921 research outputs found

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology

    Intelligent failure-tolerant control

    Get PDF
    An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods

    Adaptive Signal Processing Strategy for a Wind Farm System Fault Accommodation

    Get PDF
    In order to improve the availability of offshore wind farms, thus avoiding unplanned operation and maintenance costs, which can be high for offshore installations, the accommodation of faults in their earlier occurrence is fundamental. This paper addresses the design of an active fault tolerant control scheme that is applied to a wind park benchmark of nine wind turbines, based on their nonlinear models, as well as the wind and interactions between the wind turbines in the wind farm. Note that, due to the structure of the system and its control strategy, it can be considered as a fault tolerant cooperative control problem of an autonomous plant. The controller accommodation scheme provides the on-line estimate of the fault signals generated by nonlinear filters exploiting the nonlinear geometric approach to obtain estimates decoupled from both model uncertainty and the interactions among the turbines. This paper proposes also a data-driven approach to provide these disturbance terms in analytical forms, which are subsequently used for designing the nonlinear filters for fault estimation. This feature of the work, followed by the simpler solution relying on a data-driven approach, can represent the key point when on-line implementations are considered for a viable application of the proposed scheme

    Fault detection, isolation, and identification for nonlinear systems using a hybrid approach

    Get PDF
    This thesis presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems; taking advantage of both system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution are a bank of adaptive neural parameter estimators (NPE) and a set of single-parameterized fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. In view of the availability of full-state measurements, two NPE structures, namely series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Simple neural network architecture and update laws make both schemes suitable for real-time implementations. A fault tolerant observer (FTO) is then designed to extend the FDII schemes to systems with partial-state measurement. The proposed FTO is a neural state estimator that can estimate unmeasured states even in presence of faults. The estimated and the measured states then comprise the inputs to the FDII schemes. Simulation results for FDII of reaction wheels of a 3-axis stabilized satellite in presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solution under both full and partial-state measurements

    Design of Fault Tolerant Control systems

    Get PDF
    This research designs a Fault Tolerant Control (FTC) approach that compensates for both actuator and sensor faults by using multiple observers. This method is shown to work for both linear time-variant and linear time-invariant systems. This work takes advantage of sensor redundancy to compensate for sensor faults. A method to calculate the rank of available sensor redundancy is developed to determine how many independent sensors can fail without losing observability. This rank is the upper bound on the number of simultaneous sensor failures that the system can tolerate. Based on this rank, a series of reduced order Kalman observers are created to remove sensors presumed faulty from the internal feedback of the estimators. Actuator redundancy is examined as a potential way to compensate for actuator faults. A method to calculate the available actuator redundancy is designed. This redundancy would allow for the correction of partial and full actuator failures, but few systems exhibit sufficient actuator redundancy. Actuator faults are instead tolerated by replacing the Kalman estimators with Augmented State Observers (ASO). The ASO adds estimates of the actuator faults as additional states of the system in order to isolate and estimate the actuator faults. Then a supervisor is designed to select the observer that correctly identifies the sensor fault set. From that observer, the supervisor collects state estimates and calculates estimates of the sensors and faults. These estimates are then used in feedback with a controller that performs pole placement on the original system

    A Resilient Control Approach to Secure Cyber Physical Systems (CPS) with an Application on Connected Vehicles

