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Abstract

Fault detection and isolation is crucial for the efficient operation and safety of any industrial process. There is a variety
of methods from all areas of data analysis employed to solve this kind of task, such as Bayesian reasoning and Kalman
filter. In this paper, the authors use a discrete Field Kalman Filter (FKF) to detect and recognize faulty conditions in a
system. The proposed approach, devised for stochastic linear systems, allows for analysis of faults that can be
expressed both as parameter and disturbance variations. This approach is formulated for the situations when the fault
catalog is known, resulting in the algorithm allowing estimation of probability values. Additionally, a variant of
algorithm with greater numerical robustness is presented, based on computation of logarithmic odds. Proposed
algorithm operation is illustrated with numerical examples, and both its merits and limitations are critically discussed
and compared with traditional EKF.
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1 Introduction
The problem of fault detection and isolation is one of
the most important research topics in process control.
Efficient methods should quickly detect the occurrence
of a fault and determine the fault origin with sufficient
probability. However, people usually have to deal with
measurement disturbances, process noise, and compli-
cated dynamics when analyzing the actual industrial pro-
cesses. As the field is very broad for the purpose of this
paper, we will focus on faults that can be represented by
a change of either parameters in the mathematical model
or parameters of stochastical disturbances of the analyzed
system. Diagnosis and isolation of such faults relies on two
elements—detecting the change in the parameter value
and isolating what type of fault causes such change.
A typical approach to such estimation for linear dis-

tributed systems is the use of variations of Kalman filters,
often used as residue generators, with some kind of clas-
sification algorithm. The problem of estimating the state
of a linear dynamic system driven by additive Gaussian
noise with unknown time varying statistics is considered
in [1] through Kalman filtering with Bayesian methods for
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estimation of noise variance, while maximum likelihood
is used in [2], and correlation methods are used in [3]
and [4].
In [5], methodology for the detection and accommoda-

tion of actuator faults for a class of multi-input–multi-
output (MIMO) stochastic systems is presented. Actuator
fault diagnosis is based on the estimation of the state vec-
tor, where Kalman filter is used to estimate the state. A
Kalman filter approach is proposed for state estimation
for stochastic discrete-time linear systems in [6–9] while
in [10–12], a Kalman filter is applied for estimation of
state vector for non-linear systems. Model-based isolation
and estimation of additive faults in discrete-time linear
Gaussian systems is presented in [13], where fault esti-
mation is carried out and a Kalman filter is used with
Bayesian statistics. A novel sensor fault detection and
isolation algorithm based on an extended Kalman filter
is presented for noise and efficiency in real-time imple-
mentation in [14]. In the paper [15], a diagnostic system
based on a uniquely structured Kalman filter is developed
for its application to in-flight fault detection of aircraft
engine sensors. A bibliographic review on a distributed
Kalman filter is provided in [16] with a comparison to
the different approaches. Very important group of meth-
ods for fault detection and isolation is based on particle
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filtering. This method, a certain extension of Kalman fil-
tering, allows very good results in a wide spectrum of
cases. The disadvantage can be however increased com-
putational complexity. Important works on the subject are
among the others [17–22].
It should be also noted that similar approach to sys-

tem analysis is present in the issues of model selection
and working point detection problems. First of this prob-
lems is used to verify which model of the possible group
fits the best presented data. It is usually connected with
some kind of hypothesis testing. The second group has a
special place in the process control applications. It is very
often encountered in industrial situations that the system
is very hard to be modeled fully representing its nonlin-
ear character. In such cases, a set of linearized models
in different working points is created. Appropriate algo-
rithm for choice of which linear model should now be
used depending on data is very similar to fault detection
and isolation one.
In this paper, the authors expand on their earlier results

in [23], where the Field Kalman Filter was proposed. The
Field Kalman Filter is an advanced signal processing algo-
rithm which in its full form allows full estimation of state
and parameters of linear systems with Gaussian distur-
bances. The main disadvantage of this filter is that in
general case, it is infinite dimensional, and for practi-
cal applications, moving horizon approximation has to be
used.
In this paper, we apply and modify this filter for the

