xR
ıs,hs

∣∣∣ (5.98)

identifies the wanted length:

ρ∆,s , ρ∆,ks
∈ R′∆ (5.99)

where xR
ıs,hs

is the hs-th column ofX
R

ıs .

5.5.1.3 Identification

The identification is performed as for the single-target case for each estimate ds, s =

0, . . . , S − 1, by looking for the set Dk
e , k = 0, . . . , L − 1 which ds belongs to. As

already discussed above, however, this procedure could lead to ambiguous identifica-

tions, that can only be solved exploiting the information on the length of the blades,

retrieved by using multiple sensors.
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5.5.2 Multi-Sensors: Data Fusion

Each of the T sensors runs the identification algorithm described in Section 5.5.1 lo-

cally, and this leads to estimate the presence of St helicopters in the azimuth-elevation

cell given by the angles αLt and βLt , for t = 0, . . . , T −1. For each helicopter detected

by the t-th sensor, the estimated number of blades is given by ηs,t, while the estimated

rotation speed is ωs,t, for s = 0, . . . , St − 1. As for the single target scenario, the first

advantage of the use of multiple sensors is the possibility to make the decision about

the model of helicopter on a majority vote basis, while the second one is the capability

to solve ambiguous identifications.

However, with respect to the single target scenario, a further consideration must

be made. Indeed, the estimated number of target, St, may differ from one sensor to

another; for this reason, firstly an overall decision on the number of targets is made

on a majority basis, by selecting Smulti to be the value, among S0, . . . , ST−1, with the

largest occurrence. Moreover, let T be the set of indices t that identify the sensors

whose estimates St are equal to Smulti, that is:

T =
{
t ∈ {0, . . . , T − 1} | St = Smulti

}
(5.100)

Then, the ambiguous estimates are grouped based on their similarity, as already defined

in (5.56). For simplicity, let us suppose that all the estimates ds,t =
(
ωs,t, ηs,t

)
, for

t ∈ T and s = 0, . . . , Smulti − 1, are ambiguous30. Estimates are similar when the

following conditions hold: ηs,t = ηs′,t′

|ωs,t − ωs′,t′ | ≤ δω

(5.101)

for t, t′ ∈ T, t 6= t′ and s = 0, . . . , Smulti − 1. For each of these groups, the procedure

already described in Section 5.4.2 for the single target scenario is carried out in order

to estimate βH,s and αH,s, that lead to ρs, for s = 0, . . . , Smulti − 1.

As before, when not all the estimates ds,t are ambiguous, this procedure can be still

applied by properly grouping the ambiguous estimates, provided that each subsets is

30Note that the indexing s is sensor-dependent. For example, the estimates d0,0 and d0,1 may not
refer to the same actual helicopter, even if s = 0 for both.
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composed by at least 3 sensors.

5.6 Performance Evaluation on Simulated Data

5.6.1 Database and Dictionary Design

The algorithms are tested by simulating discrete-time signals received from L = 10

helicopter models in different configurations with an L-band radar, λ v 0.23 meters.

Helicopters’ name and mD parameters are listed in Table 5.1. The parametric sparse

Table 5.1: Helicopters’ Parameters - Simulated Data

ID (k) Name # Blades (η) Rot. Diameter (2ρ) Rot. Speed (ω̃/2π)

0 AH-1 Cobra 2 14.63 m 4.9 rps

1 Mil MI-2 Hoplite 3 14.60 m 4.1 rps

2 UH-60 Black Hawk 4 16.36 m 4.3 rps

3 AS332 Super Puma 4 15.60 m 4.4 rps

4 Confuser 4 10.60 m 4.5 rps

5 AH-64 Apache 4 14.63 m 4.8 rps

6 SA365 Dauphin 4 11.94 m 5.8 rps

7 A109 Agusta 4 11.00 m 6.4 rps

8 MD-500E Defender 5 8.05 m 8.2 rps

9 CH-53 Stallion 7 24.08 m 2.9 rps

model introduced in Section 5.2.3, and in particular the creation of the sets De in (5.25)

and R′∆ in (5.38), strictly depends on the composition of the database that contains the

potential targets to identify. For the following analyses, the step sizes used to discretise

the ranges of rotation speeds for the construction of the sets Dk
e , for k = 0, . . . , 9, and

the range of lengths of the blades for the set R′∆, are equal to δω = 2π
100

and δρ = 1,

respectively. These, with 5 possible numbers of blades, lead to M = |De| = 339 and

P ′∆ = |R′∆| = 26.

While the AH-1 Cobra (no. 0), the Mil Mi-2 Hoplite (no. 1), the MD-500E De-

fender (no. 8) and the CH-53 Stallion (no. 9) have a distinctive number of blades,

which also means that the sets Dk
e for k = 0, 1, 8, 9 are disjoint, the other helicopter

models present 4 blades. Looking at the graph in Figure 5.8, that shows on the hor-

izontal axis the range of rotation speeds for each of these targets, it is clear that the

101



Chapter 5 Micro-Doppler Model Based Identification of Helicopters

SA365 Dauphin (no. 6) and the A109 Agusta (no. 7) do not overlap, while the UH-60

Black Hawk (no. 2), the AS332 Super Puma (no. 3) and the Confuser31 (no. 4) overlap

each other, with the latter that also overlaps with the AH-64 Apache (no. 5). This may

4.0 4.5 5.0 5.5 6.0 6.5

5

10

15

2ρ 

ω 

2

4
5
6
7

3

2π 

Figure 5.8: Rotation speeds and blades’ lengths of the helicopter models no. 2, 3, 4, 5,
6 and 7.

lead to ambiguous identifications, that can be only solved by estimating the orientation

of the helicopter and using the length of the blades (vertical axis in Figure 5.8) as dis-

criminative feature.

The composition of the database also affects the minimum sampling frequency and

the observation time that must be used. Taking into consideration the maximum pos-

sible product between rotation speeds and blades’ lengths32, the sampling frequency

is chosen equal to fs = 12 kHz, which satisfies equation (5.22). However, analyses

are also performed when fs is one-fourth of the minimum one, that is 3 kHz. This

choice is driven by the presence of real pulsed radar surveillance systems operating at

L-band with PRF = 3 kHz, such as the AN/SPS-65 [142]. Lastly, it is worth men-

tioning that with this selection of the sampling frequency, all the signals reflected by

the helicopters, except for the Confuser, are likely to experience aliasing. Concerning

the observation time, it must be greater than the distance between two flashes, defined

31Note that, the Confuser is not an actual helicopter model, but it is introduced to increase the proba-
bility of ambiguous identifications.

32Note that, all the possible combinations are considered, not only those presented in the database.
This because both the received signal and the atoms of the dictionary must not present aliasing.
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in equation (2.33), in the worst case. This ensures that at least two flashes are always

visible in the signal to process y (n). For this reason, the observation time is selected

equal to 0.12 s, that leads to N = 0.12/Ts = 1440 samples. Moreover, the duration of

the acquired signal is fixed to 0.60 s, leading to J = 0.60/Ts = 7200 samples.

The performance of the algorithms is evaluated by means of a Monte-Carlo sim-

ulation on varying the SNR on the slow-time signal33. The number of Monte-Carlo

tests is 220 for each target, in the single-target case, or combination of targets, in the

multi-target case. In each iteration the AWGN is randomly generated, as well as the

position and orientation of the targets, their actual rotation speed and initial position of

the blades. The multi-sensor system is designed as follows: T = 5 radar sensors with

angular resolution of 5◦ are equally spaced on a circumference with radius 2500m; the

targets are randomly located within a circumference of radius 12 km, with a minimum

and a maximum altitude of 200m and 3000m, respectively.

5.6.2 Results: Single-Target Identification

A parameter to be specifically set for the single-target algorithm presented in Section

5.4 is ν ∈ (0, 0.5] in equation (5.50), that controls the speed of convergence: the larger

ν, the faster the estimation process. For this analysis it is selected equal to 0.5.

Results are shown in Figure 5.9. Figure 5.9(a) and Figure 5.9(b) show the accuracy

of the algorithm, with a blue solid line, and the percentage of unknowns, with a red

dashed line, for fs = 12 kHz and fs = 3 kHz, respectively. As the SNR increases,

the accuracy increases and the percentage of unknowns decreases. With the higher se-

lection for the sampling frequency, the accuracy reaches 83.91 % for SNR = −10 dB

and it is above 90 % for SNR greater than −5 dB, while the percentage of unknowns

is below 1 %. Slightly worst performance is obtained with fs = 3 kHz, where the

maximum accuracy is 85.68 % and the percentage of unknowns is around 2.5 % for

SNR above −5 dB. Figure 5.9(c) and Figure 5.9(d) show performance in terms of the

figure of merit Υ ∈ [0,∞), already introduced in Section 4.3. Specifically, it is used

to demonstrate the effectiveness of the algorithm in estimating the factor ∆, and thus

33The slow-time signal may be the received signal in a CW radar system, or the slow-time signal after
compression in a pulsed radar system.
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(a) Accuracy and unknowns, fs = 12 kHz. (b) Accuracy and unknowns, fs = 3 kHz.

(c) Figure of merit Υ, fs = 12 kHz. (d) Figure of merit Υ, fs = 3 kHz.

Figure 5.9: Performance in terms of (a), (b) identification accuracy, unknowns and (c),
(d) figure of merit Υ for the single-target algorithm on varying the SNR and for two
values of the sampling frequency.

retrieving the length of the helicopter’s blades. The figures depict Υ on varying the

SNR, as well as Υ2,3, Υ2,4 and Υ3,4. These are computed while considering targets 2

and 3, targets 2 and 4, and targets 3 and 4 as one, respectively for Υ2,3, Υ2,4 and Υ3,4.