    Get PDF
    The objective of this dissertation is to develop a resilient control approach to secure Cyber Physical Systems (CPS) against cyber-attacks, network failures and potential physical faults. Despite being potentially beneficial in several aspects, the connectivity in CPSs poses a set of specific challenges from safety and reliability standpoint. The first challenge arises from unreliable communication network which affects the control/management of overall system. Second, faulty sensors and actuators can degrade the performance of CPS and send wrong information to the controller or other subsystems of the CPS. Finally, CPSs are vulnerable to cyber-attacks which can potentially lead to dangerous scenarios by affecting the information transmitted among various components of CPSs. Hence, a resilient control approach is proposed to address these challenges. The control approach consists of three main parts:(1) Physical fault diagnostics: This part makes sure the CPS works normally while there is no cyber-attacks/ network failure in the communication network; (2) Cyber-attack/failure resilient strategy: This part consists of a resilient strategy for specific cyber-attacks to compensate for their malicious effects ; (3) Decision making algorithm: The decision making block identifies the specific existing cyber-attacks/ network failure in the system and deploys corresponding control strategy to minimize the effect of abnormality in the system performance. In this dissertation, we consider a platoon of connected vehicle system under Co-operative Adaptive Cruise Control (CACC) strategy as a CPS and develop a resilient control approach to address the aforementioned challenges. The first part of this dissertation investigates fault diagnostics of connected vehicles assuming ideal communication network. Very few works address the real-time diagnostics problem in connected vehicles. This study models the effect of different faults in sensors and actuators, and also develops fault diagnosis scheme for detectable and identifiable faults. The proposed diagnostics scheme is based on sliding model observers to detect, isolate and estimate faults in the sensors and actuators. One of the main advantages of sliding model approach lies in applicability to nonlinear systems. Therefore, the proposed method can be extended for other nonlinear cyber physical systems as well. The second part of the proposed research deals with developing strategies to maintain performance of cyber-physical systems close to the normal, in the presence of common cyber-attacks and network failures. Specifically, the behavior of Dedicated Short-Range Communication (DSRC) network is analyzed under cyber-attacks and failures including packet dropping, Denial of Service (DOS) attack and false data injection attack. To start with, packet dropping in network communication is modeled by Bernoulli random variable. Then an observer based modifying algorithm is proposed to modify the existing CACC strategy against the effect of packet dropping phenomena. In contrast to the existing works on state estimation over imperfect communication network in CPS which mainly use either holding previous received data or Kalman filter with intermittent observation, a combination of these two approaches is used to construct the missing data over packet dropping phenomena. Furthermore, an observer based fault diagnostics based on sliding mode approach is proposed to detect, isolate and estimate sensor faults in connected vehicles platoon. Next, Denial of Service (DoS) attack is considered on the communication network. The effect of DoS attack is modeled as an unknown stochastic delay in data delivery in the communication network. Then an observer based approach is proposed to estimate the real data from the delayed measured data over the network. A novel approach based on LMI theory is presented to design observer and estimate the states of the system via delayed measurements. Next, we explore and alternative approach by modeling DoS with unknown constant time delay and propose an adaptive observer to estimate the delay. Furthermore, we study the effects of system uncertainties on the DoS algorithm. In the third algorithm, we considered a general CPS with a saturated DoS attack modeled with constant unknown delay. In this part, we modeled the DoS via a PDE and developed a PDE based observer to estimate the delay as well as states of the system while the only available measurements are delayed. Furthermore, as the last cyber-attack of the second part of the dissertation, we consider false data injection attack as the fake vehicle identity in the platoon of vehicles. In this part, we develop a novel PDE-based modeling strategy for the platoon of vehicles equipped with CACC. Moreover, we propose a PDE based observer to detect and isolate the location of the false data injection attack injected into the platoon as fake identity. Finally, the third part of the dissertation deals with the ongoing works on an optimum decision making strategy formulated via Model Predictive Control (MPC). The decision making block is developed to choose the optimum strategy among available strategies designed in the second part of the dissertation

    Unknown input observer approaches to robust fault diagnosis

    Get PDF
    This thesis focuses on the development of the model-based fault detection and isolation /fault detection and diagnosis (FDI/FDD) techniques using the unknown input observer (UIO) methodology. Using the UI de-coupling philosophy to tackle the robustness issue, a set of novel fault estimation (FE)-oriented UIO approaches are developed based on the classical residual generation-oriented UIO approach considering the time derivative characteristics of various faults. The main developments proposed are:- Implement the residual-based UIO design on a high fidelity commercial aircraft benchmark model to detect and isolate the elevator sensor runaway fault. The FDI design performance is validated using a functional engineering simulation (FES) system environment provided through the activity of an EU FP7 project Advanced Fault Diagnosis for Safer Flight Guidance and Control (ADDSAFE).- Propose a linear time-invariant (LTI) model-based robust fast adaptive fault estimator (RFAFE) with UI de-coupling to estimate the aircraft elevator oscillatory faults considered as actuator faults.- Propose a UI-proportional integral observer (UI-PIO) to estimate actuator multiplicative faults based on an LTI model with UI de-coupling and with added H∞ optimisation to reduce the effects of the sensor noise. This is applied to an example on a hydraulic leakage fault (multiplicative fault) in a wind turbine pitch actuator system, assuming that thefirst derivative of the fault is zero. - Develop an UI–proportional multiple integral observer (UI-PMIO) to estimate the system states and faults simultaneously with the UI acting on the system states. The UI-PMIO leads to a relaxed condition of requiring that the first time derivative of the fault is zero instead of requiring that the finite time fault derivative is zero or bounded. - Propose a novel actuator fault and state estimation methodology, the UI–proportional multiple integral and derivative observer (UI-PMIDO), inspired by both of the RFAFE and UI-PMIO designs. This leads to an observer with the comprehensive feature of estimating faults with bounded finite time derivatives and ensuring fast FE tracking response.- Extend the UI-PMIDO theory based on LTI modelling to a linear parameter varying (LPV) model approach for FE design. A nonlinear two-link manipulator example is used to illustrate the power of this method
    • …
    corecore