problem of fault detection and isolation. In particular,
an advantage is taken over the fact that typical faults
usually form a limited set of cases. In such situation,
problem dimension reduces substantially, and the algo-
rithm requires solution of a parameter-dependent family
of systems of equations. Proposed filter is optimal for sys-
tems with fixed parameters and highly efficient for those
where changes in parameter values occur. We present
the algorithm for computing fault probability and also its
more numerically robust version for computing logarith-
mic odds of fault occurrence with respect to each other
possibility.
The rest of this paper is organized as follows. First, we

present the Field Kalman Filter in the discrete case. Sec-
ond, we formulate its application for fault detection and
isolation problem. We formulate the necessary modifi-
cation of the filter for parameter-varying systems with
formulation of necessary forgetting operator. We discuss
algorithms’ numerical drawbacks and introduce more
robust modification. Then, we illustrate both algorithms’
operation with advanced examples of fault detection,
where faults are either in parameters or in the distur-
bances. The paper ends with discussion, comparing our
results to those based on EKF and conclusions regarding
future work.

Remark 1 (Notation) We denote the set of symmetrical
and positively defined matrices of dimension n by S+(

n
)
.

By x ∼ N(m, S), we understand a normally distributed
random variable with a mean m and a covariance matrix
S. Also, we define function N(x,m, S) as

N(x,m, S) = 1√
(2π)n|S| exp

(− 1
2 (x − m)TS−1(x − m)

)
.

(1)

2 Field Kalman Filter
Let us consider the following stochastic system

xk+1 = A(θ ,uk)xk + B (θ ,uk)uk + G (θ ,uk)wk , (2)
yk = C(θ)xk + vk . (3)

We have the assumptions as following:

1. xk ∈ Rn, yk ∈ Rm, wk ∈ Rl ,vk ∈ Rm, wk ∼ N(0, I),
vk ∼ N(0,V (θ)),
uk ∈ U , U = {u ∈ Rr : umin ≤ u ≤ umax},
k = 0, 1, 2, . . ..

2. Equations (2)–(3) depend on parameter vector
θ ∈ � ⊂ Rp. The matrix functions A,B,G,C,V are
of C1 class w.r.t. both arguments and are of
appropriate dimensions.

3. The prior distribution of parameter θ will be denoted
by p0. The set of all initial distributions of θ is defined
as π0 = {p0 ∈ L1(�;R) : p0(θ) ≥ 0 ∧ ‖p0‖1 = 1}.

4. We assume that the initial joint distribution of the
variables (x0, θ) has the following form

q0(x0, θ) = p0(θ)N(x0,m0, S0). (4)

wherem0 ∈ Rn, S0 ∈ S+(n), p0 ∈ π0.
5. The first measurement is performed at k = 1, and

Yk = (y1, y2, ..., yk) ∈ Rm×k is a matrix of k first
measurements.

Remark 2 We define that observability of the parame-
ters has the following property

θ1 
= θ2 ⇒ p(θ1 | Yk) 
= p(θ2 | Yk) ∀ θ1, θ2,Yk . (5)

In other words, we require that probabilities of different
values of parameters conditional on the same set of mea-
surements are different. In this paper, we assume that the
parameters of all considered systems are observable.