Figure 5.9(c) refers to the case when fs = 12 kHz, and shows that Υ2,4 and Υ3,4 are

very close to Υ. This means that the Confuser is unlikely to be confused with both the

AS332 Super Puma and the UH-60 Black Hawk. Since they have the same number

of blades and their rotation speed ranges overlap, as already shown in Figure 5.8, the

discriminative feature used for the identification is the length of their blades, which,

in turn, validates the data fusion approach employed for the estimation of ∆. On the

other hand, Υ2,3 is much larger than Υ, which means that the AS332 Super Puma and

the UH-60 Black Hawk are likely to be confused. However, this is expected since, in

addition to the number of blades and the rotation speeds, the lengths of their blades are

very similar too. Lastly, Figure 5.9(d) shows the same trend of Υ2,3, Υ2,4 and Υ3,4 with

respect to Υ when fs = 3 kHz, even if Υ3,4 is further from Υ than before, and this is

probably because the Confuser and the AS332 Super Puma have more similar rotation
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speeds than the Confuser and the UH-60 Black Hawk.

For completeness, an example of confusion matrix is shown in Table 5.2, for

SNR = 0 dB and fs = 12 kHz. In this case, Υ = 10.11, while Υ2,3 = 20.15,

Table 5.2: Confusion matrix (%) obtained with the single-target algorithm, for SNR =
0 dB and fs = 12 kHz.

0 1 2 3 4 5 6 7 8 9 Unk.

0 98.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8

1 0.0 99.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

2 0.0 0.0 93.1 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.5

3 0.0 0.0 36.4 60.4 3.2 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.5 2.7 96.8 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0

6 0.0 10.9 0.0 0.0 0.0 0.0 86.8 0.0 0.0 0.0 2.3

7 0.0 21.4 0.0 0.0 0.0 0.0 0.0 77.2 0.0 0.0 1.4

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.5 0.0 0.5

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.2 1.8

Υ2,4 = 10.17 and Υ3,4 = 10.89. From the confusion matrix, it can also be appreciated

that targets 6 and 7 are sometimes confused with target 1, but not vice-versa. This

because the algorithm is able to pick the characteristic odd number of blades of the

target 1, namely the Mil Mi-2 Hoplite. On the other side, a helicopter with an even

number of blades may be confused with one with an odd number of blades if they have

a similar periodicity, and this happens for targets 6 and 7, namely SA365 Dauphin and

A109 Agusta.

5.6.3 Results: Multi-Target Identification

In addition to ν, equal to 0.25, other parameters that need to be set for the multi-target

algorithm are H , ι, ε and κ. H is the maximum number of local maxima selected

during the synchronisation stage, and it is set to 20. The thresholds ι and ε control the

generation of the subsets Hf and H
g
f in (5.81) and (5.85), respectively, and are chosen

equal to ι = 0.25 and ε = 0.10. Finally, κ in (5.88) governs the pruning of the matrix

Ỹ in the same way in which ν controls the pruning of the dictionary, and it is selected

equal to 0.50.

In order to test the effectiveness of the algorithm in estimating both the correct
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number of helicopters and their model, three scenarios have been considered. In the

first one, only one target is supposed to be in the scene, while in the other two scenarios,

either two or three helicopters are supposed to fly in formation. As for the single-target

algorithm, results obtained with two different values of the sampling frequency are

compared.

Figure 5.10 shows the results obtained for the first analysis, in which one target

is assumed to be in the region of interest. The top graphs, Figure 5.10(a) and Figure

(a) Detection and false alarm, fs = 12 kHz. (b) Detection and false alarm, fs = 3 kHz

(c) Accuracy and unknowns, fs = 12 kHz (d) Accuracy and unknowns, fs = 3 kHz

(e) Figure of merit Υ, fs = 12 kHz (f) Figure of merit Υ, fs = 3 kHz

Figure 5.10: Performance in terms of (a), (b) detection rate, false alarm rate, (c), (d)
identification accuracy, unknowns and (e), (f) figure of merit Υ for the multi-target
algorithm tested on the presence of one target on the scene, on varying the SNR and
for two values of the sampling frequency.
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5.10(b), show the detection rate and the false alarm rate. The former is the ratio of the

number of Monte-Carlo tests in which the number of helicopters has been correctly

estimated to the total number of tests, that is:

Rdet =
#Monte− Carlo Tests | S = S

#Monte− Carlo Tests
(5.102)

The latter is the ratio of the number of Monte-Carlo tests in which the number of

helicopters has been overestimated to the total number of tests, namely:

Rfa =
#Monte− Carlo Tests | S > S

#Monte− Carlo Tests
(5.103)

Note that, at least one helicopter is always detected, which means that for this analysis

Rdet + Rfa = 1. The rate of detection for fs = 12 kHz is close to 1 across all the

values of SNR. When fs = 3 kHz, instead, it slightly decreases between −10 dB and

0 dB. This is due to the fact that, during the synchronisation stage, even if no peaks are

above the threshold defined in equation (5.42), at least one target is always detected and

identified as unknown; from this, the high percentage of unknowns in Figure 5.10(d).

As the SNR increases, more peaks are selected in the synchronisation stage, and this

lead to an increase of the false alarm rate and, consequently, to a reduction of the

detection rate. Figure 5.10(c) and Figure 5.10(d) show accuracy and percentage of

unknowns on varying the SNR, for the two choices of sampling frequency. Note that

these quantities are conditional to the correct estimation of the number of targets, which

means that, in order to get the overall accuracy and overall percentage of unknowns,

they must be multiplied by Rdet. Maximum accuracy is about 90 % for fs = 12 kHz

and above 80 % for fs = 3 kHz, in agreement with the results obtained with the single-

target algorithm. Finally, Figure 5.10(e) and Figure 5.10(f) show the figure of merit

Υ, and its related quantities Υ2,3, Υ2,4 and Υ3,4. As for the single-target algorithm, the

sensitive difference between Υ2,3 and Υ, and, in the same time, the strong correlation

between Υ2,4, Υ3,4 and Υ, demonstrates the goodness of of the fusion approach used

for the estimation of ∆ and, consequently, of the length of the blades.

During the second analysis, two helicopters are supposed to fly in formation, that

is their returns are superimposed. They could be either the same or different models.
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(a) fs = 12 kHz. (b) fs = 3 kHz.

(c) fs = 12 kHz. (d) fs = 3 kHz.

Figure 5.11: Performance in terms of (a), (b) detection rate, false alarm rate, (c), (d)
identification accuracy and unknowns for the multi-target algorithm tested on the pres-
ence of two targets on the scene, on varying the SNR and for two values of the sampling
frequency.

Figure 5.11 shows the results. Top graphs, Figure 5.11(a) and Figure 5.11(b), show the

detection and false alarm rates, which satisfy the condition Rdet + Rfa + Rmiss = 1,

where Rmiss is the rate of missing, that is the ratio of the number of Monte-Carlo tests

in which the number of helicopters has been underestimated to the total number of

tests. The rate of detection is above 0.80 for values of the SNR greater than 0 dB for

both fs = 12 kHz and fs = 3 kHz, while the false alarm rate is always below 0.01

and 0.06, respectively. The other two diagrams, Figure 5.11(c) and Figure 5.11(d),

show the percentage of unknowns and the accuracy in correctly identifying both the

helicopters or at least one of them. For fs = 12 kHz and for SNR above 10 dB,

the two accuracies are 77 % and 98 %, respectively, which in absolute terms (that is,

multiplying them for the rate of detection) become 69 % and 88 %. In the same range

of noise level, but when the lower sampling frequency is used, the accuracies reduces

to 59 % and 94 %, which in absolute terms are 50 % and 80 %. In terms of percentage

of unknowns, when the SNR is above 0 dB, it is approximately 2, 4 % and 6.8 % for
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(a) fs = 12 kHz. (b) fs = 3 kHz.

(c) fs = 12 kHz. (d) fs = 3 kHz.

Figure 5.12: Performance in terms of (a), (b) detection rate, false alarm rate, (c), (d)
identification accuracy and unknowns for the multi-target algorithm tested on the pres-
ence of three targets on the scene, on varying the SNR and for two values of the sam-
pling frequency.

fs = 12 kHz and fs = 3 kHz, respectively.

Lastly, the same analysis is also performed while assuming that three helicopters

are flying in formation. Results are shown in terms of detection and false alarm rate

in Figure 5.12(a) and Figure 5.12(b), for fs = 12 kHz and fs = 3 kHz, respectively.

Detection rates are lower with respect to the previous analyses, reaching a maximum of

0.74 and 0.67, for the highest and the lowest sampling frequency, while the false alarm

rate is below 0.004 and 0.05, respectively. Moreover, when 3 targets are estimated, in

the 99 % of the cases and for SNR greater than 5 dB, at least one of them is correctly

identified. This percentage reduces to 90 % and 58 % when identifying at least 2, or

all the 3 targets, respectively, as shown in Figure 5.12(c) for fs = 12 kHz. These

percentages are equivalent to 67 %, 61 % and 40 % in terms of absolute accuracy. When

fs = 3 kHz, the relative accuracy decreases to 96 %, 68 % and 26 % as shown in Figure

5.12(d), which, in absolute terms is equivalent to 64 %, 46 % and 17 %. Furthermore,

the percentage of unknowns is much higher in this last evaluated scenario, being of
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about 5 % and 17 % for SNR above 5 dB and for fs = 12 kHz and fs = 3 kHz,

respectively.

5.7 Performance Evaluation on Real Data

The validity of the algorithms is proved on real data. The dataset is a collection of

signals acquired in an anechoic chamber with a 24GHz CW radar and scattered from

a two-bladed helicopter scale model GAUI X3, whose main rotor is made to rotate at

three different speeds in order to simulate as many targets H1, H2 and H3. The actual

values of the speed are not available, hence they are evaluated by inspection of the time

domain signals and the obtained values are shown in Table 5.3, along with the standard

deviations of the estimates. The GAUI X3’s main blade length is 36 cm, which cor-

Table 5.3: Helicopters’ Parameters - Real Data

Target Average Speed (ω̃/2π) Standard Deviation

H1 8.58 rps 0.13

H2 9.85 rps 0.18

H3 11.41 rps 0.34

responds to a full-size helicopter with blade length of about 660 cm in a real scenario

with an L-band radar. However, the availability of signals recorded from only one tar-

get, does not allow to validate the multi-sensor fusion framework, since no diversity is

available in terms of length of the blades.

Four acquisitions are made for each speed, at four different aspect angles βL =

0◦, 15◦, 30◦, 45◦34. From each signal, whose total length is approximately 40 seconds,

90 segments of 0.40 seconds are extracted, filtered to remove the stationary clutter, and

downsampled with a factor of 2 in order to match the sampling frequency of 11 kHz.

Considering that the observation time is selected equal to 0.25 s, N = 2750 samples.

Both the single-target and the multi-target algorithms are tested, even if the latter

is only evaluated in presence of single helicopters to assess the accuracy in estimating

the number of targets. The dictionary is built assuming that the actual rotation speeds

34The pitch angle π/2− βH is zero.

110



Chapter 5 Micro-Doppler Model Based Identification of Helicopters

can vary within a range of three times the standard deviation of the estimates. More-

over, six confusers are introduced, having the same rotation speeds shown in Table 5.3,

with either 3 or 4 blades. All the parameters are set as for the analysis performed on

simulated data.

The results for the single-target algorithm are summarised in Table 5.4, for each

target and on varying the aspect angle. The overall accuracy is above 95 %, and the

Table 5.4: Real data performance evaluation. Single-target algorithm, accuracy (%).

Target
Aspect Angle (βL)

0◦ 15◦ 30◦ 45◦

H1 85.6 100 96.7 100

H2 98.9 100 100 100

H3 67.8 100 97.8 97.8

worst performance is obtained with signals acquired with aspect angle βL = 0◦. This

is probably due to the small RCS of the blades in this geometry.

Table 5.5 and Table 5.6 show the results for the multi-target algorithm, in terms

of detection rate and percentage of accuracy, respectively. The detection rate is above

0.90 in all the analysed case, while the overall accuracy is of about 96.7 %.

Table 5.5: Real data performance evaluation. Multi-target algorithm, detection rate.

Target
Aspect Angle (βL)

0◦ 15◦ 30◦ 45◦

H1 0.94 0.89 0.89 0.89

H2 0.82 0.85 0.86 0.97

H3 0.92 0.94 0.90 1.00

Table 5.6: Real data performance evaluation. Multi-target algorithm, accuracy (%).

Target
Aspect Angle (βL)

0◦ 15◦ 30◦ 45◦

H1 83.8 100 98.4 100

H2 98.3 100 100 100

H3 81.8 100 100 98.6
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5.8 Conclusion

A micro-Doppler (mD) model-based algorithm for identification of helicopters was

presented in this Chapter, which used a parametric sparse representation of the re-

ceived signal from the helicopter’s rotor in combination with a modified version of a

greedy sparse recovery framework, namely the Pruned Orthogonal Matching Pursuit

(POMP), to estimate the mD parameters of the target and perform the identification.

The algorithm, developed in Section 5.4 for the identification of single-targets and in

Section 5.5 for multiple targets, is independent of both the orientation of the aircraft

and the initial offset of the blades. Moreover, an information fusion approach was de-

veloped with the objective of merging the identification outputs coming from multiple

sensors. This allowed to enhance the identification by exploiting the information on

the length of the blades, otherwise unused because strongly related on the aspect an-

gle.

Both the variants of the algorithm were tested on simulated data in Section 5.6,

on varying the level noise and for high and low Pulse Repetition Frequency (PRF),

or sampling frequency fs, namely 12 kHz and 3 kHz respectively. Results on the

single-target algorithm showed that, even at low Signal-to-Noise Ratios (SNRs), for

example −10 dB, the estimate was accurate at 85 % and 75 %, with high and low PRF

respectively, achieving a maximum of 92 % and 85 % at higher SNRs. When using the

multi-target algorithm and two helicopters were flying in formation, the rate of detec-

tion was about 0.85 at SNR = 0 dB for both fs = 12 kHz and fs = 3 kHz, with

accuracy in identifying 2 out of 2 targets of 70 % and 50 % in the two cases; at least

one target was correctly identified with an accuracy above 90 %.

In Section 5.7 the performance analysis was extended to data acquired in a con-

trolled environment emulating a real scenario with the presence of one target. Results

on both the single-target and the multi-target algorithm validated the concept, with an

overall accuracy of 95 % for the first one, and a detection rate of 0.90 and accuracy of

96.7 %, for the second one.
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Chapter 6

FrFT Based CoRadar System

6.1 Introduction

In Chapter 4 and Chapter 5 two Automatic Target Recognition (ATR) algorithms were

presented, for the classification of civilian and military vehicles from Synthetic Aper-

ture Radar (SAR) images and for the identification of helicopters through the exploita-

tion of their characteristic micro-Doppler (mD) signatures, respectively. Both these

algorithms could exploit the advantage of working in a network of radars spatially dis-

tributed, that see the target under test from different aspect angles. This diversity was

used to enhance the classification performance, provided that the sensors could share

their information within the network or with a global fusion centre.

In scenarios like the one described above, dual function radar systems that sense

the environment while sending data to one or multiple cooperative systems would be

suitable. In Chapter 3, some of the most recent technologies enabling spectrum shar-

ing between communication and radar systems were reviewed, with particular focus on

Communicating-Radar (CoRadar) systems (Section 3.3.2), able of embedding data in

the transmitted signal while maintaining good radar performance, with the advantage

of using the same bandwidth, power and hardware already allocated for the radar task.

In this Chapter a novel waveform design framework for CoRadar systems, based on

the Fractional Fourier Transform (FrFT) described in Section 3.4, is presented. The

framework is highly flexible, since it easily adapts to the bandwidth and pulse length

allocated to meet the radar requirements, and to the conditions of the channel. There-
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fore, depending on the application, the maximum detectable range can vary from few

to hundreds of km, while the data rate can be as high as few Mb/s at medium-long

distances. Moreover, unlike other approaches, it does not require a phased array an-

tenna, thus not limiting the scope of application.

The remainder of the Chapter is organised as follows. Section 6.2 introduces the

proposed waveform design framework, while three optimisation procedures are de-

scribed in Section 6.3. Section 6.4 presents the implementation of the FrFT CoRadar

system on a Software Defined Radio (SDR) device, while radar and communication

performance are reported in Section 6.5, both on simulated and real data. Finally, Sec-

tion 6.6 reports some practical challenges to address, providing direction for further

developments.

6.2 Waveform Design

The proposed CoRadar waveform design framework is a multiplexing scheme that uses

the FrFT to map the In-phase and Quadrature (IQ) symbols of a selected modulation

scheme to different chirp, or LFM, sub-carriers with different time-frequency rates. On

transmission the radar is in charge of generating the waveform that embeds the data,

while on reception it performs common operations such as matched or mismatched

filtering (whose impulse response may change pulse-to-pulse), detection, Doppler pro-

cessing, etc. The co-operative communication system that receives the sequence of

FrFT CoRadar pulses demodulates them and extracts the embedded information. In

the following sections, the novel method of information embedding and extraction is

presented. Moreover, a pilot waveform is designed aimed at synchronising the pulse

and compensating its phase offset at the receiver side.

6.2.1 Information Embedding

The waveform design framework is shown in Figure 6.1. The bits to be embedded

in the FrFT CoRadar pulse are divided into C − 1 segments of Nb bits each by the

serial-to-parallel (S/P) block, where C is the number of chirp sub-carriers to use. The

0-th order sub-carrier is not used to carry information bits. It accommodates a pilot
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Figure 6.1: Block diagram of the radar transmitter of the FrFT CoRadar system in
charge of the waveform generation.

waveform instead, used at the communication receiver for synchronisation and phase

compensation. Since each pulse contains Nb × (C − 1) information bits, the final bit

rate is Nb × (C − 1)× PRF bit per seconds.

In each segment, Gb guard bits are added at the end of the sequence in order to

compensate the group delay introduced by the Root Raised Cosine (RRC) filter. Subse-

quently an Error Correcting Code (ECC) is applied, identified by the couple (b out, b in).

It assigns to each group of b in bits, called dataword, a sequence of b out bits, a code-

word, with the aim of detection and correction of errors. The codeword is selected to

be an Lb-long Barker code35, hence b out = Lb, while b in is chosen equal to 1. There-

fore, the employed coding technique effectively consists of a repetition ECC and leads

to a coded sequence of (Nb +Gb)× Lb bits. This channel coding technique is able to

correct up to bLb/2c errors per codeword.

An interleaver may be used to mitigate the Inter-Carrier Interference (ICI). This

solution is discussed in more detail later in Section 6.3.1.

The digital modulator maps a series of BS bits to one of the MS = 2BS possible

complex symbols belonging to the chosen modulation scheme (i.e. QAM, PSK), lead-

ing to a (Nb +Gb) × Lb/BS long symbol sequence. The modulation scheme and the

cardinality of its alphabet, MS , can be adaptively chosen according to the conditions

of the channel.

The RRC filter is used to minimise the Inter-Symbol Interference (ISI) that may

35The Barker code is selected for its good autocorrelation properties. However any other sequence
with similar properties can be used, and even other ECC techniques can be employed.
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be caused by the channel. For efficiency, it is implemented as a multirate filter that

up-samples the output by a factor Ru, leading to a final sequence of N = (Nb +Gb)×

Lb ×Ru/BS samples.

The C − 1 sub-waveforms obtained after the RRC filter are then mapped to differ-

ent chirp sub-carriers uniformly spaced in the time-frequency domain. Note that the

FrFT is periodic in φ with period 2π, however rotations of φ and φ+π produce signals

that overlap in the time-frequency plane, as demonstrated by equation (3.4). For this

reason, only angles in the range [0, π) are considered, which, through equation (3.2),

leads to α ∈ [0, 2). Thus, the uniformly spaced sub-carriers are obtained by choosing

the i-th fractional order to be equal to αi = iᾱ, i = 1, . . . , C − 1, where ᾱ =
2

C
. The

waveform is then obtained by superimposing the chirp modulated sub-waveforms and

the pilot waveform; before sending it to the RF front-end, its mean is removed and the

power is normalised such that all the transmitted pulses present the same power.