In the following theorem, we provide a formula for cal-
culating the distribution of the state and parameters of
system (2)–(3), which we will call a Field Kalman Filter.
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Theorem 1 Let uk be given by fixed sequence and
let Ai(θ) = A(θ ,ui), Bi(θ) = B(θ ,ui), and Di(θ) =
G(θ ,ui)G(θ ,ui)T. If assumptions 1–5 are fulfilled, then
joint density of variables xk, θ , Yk is given by

p(xk , θ ,Yk) = p0(θ)N(xk ,mk(θ), Sk(θ))

×
k∏

i=1
N(yi, ci(θ)m−

i (θ),Wi(θ)).
(6)

where

m0(θ) = m0, (7)
S0(θ) = S0, (8)

m−
i (θ) = Ai−1(θ)mi−1(θ) + Bi−1(θ)ui−1, (9)

S−
i (θ) = Ai−1(θ)Si−1(θ)Ai−1θ

T + Di−1(θ), (10)
Wi(θ) = V (θ) + C(θ)S−

i (θ)C(θ)T, (11)
Si−1(θ) = S−

i (θ) − S−
i (θ)C(θ)TW−1

i (θ)C(θ)S−
i (θ),

(12)
mi−1(θ) = m−

i (θ) + Si(θ)C(θ)TV (θ)−1

× (yi − C(θ)m−
i (θ)), (13)

i = 1, 2, .., k + 1.

Proof The proof of a very similar theorem can be found
in [23]. The difference is that here, we consider a discrete-
time system instead of a continuous one. Nevertheless,
there is a completely analogous distribution construction
for these two types of time systems.

To create a diagnostic algorithm, we will need the fol-
lowing corollary:

Corollary 1 Under the assumptions of Theorem 1, we
have

p(xk | θ ,Yk) = N(xk ,mk(θ), Sk(θ)). (14)

and

p(θ | Yk) =
p0(θ)

k∏

i=1
N(yi, ci(θ)m−

i (θ),Wi(θ))

∫

�

p0(θ)
k∏

i=1
N(yi, ci(θ)m−

i (θ),Wi(θ))dθ
.

(15)

Proof It is a direct consequence of the Bayes’ theorem
and Eq. (6).

Now, we can formulate the fault detection problem.

3 Fault detection problem
Equations (14) and (15) are the solution to estimating the
distributions of state and parameters. This solution (fil-
ter), in general, is infinite dimensional. It is caused by the
fact that we need to solve Eqs. (7)–(13) for all the possible
values of θ , in order to compute the necessary integral in
Eq. (15). Because of this sizeable computation, it is greatly
difficult to implement in practice.
Situation changes when the number of potential param-

eters in set � is finite. In this case, the integral in (15)
becomes a summation operator. Consequently, Eqs. (7)–
(13) only need to be calculated for a finite number of θ

values.
This problem formulation, i.e., θ ∈ � = {θ0, θ1,

θ2, . . . , θr}, is not a common case for parameter estima-
tion; however, it is greatly suited to a fault detection prob-
lem, when we already know what type of faulty conditions
can occur in the system.
Next, we denote the parameter θ0 as a normal operating

condition. The parameters θ1, θ2, .., θr represent system
faults. The initial distribution of θ can be rewritten as

p0(θ) =
r∑

s=0
p0,sδ(θ − θs). (16)

As a consequence, the distribution Eq. (15) becomes a
discrete distribution

p0(θ | Yk) =
r∑

s=0
pk,sδ(θ − θs). (17)

where,

pk,s = p(θ = θs | Yk) =
p0,s

k∏

i=1
N(yi, c(θs)m−

i (θs),Wi(θs))

r∑

s=0
p0,s

k∏

i=1
N(yi, c(θs)m−

i (θs),Wi(θs))

,

s = 1, .., r.
(18)

Equation (18) can be rewritten in a more convenient,
recursive form

pk,s = pk−1,s
N(yk , c(θs)m−

k (θs),Wk(θs))
r∑

s=0
pk−1,sN(yk , c(θs)m−

k (θs),Wk(θs))

, s = 1, .., r.

(19)

Now, the distribution of (xk , θ) conditioned on Yk takes
the form

p(xk , θ | Yk) = N(xk ,mk(θ), Sk(θ))

r∑

s=0
pk,sδ(θ − θs).