The spectrogram of a FrFT CoRadar waveform with relatively few sub-carriers

(C = 7) is shown in Figure 6.2 for clarity, although in practice the spectrogram could

appear more crowded. Each sub-carrier (except for the 0-th order sub-carrier that ac-

Figure 6.2: Spectrogram of a FrFT CoRadar waveform with 7 sub-carriers.

commodates the pilot waveform) is the rotation by a specific angle, driven by the order

of the FrFT, of a phase modulated signal (i.e. PSK). The time axis is normalised to the

length of the pulse, τ , while the frequency axis is normalised to its bandwidth:

Bw =
N

τ
=

(Nb +Gb)× Lb ×Ru

τBS

(6.1)
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6.2.2 Pilot Waveform

As mentioned before, the pilot waveform embedded in the 0-th order sub-carrier is used

for both synchronisation and phase estimation and compensation at the communication

receiver. The synchronisation is necessary since the pulse could fall anywhere within a

PRI due, for example, to the transmitter-receiver distance, and the alignment with the

signal on a sample basis is needed to perform the Inverse FrFT (IFrFT). Moreover, the

phase offset introduced by the channel has also to be compensated in order to ensure

the correct demodulation of the data.

The selected pilot waveform is a bi-phase coded signal run by a Coarse/Acquisition

(C/A) code [143] given by:

p (n) = ejπ(a(n)− 1
4) (6.2)

where a (n) is the selected C/A code properly up-sampled and truncated to match the

length, in samples, of the FrFT CoRadar waveform. Figure 6.3(a) shows the autocor-

relation of the pilot waveform, which, due to its narrow main lobe and low side lobes,

is suitable for the detection and synchronisation of the pulses. The phase estimation

and compensation is performed pulse-to-pulse by evaluating the phase of the autocor-

relation’s peak. Figure 6.3(b) shows how its complex value changes on varying the

phase offset. In particular, when the offset is zero the real part reaches its maximum,

(a) Pilot’s autocorrelation. (b) Peak of the pilot’s autocorrelation.

Figure 6.3: Pilot waveform’s (a) autocorrelation and (b) its peak’s complex value on
varying the phase offset.
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while the imaginary part is zero. Hence, at the communication receiver, once the peak

of the autocorrelation is detected by matched filtering the received signal with the pilot

waveform, the phase offset can be firstly estimated by evaluating the phase of such

correlation peak, and then compensated accordingly.

6.2.3 Data Extraction

The block diagram of the Communication Receiver of the FrFT CoRadar system is

shown in Figure 6.4. Once the synchronisation and the phase compensation are per-

S/P IFrFT αi RRC Filter

Digital 
Demodulator

Channel 
Decoding

P/S

from RF

Demodulated 
Data

Bits
(0,1)

Syms
(IQ)

Nb(Nb + Gb) x Lb

(Nb + Gb) x Lb

BS

(Nb + Gb) x Lb x Ru

BS

Sub-waveforms

Deinterleaver

Pulse Sync.
Phase 

Compensation

Guard 
Remover

Nb + Gb

...

...

Figure 6.4: Block diagram of the communication receiver of the FrFT CoRadar system,
whose task is the demodulation of the received pulses.

formed as explained above by exploiting the pilot waveform, the pulse can be de-

modulated. The S/P block splits and redirects the acquired signal, whose length is

(Nb +Gb)×Lb×Ru/BS samples, to C − 1 different IFrFT blocks. Each sequence is

then input of the RRC filter, which also down-samples the sub-waveform by a factor

Ru. The digital demodulator translates the (Nb +Gb)×Lb/BS long sequence of sym-

bols in a sequence of (Nb +Gb)× Lb bits, according to the modulation employed. At

this point, a de-interleaver may be placed which performs the inverse operation of the

interleaver. The channel decoding block correlates the input coded sequence with the

Lb-long Barker chip code used in transmission to extract the Nb bits of information,

exploiting both the low correlation side lobes and the knowledge that the peaks of the

correlation occur every Lb samples. Finally, the guard remover and the P/S blocks re-

construct the original stream by combining the Nb-long bit sequences coming from the

C − 1 different parallel branches.
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6.3 Waveform Optimisation

In this section three waveform optimisation procedures are described. The introduction

of either a guard time or an interleaver has the objective of minimising the ICI, caused

by the overlap of the chirp sub-carriers. Then, for both these methods, a parameters se-

lection process is presented that maximises the data rate while fixing some parameters

that meet the radar requirements. Finally, the adaptive duration of the sub-waveforms

that aims to efficiently occupy the available bandwidth is introduced.

6.3.1 ICI Mitigation

Due to the nature of chirps, when more sub-carriers are superimposed there is an over-

lapping area with centre at the zero frequency and half duration of the pulse that pro-

duces ICI. This effect is clear in Figure 6.2, and needs to be mitigated in order to guar-

antee a reliable communication channel. In this section two ICI mitigation approaches

are proposed for the developed waveform design, namely guard time and interleaver.

6.3.1.1 Guard Time

In order to avoid data loss, the time-frequency region affected by ICI is not used for the

transmission of bits of information but carries guard bits instead. This can be achieved

by slightly modifying the guard adder block in Figure 6.1, such that it adds both G′′b

bits in the middle of the sequence to mitigate the ICI and G′b bits at the end in order to

compensate the group delay introduced by the RRC filter, leading to an overall guard

band width of Gb = G′b + G′′b . The ICI guard band width in normalised time unit,

called τguard, is defined as:

τguard = νguardQ (6.3)

where νguard ∈ [0, 1] and Q is a measure of the sub-carriers overlap, graphically repre-

sented by the diameter of the red circle in Figure 6.5. The value of Q depends on the

inter-carrier separation angle ψ = φi+1− φi = π/C, ∀i = 0, . . . , C − 2, with φi be the
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Figure 6.5: Waveform optimisation: representation of the region affected by Inter-
Carrier Interference (ICI).

rotation angle of the i-th chirp sub-carrier, and it is equal to:

Q =
Bw,sub

Bw

csc
( π

2C

)
(6.4)

where Bw,sub is the bandwidth of each sub-waveform:

Bw,sub =
(Nb +G′b +G′′b )Lb

τBS

(β + 1) (6.5)

and β is the RRC roll-off coefficient. The guard time τguard finally translates to a guard

band width of G′′b bits given by:

G′′b =

⌊
(Nb +G′b)

τguard

1− τguard

⌋
=

⌊
(Nb +G′b)

νguardQ

1− νguardQ

⌋
(6.6)

6.3.1.2 Interleaver

The second approach to mitigate the ICI is the use of an interleaver. As shown in

Figure 6.5, the interference is localised around the centre of rotation of the waveform.

This means that it generates a burst of errors, affecting a small group of bits that can

be dealt with the use of a suitable interleaving technique.

An interleaver/de-interleaver pair placed before the digital modulator in transmis-

sion and after the digital demodulator in reception (Figure 6.1 and Figure 6.4, respec-

tively), and applied only to the Nb bits of information, spreads the burst errors across
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the entire sequence. Figure 6.6 shows, with an example, the operation of a basic in-

terleaver, implemented as a matrix filled by rows and emptied by columns [144], and

how it is used to mitigate the ICI. Let [a, b, c, d, e] be the sequence of Nb = 5 bits, or

a b c d e

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 e1 e2 e3

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 e1 e2 e3

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

e1 e2 e3

a1 b1 c1 d1 e1 a2 b2 c2 d2 e2 a3 b3 c3 d3 e3

a1 b1 c1 d1 e1 a2 b2 c2 d2 e2 a3 b3 c3 d3 e3

Datawords i-th Sub-Carrier 

Codewords i-th Sub-Carrier (Output Channel Coding) 

Interleaver i-th 
Sub-Carrier 

No Interleaver Interleaver

Output of the Interleaver i-th Sub-Carrier 

Effect of the Overlap

Nb = 5

Lb = 3

Filled by Rows
Emptied by Columns

Figure 6.6: Operating principle of the interleaver as Inter-Carrier Interference (ICI)
mitigation approach.

datawords, that is carried by the i-th sub-carrier. After the application of the channel

code, each dataword is replaced by a codeword of length Lb = 3 as explained above.

When combining the different sub-waveforms, the effect of the overlap is to corrupt

few or all the bits of some codewords: in the example shown, when no interleaver is

used the corrupted bits are [b3, c1, c2, c3, d1]. Since the employed channel coding tech-

nique is able to correct up to bLb/2c = b3/2c = 1 error per codeword, the dataword c

cannot be reconstructed. The interleaver is used to deterministically scramble the bits

of the codewords: when it is employed as shown in the example, the corrupted bits

are [a2, b2, c2, d2, e2]. Each codeword has one corrupted bit, that can be detected and

corrected at the communication receiver during the channel decoding.
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6.3.2 Parameters Selection

The parameters of the proposed FrFT CoRadar system that may and must properly be

set are several and tightly cross related. For example, in order to increase the data rate

per pulse, either the number of bits per sub-carrier, Nb, or the number of sub-carriers,

C, needs to be increased. In the former case, this will lead to a larger bandwidth oc-

cupancy or a longer pulse width, from equation (6.1), while in the second case it will

enlarge the overlapping area, as shown in equation (6.4), with consequences on the

selection of G′′b and Lb in order to keep the quality of the transmission, depending on

the ICI mitigation approach used.

In this section two procedures for the selection of the parameters are presented,

with the assumption that the radar task is prioritised with respect to the communication

one. For this reason the following discussion starts from the pulse’s bandwidth, Bw,

and length, τ , that account for some radar requirements such as range and Doppler res-

olution and minimum detectable range, and aims to derive the number of sub-carriers,

C, of bits per sub-carriers, Nb, and the up-sampling factor, Ru, in order to maximise

the bit rate while fixing the number of bits per symbol, BS , the length of the Barker

code, Lb, and the number of guard bits, G′b, due to the design of the RRC filter. The

process differs depending on the ICI mitigation technique used.

6.3.2.1 Guard Time

The number of samples per waveform, N , is bounded by the time-bandwidth product

as follows (see equation (6.1)):

Bw × τ ≥
Nb +G′b +G′′b

BS

LbRu =
Nb +G′b

(1− νguardQ)BS

LbRu (6.7)

where the last analytical step is given by equation (6.6). By rewriting Q in (6.4) by

means of (6.1) and (6.5) as:

Q =
β + 1

Ru

csc
( π

2C

)
(6.8)
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and substituting (6.8) into (6.7), a second degree inequality in Ru can be obtained,

such that Ru,min ≤ Ru ≤ Ru,max, which admits real solutions only if the following

condition is met:

C (Nb) ≤
π

2

1

sin−1

(
4(Nb+G′b)Lbνguard(β+1)

BSτBw

) (6.9)

where the dependency of C from Nb is highlighted for clarity. Since the greater the

number of sub-carriers, the higher the data rate, C (Nb) is fixed as:

C (Nb) =

π2 1

sin−1

(
4(Nb+G′b)Lbνguard(β+1)

BSτBw

)
 (6.10)

Thus the parameters selection can be achieved by following this iterative procedure:

( 1 ) Find Nb such that:

max
Nb

Nb (C (Nb)− 1) s.t. Nb ∈ N (6.11)

while fixing νguard.

( 2 ) Choose the maximum value of Ru within its range of solutions from the second

degree inequality, that is:

Ru = bRu,maxc (6.12)

subject to:
(Nb +G′b +G′′b (Ru))Lb

BS

∈ N (6.13)

where the dependency of G′′b from Ru comes from equations (6.6) and (6.8).

This condition guarantees that the number of symbols after the digital modulator

is integer.

If the last step has no solution, the procedure is repeated by excluding the previous

found solutions for Nb.
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6.3.2.2 Interleaver

When an interleaver is used as ICI mitigation approach, the application of the bound

of the number of samples leads to a first degree inequality as follows:

Ru (Nb) ≤
BwτBS

(Nb +G′b)Lb
⇒ Ru (Nb) =

⌊
BwτBS

(Nb +G′b)Lb

⌋
(6.14)

where, again, the dependency from Nb is highlighted for clarity. Moreover, by forcing

the overlap degree, Q, to be less than a threshold, χ, the following constraint on the

number of sub-carriers can be obtained:

C (Nb) ≤
π

2

1

sin−1
(

β+1
Ru(Nb)χ

)
⇒ C (Nb) =

π
2

1

sin−1
(

β+1
Ru(Nb)χ

)
 (6.15)

Thus Nb can be found by solving the following problem:

max
Nb

Nb (C (Nb)− 1) s.t.
Nb +G′b
BS

Lb ∈ N (6.16)

As before, the condition guarantees that the number of symbols is integer.

6.3.3 Sub-waveform Adaptive Duration

As shown in Figure 6.2, the FrFT CoRadar pulse does not occupy the entire available

bandwidth since it is clearly enclosed in a circle of radius 0.5 in normalised units. In

order to maximise the bandwidth occupancy, it is possible to consider sub-waveforms

with different time durations depending on the fractional order. This also leads to an

increase of the bit rate with no effect on the BER, at cost of a slightly higher design

complexity.

An example of a longer sub-waveform is shown in Figure 6.7: it has a rotation angle

of φi = π/4 and a bandwidth Bw,sub. The fraction of additional time with respect to
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Figure 6.7: Waveform optimisation: representation of sub-waveforms with different
duration on varying the fractional order.

the duration of the pulse, τplusi , is:

τplusi =
τi − τ

2τ
(6.17)

where τi is the duration of the i-th sub-waveform given by:

τi =


τ

|cos (φi)|
φi ∈

[
0,
π

4

)
∪
[

3π

4
, π

)
τ

|sin (φi)|
φi ∈

[
π

4
,
3π

4

) (6.18)

i = 1, . . . , C − 1. Thus, the number of bits that the longer i-th sub-waveform can

accommodate is given by:

Nbi =

⌊
τiBw

LbRu

BS

⌋
−Gb s.t.

(Nbi +Gb)× Lb
BS

∈ N (6.19)

Equation (3.2) shows a linear relationship between the fractional order α and the rota-

tion angle φ. When sub-waveforms with different durations are considered, this equa-

tion becomes nonlinear and can be written as (see Appendix A):
αi =

2

π
tan−1 [(1 + 2τplusi) tanφi] φi ∈ [0, π/2)

αi = 1 φi = π/2

αi =
2

π
tan−1 [(1 + 2τplusi) tan (φi − π)] + 2 φi ∈ (π/2, π]

(6.20)
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An example of spectrograms of a FrFT CoRadar waveform (a) without and (b) with

adaptive duration is shown in Figure 6.8. The red circle indicates the time-frequency

region occupied by the pulse when no optimisation is applied. In terms of bit rate, the

adaptive duration optimisation leads to an improvement of about 10%.

(a) No adaptive duration. (b) With adaptive duration.

Figure 6.8: Spectrograms of a FrFT CoRadar waveform (a) without and (b) with adap-
tive duration.

6.4 Implementation on SDR

The prototype of the proposed FrFT CoRadar system consists of a mono-static radar

that generates the FrFT waveforms, sends the pulses and performs basic radar tasks,

and a separate communication receiver that demodulates the pulses. The entire system

is implemented by means of a SDR device, namely the National Instruments Univer-

sal Software Radio Peripheral (NI-USRP) 2943r shown in Figure 6.9(a). It has four

(a) NI-USRP 2943r. (b) Octave horn antenna.

Figure 6.9: Demonstrator of the FrFT CoRadar system: (a) NI-USRP 2943r and (b) an
octave horn antenna by A-Info.
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Figure 6.10: High-level block diagram of the FrFT CoRadar system’s implementation
in LabVIEW.

IQ channels, two receivers and two transmitters/receivers, and its working frequency

ranges between 1.2GHz and 6.6GHz. It is provided with a fully programmable Xil-

inx Kintex-7 FPGA (Field-Programmable Gate Array) and can be connected to a host

computer through a high-speed, low-latency PCI Express x4 (∼800MB/s). It is used

with three wideband LB-2678-15 multi octave horn antennas produced by A-Info,

shown in Figure 6.9(b), two for the mono-static radar node and one for the communi-

cation receiver.

The USRP 2943r is programmed through NI software LabVIEW, and its high-level

block diagram is shown in Figure 6.10. Within the loop that repeats every PRI, the

FrFT CoRadar waveform is generated as described in the previous sections36 and sent

36Note that the interleaver is selected as ICI mitigation technique.
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to the FPGA. The latter up-samples the signal in transmission to meet the 120MHz

data clock frequency of the device and interfaces with the RF front-end. Meanwhile,

the received signal, down-sampled and coming from the FPGA, is sent both to a MAT-

LAB session for the real-time pulse demodulation and to a matched filter with the

transmitted pulse for further radar processing. Specifically, a real-time spectrogram is

computed, showing the results of the radar Doppler processing. This choice is driven

by the limited power and bandwidth resources of the employed SDR device, which are

not sufficient for more advanced radar operations. Outside the loop, the message to be

sent is loaded and all the preliminary steps are performed.

The prototype is highly flexible, since all the parameters described in Section 6.2

can be set, and demonstrates the feasibility of the proposed waveform design frame-

work. However, it suffers from the computation complexity of the discrete FrFT, lim-

iting the PRF and allowing to generate only waveforms with few sub-carriers.

6.5 Performance Analysis

In this section the radar and communication performance of the FrFT CoRadar wave-

form design framework are evaluated and compared with those obtained with OFDM

waveforms, since, as previously showed in Section 3.3.2.2, they are already used in

radars and CoRadar systems. Note that, traditional radar processing (matched filter-

ing) is performed on both FrFT and OFDM waveforms. Hence, the technique for

OFDM side lobe suppression reviewed in Section 3.3.2.2 is not used in this analysis,

since it has the drawback of introducing periodicity, therefore ambiguities, in the range

profile. Moreover, a link budget analysis is performed to demonstrate the feasibility of

the proposed FrFT waveform design method for CoRadar system. Finally, the system

is validated evaluating the performance on laboratory acquired signals.

The OFDM waveforms are generated by using the framework shown in Figure 6.1,

where the FrFT block is replaced by an OFDM block, which maps the sub-waveforms

into different frequency sub-carriers rather than into chirp sub-carriers, with no addi-

tion of the cyclic prefix and in which the interleaver is removed. Furthermore, two

parameters selection processes are considered throughout the paper. The first one,
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FrFT optimised, is the one described above when an interleaver is used; the second

one, OFDM optimised, starting from the same parameters, increases the number of

sub-carriers, C, in order to optimise the frequency occupancy of the OFDM wave-

form. Table 6.1 lists the parameters obtained when the two selection processes are

used, respectively. The FrFT optimised parameters selection procedure ensures that

Q ≤ χ, however the OFDM sub-carrier spacing, ∆f , is greater than Bw,sub, which

means that frequency gaps are present in the OFDM waveform. On the other hand, the

OFDM optimised parameters selection process leads to ∆f ≈ Bw,sub, but Q � χ.

Table 6.1: List of the parameters obtained when FrFT optimised and OFDM optimised
selection processes are used, respectively.