(20)

Equations (7)–(13), (19) and (20) describe the finite-
dimensional recursive optimal filter for system (2)–(3).
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The set of functionsmk(θs), Sk(θs)with pk,0, pk,1, pk,2, . . .,
pk,r determines the conditional distribution p(xk+1, θ |
yk+1) in the next time step.

3.1 Forgetting operator
In real practice, parameters are time varying and the old
data must be gradually forgotten, as it becomes obsolete.
The estimator might not work properly on varying

parameters. For example, when enough data supports
fault θj that up to numerical precision, we have pi,j = 1
and pi,s = 0 for s 
= j, then from Eq. (19), we can see
that adding new data, supporting different fault will not
be registered (as its likelihood will be multiplied by 0).
It can be understood that if all the data, regardless of

how old is it, has the same importance, then the new
evidence for fault occurrence might be ignored.
To allow our estimator to handle time-varying parame-

ters, we introduce a forgetting operator F. Let α ∈ (0, 1)
be a forgetting factor, and let F ∈ Rr×r , such that

F(α) = 1
2

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

(1 + α) (1 − α)

(1 − α) 2α (1 − α)

(1 − α) 2α (1 − α)

. . .
. . .

. . .
(1 − α) 2α (1 − α)

(1 − α) (1 + α)

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

(21)

The operator F =[ fij]r×r is a doubly stochastic matrix,
i.e.,

∑
i fij = ∑

j fij = 1. Multiplication of any probability
distribution Pk−1 = (p0,k−1, p1,k−1, . . . , pr−1,k−1)

T by F
gives a new probability distribution Pk = FPk−1. If α < 1,
then this new distribution has a greater entropy. There-
fore, the amount of information about the parameters is
reduced. The stationary distribution for F is uniform, i.e.,
limk→∞ F(α)kP0 = r−1(1, 1, ..1)T, for any initial distribu-
tion P0. It should be noted that the choice of forgetting
operator is not unique, as there are multiple possible oper-
ators that increase the entropy. In our case, we interpret
the parameter α as the desired depth of the memory,
where α = 1 corresponds to infinite memory, a smaller
alpha value corresponds to a faster forgetting rate. Pro-
posed operator was chosen through practice and does not
consider the option of instantaneous forgetting, as it was
not needed.

3.2 Algorithm for fault estimation
Based on the above discussion, we can formulate the
following algorithm for fault estimation.

Remark 3 (Calculation of conditional mean, covariance
andmost probable value of θ ) Proposed algorithm can also
be used to estimate actual values of state and parameters

Algorithm 1 Fault detecting Field Kalman Filter
1: Initialization:

α ∈ (0, 1) , k = 0, m0(θs), S0(θs),

P0 = (p0,0, p1,0, . . . , pr,0)T, � = {θ0, . . . , θr}.
(22)

2: Prediction step:

∀θs ∈ � :
m−

k (θs) = Ak−1(θs)mk−1(θs) + Bik−1(θs)uk−1, (23)

S−
k (θs) = Ak−1(θs)Sk−1(θs)Ak−1θ

T
s + Dk−1(θs), (24)

Wk(θs) = V (θs) + C(θs)S−
k (θs)C(θs)

T, (25)
P−
k = F(α)Pk−1. (26)

3: Correction step:

Sk(θs) = S−
k (θs) − S−

k (θs)C(θs)
TW−1

k (θs)C(θs)S−
k (θs),

(27)

mk(θs) = m−
k (θs) + Sk(θs)C(θs)

TV (θs)
−1

× (yk − C(θs)m−
k (θs)), (28)

pk,s = p−
k,s

N(yk , c(θs)m−
k (θs),Wk(θs))

r∑

s=1
pk−1,sN(yk , c(θs)m−

k (θs),Wk(θs))

,

(29)
k = k + 1

4: goto Prediction step.

of the system through either mean and covariance or max-
imum a posteriori estimation. The following formulas can
be used:

E(xk) =
r∑

s=0
pk,smk(θs), cov(xk) =

r∑

s=0
pk,sSk(θs), (30)

E(θ) =
r∑

s=0
pk,sθs, cov(θ) =

r∑

s=0
pk,s(θs − E(θ))

(θs − E(θ))T, (31)
jMAP = argmax

j
pk,j, θMAP = θjMAP. (32)

Remark 4 It needs to be emphasized that the case,
when parameters vary over time, while practically signif-
icant, do not fulfill the original assumptions of the filter.
Because of that, our filter, even with forgetting operator, is
not optimal for the problem. However, as it can be seen
in provided examples in Section 5, it is convergent in
practice.

4 Improvement of numerical properties
We notice that mathematically, there is potential numeri-
cal instability in Eq. (29), which is caused by the fact that a
large output error, i.e.,|W (θs)−0.5(yk−C(θs)m−

k (θs))|>> 1,
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induces an extremely small value of pk,s. Consequently,
Eq. (29) works out as a quotient of two extremely
small numerical values which can cause a numerically
intractable result. This numerical limitation was also
observed and illustrated in a scalar system example
demonstrated in Section 5 of our paper.
Therefore, to eliminate this numerical instability, we

propose an alternative approach, using logarithmic odds
(see for example [24]). Let us consider the logarithm of
probability quotient i.e.

ek,i,j = ln
pk,i
pk,j

, i, j = 0, 1, . . . , r. (33)

By substituting Eqs. (1) and (19) into (33) , we get the
following recursion

ek,i,j = ek−1,i,j + dk,i,j, (34)

where
dk,i,j = 1

2 ln |Wk(θj)| − 1
2 ln |Wk(θi)| + 1

2 |yk
− C(θj)m−

k (θj)|2Wk(θj)−1

− 1
2 |yk − C(θi)m−

k (θi)|2Wk(θi)−1 .

(35)

To use logarithmic odds to determine most probable
fault, we need to verify for which fault θs all the ratios
ek,s,j are positive. Such fault has maximum a posteriori
probability.
Whenever we have positive logarithmic odds for one

parameter value θiMAP against others, i.e., ek,iMAP ,j ≥ 0 for
all j = 0, 1, . . . , r, then it is the most probable value of the
parameter, i.e., pk,j ≤ pk,iMAP .
Furthermore, to introduce the forgetting operation

mentioned in Section 3.1, we can implement it as

ek,i,j = β ek−1,i,j + dk,i,j (36)

where β ∈[ 0, 1] is a new forgetting factor. The product
of ek−1,i,j and β ∈[ 0, 1) corresponds to certain new dis-
tribution. This new distribution has greater entropy and
is closer to a uniform distribution. Hence, if β ∈ (0, 1),
the old data need to be gradually forgotten. If β = 0, then
ek,i,j = 0 and pk,i = pk,j for all i, j = 1, . . . , r. If β = 1, it
means that all the old data are supposed to be taken into
account.
Now, we can propose a logarithmic odds algorithm for

fault detection and classification:

5 Examples of operation
In this section, we illustrate the algorithm operation using
three examples of linear systems. In the first one, we
use Algorithm 1 for a scalar discrete system, where all
elements of the system depend on the parameters (i.e.,
state, control and output). In the second example, we
use the same algorithm for a second-order, time contin-
uous system, with discrete-time observation, parameter-
dependent state, control and noise matrices, and noise

variance. The final example uses the same system to illus-
trate the log-odds Algorithm 2.

Algorithm 2 Logarithmic odds fault detection
1: Initialization:

β ∈ [ 0, 1] , k = 0, m0(θs), S0(θs),
p0 = (p0,0, p0,1, . . . , p0,r)T ,
� = {θ0, . . . , θr}.