FrFT Optimised OFDM Optimised

Bw 500 MHz

τ 9.982 µs

Lb 7

BS 2 (QPSK)

Gb 3

β 0.4

χ 3/7 = 0.429

C 11 16

Nb 59

Bit/Pulse 590 885

Ru 23

Q 0.428 0.621

Bw,sub 30.435 MHz

∆f 45.455 MHz 31.250 MHz

6.5.1 Radar Performance

In order to evaluate the radar performance of the proposed FrFT CoRadar waveform

design framework, two analyses are carried out. Firstly, parameters such as range

resolution, Doppler resolution and Side Lobe Levels (SLLs) are estimated from its

Ambiguity Function (AF). Then, by means of a Monte-Carlo simulation, the Receiver

Operating Characteristic (ROC) for a square law detector is derived. A similar anal-

ysis is performed for OFDM waveform and LFM pulse for comparison purposes. In
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particular, the LFM pulse is designed such that it occupies the same bandwidth, Bw,

and has the same duration, τ , of the FrFT CoRadar waveform37.

6.5.1.1 Ambiguity Function

The FrFT’s and OFDM’s AFs are computed over a Monte-Carlo simulation with 100 it-

erations, since for both of them the actual pulse is affected by the transmitted sequence

of bits. Figure 6.11(a) and Figure 6.11(b) show the average AFs of the FrFT and

OFDM, respectively, when the FrFT optimised parameters selection process is used.

The FrFT’s AF has a much flatter shape than the OFDM’s, which, instead, presents

very high side lobes caused by spectral peaks and valleys between the OFDM sub-

carriers. This behaviour is more evident by looking at the zero-Doppler cuts shown

in Figure 6.11(c) and Figure 6.11(d), for the FrFT and the OFDM waveform, respec-

tively, while the zero-delay cuts in Figure 6.11(e) and Figure 6.11(f) show a similar

trend between FrFT, OFDM and LFM waveform, though this changes at different de-

lay cuts. However, lower side lobes are achieved at cost of a slightly worse resolution

of the FrFT waveform with respect to OFDM and LFM, both in range and Doppler.

Resolutions and side lobe levels are summarised in Table 6.2, where all the values are

taken by assuming a reference level at −3 dB. Figures 6.11(c)-6.11(f) also report the

maximum AF in addition to the average one, obtained by taking the maximum value

for each delay/Doppler bin for all the 100 Monte-Carlo iterations. The displacement

between the maximum and the average AF is higher for the FrFT waveform than for

the OFDM waveform, showing a higher variability of the former due to the sequence

of bits embedded.

Table 6.2: Radar Performance Parameters

FrFT Optimised OFDM Optimised
LFM

FrFT OFDM FrFT OFDM

Range Resolution 39.3 cm 26.7 cm 39.3 cm 27.3 cm 26.7 cm

Doppler Resolution 65.4 kHz 45.1 kHz 65.4 kHz 45.1 kHz 44.3 kHz

Zero-Doppler SLL −16.6 dB −4.6 dB −16.5 dB −9.9 dB −13.3 dB

Zero-Delay SLL −16.6 dB −13.3 dB −16.5 dB −13.3 dB −13.3 dB

37The LFM pulse is considered as benchmark for the radar performance, since it does not embed any
data.
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(a) FrFT’s ambiguity function. (b) OFDM’s ambiguity function.

(c) FrFT’s zero-Doppler cut. (d) OFDM’s zero-Doppler cut.

(e) FrFT’s zero-delay cut. (f) OFDM’s zero-delay cut.

Figure 6.11: Average Ambiguity Functions (AFs) of the (a) FrFT and (b) OFDM wave-
form when the FrFT optimised parameters selection process is used. Figures (c)-(d)
show their zero-Doppler cuts (average, in blue, and maximum, in red) compared to the
LFM’s zero-Doppler cut. Figures (e)-(f) show their zero-delay cuts (average, in blue,
and maximum, in red) compared to the LFM’s zero-delay cut.
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The results obtained when the OFDM optimised parameters selection procedure is

used, confirm that the FrFT waveform presents a general better trend in terms of side

lobes, but it is outperformed by the OFDM waveform in range and Doppler resolution,

as shown in Figure 6.12 and reported in Table 6.2.

(a) FrFT’s ambiguity function. (b) OFDM’s ambiguity function.

(c) FrFT’s zero-Doppler cut. (d) OFDM’s zero-Doppler cut.

(e) FrFT’s zero-delay cut. (f) OFDM’s zero-delay cut.

Figure 6.12: Average Ambiguity Functions (AFs) of the (a) FrFT and (b) OFDM wave-
form when the OFDM optimised parameters selection process is used. Figures (c)-(d)
show their zero-Doppler cuts (average, in blue, and maximum, in red) compared to the
LFM’s zero-Doppler cut. Figures (e)-(f) show their zero-delay cuts (average, in blue,
and maximum, in red) compared to the LFM’s zero-delay cut.
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6.5.1.2 Square Law Detector

The FrFT CoRadar waveform is examined, and compared with OFDM and LFM wave-

forms, when used for detection purposes with a square law detector, whose threshold

is selected based on the noise level, namely the Signal-to-Noise Ratio at the Radar

receiver, SNRr, and the desired Probability of False Alarm (PFA). In order to es-

timate the Receiver Operating Characteristic (ROC) of the detector, a Monte-Carlo

simulation with 105 iterations is carried out. In each iteration, a FrFT based pulse

is generated which embeds a random sequence of bits; since the length of the pulse,

in samples, is approximately of 5 × 103 (time-bandwidth product), the total number

of Monte-Carlo tests is equal to 5 × 108. Figure 6.13 compares the performance of

the FrFT, OFDM and LFM waveforms when the FrFT optimised parameters selection

process is considered, and for (a) SNRr = 15 dB and (b) SNRr = 20 dB. In both

the cases the FrFT waveform shows performance very close to the LFM, while for the

OFDM waveform, once the Probability of Detection, PD, is fixed to a certain desired

level, the PFA results higher compared to FrFT and LFM waveforms, and this is due

to the higher range side lobes that its AF presents, as shown in the previous section.

The same analysis is carried out when considering the OFDM optimised parame-

ters selection process. Results, shown in Figure 6.14, confirm the better performance

in terms of ROC of the FrFT waveform over the OFDM.

(a) SNRr = 15 dB. (b) SNRr = 20 dB.

Figure 6.13: Receiver Operating Characteristic (ROC) of the square law detector when
FrFT, OFDM (with FrFT optimised parameters) and LFM waveforms are used, and
when noise level is (a) SNRr = 15 dB and (b) SNRr = 20 dB.
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(a) SNRr = 15 dB. (b) SNRr = 20 dB.

Figure 6.14: Receiver Operating Characteristic (ROC) of the square law detector when
FrFT, OFDM (with OFDM optimised parameters) and LFM waveforms are used, and
when noise level is (a) SNRr = 15 dB and (b) SNRr = 20 dB.

6.5.2 Communication Performance

In this section, communication performance is expressed in terms of BER, defined as

the ratio between the number of bits wrongly decoded and the total number of bits sent,

on varying the energy per bit to noise power spectral density ratio, γb = Eb/N0. The

energy per bit is defined as:

Eb =
Ps
Rb

(6.21)

where Ps is the power of the transmitted pulse and Rb is the bit rate of an equiva-

lent system designed to send a continuous waveform, defined as the total number of

transmitted bits (including overheads) over time:

Rb =
(Nb +Gb)LbC

τ
=
CBS

Ru

Bw (6.22)

Then, since N0 is the noise power in 1Hz bandwidth, it follows:

γb =
Eb
N0

=
Ps

N0Bw

Ru

CBS

= SNRc
Ru

CBS

(6.23)

where SNRc is the Signal-to-Noise Ratio at the Communication receiver.

In the following, two analyses are carried out. Firstly, performance for the two
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different ICI mitigation approaches is evaluated in AWGN: the objective is to derive

conditions for νguard and χ that ensure the best performance. The second analysis

regards the comparison with the OFDM waveform for different channel models. Note

that these analyses do not take into account the relative position between transmitter

and receiver, and that both the FrFT and the OFDM pulses are assumed to be already

synchronised and their phase compensated.

6.5.2.1 Guard Time and Interleaver in AWGN

Communication performance of the FrFT CoRadar waveform design framework sub-

jected to AWGN when guard time and interleaver are used as ICI mitigation approach,

respectively, is evaluated and shown in Figure 6.15. The curves are obtained by means

(a) Guard time. (b) Interleaver.

Figure 6.15: Performance in terms of BER of the FrFT CoRadar waveform design
framework in presence of AWGN, when (a) a guard time or (b) an interleaver is used
as Inter-Carrier Interference (ICI) mitigation approach.

of a Monte-Carlo simulation during which 108 bits are sent. The parameters selection

process described in Section 6.3.2 is used with different values of νguard and χ, for

guard time and interleaver, respectively. The resulting parameters are summarised in

Table 6.3.

The lower bound, represented by the light blue dotted line, is the BER obtained

when the chirp sub-carriers are considered independent, that is no ICI is present, and

the noise that affects each of them is still AWGN. Since the employed channel coding
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Table 6.3: List of the parameters for the two different ICI mitigation approaches and
on varying νguard and χ.

Parameters
Nb C Bit/Pulse Ru

G
ua

rd
T.

νguard

0.5 54 14 756 12

1.0 30 12 360 22

1.5 21 11 231 32

In
te

rl
.

χ

4/7 53 16 848 25

3/7 59 11 649 23

2/7 27 15 405 47

technique is able to correct up to bLb/2c errors per codeword, the probability that the

dataword is wrongly decoded is equal to the probability that the codeword contains

more than bLb/2c errors. This is expressed by the following equation:

BERlb =

Lb∑
k=bLb/2c+1

(
Lb
k

)
pkmod (1− pmod)Lb−k (6.24)

where pmod is the probability of error of the employed modulation scheme, Quadrature

Phase Shift Keying (QPSK) in the analysed case. When guard time is used as ICI

mitigation approach, as expected the BER decreases as the parameters νguard increases.

In fact, νguard < 1 means that part of the region affected by ICI is still used to send

information bits, thus more errors are expected. In particular a BER floor is visible for

νguard1
= 0.5. This is due to errors that are independent of the noise level and are only

caused by ICI. Conversely, when νguard > 1 the guard time is larger than the region

affected by ICI, hence the sub-carriers can be considered independent and the BER

approaches the lower bound.