(37)

2: Prediction step:

m−
k (θs) = Ak−1(θs)mk−1(θs) + Bk−1(θs)uk−1,

(38)
S−
k (θs) = Ak−1(θs)Sk−1(θs)Ak−1(θs)

T + Dk−1(θs),
(39)

Wk(θs) = V (θs) + C(θs)S−
k (θs)C(θs)

T , (40)
e−k,s,j = β ek−1,s,j, s, j = 1, . . . , r. (Forgetting)

(41)
3: Correction step:

Sk(θs) = S−
k (θs) − S−

k (θs)C(θs)
TW−1

k (θs)C(θs)S−
k (θs),

(42)

mk(θs) = m−
k (θs) + Sk(θs)C(θs)

TV (θs)
−1

(yk − C(θs)m−
k (θs)),

(43)

ek,s,j = e−k,s,j + dk,s,j, s, j = 1, . . . r. (44)
4: goto Prediction step.

5.1 Example 1. Scalar systemwith changes in parameters
Let us consider the following scalar system

xk+1 = a(θ)xk + b(θ)uk + gwk ,

yk = c(θ)xk + vk , g = √
0.1, E(v2k) = 0.1.

(45)

In this system, we consider a normal operation state and
four fault cases. The settings of these cases are shown in
Table 1. The first fault corresponds to increase in system
dynamics, combined with substantial increase of system
gain. The second fault introduces system oscillation but
a lesser gain increase. The third fault slightly increases
systems’ dynamics, increases input gain, and decreases
output gain. The fourth fault introduces a larger increase
in the dynamics than the third, but with smaller increment
in input gain and lower reduction in output gain.
The initial conditions of the filter were set asm0(θ) = 0

and S0(θ) = 0.01. The initial probability distribution of
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Table 1 Parameters of system (45) dependent on normal and
faulty conditions

Fault 0, normal operating Fault 1 Fault 2 Fault 3 Fault 4
conditions

a(θ) 0.9 0.5 − 0.5 0.8 0.7

b(θ) 0.1 1 0.9 1 0.3

c(θ) 1 2 1.2 0.5 0.6

faults was p0 =[0.95, 0.0125, 0.0125, 0.0125, 0.0125]. The
simulation of system started with normal operation condi-
tions. Then, after every 200 steps, the operating mode was
changed in such a scheme: normal, fault 1, fault 2, fault 3,
fault 4, fault 3, fault 2, fault 1, and normal. The system was
excited by a square input signal uwith zero mean, a period
of 158, and the amplitude as 1.We set the forgetting factor
as α = 0.99, which is experimentally efficient.
We present the measured signal in Fig. 1. We have

applied the algorithm to this signal. Using Eq. (29), we
computed the probabilities of particular faults and pre-
sented them in the Fig. 2. We can observe consistency
between maximal probability and the planned test regime
of faults occurring. It is evident in Fig. 3, where the results
of fault detection and isolation are presented based on
maximum a posteriori estimate.
The results show that estimator reacts very quickly, usu-

ally within five samples detecting a change in the parame-
ter value. The numerical instability, described in Section 4,
occurs and is visible in the Fig. 3.

5.2 Example 2. Oscillator with unknown noise variances
Let us consider a second-order continuous time system
(oscillator) given by

dx = (Ac(θ)x + Bcu)dt + Gc(θ)dw,

Ac =
[

0 1
−θ21 −2ξθ1

]
, Bc =

[
0

bcθ21

]
, Gc =

[
0
θ2

]
.

(46)

with discrete-time observation

yk = x1(tk) + vk ,
vk ∼ N(0, θ3),
tk = kT0, T0 > 0, k = 1, 2, . . .

(47)

where ξ = 0.1 and bc = 1. The initial condition is
Gaussian, i.e., x(0) ∼ N(m0, S0). We can see that this is
a system with varying natural frequency, varying process,
and measurement noise variances.
Assuming that control u is a piecewise constant, i.e.,

u(t) = uk , t ∈[ tk−1, tk), we can discretize system
(46)–(47). The discrete-time system corresponding to
Eqs. (46)–(47) has the form

xk+1 = A(θ)xk + B(θ)uk + G(θ)wk ,
yk = Cxk + vk ,
x0 ∼ N(m0, S0),C =[ 1, 0] .

(48)

where matrices A, B, and D can be calculated from the
formulas

A(θ) = eAc(θ)T0 ,

B(θ) =
∫ T0

0
eAc(θ)τBcdτ ,

D(θ) =
∫ T0

0
eAc(θ)τGc(θ)Gc(θ)TeAc(θ)Tτdτ .

(49)
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Fig. 1Measured output signal for the system (45) with operating conditions changing every 200 samples
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Fig. 2 Probability of which operation state system (45) is in conditional on the measurements. Probabilities are computed using formula (29)

G(θ) is non-uniquely defined as a factor of D(θ) =
G(θ)G(θ)T. However, it is not needed for filter compu-
tation. In addition, it should be noted that discretization
operation (49) increases the nonlinearity of system depende
nce on parameters. The discretization step is T0 = 0.05.
In this example, noise variances θ2 and θ3 are unknown

and must be estimated, which is not a typical task. We
consider four cases: normal operating conditions, change

in the oscillator natural frequency (fault 1), increase in
process noise variance by an order of magnitude (fault 2),
and increase in measurement noise by an order of mag-
nitude (fault 3). Values of parameters corresponding to
normal operating conditions and faults are shown in
Table 2.
The simulation was started with normal conditions.

Next, after every 2500 steps (125 s), the operating mode
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Fig. 3Maximum a posteriori estimate of faulty condition. Vertical axis determines faulty condition. In sample 1572, there occurs a numerical
instability, causing mislabeling the condition
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Table 2 Parameters corresponding to normal operation and
faulty conditions of oscillator (46)

Fault 0, normal operating conditions Fault 1 Fault 2 Fault 3

θ1 3.0 5.0 3.0 3.0

θ2 10−1 10−1 1.0 10−1

θ3 10−2 10−2 10−2 10−1

Parameter θ1 is the oscillator natural frequency. Parameters θ2 and θ3 are process
and measurement noise covariances, respectively

was changed according to the scheme as normal, fault 1,
fault 2, and fault 3. The input u was a zero mean, square
signal. The forgetting factor α was 0.99.Measurements are
presented in Fig. 4. Probabilities obtained with Eq. (32)
are presented in Fig. 5. Again, in this case, faults with
maximum probability correspond to the fault schedule.

5.3 Example 3. Oscillator with unknown noise
variances—logarithmic odds approach

In this example, we analyze the same second-order con-
tinuous time system as in the example 2. The settings
of parameters were as ξ = 0.1 , bc = 1, T0 = 0.05,
m0 = (0, 0)T , and S0 = 10−2I. Initial distribution was
uniform. The fault case 3 is now different than in the
previous example, as the natural frequency also changes.
The simulation started with the normal conditions.

Next, after every 2500 steps, the operating mode was
changed in the scheme as normal, fault 1, fault 2, fault 3,
and normal (see Table 3). The input u was a zero mean,
square signal with a period of 630. The forgetting fac-
tor β = was 0.995. The estimation results are shown in
Fig. 6. We can see that there are no numerical errors;

however, there is a case of wrongly identified fault, when
fault 2 is identified instead of normal state for a short time
(comparing with a schedule).
We can reconstruct the probabilities from log-odds

using formula

pk,j = e−ek,iMAP ,j

∑r
s=0 e

−ek,iMAP , s
. (50)

and they are presented in Fig. 7. As one can see, the prob-
ability estimate is much less varying than in the case of
using Algorithm 1.