Similar results are obtained when the interleaver is used as ICI mitigation method,

where the BER decreases as χ decreases, since there is less overlap of the chirp sub-

carriers. Interesting is that for χ ≤ 3/7 = 0.429, the BER does not present a plateau

anymore (which is instead visible for χ1 = 4/7) and approaches the lower bound. This

because the threshold χ2 = χ? = 0.429 is computed as bLb/2c /Lb, and relates to the

maximum number of errors per codeword that the employed channel code can correct,

while χ1 = (bLb/2c+ 1) /Lb and χ3 = (bLb/2c − 1) /Lb. Thus, selecting χ ≤ 0.429
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means that the expected errors per codeword are less or equal than bLb/2c, so that the

ECC can correct all the errors and the sub-carriers can be considered independent.

6.5.2.2 Comparison with OFDM

In this section the communication performance of the FrFT CoRadar waveform is com-

pared with the performance obtained with the OFDM waveform. The signal is assumed

to experience a slow-flat fading, therefore a time-invariant narrowband channel model

is considered. Let sTx be the vector which contains the transmitted signal samples.

The received signal can be written as:

sRx = ch ◦ sTx + ξ (6.25)

where ch is the vector that contains the channel coefficients, ξ is the white Gaussian

noise and the operator ◦ indicates the Hadamard, or entrywise, product.

The complex elements of the vector ch are drawn from a statistical distribution

whose parameters depend on the propagation path. In addition to the AWGN only sce-

nario for which ch = 1, three other cases are considered. In case of existence of the

LoS path, the channel is modelled as Rician with a Rice factor of 4 dB. Conversely,

when no LoS path exists, the channel coefficients ch are drawn from a Rayleigh dis-

tribution with scale parameter
√

2/2. Finally, in order to take into account shadowing

and diffraction that can occur in bad weather conditions, a combination of Rice and

Lognormal is considered [145]. In this case the channel coefficients are obtained as

the product of a Rice process normalised in power and a Lognormal variable, whose

associated Gaussian variable has a standard deviation of 4 (this is often referred to as

the “dB spread”).

Assuming that the received signal has been equalised, the communication perfor-

mance is evaluated in terms of BER vs γb [dB] in Figure 6.16. As before, a Monte-

Carlo simulation is run during which 107 bits are sent. The blue lines refer to the FrFT

waveform, while the red lines to the OFDM. Solid lines and dotted lines refer to the

cases in which FrFT optimised and OFDM optimised parameters selection processes

are used, respectively. In presence of AWGN only, as shown in Figure 6.16(a), the
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(a) AWGN. (b) Rice plus AWGN channel.

(c) Rayleigh plus AWGN channel. (d) LogNormal - Rice plus AWGN channel.

Figure 6.16: Communication performance. Comparison between FrFT waveform and
OFDM waveform on varying the parameters selection process and for four different
channel models: (a) AWGN only, (b) Rice channel, (c) Rayleigh channel and (d)
LogNormal-Rice channel.

FrFT waveform is outperformed by the OFDM. Moreover, a plateau can be observed

for the FrFT waveform when OFDM optimised parameters are used, which confirms

the results obtained in the previous section since Q � χ?. For all the analysed channel

models, the OFDM is not affected by the parameters selection process, while the FrFT,

as expected, shows better performance when FrFT optimised parameters are used, as

they ensure that the overlap is lower than χ? = 0.429. However, even when OFDM

optimised parameters are used, for which Q = 0.621 > χ? but at the same time more
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information bits are sent, the FrFT’s BER is still comparable with the OFDM’s.

6.5.3 Link Budget

In order to validate the feasibility of the proposed FrFT waveform design framework

for CoRadar system, a link budget analysis is carried out. Signal-to-Noise Ratio at

the Radar receiver, SNRr, and energy per bit to noise power spectral density, γb, are

chosen depending on the desired radar and communication performance, as shown in

the previous sections. Then, assuming that a PRF = 3 kHz is used, an average power

of PTx = 50W is sent, and by fixing the parameters as in Table 6.1 for the FrFT

optimised selection process, the maximum radar range, rmax, and the maximum radar-

communication receiver distance, dmax, are obtained. For this specific analysis, the

radar link budget is obtained by rearranging the radar range equation as follows:

rmax = 4

√
PTx

τPRF

GTx,mainGRx,radarλ2σLs

Fradar (4π)3 kT0Bw SNRr

n0.5
intGsp (6.26)

while the communication link budget is:

dmax =

√
PTx

τPRF

GTx,sideGRx,commsλ2

Fcomms (4π)2 kT0Bw SNRc

(6.27)

All the parameters are listed in Table 6.4. It is worth noting that the communication

link budget is evaluated assuming that the communication receiver is placed in the side

lobe of the radar’s antenna beam.

With this configuration, a target with a radar cross section of 1m2 can be detected

at a maximum range of rmax = 22.14 km with a probability of detection of about 0.9.

In the same time, a data stream of 1.947Mb/s can be directed to a communication

receiver placed in the radar antenna’s side lobe at a distance of dmax = 22.26 km,

ensuring a BER lower than 10−4.
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Table 6.4: Link Budget Parameters.

Parameter Description Value

PRF Pulse Repetition Frequency. 3 kHz

PTx Transmitted average power. 50 W

λ Wavelength. 3 cm

k Boltzmann’s constant. 1.38× 10−23 J/K

T0 Noise reference temperature. 290 K

SNRr SNR at Radar receiver. 20 dB

GTx,main
Radar transmitting antenna’s

35 dB
gain in the main lobe.

GRx,radar
Radar receiving antenna’s

35 dB
gain.

σ Radar cross section. 1 m2

Ls Loss factor. 0.4

nint
Number of pulses combined

64
incoherently.

Gsp Signal processing gain. 37 dB

Fradar Radar’s noise figure. 4 dB

rmax Maximum radar range. 22.14 km

γb
Energy per bit to noise power

20 dB
spectral density.

SNRc SNR at Communication receiver. 19.81 dB

GTx,side
Radar transmitting antenna’s

5 dB
gain in the side lobe.

GRx,comms
Communication receiving

15 dB
antenna’s gain.

Fcomms
Communication receiver’s

10 dB
noise figure.

dmax
Maximum radar-communication

22.26 km
receiver distance.

6.5.4 Laboratory Validation

The FrFT CoRadar system demonstrator, described in Section 6.4, is used in a con-

trolled laboratory environment to acquire data and assess its communication and radar

capability. The acquisition geometry is shown in Figure 6.17. The mono-static radar

is placed at the bottom left, the communication receiver at the top right, while within

the light blue area a person is walking towards and away from the radar to generate a
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6 m

3 
mMono-Static

Radar

Communication
Receiver

Walking Area

Figure 6.17: Acquisition geometry of the laboratory-based experimental campaign.

Doppler signal.

The transmitted message is a 64 × 64 black and white image with a bit depth 5.

Carrier frequency is 3GHz and the bandwidth is 1MHz. The number of informa-

tion bits per carrier, Nb, is 3, the length of the Barker code is Lb = 7 and QPSK is

the employed modulation scheme, hence BS = 2. The RRC filter is designed to span

SRRC = 8 symbols, with an up-sampling factor Ru = 18 and a roll-off factor β = 0.4.

This leads to a guard of Gb = 3 bits. The total number of samples per waveform is

378, which means that the duration of the pulse is τ = 378µs. The PRF is fixed to

83.33Hz, giving a duty cycle of 3.15 %.

Different configurations are analysed by changing the number of sub-carriers, C =

6, 8, 10, and modifying the transmitted power. The SNR is estimated both at the mono-

static radar and the communication receiver.

Communication performance is shown with solid lines in Figure 6.18, in terms of

BER averaged over 10 realisations vs the energy per bit to noise power spectral den-

sity ratio, γb. The dotted lines in Figure 6.18 show the results obtained by running

Monte-Carlo simulations with 105 iterations with the same parameters listed above,

assuming the channel to be Rician with K-factor equal to 6 dB (indoor channel). They

are used as comparison to validate the results on the acquired data. As expected, as

γb increases, the BER decreases. However, no significant further improvements are

observed for γb greater than 15 dB, and this trend is confirmed by the results from the

Monte-Carlo simulations, which clearly show plateaus. They are due both to the dis-

tortion introduced by the channel, and the overlap of the sub-carriers, which causes

errors independently of the noise level. For the same reason, performance improves by

reducing the number of sub-carriers.
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Figure 6.18: Communication performance on real data, on varying γb and for different
number of chirp sub-carriers.

The radar capabilities of the FrFT CoRadar are presented by showing spectrograms

from the signals acquired during the laboratory-based experimental campaign. Figure

6.19 shows spectrograms when FrFT CoRadar pulses with C = 8 sub-carriers are used

for two different values of SNRr. In both the cases the Doppler and mD signature of

the person walking towards and away from the radar is clearly visible.

(a) SNRr = 3.11 dB. (b) SNRr = 14.32 dB.

Figure 6.19: Spectrograms obtained from FrFT CoRadar pulses with C = 8 and dif-
ferent SNRr. Window length 0.36 seconds, overlap 80 %. Person walking towards the
radar approximately between 4-8 seconds, and away from it between 0-4 seconds and
8-11 seconds.
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6.6 Practical Challenges

Despite demonstrating the feasibility of the proposed FrFT CoRadar framework in

Section 6.5, some practical challenges still have to be addressed in order to obtain a

full working system. In this Section a non-comprehensive list of them is presented.