6 Discussion
While proposed fault detection and isolation algorithm
gives promising results, it is more than natural to compare
it with the industry standard which is Extended Kalman
Filter. We will now explain the differences between our
approach and EKF.
The most important fact is that the Extended Kalman

Filter (EKF) forms Gaussian approximation of true prob-
ability density of the state variables and parameters. The
original state equations are extended by adding new
equations which represent parameters as constant state
variables. Prediction of their mean values is based on the
extended system of state equations while the covariance
matrix is calculated on the basis of linearized model. The
correction step is the same as in the classical Kalman fil-
ter. Input noise and measurement noise covariances have
to be known a priori and cannot be estimated by EKF. Due
to the nonlinearity of the extended system, the EKF esti-
mate can often diverge. In the considered fault isolation
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Fig. 4Measured output signal for the oscillator (46) with operating conditions changing every 2500 samples
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Fig. 5 Probability of which operation state the oscillator (46) is in conditional on the measurements. Probabilities are computed using formula (29)

problem, the probability density of the parameter val-
ues is discrete and its Gaussian approximation formed by
EKF is continuous, so it cannot represent their character
properly.
All these issues suggest that EKF is not an optimal

(or sufficiently sub-optimal) tool for the considered fault
detection and isolation problem. Nevertheless, it is pos-
sible to apply EKF for this task, using it to estimate the
parameter values and providing appropriate thresholding
to isolate appropriate faults.
In contrast to EKF, the proposed Field Kalman Filter

forms true density of the state and parameter if the forget-
ting factor is 1. Noise covariances need not to be known
a priori and they can be estimated on the basis of data.
Since FKF allows calculation of probabilities of particular
faults it is possible to easily construct statistical tests for
fault detection and isolation.
The only actual advantage of EKF over FKF is a sub-

stantially reduced computational complexity. FKF needs
to solve a system of equations for every considered fault
type, while EKF requires solution of only one system
of equations (but with extended state). This reduction

Table 3 Parameters corresponding to normal operation and
faulty conditions of oscillator (46) in the example 3

Fault 0, normal operating conditions Fault 1 Fault 2 Fault 3

θ1 3.0 5.0 3.0 1.0

θ2 10−1 10−1 1.0 1.0

θ3 10−2 10−2 10−2 10−1

Parameter θ1 is the oscillator natural frequency. Parameters θ2 and θ3 are process
and measurement noise covariances, respectively

comes at a price; as for system with complicated param-
eter dependence (like the one in examples 2 and 3), EKF
might not converge at all. Lack of convergence for param-
eter estimation (natural frequency of the oscillator) is
presented in the Fig. 8.

7 Conclusions
We have presented two algorithms for fault estimation.
Both of them are based on the proposed by the first two
authors the Field Kalman Filter. Algorithm 1, i.e., direct
application of FKF is attractive because it can be easily
used for determination of fault probabilities, providing
level of confidence in fault detection. There is however
some numerical sensitivity connected to computations
close to 0/0 operation.
At the cost of dropping, the direct probability com-

putation one can use log-odds-based approach of the
Algorithm 2. In this case, the problem of division by
zero is reduced to addition and subtraction of numbers
in the same order of magnitude. The main disadvan-
tage is requirement of additional memory storage—with
Algorithm 1, only the vector of r probabilities is needed,
while Algorithm 2 requires a r × r matrix of logarith-
mic odds. Additionally, the result in form of odds can be
complicated to interpret if the resulting probability distri-
bution of faults is multi-modal. Original probabilities can
be reconstructed but also with additional computational
cost.
Additionally, as it was mentioned before, the forget-

ting operator is not unique. Proposed forgetting for
Algorithms 1 and 2 are working properly for presented
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Fig. 6 Estimated fault number in the example 3, using Algorithm 2 as a function of time
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Fig. 7 Reconstructed probabilities of faults in example 3 estimated by the Algorithm 2
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and other considered test systems. It should be however
noted that they are not equivalent and their selection may
require future work.
Future directions of work will include addressing the

abovementioned issue, as well as implementation formore
advanced systems. In particular, we want to extend the
fault detection algorithm to the problems continuous in
time. Additionally, the real-time performance of proposed
algorithms will be tested in the laboratory environment
systems.
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