The first one concerns the computation of the discrete FrFT. This topic has been

widely investigated in the literature [146, 147] but, even if algorithms with complexity

O (N logN) (with N length of the signal) have been proposed [148], they approxi-

mate the continuous FrFT rather than representing fast algorithms for the computation

of the discrete FrFT (as the FFT algorithm is for the ordinary discrete FT). A method

for the discrete FrFT computation with complexity O (U2) was presented in [149],

and has been used in Section 6.4 for prototype development. However, as mentioned

earlier, due to its high computational cost this implementation of the discrete FrFT

limits the generation of waveforms with either a high number of sub-carriers or a high

time-bandwidth product. For this reason, either a new formulation of discrete FrFT

is sought or an ad-hoc and clever hardware implementation of an existing algorithm

is performed. The mitigation of the Range Side lobe Modulation (RSM) effect that

occurs because of the transmission of different pulses each PRI represents another

practical challenge. Common matched filter processing at the radar receiver would

produce range side lobes that are different for each waveform, leading to the problem

of clutter dispersion for which standard clutter cancellation techniques are ineffective.

Different approaches have been proposed for pulse agility radars and may be adapted

to the proposed FrFT CoRadar system. In [150] the RSM effect was mitigated by mis-

match filtering the different waveforms sent in a Coherent Processing Interval (CPI) in

order to obtain similar range side lobe responses. In particular an iterative procedure

for the joint design of multiple receiver filters was presented. This technique is also

recalled in [151], where the authors proposed a closed-form rather than iterative solu-

tion specifically adapted for Moving Target Indication (MTI) radars. A more general

framework for dealing with the problem of RSM was proposed in [152], whose aim

was the optimisation of the Cross Ambiguity Function (CAF) at cost, however, of a

higher computational complexity.
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6.7 Conclusions

A novel concept of Communicating-Radar (CoRadar) system based on the Fractional

Fourier Transform (FrFT) was presented in this Chapter. The proposed waveform de-

sign technique, described in Section 6.2, directly embedded data into the radar wave-

form, allowing the two operations, radar and communication, to run simultaneously

while sharing bandwidth, power and hardware resources. The method exploited the

FrFT to map modulated signal, i.e. QPSK signals, into chirp sub-carriers with differ-

ent chirp rates. This also made the system fully scalable, since its configuration could

be adapted to the available bandwidth, pulse length and condition of the channel. In

particular, procedures for parameters selection driven by the radar requirements were

explained in Section 6.3, along with two waveform optimisation techniques aiming at

minimising the effect of the Inter-Carrier Interference (ICI) and maximising the data

rate. A prototype of the proposed FrFT CoRadar system on a Software Defined Radio

(SDR) device was also presented in Section 6.4, and used for validation.

In Section 6.5 radar and communication performance of the proposed waveform

design framework were assessed and compared with an OFDM CoRadar system, that

presented a comparable bit rate. Results showed that the FrFT waveform slightly

traded range and Doppler resolutions with much lower side lobe levels, which also

led the proposed method to outperform the OFDM waveform when used for detection

purposes. Communication performance confirmed the goodness of the proposed wave-

form design framework, showing comparable Bit Error Rates (BERs) with the OFDM

waveform in all the analysed cases. A link budget analysis was also conducted to prove

the feasibility of the FrFT based waveform design for CoRadar systems. Finally, the

proposed system was validated by assessing its radar and communication performance

through data acquired in a real controlled laboratory environment.

The FrFT based CoRadar system is suitable for a wide range of applications, but it

needs to be further investigated. Stress analyses simulating a multi-path environment

and in presence of clutter are necessary in order to definitely validate the concept, and

an investigation of possible clutter cancellation techniques needs to be carried out. Fur-

thermore, some practical problems introduced in Section 6.6 must be addressed, such
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as the fast computation of the discrete FrFT and the mitigation of the Range Side lobe

Modulation (RSM) effect.
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Chapter 7

Conclusion and Future Works

This Thesis investigated advanced signal processing solutions for target recognition

and spectrum sharing in distributed radar systems. Chapter 2 offered a review of most

recent Automatic Target Recognition (ATR) techniques for Synthetic Aperture Radar

(SAR) images. The attention was focused on model-based and feature-based tech-

niques. The former used features that were directly extracted from the SAR image

of the target of interest, such as bright points, corners, line segments. The latter ei-

ther computed the features by projecting the SAR image into domains invariant with

respect to rotation and/or translation, or left their computation and selection to the al-

gorithm itself. This Chapter also provided an overview of recent micro-Doppler (mD)

based ATR algorithms, with particular attention given to techniques aimed at identify-

ing helicopter’s models.

Chapter 3 introduced the problem of spectrum congestion and described a col-

lection of methods and techniques for allowing spectrum sharing between radar and

communication systems. Discussion was particularly focussed on technologies able of

enabling a communication channel in a radar system, exploiting the resources already

allocated to meet the radar requirements.

Two SAR ATR algorithms, that enhanced and improved a previously developed

framework, were described in Chapter 4. The first one further exploited the informa-

tion provided by the full-polarimetric SAR image of the target by extracting pseudo-

Zernike (pZ) moments based features from both the polarimetric components and the

Krogager components. Combining the rotation and translation invariance properties
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of the pZ moments, and the roll invariance properties of the Krogager components,

the proposed algorithm was robust with respect to both the orientation of the target

on the scene and the acquisition elevation angle. The framework could also be eas-

ily extended to accommodate multiple images provided, for example, by sensors in

a distributed radar system. Results from the stress analyses performed on real full-

polarimetric circular SAR images of the GOTCHA dataset, showed the effectiveness

of the integrated Krogager pseudo-Zernike (Kr/pZ) approach, that outperformed the

original algorithm in all the considered cases. The pZ moments, however, being de-

fined in a continuous domain, suffered from the discretisation error. This was more

severe as the moments order increased, limiting their capability in representing small

differences between different targets. For this reason, the second proposed approach

used the discrete defined Krawtchouk moments. Performance, evaluated on the real

MSTAR dataset, confirmed the superior capability of these moments in characterising

even small details.

A mD model-based algorithm for identification of helicopters was presented in

Chapter 5. Based on the sparse representation of the received signal from the heli-

copter’s rotor blades, the algorithm estimated the helicopter’s mD parameters through

the resolution of a sparse recovery problem. The resolution of such a problem was

achieved by means of a modified version of a greedy sparse recovery framework,

namely the Pruned Orthogonal Matching Pursuit (POMP). The algorithm, indepen-

dent on both the orientation of the aircraft and the initial position of its blades, was

developed for the identification of both single and multiple targets in the radar cell

of interest, and was extensively tested on both simulated and real data. This Chapter

also presented an information fusion method, whose objective was the combination of

the decisions made by several sensors in order to enhance the identification accuracy.

This approach, based on the parametric sparse representation of mD signal, used in

conjunction with adapted versions of the POMP, or other optimisation techniques for

the resolution of sparse recovery problem, can be used for the classification of other

rigid bodies, such as Ballistic Missiles (BMs) or Unmanned Aerial Vehicles (UAVs).

The framework could potentially be used also for monitoring and anomaly detection

in turbines operation, both in wind and tidal power farms.
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Chapter 6 presented a novel waveform design framework for Communicating-

Radar (CoRadar) system based on the Fractional Fourier Transform (FrFT). The pro-

posed waveform resulted by the superimposition of chirp sub-carriers modulated by

data symbols. The structure of the waveform, composed by chirps with different

chirp rates, guaranteed high-level radar performance while allowing the transmission

of data. Moreover, the two tasks, radar and communication, could be performed si-

multaneously while sharing bandwidth, power and hardware resources. The descrip-

tion of a prototype of the proposed system implemented through a Software Defined

Radio (SDR) device was also provided. The capabilities of the FrFT CoRadar were

tested and compared with a similar system that used OFDM waveforms through ex-

tensive simulations, and were validated on real data. The FrFT CoRadar technology

is opened to a variety of applications, but it needs to be further investigated. Some

practical challenges, arisen in Section 6.6, need to be explored and, eventually, solved,

and additional stress analyses are necessary in order to definitely validate the concept.

Meanwhile, this technique could potentially be applied to radar systems different from

pulsed, such as Frequency Modulated Continuous Waveform (FMCW) radars.
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Appendix A

FrFT CoRadar: Nonlinear

Relationship Order-Angle

In [121], the relationship between FrFT order and chirp rate is demonstrated. With

reference to Figure A.1, that shows a time-frequency plane in normalised units, this

relation for the signal in green is equal to:

φ =
π

2
α = tan−1

(
ys
xs

)
(A.1)

where ys and xs are normalised bandwidth and duration, respectively, of the chirp. The

green signal can be seen as a CoRadar sub-waveform to which a FrFT of order α has

been applied. Its bandwidth and duration in normalised units, after the application of

the transform, can be evaluated as: 
xs =

1

2
cosφ

ys =
1

2
sinφ

(A.2)

which graphically means that the signal is rotating on a circumference of radius one

half. When a longer sub-waveform is generated, for example with duration 1/2 + τplus

as consequence of the application of the adaptive duration, its rotation is graphically

represented by the ellipse of major axis 1/2 + τplus and minor axis 1/2, as shown in

149



FrFT CoRadar: Nonlinear Relationship Order-Angle

t/τ 

f/Bw 

0.5

0.5

τplus

φ'

φ

xs xs'

ys = ys 

Figure A.1: Derivation of the non linear relationship between order and angle in the
Fractional Fourier Transform (FrFT).

Figure A.1 for the signal in red, that is:
x′s =

(
1

2
+ τplus

)
cosφ

y′s =
1

2
sinφ

(A.3)

However, because of the effect of stretching of the time axis, the actual rotation angle

of the sub-waveform in the normalised time-frequency plane, φ′, is smaller than φ.

Specifically:

tanφ′ =
y′s
x′s

=
tanφ

1 + 2τplus
(A.4)

Therefore, in order to maintain the chirp sub-carriers equally spaced, this difference

needs to be compensated. Therefore, from (A.1) and (A.4) it follows:
α =

2

π
tan−1 [(1 + 2τplus) tanφ′] φ′ ∈ [0, π/2)

α = 1 φ′ = π/2

α =
2

π
tan−1 [(1 + 2τplus) tan (φ′ − π)] + 2 φ′ ∈ (π/2, π]

(A.5)

The different cases account for the discontinuity of the tangent function in π/2.
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